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Abstract

This paper investigates how the use of redundant representations influences the performance of
genetic and evolutionary algorithms. Representations are redundant if the number of genotypes
exceeds the number of phenotypes. A distinction is made between synonymously and non-
synonymously redundant representations. Representation are synonymously redundant if the
genotypes that represent the same phenotype are very similar to each other. Non-synonymously
redundant representations do not allow genetic operators to work properly and result in a lower
performance of evolutionary search. When using synonymously redundant representations, the
performance of selectorecombinative genetic algorithms (GAs) depends on the modification of
the initial supply. Theoretical models are developed that show the necessary population size to
solve a problem and the number of generations goes with O(2* /r), where k, is the order of
redundancy and r is the number of genotypic building blocks (BB) that represent the optimal
phenotypic BB. Therefore, uniformly redundant representations do not change the behavior
of GAs. Ounly by increasing r, which means overrepresenting the optimal solution, does GA
performance increase. Therefore, non-uniformly redundant representations can only be used
advantageously if a-priori information exists regarding the optimal solution. The validity of the
proposed theoretical concepts is illustrated for the binary trivial voting mapping and the real-
valued link-biased encoding. The empirical investigations show that the developed population
sizing and time to convergence models allow an accurate prediction of the empirical results.

1 Introduction

Redundant representations are increasingly being used in evolutionary computation. Redundant
representations use a higher number of alleles for encoding phenotypic information in the geno-
type than is essentially to construct the phenotype. Although the practice of redundancy has
steadily increased over the last few years, there is little theory regarding the influence of redundant
representations on the performance of genetic and evolutionary algorithms (GEAs).

The purpose of this paper is to examine both theoretically and empirically, how redundant
representations affect the performance of genetic and evolutionary algorithms. In particular we
classify the different types of redundant representations by distinguishing between synonymously
and non-synonymously redundant representations. Representations are synonymously redundant
if the genotypes that represent the same phenotype have similar properties and are next to each
other in the mutational space. We describe the problems of evolutionary optimization methods



when using non-synonymously redundant representations, and investigate the effect of synony-
mously redundant representations on the population size which is necessary to solve a specific
problem and on the number of generations until a selectorecombinative GA converges. The theo-
retical models show that in comparison to non-redundant representations, synonymously redundant
representations do not change the performance of selectorecombinative GAs as long as all pheno-
types are represented on average by the same number of different genotypes. Only when some
phenotypes are overrepresented does the performance of a GA change by the use of a redundant
representation. We present quantitative models and illustrate their relevance for two different types
of synonymously redundant representations. Firstly, we use the redundant trivial voting mapping
for the one-max problem and for the concatenated deceptive trap problem. Secondly, we use the
redundant link-biased encoding, which was proposed by Palmer (1994), for the encoding of trees.
For this encoding the overrepresentation of some specific solutions can be controlled by an encoding
parameter P;. We can verify that the proposed theoretical concepts accurately predict how the
expected GA performance depends on the overrepresentation of some phenotypes.

The paper is structured as follows. In section 2 we take a closer look at the characteristics
of redundant representations. We give a short literature overview, discuss the differences between
synonymously and non-synonymously redundant representations and explain why non-synonymous
redundancy results in problems for evolutionary search. This is followed in section 3 by the popu-
lation sizing and time-to-convergence model for synonymously redundant representations. Conse-
quently, in section 4 we examine how the use of the synonymously redundant trivial voting mapping
for binary problems affects the necessary population size and time to convergence of GAs. Section 5
presents an investigation into the Link-biased encoding. When using this kind of tree representa-
tion, the overrepresentation of some specific phenotypes can be controlled by the encoding-specific
parameter P;. This allows us not only to test the validity of the proposed theoretical models for
continuous representations, but also to illustrate how GA performance depends on the overrepre-
sentation of some specific phenotypes. In section 6 we present some directions of future work. The
paper ends with concluding remarks.

2 Redundant Representations

This section gives an overview of the use of redundant representations and presents a classification
of the different types of redundant representations based on their synonymity.

2.1 Redundant Representations and Neutral Networks in Evolutionary Com-
putation

We describe the use of redundant representations in evolutionary computation and review the work
that was done in this field over the last few years.

Redundant representations are not an invention of evolutionary computation researchers but are
commonly used in nature for the encoding of genetic information. Currently, in biology there are
different opinions about the concepts that underly the process of evolution in nature. A common
concept is based on selection, whereas other models view evolution as a result of redundant repre-
sentations and neutral mutations. The theory of selection goes back to Darwin (1859) and assumes
that genetic changes are a result of selection combined with variation operators like crossover and
random mutations. During the process of evolution the variation operators sometimes result in
fitter individuals which gradually replace less-fit individuals in the population.

In contrast, the neutral theory which was proposed by Kimura (1983), assumes that not selection
but the random fixation of neutral mutations is the main source of evolution. Kimura observed that



in nature the number of different genotypes which store the genetic material of an individual greatly
exceeds the number of different phenotypes which determine the outward appearance. Therefore,
the representation which describes how the genotypes are assigned to the phenotypes must be
redundant and neutral mutations become possible. A mutation is neutral if its’ application to a
genotype does not result in a change of the corresponding phenotype. Because large parts of the
genotype have no actual effect on the phenotype, evolution can use them as a store for genetic
information that was in the past necessary for survival, and as a playground for developing new
properties of the individual that can be advantageous in the future. Neutral mutations are the tool
for designing these new properties without interfering with the current phenotype of an individual.
Although, most of the mutations are neutral, sometimes some have an effect on the phenotype and
bring some new genetic material which was developed by neutral mutations into life.

Following the work of Kimura some biological studies (Huynen, Stadler, & Fontana, 1996;
Huynen, 1996; Schuster, 1997; Reidys & Stadler, 1998) focused on the neutral theory. These studies
showed that the connectivity between fitness landscapes can be increased by the introduction
of redundant representations and neutral mutations. Different genotypes which are assigned to
the same phenotype (neutral sets) allow a population to move through the search space more
easily and to find new advantageous areas of the search space that would not have been accessible
without neutral mutations. Surprisingly, the neutral theory became even more popular in the
field of genetic and evolutionary computation (Banzhaf, 1994; Dasgupta, 1995). There is great
interest in how redundant representations and neutral search spaces influence the behavior, and
especially the evolvability of evolutionary algorithms (Barnett, 1997; Barnett, 1998; Shipman,
1999; Shipman, Shackleton, & Harvey, 2000; Shackleton, Shipman, & Ebner, 2000; Shipman,
Shackleton, Ebner, & Watson, 2000; Ebner, Langguth, Albert, Shackleton, & Shipman, 2001;
Smith, Husbands, & M., 2001c; Smith, Husbands, & M., 2001a; Smith, Husbands, & M., 2001b;
Barnett, 2001; Yu & Miller, 2001; Yu & Miller, 2002; Toussaint & Igel, 2002). The general idea
behind most of this work is that the evolvability of a population, which is defined as the ability
of random variations to sometimes produce improvements, is increased by the use of redundant
representations. Furthermore, because redundant representations allow a population to change the
genotype without changing the phenotype the ability of a population to adapt after changes and
the performance of evolutionary algorithms should increase.

However, in most of this work the focus is not on the performance of GEAs, but on characteristics
of the search like reachability of phenotypes, evolvability of populations, or connectivity of search
spaces. No results have been presented up till now that clearly indicate the superiority of redundant
representations and neutral search on practical test problems or real-world instances. Recently,
Knowles and Watson (2002) presented an investigation into the performance of neutral search
for NK landscapes, H-IFF, and MAX-SAT problems. The results showed that using arbitrary
redundant representations (Random Boolean Network mapping) does not increase the performance
of mutation-based search for the considered test problems. In most of the problems used, adding
redundancy appeared to reduce performance.

Although, at the moment the focus in investigating the role of redundant representations is
mainly on neutral mutations and their effects on search characteristics, there is other work which
tries to address the effects of redundancy on the performance of evolutionary search. Researchers
used different types of redundant representations and sometimes observed either an increase or
a decrease in the performance of evolutionary algorithms (EAs). Over time different opinions
regarding the effects of redundancy on the performance of GEAs have been developed. Some
work noticed that redundant representations lead to a reduction in EA performance (Davis, 1989;
Eshelman & Schaffer, 1991; Ronald, Asenstorfer, & Vincent, 1995). The low performance was
argued to be either due to a loss of diversity in the population, or because different genotypes that



represent the same phenotype compete against each other. Also, the larger size of the search space
was listed as a reason for lower EA performance.

In contrast, other mostly application-oriented work reports higher performance with additional
redundancy (Gerrits & Hogeweg, 1991; Cohoon, Hegde, Martin, & Richards, 1988; Julstrom, 1999),
which some researchers ascribe to an increase in diversity that hinders premature convergence. Fur-
ther work considered the computational implications of genetic code-like representations in gene
expression (Kargupta, 2000; Kargupta, 2001). Kargupta investigated how redundant representa-
tions influence the energy of the Fourier spectrum. The results show that using redundant repre-
sentations and encoding phenotypes with higher fitness by a larger number of genotypes results in
a higher energy of the Fourier spectrum, reduces the difficulty of the optimization problem, and
therefore allows a more effective evolutionary search.

This short literature review has shown that the influence of redundant representations on the
performance of evolutionary algorithms is a strongly disputed topic. It can be expected that there
is no easy and general answer, and not all types of redundant representations will be useful (Harvey
& Thompson, 1997). To find answers, it is necessary to characterize the different types of redundant
representations regarding their specific properties, and to develop quantitative models describing
how solution quality and run duration of GEAs is influenced. This approach can help to clear up
some of the disputed questions and to find out under which circumstances which type of redundant
representation can be beneficial for GEAs. Consequently, we develop in the following a classification
for different types of redundant representations and develop in section 3 quantitative models.

2.2 Synonymously and Non-Synonymously Redundant Representations

In the following we give some basic definitions and develop a classification for different types of
redundant representations. The classification is based on the synonymity of representations.

When talking about representations we have to distinguish between genotypes and phenotypes.
®, is defined as the genotypic search space, where the operators crossover and mutation are applied
to. @, is the phenotypic search space. The fitness of an individual depends on the properties of
the phenotype P € ®,. A representation f,: ®, — ®, determines which phenotypes ¥ € ®, are
represented by which genotypes 9 € ®,. We want to assume that every phenotype a” is assigned
to at least one genotype x9. Otherwise, if a phenotype xP is not represented by some genotype x9
this solution can never be found by the used optimization algorithm.

A representation f, is redundant if the size of the genotypic search space is larger than the size
of the phenotypic search space, |®4| > |®,|. This means, there are more different genotypes than
phenotypes. When using search spaces where not all possible phenotypes or genotypes are accessible
by the used search method, a representation is redundant if the number of accessible phenotypes
is smaller than the number of accessible genotypes. Therefore, in general a representation f,
is redundant if at average one accessible phenotype is represented by more than one genotype.
Redundant representations are less efficient encodings which use an additional number of genes
but do not increase the amount of relevant information represented. Therefore, a representation is
redundant if [ different phenotypes are assigned to m different genotypes where m > [. Although
the larger number of possible genotypes would allow us to encode more individuals than there are
phenotypes, some of the information that exists in the genotypes is not considered.

To classify different types of redundant representations we want to measure how similar the
genotypes are that are assigned to the same phenotype. A representation is defined to be syn-
onymously redundant if the genotypes that are assigned to the same phenotype are similar to
each other. Consequently, we denote a representation to be non-synonymously redundant if the
genotypes that are assigned to the same phenotype are not similar to each other. Therfore, the
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Figure 1: Synonymous versus non-synonymous redundancy. The different symbols indicate different
genotypes and their corresponding phenotypes. When using synonymously redundant representa-
tions (left), genotypes that represent the same phenotype are similar to each other. When using
non-synonymously redundant representations (right), genotypes that represent the same phenotype
are not similar to each other but distributed over the whole search space.put there an f, on the
arrows

synonymity of a represenation depends on the metric that is defined on ®, and ®,. The metric
defined on ®, depends on the properties of the considered problem and the metric defined on @,
depends on the used search operator. Depending on different operators and metrics used on @,
we get different synonymity of the representation f,. In Figure 1 we illustrate the differences be-
tween synonymously and non-synonymously redundancy. For this illustrative example we use the
Euclidean distance between the individuals for indicating how similar different individuals are.

We want to formalize the classification into synonymously and non-synonymously redundant
representations. In general, a redundant representation f, assigns a phenotype z” to a set of
different genotypes z9 € ®g”, where Va9 € 3" : f,(29) = x,. All genotypes 29 in the genotypic set
@g" represent the same phenotype zP. A representation is synonymously redundant if the genotypic
distances between all x9 € @;p are small for all different x,. Therefore, if for all phenotypes the
sum over the distances between all genotypes that correspond to the same phenotype

Sl Y X )] 1

zP 19D, yIcdy?

where x9 # y9, is reasonably small a representation is denoted to be synonymously redundant.
d(xz9,y9) depends on the mutation operator used and measures the distance between two genotypes
zd € @;p and y9 € <I>§p which both represent the same phenotype zP. The distance between two
genotypes depends on their genotypic similarity and is small if the two genotypes are similar.
The synonymity of redundant redundant representations is related to the locality of non-
redundant representations. A genotype 29 is a neighbor to some other genotype 39 if the distance
d(x9,y9) = dpin, where dp, # 0 is the minimal distance between two individuals in the geno-
typic search space. When using binary representations, d,;, = 1 and two genotypes are neighbors
if they differ in one allele. The locality of a representation describes if neighboring genotypes
correspond to neighboring phenotypes. If neighboring genotypes correspond to neighboring pheno-
types, a representation has high locality and small changes in a genotype result in small changes in
the corresponding phenotype. There is evidence, both analytical (for example Whitley (1999) for
mutation-based search or Rothlauf (2002) for crossover-based search), and empirical (for example
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Figure 2: The effects of small mutation steps for synonymously versus non-synonymously redun-
dant representations. The different symbols indicate different genotypes and their corresponding
phenotypes. The arrows indicate neighboring individuals. When using synonymously redundant
representations a mutation results in either the same or a similar phenotype. Contrastly, when us-
ing non-synonymously redundant representations the mutation of a genotype results in completely
different phenotypes.

Gottlieb et al. (2001) or Rothlauf and Goldberg (2000)), that shows for easy problems low locality
representations result in low GEA performance. The genetic operators mutation and crossover no
longer work properly as they create new offspring that are not similar to their parent(s). When
using low-locality representations, guided GEA-search becomes random search. Therefore, low
locality representations are a necessity for efficient evolutionary search.

These concepts can also be applied to redundant representations. = When using non-
synonymously redundant representations genetic operators like mutation or crossover can result
in an offspring that is phenotypically completely different from its’ parent(s). Using neutral search
spaces where the connectivity between the phenotypes is strongly increased by the use of a re-
dundant representation allows us to reach many different phenotypes by one single mutation step.
However, increasing the connectivity between the phenotypes results in random search and decreases
the efficiency of EAs. It has the same effect as when using large mutation steps for non-redundant
representations. By using large mutation steps many different individuals can be reached in one step
and the connectivity of the phenotypes increases. As a result, guided search becomes more difficult
and search becomes more random. Therefore, we expect reduced EA performance on easy prob-
lems when using non-synonymously redundant representations. Examples for non-synonymously
redundant representations are the direct binary mapping, the cellular automaton mapping or the
random boolean network mapping which have been proposed by Shackleton et al. (2000). The
use of these types of representations strongly increases the connectivity between phenotypes what
results in a more randomized search. Consequently, Knowles and Watson (2002) have shown for
some test problems that the performance of mutation-based search using the Random Boolean
Network mapping decreases.

In contrast, when using synonymously redundant representations, the connectivity between the
phenotypes is not increased. Small genotypic variations can not result in large phenotypic changes
but result either in the same or a similar phenotype. Figure 2 illustrates this behavior and com-
pares it to non-synonymously redundant representations. Examples for synonymously redundant
representations are the trivial voting mapping (Shackleton et al., 2000) which is investigated more



closely in section 4.

3 Population Sizing and Time to Convergence for Synonymously
Redundant Representations

In the previous subsection we have suggested how non-synonymously redundant representations
result in randomized search as they increase the connectivity of the search space. Therefore, we
want to focus in the following on synonymously redundant representations and develop models that
describe their influence on the performance of selectorecombinative GAs.

3.1 Characteristics of Redundant Representations

In this subsection we introduce some quantities that can be used for characterizing the properties
of synonymously redundant representations. We use the definitions from subsection 2.2.

To describe a redundant representation, we introduce the order of redundancy k,. k, is defined
as log(|®g4|)/log(|®,|) and measures the amount of redundant information in the encoding. When
using binary genotypes and binary phenotypes, the order of redundancy can be calculated as

B log(2l9)
" log(2l)’

where [, is the length of the binary genotype and [, is the length of the binary phenotype. When
using a non-redundant representation, the number of genotypes equals the number of phenotypes
and k, = 1.

Furthermore, we want to characterize not only how much a representation is redundant, but
also how a representation is redundant. We are especially interested in the overrepresentation and
underrepresentation of specific solutions. Therefore, we introduce r as the number of genotypes
that represent the one phenotype that has the highest fitness. When using non-redundant repre-
sentations, every phenotype is assigned to exactly one genotype and r = 1. However, in general,
1<r<|®,| — || + 1.

In the following we want to focus on how redundant representations influence the behavior of
selectorecombinative GAs. Selectorecombinative GAs use crossover as the main search operator
and mutation only serves as a background operator. When focusing on selectorecombinative GAs
we implicitly assume that there are building blocks (BBs) and that the GA process schemata.
Consequently, we must define how k, and r depends on the properties of the BBs.

In general, when looking at BBs of size k there are 2 different phenotypic BBs which are
represented by 2F¥r different genotypic BBs. Therefore,

where k, denotes the genotypic size of a BB and kj, the size of the corresponding phenoypic BB.
As before, a representation is redundant if k£, > 1. The size of the genotypic BBs is k, times larger
than the size of the phenotypic BB. Furthermore, r is defined as the number of genotypic BBs of
length kk, that represent the best phenotypic BB of size k. Therefore, in general,

re{1,2,...,2M — ok 4 1},

In contrast to k, which is determined by the representation used, r depends not only on the used
representation, but also on the specific problem that should be solved. Different instances of a



9 ‘ P ‘
00 00, 00 01,01 00,0101 0O
10 00, 10 01, 11 00, 1101 | 10
00 10, 01 11,00 11,0111 |01
10 10, 10 11, 11 10, 1111 | 11

Table 1: An example of a uniformly redundant representation, where k. = 2 and r = 4

problem result in different values of r. If we assume that k, is an integer (each phenotypic allele

is represented by k, genotypic alleles) the possible values of the number of genotypic BBs that
represent the optimal phenotypic BB can be calculated as

r =ik withie[1,2,...,2F —1]. (2)

A representation is uniformly redundant if all phenotypes are represented by the same number of

different genotypes. Therefore, when using an uniformly redundant representation every phenotypic

BB of size k = k), is represented by
r = 2k(kr=1) (3)

different genotypic BBs.

Table 1 gives an example for a uniformly redundant encoding. Two bits in a phenotype aP are
represented by four bits in the genotype z9. Therefore, k, = 2 and r = 4. With |®,| = 2% = 22 the
size of the genotypic space is |®,| = 2k = 21 = 16.

By introducing redundancy the search space for a GA using binary phenotypes of string length
[ =1, is increased from |®,| = 2! to |®,| = 2!¥. The length of the individuals increases from [ = I,,
in the phenotypic space to [, = k, * [ in the genotypic space. To represent all phenotypes, each
individual @, € ®, must be represented by at least one genotype x4 € ®,. If |®4| = |P,|, and each
phenotype is represented by at least one genotype, we have a non-redundant, one-to-one mapping.

3.2 Population Sizing

As we focus in our investigation on selectorecombinative GAs we can use the existing theory de-
scribing the behavior of selectorecombinative GAs from Harik, Canti-Paz, Goldberg, and Miller
(1997), and Thierens and Goldberg (1993). They describe for non-redundant representations how
the population size and the time to convergence that is necessary to solve a specific problem de-
pend on the characteristics of the problem. In the following, we use these models for describing the
effects of synonymously redundant representations on the performance of GAs.

Following Harik, Canti-Paz, Goldberg, and Miller (1997) the probability that a GA with a
population size N converges after t.,n, generations to the correct solution is

_1-(@/p)™
1—(q/p)N’

where xg is the expected number of copies of the best BB in the randomly initialized population,
g =1—p, and p is the probability of making the right choice between a single sample of each BB

P,



d is the signal difference between the best BB and its strongest competitor, m’ = m—1 with m is the
number of BBs in the problem, U%, g is the variance of a BB, and ¢ = 1—p is the probability of making
the wrong decision between two competing BBs. It has been shown in Harik, Canti-Paz, Goldberg,
and Miller (1997) that this random walk or Gambler’s ruin model can be used for describing the
behavior of selectorecombinative GAs propagating schemata and BBs. In the following, this model
is the basis for describing the influence of synonymously redundant representations on the behavior
of GAs.

For a randomly initialized population with no redundancy, xo = N/2¥. The situation changes
when using redundant representations. Then, the initial supply depends on the characteristics of
the representation, namely r and k.. With r the number of genotypic BBs of length kk, that
represent the best phenotypic BB of length k, we get

r
SCOZN%, (5)

where k, is the order of redundancy. The assumption that redundant representations affect the
initial supply of BBs is the core idea behind the proposed model describing the influence of syn-
onymously redundant representations on GA performance. We assume that other effects of syn-
onymously redundant representations on GA performance can be neglected. Consequently, when
using uniformly redundant representations, r = 28¢r=1 and 2y = N /2%, These are the same value
as when using non-redundant representations. Therefore, GA performance does not change when
using uniformly redundant representations.

As the variance 0% and the number of BBs, m is not affected by the use of a redundant
representation, the probability of GA failure « = 1 — P, can be calculated as

_1—(g/p)™
1—(q/p)N

If we assume that xg is small and ¢ < p we can assume that 1 — (¢/p)" converges faster to 1
than 1 — (¢/p)™. Using these approximations (see also Harik et al. (1997)) the equation can be

simplified to
1—p\™
o (_p> .
p

~ @)
)

a=1

(6)

Therefore, we get for the population size

The normal distribution in equation 4 can be approximated using the first two terms of the power
series expansion (see Abramowitz and Stegun (1972)) as N(z) ~ 1/2 + x/2. Substituting p from
equation 4 into equation 7 we get:

2khr 1-z
N ~ . In(a)/In (1+:c> ,

where z = d/v2m’opp. Since z is a small number, In(1 — ) can be approximated with —z and
In(1 + z) with z. Using these approximations we finally get for the population size N:

rikfl OBBV m/
_ a .

N =~ 1
T n(a) d

(®)



The population size N goes with O (#) when using synonymously redundant representations.
With increasing r the number of individuals that are necessary to solve a problem decreases. Using
a uniformly redundant representation, where r = 25(>=1) " does not change the population size N
in comparison to non-redundant representations.

3.3 Run Duration

To describe the performance of GAs, we must calculate not only the number of individuals that are
necessary for solving a problem, but also the expected number of generations until convergence.

Based on Miihlenbein and Schlierkamp-Voosen (1993) and Thierens and Goldberg (1993), Miller
and Goldberg developed a convergence model for selectorecombinative GAs (Miller & Goldberg,
1996b; Miller & Goldberg, 1996a). The convergence time t.y,, depends on the length of the
phenotypes | = [, and the used selection scheme. Using the selection intensity I the convergence
model is

p(t) = 0.5 (1 + sin (% + arcsin(2p(0) — 1))) ,

where p(0) = xo/N is the proportion of best building blocks in the initial population. I depends
only on the used selection scheme. The number of generations f..,, it takes to fully converge the
population can be calculated by putting p(teony) = 1:

T %7 (g — arcsin (2p(0) — 1)) : 9)

If we assume k& = 1 and uniform redundancy (equal proportion of 1s and Os in the initial population)
we get p(0) = 0.5. Then, the number of generations until convergence simplifies to

booma = TV
COTLU_QI

With redundancy the initial proportion of building blocks is p(0) = 57 (see equation 5). Using
arcsin(z) = x + o(x®) the time until convergence could be approximated by

\/Z s T
teonv = T (1 + 5 - W) : (10)

With increasing 7/ 2kr the time to convergence t.ony is reduced. Therefore, the optimal solution is
found after a lower number ob generations if it is overrepresented by the synonymously redundant
representation. For uniform redundancy r = 25— we get

tconv:ﬂ<1+E 1 >

I 2 2k-1

The time until convergence when using uniformly redundant representations is the same as without
redundancy.

3.4 Overall Problem Complexity

After we have calculated the number of individuals that are necessary for solving a problem (see
equation 8), and the number of generations that GAs using only crossover need to converge (see

10



equation 10), we can calculate the absolute number of fitness calls that are necessary for solving a
problem:

Qkrk—1 oppVrm' V1 T r
N s teony =~ — . In(a) 7 *T<1+§_W>:
vrlm/ OBB Qkkr
- In(a) 288 (1 - 2
7@y ( o 2 ”)>

The overall number of fitness calls goes with O(2¥" /7). In comparison to non-redundant represen-
tations the number of fitness calls stays constant for synonymously redundant representations if
r = 2kr=1)_ Then z9/N = 1/2* and the representation is uniformly redundant.

4 Trivial Voting Mapping for Binary Encoded Problems

In the previous section we developed theoretical models describing how synonymously redundant
representations influence the solution quality and the time that is necessary to find the good
solutions. In the following section we investigate if the proposed models allow a good prediction
of GA performance for the trivial voting (TV) mapping. The TV mapping is a synonymously
redundant representation and we use it for one-max and concatenated deceptive trap problems.
During our investigation we are particularly interested in whether the developed models allow us
to accurately predict the expected solution quality and running time of a selectorecombinative GA.

4.1 The Trivial Voting Mapping

In the following subsection we give a short introduction into the trivial voting mapping.

When using the TV mapping, a set of mostly consecutive, genotypic alleles is relevant for the
value of one allele in the phenotype. Each allele in the genotype can only influence the value of one
allele in the phenotype. The value of the phenotypic allele is determined by the majority of the
values in the genotypic alleles. In general, the different sets of alleles in the genotype defining one
phenotypic allele have the same size. The TV mapping is a synonymously redundant representation
as all genotypes that represent the same phenotype are very similar to each other. A mutation in
a genotype results either in the same corresponding phenotype, or in one of its neighbors.

The TV mapping can easily be characterized using the rep-
resentation parameters defined in subsection 3.1. The order of
redundancy k, is simply the number of genotypic alleles that
determine the value of one phenotypic allele. Figure 3 gives an
Figure 3: The trivial voting map- example for the TV mapping.
ping Shackleton, Shipman, and Ebner (2000) applied the TV

mapping to binary strings in the context of the neutral the-
ory. When used for binary strings, binary genotypes z9 € Bl are assigned to binary phenotypes
2P € Bl». The length of a genotype is larger than the length of a phenotype, lg > 1,,. The value of
one phenotypic bit is determined by the majority of the values in the corresponding genotypic bits
(majority vote). However, if k;, is even then the number of ones could equal the number of zeros.
Therefore, half the cases that result in a tie should encode a one in the corresponding phenotypic
allele, and half the cases should represent a zero. For example, for k. = 4 the genotypic BBs 1100,
1010, and 1001 represent a 1 and the phenotypic BBs 0011, 0101, 0110 represent a zero.

Because the majority of the votes determines the values of the corresponding phenotypic allele,
the TV mapping is a uniformly redundant representation. FEach phenotypic BB is represented by
the same number of genotypic BBs which is 28¢»—1) where k is the size of the phenotypic BB.

genotype:

phenotype:
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As we are not only interested in uniformly redundant representations, but also want to know how
non-uniformly redundant representations influence GA performance, we extend the TV mapping
to allow the encoding to overrepresent some individuals. Therefore, we want to assume that if the
number of ones in the genotypic alleles xiriﬂ., where i € {0,...,l, — 1} and j € {0,... ,k, — 1},
is larger or equal than a constant u then the value of the phenotypic allele ¥ is set to one. Vice
versa, the phenotypic allele ¥ is set to zero if less than u of the corresponding genotypic alleles are

set to one. Therefore,
: kr—1 g
- {o it Yhtad L o<u
i . kr—1 g
Lif 350 iy 2 Us

where u € {1,...,k;}. 2 respectively 2¥ denotes the ith allele of the genotype respectively phe-
notype. u can be interpreted as the number of genotypic alleles that must be set to one to encode
a one in the corresponding phenotypic allele. We denote this representation the extended trivial
voting (eTV) mapping. For v = (k, +1)/2 (k, must be odd) we get the original TV mapping. Ex-
tending the TV mapping in the proposed way allows us to investigate how non-uniform redundancy
influences the performance of GAs.

When using the €TV mapping, the number r of genotypic BBs that can represent the optimal
phenotypic BB depends on the number of ones in the genotypic alleles that determine the value of
the corresponding phenotypic allele. Considering equation 2 we get

k

~(56))"

J=u

where u € {1,...,k-}. k denotes the size of the phenotypic BB. We want to give a short illustration.
We use a redundant representation with k, = 3, k = 1, and the optimal BB is 2!’ = 1 (compare
Figure 3). Because u € {1,...,k,} there are three different values possible for r. For u = 1 the
phenotypic allele ¥ is set to one if at least one of the three corresponding genotypic alleles xfkr,

ah y,orad L, isset toone. Therefore, a one in the phenotype is represented by r = 23:1 (k]r) =7
different genotypic BBs (111, 110, 101, 011, 100, 010, and 001). For u = 2, the optimal genotypic
BB z¥ =1 is represented by r = Z?:2 (k;) = 4 different genotypic BBs (111, 110, 101, and 011)
and the representation is uniformly redundant. For u = 2 we get the original TV mapping. For

u = 3, the optimal phenotypic BB is represented only by one genotypic BB (111).

4.2 Experiments and Empirical Results

We present empirical results when using the binary trivial voting mapping for the one-max problem
and the concatenated deceptive trap problem.

4.2.1 One-Max Problem

The first test example for our empirical investigation is the one-max problem. This problem is
very easy to solve for GEAs as the fitness of an individual is simply the number of ones in the
binary phenotype. To ensure that recombination results in a proper mixing of the BBs, we use
uniform crossover for all experiments with the one-max problem. Furthermore, in all runs we use
tournament selection without replacement and a tournament size of 2. For the one-max function
the signal difference d equals 1, the size k of the building blocks is 1, and the variance of a building
block 0% = 0.25.

12



x9;xd, 4 (with k, = 2)
z? extended TV original TV
r=1 r=3 r=2
00, 01, 10 00 00, 01
1 11 01, 10, 11 10, 11

Table 2: The trivial voting mapping for k, = 2

When using the binary TV mapping for the one-max problem each bit of a phenotype z¥ € @,
is represented by k, bits of the genotype 29 € ®,. The string length of a genotype x7 is I, = k. * [,
and the size of the genotypic search space is |®4| = 2krlo  Table 2 illustrates for k, = 2 the two
possibilities (r = 1 and r = 3) of assigning genotypic BBs {00, 01, 10,11} to one of the phenotypic
BBs {0,1} when using the extended TV mapping described in the previous paragraphs. With
denoting x? the value of the ith bit in the phenotype, the 2ith and (2i + 1)th bit of a genotype
determine z¥. Because the size of the BBs k = 1, the number of genotypic BBs that represent the
optimal phenotypic BB is either » = 1 or r = 3 (compare equation 11). Furthermore, Table 2 also
lists the case where r = 2. This case is the original uniformly redundant TV mapping. The second
bit of each genotypic BB does not contribute to the construction of the phenotype.

1 I B L g s Bt —S
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o . Lo : R
0.9 k- o T /iﬁ/ ’ ? ] /f/
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S S s
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06 i TVM (r=2, uniform redundancy) +----- | | TVM (u=2, r=4, uniform redundancy) *--x---
: : prediction eTVM with u=2 (r=1) fl L prediction eTVM with u=3 (r=1)
eTVM with u=2 (r=1) +-% -1 0.4 ,. eTVM with u=3 (r=1) +-%-1
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Figure 4: Experimental and theoretical results of the proportion of correct BBs on a 150-bit one-max
problem using the trivial voting mapping for k, = 2 (left) and k, = 3 (right). The lines without line
points show the theoretical predictions. When using non-uniformly redundant representations, GA
performance is changed with respect to the overrepresentation or underrepresentation respectively
of the high-quality BBs.

In Figure 4(a) (k, = 2) and Figure 4(b) (k. = 3), the proportion of correct BBs at the end of a
run for a 150 bit one-max problem using the TV mapping is shown. For this problem 20 different
phenotypes are represented by either 23%0 (k. = 2) or 240 (k. = 3) different genotypes. If we use
the €TV mapping (indicated in the plots as €T'VM) we can set u either to 1 or 2 (k, = 2) or to 1, 2,
or 3 (k, = 3). The corresponding values for r which can be calculated according to equation 11 as
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ue:the r|1deduT:V2maI|)I;1rig 3 original TV mapping
R r 3 1 - 2
" xo/N | 3/4 1/4 - 2/4=1/2
b — 3 r 7 4 1 4
" xo/N | 7/8 [4/8=1/2| 1/8 2/4=1/2

Table 3: Properties of the different TV mappings for the one-max problem (k = 1)

well as z¢/N are shown in Table 3. ¢ is the expected number of copies of the best BB in the initial
population and N is the population size. Furthermore, the figures show the results when using
the original, uniformly redundant TV mapping, and when using the non-redundant representation
with k. = 1. The lines without line points show the theoretical predictions from equation 6, and
the lines with line points show the empirical results which are averaged over 250 runs. The error
bars indicate the standard deviation.

The results show that for the uniformly redundant TV mapping, r = 2 (k, = 2) or r = 4
(kr = 3), we get the same performance as for using the non-redundant representation (k, = 1). As
in the original model proposed by Harik, Canti-Paz, Goldberg, and Miller (1997) the theoretical
model slightly underestimates GA performance. As predicted by our model which we proposed in
subsection 3.2, GA performance does not change when using a uniformly redundant representation.
Furthermore, we can see that if the optimal BB is underrepresented (v = 2 for k, = 2 and v = 3
for k., = 3) GA performance decreases. Equation 6 gives us a good prediction for the expected
solution quality if we consider that the non-uniform redundancy of the representation changes the
initial BB supply according to equation 5. If the optimal solution is overrepresented (u = 1 for
both cases, k. = 2 and k, = 3) GA performance increases. Again the theoretical models give a
good prediction for the expected proportion of correct BBs.

Summarizing the results, we can see that using the uniformly redundant TV mapping does not
change GA performance in comparison to using the non-redundant representation. Only if we over-
represent the optimal phenotypic BB, does GA performance increase; likewise, if we underrepresent
the optimal BB, GA performance drops. As our derived model is able to make accurate predictions
for the expected solution quality, our assumption that synonymously redundant representations
influence GA performance by changing the initial supply seems to be valid.

In the remaining paragraphs we perform an empirical investigation into the effect of the TV
mapping on the number of generations until the population of a selectorecombinative GA converges.
Again we use the one-max problem and the TV mapping from above with the same parameters
except the population size is set to N = 2[, to allow reliable decision making for the one-max
problem (Goldberg, Deb, & Clark, 1992). As we use tournament selection without replacement of
size two the selection intensity [ = 1//x.

Figure 5(a) (k. = 2) and Figure 5(b) (k. = 3) show the number of generations that are
necessary until 90% of all phenotypic BBs are found over the problem size which is equal to
l = l,. The lines without line points show the predictions from equation 9 and the lines with
line points plot the empirical results. We can see that the run duration of a GA when using the
non-redundant representation (k, = 1) is exactly the same as when using the uniformly redundant
TV mapping with k. = 2. For k. = 3 and u = 2 (uniform redundancy) the run duration is slightly
increased in comparison to the non-redundant encoding. We expect that this difference increases
with larger k,. In agreement with the results from Thierens and Goldberg (1993), we report a
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Figure 5: Theoretical predictions and experimental results for the number of generations that are
necessary until 90% of all phenotypic BBs are correctly identified. The plots are for one-max
problems of different size [ and trivial voting mapping with k, = 2 (left) and k, = 3 (right).

small underestimation of the expected number of generations when using either non-redundant, or
uniformly redundant, representations.

When using non-uniformly redundant variants of the €TV mapping the underestimation is
larger, but nevertheless the model gives a good approximation for the expected number of genera-
tions. We can see that with increasing r the run duration increases. For example, if each phenotypic
bit is represented by three genotypic bits (k. = 3) and a one is represented if at least one out of
three genotypic bits is set to one (u = 1) then a GA finds the good solutions after very short time
(compare eTVM with u = 1). The expected number of generations shows the predicted behavior.
The necessary number of generations increases by about O(\/Z) We see that the proposed model
allows us to make good predictions for the expected run duration.

4.2.2 Concatenated Deceptive Trap Problem

Our second test example uses deceptive trap functions.

Traps were first used by Ackley (1987) and investigations into the deceptive character of these
functions were provided by (Deb & Goldberg, 1993). Figure 6 depicts a 3-bit deceptive trap problem
where the size of a BB is k = 3. The fitness value of a phenotype 2P depends on the number of
ones u in the string of length [. The best BB is a string of [ ones which has fitness [. Standard EAs
are misled to the deceptive attractor which has fitness [ — 1. For the 3-bit deceptive trap the signal
difference d is 1, and the fitness variance equals 0%3 g = 0.75. We construct a test problem for our
investigation by concatenating m = 10 of the 3-bit traps so we get a 30-bit problem. The fitness of
an individual z is calculated as f(z) = Z;if)l i(u), where f;(u) is the fitness of the ith 3-bit trap
function from Figure 6. Although this function is difficult for GEAs it can be solved with proper
population size N.

For deceptive traps of size k = 3 we can calculate the number r of genotypic BBs that represent
the optimal genotypic BBs according to equation 11. Table 4 summarizes for the modified TV
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" :elx te1|r1ded EZ r2napp1|ngu =3 original TV mapping
b 9 r 33 =27 13=1 - 23 =8
4 ro/N | 27/64 1/64 - 8/64 =1/8
b — 3 r 73 =343 43 = 64 13=1 43 =64
4 xo/N | 343/512 | 64/512 = 1/8 | 1/512 64/512 = 1/8

Table 4: Properties of the different TV mappings for the deceptive trap of size k = 3

mapping how r and z9/N depends on u, which describes how many of the genotypic alleles must
be set to 1 to encode a 1 in the phenotype. xg is the expected number of copies of the best BB
in the initial population and N is the population size. Furthermore, we list the properties of the
original uniformly redundant TV mapping.

() By analogy to the previous paragraphs in Figure 7(a) (k, = 2) and
Figure 7(b) (k. = 3) we show the proportion of correct BBs at the end of
a run over different population sizes for ten concatenated 3-bit deceptive
2 trap problems. In this problem, 23 different phenotypes are represented
by either 20 (k. = 2) or 2% (k, = 3) different genotypes. As before, we
use tournament selection without replacement of size 2. In contrast to the
T one-max problem, two-point crossover was chosen for recombination. Uni-

form crossover would result in an improper mixing of the BBs because the

Figure 6: A 3-bit de- genotypic BBs are either of length [, = kI, = 6 (k. = 2), or of length [, =9

ceptive trap problem (k. = 3). Again, the lines without line points show the predictions of the

proposed model for different r. Furthermore, empirical results which are

averaged over 250 runs, are shown for various values of r. The results show that for the uniformly

redundant TV mapping we get the same performance as when using the non-redundant represen-

tation (k, = 1). As in the experiments for the one-max problem the proposed model predicts

the experimental results well if the €TV mapping is used and some BBs are underrepresented or
overrepresented.

The presented results show that the effects of synonymously redundant representations like the
TV mapping on the performance of GEAs can be explained well by a change of the initial supply
of high-quality BBs. If the ¢eTV mapping favors high-quality BBs then the performance of GAs is
increased. If good BBs are underrepresented the performance is reduced. If the representation is
uniformly redundant, GAs show the same performance as when using the non-redundant encoding.

3T [

e

5 Link-biased Encoding for Encoding Trees

In this section we want to illustrate how the theoretical insights from section 3 can be used for
predicting the influence of the redundant link-biased encoding on the performance of GEAs. The
link-biased encoding is a real-valued representation from the class of weighted encodings and was
developed by Palmer (1994).

The purpose of this section is twofold. Firstly, we want to apply the results from section 3
to real-valued representations and show that the approach proposed therein is not only valid for
discrete, binary representations (as illustrated in the previous section), but also holds true for
continuous representations. Continuous representations using real-valued alleles are redundant by
definition if they are used for the representation of permutation problems or other problems with a
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Figure 7: Experimental and theoretical results of the proportion of correct BBs for ten concatenated
3-bit deceptive traps. We show results for different variants of the TV mapping and k, = 2 (left)
and k, = 3 (right). The lines without line points show the theoretical predictions. As predicted,
GA performance sharply decreases if the eTV mapping underrepresents the optimal BB.

finite number of phenotypes. Therefore, it is important to have models available that explain the
effects of real-valued representations on GA performance if these representations are non-uniformly
redundant. Secondly, we want to show that by using and combining existing population sizing
models we are able to quite accurately predict the expected solution quality. Therefore, predicting
expected GA performance for the link-biased encoding is an example of how the systematic and
theory-guided use of existing models allows accurate modeling of GA behavior.

The more general variant of the link-biased encoding, the link-and-node-biased (LNB) encod-
ing, is redundant and overrepresents some phenotypes. The structures of the solutions that are
overrepresented depend on representation-specific parameters. The encoding was proposed to over-
come problems of other tree representations like characteristic vectors, predecessor representations,
or Priifer numbers. Abuali, Wainwright, and Schoenefeld (1995) compared the LNB encoding to
some other representations for the probabilistic minimum spanning tree (PMST) problem and in
some cases found the best solutions by using the LNB encoding. Later, Raidl and Julstrom (2000)
proposed a variant of this encoding and observed solutions superior to those of several other rep-
resentations for the degree-constrained minimum spanning tree problem. For the same type of
problem Krishnamoorthy and Ernst (2001) proposed another version of the LNB encoding.

In the following subsection we give a short overview of the functionality of the link-biased
encoding. In subsection 5.2 we focus on the redundancy of the representation and illustrate how
it depends on the representation-specific parameter P;. In subsection 5.3 we review a population
sizing model which can be used for the link-biased encoding. Finally, subsection 5.4 formulates the
population sizing model for the link-biased encoding and presents empirical results.
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5.1 Functionality of the Link-biased Encoding

In this subsection we want to describe the link-biased encoding and review some of its proper-
ties (compare Palmer (1994), Palmer and Kershenbaum (1994a), and Palmer and Kershenbaum
(1994Db)).

When using the more general LNB encoding, a tree is represented by a string of real-valued
weights associated with the nodes and edges of a graph. There are different types of LNB encodings.
The link-biased encoding uses weights only associated with the edges of a graph, whereas the node-
biased encoding uses weights only associated with the nodes of a graph. Palmer proposed in his
original work the LNB encoding which uses both weights. For the purpose of this investigation
we want to use the link-biased version only. When using this variant the chromosome b holds the
biases (weights) for the links, and has length n(n — 1)/2 for an n node network.

When constructing the phenotype (the tree) from the genotype (the bias vector b containing the
weights), the weight associated to an edge is temporally added to the cost of an edge. To get the
represented tree, Prim’s algorithm (Prim, 1957) is used to find a minimum spanning tree (MST)
from the modified edge costs. By running Prim’s algorithm, links with low cost will be used with
high probability, whereas edges with high costs will not exist in the tree.

As already mentioned, we only want to use the link-biased encoding
for our investigation. Therefore, a chromosome holds weight only for the
n(n — 1)/2 edges. The weights are floating values between zero and one.
The original cost d; of a link 7 is modified by the elements of the bias vector
b; as

/ P . .
Figure 8: We show d; = di + Prbidmag (12)

an example tree where d} is the modified cost of a link, dy,q, is the largest cost of a link
for the link-biased (d,q, = max(d;)), P is the link-specific bias, and i € {0,...,in(n—1)—1}
encoding. The num- indicates the number of a link. The parameter P; controls the influence of
bers indicate the the link-specific bias and has a large impact on the structure of the tree.
Rompyr-ef(atlieklink-specific weights have no influence and only the MST calculated based on d;
can be represented.

The construction of the phenotype can be implemented with a Fibonacci heap and goes with
O(n?). The structure of the represented tree depends not only on the bias values b; but also on the
given cost of the links d;. The same link-biased individual can represent different trees if different
costs for the links are used. Therefore, we assume in our experiments that the cost d; of the links
remains constant and does not change during the run of a GA.

To illustrate the construction of the tree from the bias vector we want to give a brief example.
We use the link-biased encoding and for representing a tree with n = 4 nodes the genotype is
of length | = n(n — 1)/2 = 6. For the example we want to use the link-biased individual b =
{0.1,0.6,0.2,0.1,0.9,0.3}. With P, = 1 and using the link costs d = {10, 30, 20,40, 10,20} we can
calculate the modified cost according to equation 12 as d' = {14,54,28,44,56,32}. Notice that
dmaz = 40. The represented tree, that is calculated as the MST tree using the modified link costs
d', is shown in Figure 8. The six possible edges are labeled from 0 to 5 and the tree consists of the
edges between A and B (link 0 with df, = 14), A and D (link 2 with d} = 28), and C and D (link 5
with df = 32).

For further information about the encoding the reader is referred to Palmer (1994).

5.2 Redundancy of the Link-biased Encoding

The following subsection investigates the redundancy of the link-biased encoding.
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Representations that assign a discrete, non-infinite number of different phenotypes to genotypes
that consist of real values are redundant. Each phenotype can be represented by an infinite number
of different genotypes. Consequently, the link-biased representation is a redundant representation.
Furthermore, the link-biased encoding is synonymously redundant. Genotypes that represent the
same phenotype are next to each other in the mutational space. Small mutations of the weights b;
often do not change the represented phenotype, or only slightly by one edge. Even large mutations
that strongly change one weight b; result only in a change of up to two edges. As a result of the
synonymous redundancy of the link-biased encoding, the models from section 3 can be used to
predict the influence of the redundant link-biased encoding on the performance of GAs.

In the previous subsection we already noted that for the link-biased encoding the mapping
from the genotypes to the phenotypes depends on the link-specific bias P;. Therefore, to be
able to predict the expected GA performance when using the link-biased encoding, it must be
investigated how P; influences the characteristics of the encoding. The following investigation is
an example performed for the link-biased encoding, but the investigation approach is general and
can be transferred to any other representation. Factors needing to be examined are:

e Size of the search space.

e Synonymy of the redundant representation.
e Order of redundancy.

e Over- and underrepresentation.

We discuss these aspects in the following paragraphs. When using a (redundant) representation
it is important that all possible phenotypes can be represented. A representation should assign
at least one genotype to all phenotypes of interest. Otherwise, if no genotype is assigned to some
phenotypes, the search space is reduced by the encoding and some possible solutions can never
be found by the used search method. The influence of this effect on the performance of a GA is
twofold. If the number of accessible solutions is reduced but the optimal solution is still accessible,
GA performance increases. On the other hand, if the optimal solution is no longer accessible, all
search methods must fail. Therefore, a reduction of the phenotypic search space should be avoided
if no problem-specific knowledge about the optimal solution exists. When using the link-biased
encoding, the number of accessible solutions depends on P; (compare Gaube and Rothlauf (2001)
and Rothlauf (2002)). If P; is very large, all possible phenotypes can be represented using this
encoding. At the other extreme, for P, very small (P, — 0), only the MST calculated from the
link costs d; can be represented. As long as P; 2 1 every possible phenotype can be encoded as
the additional overall bias P;b;dq, (compare equation 12) can always be larger than any of the
original cost of the link d;. If P; < 1 some of the possible trees can not be encoded using the
link-biased encoding.

In our proposed model describing the influence of redundant representations on GA performance
we assumed that non-uniform redundancy changes the initial supply. If we want to use this model
for predicting GA performance we must ensure that the considered representation is synonymously
redundant. If a representation is not synonymously redundant, the standard search operators
no longer work properly and GEAs fail (compare subsection 2.2). The link-biased encoding is
synonymously redundant independently of the parameter P;. Even if the number of accessible
solutions decreases with lower values of P; a mutation operator always results in the same, or a
slightly different, phenotype.

When using different types of redundant representations, it is important if the order k. of
redundancy changes. In subsection 3.2 we saw that the population size N goes with O(2%") for
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synonymously redundant representations. Therefore, k, has a strong influence on GA performance.
For the real-valued link-biased encoding we can assume that k, remains independent of P;.

Finally, when using a redundant representation it must be investigated whether some phenotypes
are over- or underrepresented. Subsection 3.2 has shown that the necessary population size n goes
with O(1/7). In general, the parameter r is problem-specific and depends on the specific instance
of a problem. GA performance remains unchanged if a synonymously redundant representation is
uniformly redundant. If a representation is non-uniformly redundant, some instances of a problem
will become easier for the search method (those where the optimal solution is overrepresented) and
some instances will become more difficult (those where the optimal solution is underrepresented).
For the link-biased encoding we have already seen that solutions that are similar to the MST are
increasingly overrepresented with decreasing P;. For very small P; only a tiny fraction of genotypes
represent a solution different from the MST. We have shown in previous work (Rothlauf, 2002,
subsection 6.3.5) that only for large values of P; (P} — o0) the representation is approximately
uniformly redundant. As a result, there is a continuum between uniform redundancy (P; very
large) and complete non-uniform redundancy (P, = 0), which can be controlled by the parameter
Py.
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Figure 9: Phenotypic distance of a randomly generated link-biased individual to the minimum
spanning tree for trees with n = 16 and n = 26 nodes. The distance between the two individuals
indicates the number of links that are different.

In the remaining paragraphs of this subsection we investigate this continuum and examine how
the overrepresentation of specific edges can be controlled by the representation-specific parameter
P. We want to start with an investigation into how similar a randomly created individual is
compared to the MST. The similarity between two trees (the MST and the randomly created
individual) is measured by calculating the distance between both trees. The distance between two
trees measures the number of different edges. In Figure 9 we show the phenotypic distance of a
randomly created link-biased individual to the MST for n = 16 and n = 28. The error bars show the
standard deviations. The dotted lines indicate the distance of a randomly created individual towards
the MST when using a non-redundant representation (for example Priifer numbers (Priifer, 1918)).
The results show that for large values of P; a randomly created link-biased individual has about
the same distance towards the MST as a non-redundant encoding. Therefore, it can be assumed
that with P; large enough the link-biased encoding is uniformly redundant. With decreasing values
of P; the represented trees become more and more MST-like and the link-biased encoding becomes
more and more non-uniformly redundant.

The analysis of the distance of a randomly generated link-biased individual towards the MST
reveals that the overrepresentation of a specific solution (the MST) strongly depends on the link-
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specific bias P;. To be able to calculate the overrepresentation of specific edges (we need this for
the population sizing model we derive in subsection 5.4) we want to examine how the probability
P, that an edge contained in a randomly created link-biased individual is also contained in the
MST depends on P;. For non-redundant or uniformly redundant representations the probability

P! can be calculated as
2n

U __
) -
Table 5 compares for different problem sizes n the probability P for non-redundant representations
to empirical results for P, when using a large link-specific bias (P, = 1 000 000). It can be seen that
for large values of P; the probability P, (that an edge contained in a randomly created link-biased
individual is also contained in the MST) equals the probability P* (that a randomly chosen edge
is part of the MST). Therefore, for large values of P; the encoding becomes uniformly redundant.

les—x
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Figure 10: Probability that a link of a randomly generated tree is part of the MST over the
link-specific bias P;.

P for P, = 1 000 000 Consequently, Figure 10 ploFs for th'e link'—biased en-
coding how P, depends on the link-specific bias P;. The
results show the mean and the standard deviation for
8, 16, 24, and 28 node trees. For large values of P;
(P; > 100), P, equals P and we get the values shown in
Table 5. With decreasing P; the edges contained in a ran-
domly created individual are more and more often also
contained in the MST. For small values of Py, all edges of
a randomly created individual are with high probability
P, also part of the MST.

After discussing how the redundancy of the link-
biased encoding and the overrepresentation of specific
edges depends on the link-specific bias P;, in the following subsections we want to formulate a
model based on the results from subsection 3.2 which describes how GA performance depends on
Py.

n PY

T

mean | g

8 0.25 | 0.2497 0.01292
12 | 0.1667 | 0.1665 0.01655
16 | 0.125 | 0.1250 0.01495
20 0.1 0.0998 0.09982
24 1 0.0834 | 0.0832 0.01239
28 | 0.0714 | 0.0713 0.01163

Table 5: A comparison between P and
P, when using P; =1 000 000.

5.3 Population Sizing Model for the One-Max Tree Problem

In this subsection we review a population sizing model which we can use for the uniformly redun-
dant (P} must be large) link-biased encoding. The model is valid for the one-max tree problem
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and was developed in previous work (Rothlauf et al., 2002). The one-max tree problem and the
corresponding population sizing model is used in our experiments in subsection 5.4.

The one-max tree problem (Rothlauf et al., 2002) defines a tree optimization problem where
an optimal solution (tree) is chosen either randomly or by hand. The structure of this tree can be
determined: It can be the MST, a star, a list, or any other arbitrary tree with n nodes.

In this problem the fitness of a tree G; is defined as the number
of edges it has in common with the best solution G:

fi=n—-1- dz’,opt’

d where the distance d; opr between two trees G and Gy is defined as
i,opt
n—11:1—1
I — 1.
Figure 11: The one-max tree i opt = Zl ZO 1
i=1j

problem

l;j is 1 if the link from node 7 to node j exists and 0 if it does not
exist. This definition of distance between two trees is based on the Hamming distance (Hamming,
1980) and d; ot € {0,1,...,n — 2}. In all our experiments G,y is always the minimum spanning
tree.

Earlier work (Rothlauf et al., 2002) presented a population sizing model for the one-max tree
problem which was derived for the Network Random Key representation. The Network Random
Key representation is almost identical to the link-biased encoding using large values of P;. Both
encodings are synonymous uniformly redundant representations defined on real-valued strings of
the same length. Only the construction of the tree from the genotypic weights is different. Network
Random Keys use Kruskal’s algorithm and do not consider the original costs d; between the links,
whereas the link-biased encoding uses Prim’s algorithm for the construction of the phenotypes and
considers d;. Therefore, the population sizing model for the Network Random Keys is valid for
the link-biased encoding if a large link-specific bias P; is used. A large value of Pj is necessary to
ensure uniform redundancy. The model is formulated as

N = —? In(a)v/n(n —1)(n —2) ~ —g In(a)n's, (14)

where « is the probability of failure and n is the number of nodes. It can be seen that the necessary
population size N goes with O(n!?). For further information about the population sizing model
the reader is referred to the original work.

5.4 Population Sizing for the Link-Biased Encoding

Subsection 5.2 has shown that with decreasing link-specific bias P; the link-biased encoding over-
represents solutions similar to the MST. In the following subsection we show that we are able to give
good predictions on how GA performance depends on the link-specific parameter P; by combining
the population sizing model from the previous subsection which only holds for the uniformly redun-
dant link-biased encoding (P; must be large) with the population sizing model from subsection 3.2
which explains the influence of non-uniformly redundant representations on GA performance. We
finally formulate the population sizing model for the link-biased encoding and present experimental
results.

In all following experiments the optimal solution for the one-max problem is always the MST.
We want to calculate for a GA using the link-biased encoding the population size N that is necessary
for finding the optimal solution (the MST) with some probability F,,. The optimal solution is
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correctly found by a GA if all of the n — 1 links of the optimal solution are correctly identified.
Therefore, Py = (1 — a)" ! where a is the probability of error for one link. We get for

o)

azl—exp( 1
7 —

Substituting « into equation 14 results in

N = —?m <1—exp <%)> Vn(n —1)(n —2). (15)

This population sizing model should give us good predictions for the expected minimal population
size using the link-biased encoding with a large link-specific bias P;. The large link-bias ensures
that the encoding is uniformly biased.

400 ! T
200 - ,,,,:;}41 + ,,,,, ]
z 100 | T T R ~
/// * :
S0 7" axperimentai resuits+ ]
T prediction -------
1 1 1 1 1
8 12 16 20 24 28

n

Figure 12: Necessary population size N over the problem size n for the one-max tree problem.
The optimal solution is the MST and the link-specific bias is set to P, = 1 000 000 to ensure
uniform redundancy. The results show that the used population sizing models gives an acceptable
approximation of the expected GA performance.

Figure 12 shows the theoretical prediction from above and the experimental results for the link-
biased encoding with P, = 1 000 000. The plots show the necessary population size N over the
problem size n for P,,; = 0.95. We performed 500 runs for each population size and the resolution
for N is 1. As in previous experiments we used no mutation, but only uniform crossover. In all
runs we use tournament selection without replacement of size 3 and each run is stopped after the
population is fully converged. Because the encoded phenotype depends on the cost d; between the
different nodes, we randomly placed for every run the nodes on a 1000x1000 square. The cost of a
link d; is calculated as the Euclidean distance between the two connected nodes.

Although the population sizing model described in equation 15 slightly overestimates the nec-
essary population size IV, it still allows a good approximation of the experimental results. As we
are mainly interested in investigating the influence of P; on the solution quality, and not on the
development of a highly accurate population sizing model, we are satisfied with the accuracy of
this population sizing model. It can be seen that the necessary population size N increases with
about O(n'?).

In the following we want to consider that the link-biased encoding becomes non-uniformly
redundant with decreasing P;. With lower P; the links that are contained in the MST are over-
represented by the encoding. Therefore, GA performance increases and the population size that is
necessary to find the optimal solution (the MST) decreases. We have seen in subsection 3.2 that the

23



necessary population size N goes with O(2% /r). r is the number of genotypic BBs that represent
the optimal phenotypic BB. For the one-max problem we can assume that the size of the BBs k
equals one and that each possible link is one phenotypic BB.

We have to determine how the different phenotypic BBs (the possible edges in the tree) are over-
represented by the link-biased representation. In subsection 5.2 we have introduced the probability
P, that a link contained in a randomly created individual is also part of the optimal solution. We
can assume that the probability P, is proportional to r (P, = const ). Doubling the probability
P, means that a specific link of a randomly created individual is twice as often also contained in
the optimal solution (the MST). Therefore, doubling P, has the same effect as doubling r. Further-
more, we can assume that the character of the link-biased encoding does not change for different
values of P; and k, remains constant. Therefore, the population size N when using a non-uniformly
redundant link-biased encoding goes with O(1/P,). Using equation 15 we finally get

N = —%\/TEIH <1 —exp <%)> Vn(n —1)(n —2),

where P! indicates P, for Pi — oo (compare equation 13). The values of P, depend on the
link-specific bias P, and are shown in Figure 10 for different problem sizes n.

The theoretical predictions and the empirical results for different problem sizes are shown in
Figure 13(a) (8 and 20 node one-max problem), Figure 13(b) (12 and 24 node one-max problem),
and Figure 13(c) (16 and 28 node one-max tree). The results are split into three plots due to
illustrative purposes. The plots show how the necessary population size N depends on the link-
specific bias P;. The probability of finding the optimal solution (the MST) is P,,; = 0.95. For
determining the relationship between P; and P, which we discussed in subsection 5.2, we used
the results plotted in Figure 10. The lines show the theoretical predictions from our population
sizing model and the points show the experimental results. In all runs the optimal solution was
the MST and we used the same parameters as for the uniformly redundant link-biased encoding,
whose details are described above.

The results show that the proposed population sizing model gives us a good prediction on
how the performance of a GA depends on the link-specific bias P;. There is only a small difference
between the predicted value for N and the actual experimental results. As expected, the population
size N declines with decreasing P; and the problem becomes easier to solve for a GA. Furthermore,
we can see that for small values of P; < 1 the necessary population size N strongly declines and
the experimental population size drops much faster than predicted. This is because for P, < 1
(compare subsection 5.2) the link-biased encoding does not allow us to encode all possible trees
and the search space collapses. Only trees that are similar to the MST can be encoded. Small
values of P; result in high values of P, (compare Figure 10) what means that most of the links of a
randomly created individual are also part of the optimal solution (the MST). At the extreme, for
P, — 0 (P, — 1), the link-biased encoding can only encode the optimal solution (the MST) and
the necessary population size N — 0.

This section illustrated that the proposed theoretical concepts describing the influence of syn-
onymously redundant representations on the performance of GAs can not only be used for binary
representations but also for real-valued representations like the link-biased encoding. The link-
biased encoding was chosen as it allows us to adjust the level of overrepresentation in a systematic
way. The presented results have shown that the proposed theory from section 3 predicts the ex-
pected GA behavior well.
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Figure 13: We show how the population size N which is necessary for finding the optimal solution
with probability F,,; = 0.95 depends on the link-specific bias P;. In all runs the optimal solution
was the MST. The results show that the proposed population sizing model gives good predictions
for the expected solution quality. For small values of P; the populations size N strongly decreases
as the size of the search space collapses and only the optimal solution (the MST) can be represented.
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6 Future Research

Based on this study some topics require further investigation.

In this work we proposed a model describing the effect of synonymously redundant representa-
tions on the performance of GAs. We illustrated the validity of our approach for the binary trivial
voting mapping and the real-valued link-biased encoding. An interesting direction for further re-
search is to apply this model to other problems and other problem domains. We believe that using
this approach could help to gain a better theoretical understanding of the properties of redundant
representations. Furthermore, doing this we will be able to find possible limitations of the proposed
approach. In this work we only modeled the influence of synonymously redundant representations
as an effect of initial supply. We have to investigate under which circumstances other, until now
neglected effects, like improper mixing of BBs, can have an influence on GA performance.

We already discussed in subsection 2.2 that the use of non-synonymously redundant represen-
tations results in low GA performance as the genetic operators no longer work properly. When
using non-synonymously redundant representations genetic operators like crossover can create lower
quality BBs even if the parents only consist of high quality BBs. An example of non-synonymous
redundancy is that x, = 0 is represented by the genotypes {00,11}, and z, = 1 is represented
by {01,10}. Combining the genotypes 01 and 10 can result in the offspring 11 or 00 which both
represent a different phenotype. We believe that non-synonymously redundant representations can
be modeled by combining results for low-locality representations with the results for synonymously
redundant representations we presented here. A profound model describing non-synonymously re-
dundant representations would allow us to analyze representations in a theory-guided matter and to
solve some of the disputed topics regarding the benefits of redundant representations we mentioned
in subsection 2.1. Some ideas concerning this topic can also be found in Rothlauf (2002).

In this work we only considered crossover-based search and neglected the influence of redun-
dant representations on mutation-based search approaches. However, we believe that many of the
discussed topics are also relevant when using mutation. Following subsection 2.2 we believe that,
in analogy with the results from Knowles and Watson (2002), using non-synonymously redundant
representations will reduce the performance of mutation-based search. As these representations
have low locality, mutation will not work properly and the search becomes random. Furthermore,
there is some theoretical evidence (Whitley, Rana, & Heckendorn, 1997; Rana & Whitley, 1997;
Whitley, 1999; Whitley, 2000) that mutation-based search only performs well if the connectivity
of the phenotypic search space is preserved by the used representation. If the connectivity is ei-
ther not preserved, such as for low locality representations, or greatly increased (what results in
a reduction of the relevant connectivity) like in many non-synonymously redundant representa-
tions, the performance of mutation-based search decreases. In contrast, we expect when using
synonymously redundant representations that mutation-based search shows similar behavior and
performance as when using crossover-based search. Using synonymously redundant representations
introduces many plateaus in the fitness landscape but does not change the structure of the search
space. Mutation can still easily find neighboring phenotypes. When using non-uniformly redundant
representations some plateaus in the fitness landscape are increased which increases the probability
that mutation finds the solution represented by the genotypes forming this plateau. As a result,
the performance of mutation-based search increases if a synonymously redundant representation
overrepresents the optimal solution and decreases otherwise.

Finally, we want to emphasize the importance of the proposed concepts for the field of ge-
netic programming (GP). Most of the representations used in GP are redundant. When encoding
program structures by using either some type of tree encoding or some binary encoding like in
grammatical evolution (O’Neill & Ryan, 2001), each phenotype is represented by more than one
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genotype. Therefore, these representations are redundant and the proposed classification into syn-
onymously and non-synonymously redundant representations can be applied. Furthermore, it must
be examined which of the used representations are uniformly and which are non-uniformly redun-
dant. Our belief is that many of the representations used in GP are non-uniformly redundant and
overrepresent some phenotypes. We expect that by applying the proposed theory to these types of
representations we can help to build more efficient GP systems.

7 Conclusions

This paper started with a short review of the literature concerning the use of redundant repre-
sentations in evolutionary computation. This was followed by the development of a classification
of redundant representations which distinguished between synonymously and non-synonymously
redundant representations. Furthermore, it discussed how the synonymy of a representation influ-
ences genetic search. Then, it developed a population sizing model for synonymously redundant
representations based on the assumption that a representation affects the initial supply. Rep-
resentations were characterized by two parameters and a theoretical model was developed that
predicted the population size and the number of generations that were necessary for solving a
problem. Furthermore, the models for predicting the performance of GAs were used for the syn-
onymously redundant trivial voting mapping and variants of it. Results for the one-max problem
and concatenated traps have were shown and theoretical predictions were compared to empirical
results. The paper also illustrated how the concepts of redundant representations can be used for
the link-biased encoding. The link-biased encoding represents trees by using real-valued vectors
and is synonymously, non-uniformly redundant. When using this encoding the overrepresentation
of some phenotypes can be controlled by the link-specific bias P;. The paper described the func-
tionality of the encoding, investigated how the overrepresentation of some phenotypes depends on
the link-specific bias, formulated a population sizing model, and presented empirical results on how
GA performance depends on the link-specific bias. Finally, some directions of further research were
presented.

This paper investigated how redundant representations influence the performance of crossover-
based GAs. It distinguished between between synonymously and non-synonymously redundant
representations and illustrated that non-synonymously redundancy does not allow genetic oper-
ators to work properly and therefore reduces the efficiency of evolutionary search. When using
synonymously redundant representations, GA performance depends on the change of the initial
supply. Based on this observation models were developed that give the necessary population size
for solving a problem, and the number of generations as O(2% /r), where k, is the order of re-
dundancy and r is the number of genotypic BBs that represent the optimal phenotypic BB. As
a result, uniformly redundant representations do not change the behavior of genetic algorithms.
Only by increasing r, which means overrepresenting the optimal solution, does GA performance
increase. By contradistinction, GA performance decreases if the optimal solution is underrepre-
sented. Therefore, non-uniformly redundant representations can only be used advantageously if
there exists a-priori some information about the optimal solution.

The validity of the proposed theoretical concepts is illustrated for two different examples.
Firstly, the influence of different variants of the redundant trivial voting mapping on GA per-
formance is investigated. The results show that the developed population sizing and time to
convergence models allow an accurate prediction of the expected solution quality and time. Sec-
ondly, the results for the link-biased representation show that the proposed theoretical concepts
are not only valid for binary representations, but can also be used for real-valued representations.
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In analogy to the results for the trivial voting mapping, the population sizing model gives accurate
predictions on how the expected solution quality depends on the overrepresentation of the optimal
solution.

Based on the presented results we strongly encourage users and researchers in evolutionary
computation to use the developed concepts. The proposed classification, population sizing, and
time to convergence models allow us to evaluate redundant representations in a systematic and
theory-guided matter. This approach will help users and researchers to answer some of the disputed
questions regarding the benefits of redundant representations and to use redundant representations
such that they increase the performance, reliability and efficiency of evolutionary computation
methods.
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