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Non technical summary 
 
 
  
The relationship between economic development and environmental quality has been 
extensively explored in recent years. The shape of this relationship has implications for the 
definition of an appropriate joint economic and environmental policy. In the literature, this 
animated debate revolves around the existence of an Environmental Kuznets Curve, which 
implies that, starting from low levels of income per capita, environmental degradation 
increases, but after a certain level of income (turning point) it diminishes.  
  
This study investigates the question of the existence of an EKC using a nonparametric 
approach. In this framework, no a priori parametric functional form is assumed for modelling 
the relationship between carbon dioxide (CO2) emissions and GDP per capita. The main 
reason for studying CO2 emissions is that they play a focal role in the current debate on 
environmental protection and sustainable development. CO2 has been recognized by most 
scientists as a major source of global warming through its greenhouse effects. Another reason 
is that CO2 emissions are directly related to the use of energy, which is an essential factor in 
the world economy, both for production and consumption. Therefore, the relationship 
between CO2 emissions and economic growth has important implications for environmental 
and economic policies. 
  
To estimate this relationship, we use information drawn from several data sets. CO2 emissions 
measured in metric tons are obtained from the data base of the Carbon Dioxide Information 
Analysis Center, Oak Ridge National Laboratory. Real GDP per capita series, measured in 
thousand constant dollars at 1985 prices, are drawn from the Penn World Table 5.6.  The 
resulting data set, a balanced panel of 100 countries, covers the period 1960-1996. 
  
We first consider the issue of structural stability of the relationship between CO2 emissions 
and GDP per capita, and we find evidence of structural stability of the relationship over the 
period 1960-1996. Based on this result, the panel nature of the data allows us to specify a 
nonparametric model that accounts for heterogeneity across countries. We find that the 
relationship between CO2 emissions and GDP per capita is upward sloping, and that the 
usually adopted polynomial functional form which leads to the environmental Kuznets curve 
in several studies is rejected against our nonparametric model. Moreover, by comparing 
different estimation methods for the parametric model, we are able to relate the finding of an 
EKC to the erroneous assumption of strict exogeneity of GDP per capita. 
 
As regards policy concerns, our results imply that economic development is not a sufficient 
condition to reduce CO2 emissions. Thus all countries should make an effort to reduce these 
emissions in order to reduce global warming. 
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Abstract

We examine the empirical relation between CO2 emissions per capita and

GDP per capita during the period 1960-1996, using a panel of 100 countries.

Relying on the nonparametric poolability test of Baltagi et al. (1996), we find

evidence of structural stability of the relationship. We then specify a nonpara-

metric panel data model with country-specific effects. Estimation results show
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1 Introduction

The relationship between economic development and environmental quality has been

extensively explored in recent years. The shape of this relationship has implications

for the definition of an appropriate joint economic and environmental policy: depend-

ing on whether there is a negative or a positive influence of economic development

on environmental quality, policy recommendations will differ. In the literature, this

animated debate revolves around the existence of an Environmental Kuznets Curve

(or inverted-U shaped curve, EKC), which implies that, starting from low levels of

income per capita, environmental degradation increases, but after a certain level of

income (turning point) it diminishes. Despite some exceptions, empirical studies

are generally based on ad hoc parametric specifications with little attention paid

to model robustness; yet different parametric specifications can lead to significantly

different conclusions, and a functional misspecification problem is likely to occur.

Popular parametric functional forms are linear, quadratic, and cubic polynomials in

GDP per capita.

This study investigates the question of the existence of an EKC using a non-

parametric approach. In this framework, no a priori parametric functional form is

assumed for modelling the relationship between carbon dioxide (CO2) emissions and

GDP per capita. While there exist many panel studies on the existence of an EKC

for CO2, with various conclusions as we will see in detail in the next section, we

offer the first nonparametric panel study on that topic that is able to point out an

important source of these divergencies.1

We follow the bulk of the literature on this relationship by not controlling for

possible determinants for CO2 emissions, like technological change, energy prices, etc.

Of course, it is not our intention to deny the role of these factors. However, a number

of points can be made in support of our choice. The first, obvious one, concerns

data limitations. In this respect, it is important to note that using panel methods

that sweep country effects away lets us control implicitly for any time invariant

determinant. The second obvious point concerns comparability with existing studies.

A more technical point concerns the curse of dimensionality in nonparametric studies:

adding discrete regressors to a nonparametric regression does not alter the speed

of convergence of the estimator, but adding continuous regressors does – although

1The only other nonparametric panel study available, as far as we know, is the study of Bertinelli

and Strobl (2005), but their paper is much more modest in scope – although it addresses broadly

the same issue, and reaches a qualitatively similar conclusion of absence of an EKC. Moreover the

first version of this paper dates back to 2001.
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admittedly additional regressors could be included in a parametric way (as illustrated

by Bertinelli and Strobl, 2005, although they include only country and year effects

as supplementary regressors). More importantly, we are not concerned here with

obtaining best predictions for CO2 emissions next year, say, but with the shape of

the relationship with GDP. In this respect, determinants of CO2 emissions which are

not correlated with GDP become irrelevant. Moreover the impact of determinants

which are correlated with GDP will be captured in the effect of GDP. Depending

on the question asked, this can be seen as a drawback or as an advantage. It is

a drawback if we purport to determine the ceteris paribus impact of GDP on CO2

emissions – but what list of regressors would guarantee this? It is an advantage if

we are interested in the global effect of GDP, including indirect effects linked with

omitted variables. This is indeed the stance we take here. While the results of our

study will not enable us to make precise policy prescriptions, we will be in a position

to intervene convincingly in the long debate on the existence of EKCs. Finding

an increasing profile would default the hope for sustained economic growth without

excessive increase in CO2 emissions in the absence of active policies designed to

modify the shape of the relationship revealed on the basis of the current and past

policies.

The main reason for studying CO2 emissions is that they play a focal role in the

current debate on environment protection and sustainable development. CO2 has

been recognized by most scientists as a major source of global warming through its

greenhouse effects. Pollutants like sulphur oxides or oxides of nitrogen, have a more

local impact on the environment. Another reason is that CO2 emissions are directly

related to the use of energy, which is an essential factor in the world economy, both

for production and consumption. Therefore, the relationship between CO2 emissions

and economic growth has important implications for environmental and economic

policies.

To estimate this relationship, we use information drawn from several data sets.

CO2 emissions measured in metric tons are obtained from the data base of the Carbon

Dioxide Information Analysis Center, Oak Ridge National Laboratory (see Marland

et al., 1999). Real GDP per capita series, measured in thousand constant dollars at

1985 prices, are drawn from the Penn World Table 5.6 (Summers and Heston, 1991).

The resulting data set, a balanced panel of 100 countries (listed in Table A), covers

the period 1960-1996.

We first consider the issue of structural stability of the relationship between CO2

emissions and GDP per capita. The question is whether it is suitable to assume
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the constancy of parameters or functions over time. For this purpose, we use the

poolability test of Baltagi et al. (1996) and find evidence of structural stability of

the relationship over the period 1960-1996. Based on this result, we specify a non-

parametric panel data model with country-specific effects. The model is estimated

using local kernel regression and marginal integration along the lines of Linton and

Nielsen (1995). We also perform the functional monotonicity test of Bowman et al.

(1998) and the specification test of Li and Wang (1998), in order to compare our

nonparametric estimates with parametric analogues. We find that the relationship

between CO2 emissions and GDP per capita is upward sloping, and that the usually

adopted polynomial functional form which leads to the environmental Kuznets curve

in several studies is rejected against our nonparametric model. Moreover, we are

able to relate the finding of an EKC to the erroneous assumption of strict exogeneity

of GDP per capita.

The paper is organised as follows. In Section 2, we present a review of the

literature on EKCs, focusing mainly on issues related to econometric specifications.

Section 3 presents the nonparametric framework retained. Data description and

estimation results are covered in Sections 4 and 5, respectively. Section 6 concludes

the study.

2 Literature overview on the EKC

In this section, we discuss empirical studies on the EKC, focusing on issues related

to functional forms in econometric specifications. The list of references cited below

is by no means exhaustive.2

Although evidence of an EKC has been found for several environmental indi-

cators, these findings are not unanimously accepted in the literature. The case of

CO2 emissions is a good example. An EKC was found in the studies of Roberts and

Grimes (1997), Schmalensee et al. (1998), and Sun (1999), among others, in con-

tradiction with the results obtained by, e.g., Shafik (1994), Holtz-Eakin and Selden

(1995), Heil and Selden (2001), and Taskin and Zaim (2000).

Most of these empirical studies have relied on parametric specifications. For

example, Holtz-Eakin and Selden (1995) investigated the reduced-form relationship

between national CO2 emissions per capita and real GDP per capita for a sample of

2For more detailed discussions, see the special issues of Environment and Development Economics

(1997), and Ecological Economics (1998). See also the surveys of Stern (1998, 2004), Panayotou

(2000a,b), Levinson (2002) and Dasgupta et al. (2002).
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130 countries over the period 1951-1986. They used a quadratic polynomial model

with fixed country- and year-specific effects, and found an out-of-sample EKC, with

an out-of-sample turning point equal to $35,428 per capita (in 1986 US dollars).3

Grossman and Krueger (1993, 1995) studied the effect of GDP per capita on various

local environmental indicators, using a random city-specific effect model. They found

no evidence that environmental quality deteriorates with economic development.

For most indicators — sulfur dioxide (SO2) concentrations, suspended particulate

matter (SPM), biological oxygen demand, chemical oxygen demand, and arsenic

in rivers — an inverted-U shape curve emerged. In particular, the turning point

estimates for these pollutants were under $8,000 (in 1985 US dollars) of GDP per

capita. Selden and Song (1994) investigated this relationship for four air pollutants

— SPM, SO2, oxides of nitrogen (NOx), and carbon monoxide (CO) — with data

coming from the same sources as Grossman and Krueger (1993, 1995), and found

evidence of an EKC for all four pollutants, but the turning points for SPM and SO2

largely exceeded $8,000. Shafik (1994) examined the relationship between various

environmental quality indicators and income per capita for the period 1960-1990, and

obtained several results, among which a clear evidence of EKCs for deforestation,

SPM, and SO2, but an upward sloping relationship for CO2. Shafik (1994) used all

three polynomial functions (linear, squared, and cubic) with fixed individual effects

(city or country, depending on the data), but did not provide specification tests in

choosing the appropriate model.

Kaufmann et al. (1998) used fixed and random effect panel models with a second

order polynomial for 23 countries between 1974 and 1989, and obtained an inverted

U-shape relation (i.e. an EKC) between atmospheric concentration of SO2 and the

spatial intensity of economic activity, measured either by the ratio between GDP

and the country’s area or the product between GDP per capita and population

density. However, they also found evidence for a U-shape relationship (not an EKC)

between SO2 concentration and GDP per capita. Taking trade into account, Suri and

Chapman (1998) investigated data on 33 countries for the period 1971-1991, using

a panel fixed effect model and a second order polynomial, and found evidence of an

EKC for consumption per capita of primary commercial energy, expressed in terms

of oil equivalents. Hettige et al. (2000) performed various econometric estimations

with a parametric functional form on a new panel data set constructed from direct

3In fact, strictly speaking, one should speak here of an increasing profile rather than of an EKC,

but this is the interpretation the authors themselves give of ther results, since they perform out of

sample predictions.
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observations of industrial water pollution, measured by biological oxygen demand at

the plant level, for 12 countries over the period 1989-1995. Their results reject the

EKC hypothesis and show that industrial water pollution rises rapidly for middle

income and remains unchanged thereafter. Heil and Selden (2001) used a second

order polynomial in income per capita with several specification tests to study a

panel data from 135 countries over the period 1951-1992. They found a monotonous

increasing relationship between CO2 emissions and income per capita in both the

levels model and the logarithmic model (an out-of-sample EKC was found in the

levels model).

Schmalensee et al. (1998) adopted a more flexible model to evaluate the effect

of income on carbon emissions and also found evidence of an EKC for a sample of

141 countries over the period 1950-1990. The specification consisted in a piecewise

linear function with fixed year- and country-specific effects. Koop and Tole (1999)

suggested a model with random coefficients that differ across but not within countries

over time, and found little evidence for the existence of an EKC for deforestation.

Using parametric specifications, Dijkgraaf and Vollebergh (2005), and List and Gallet

(1999), underlined the heterogeneity across units using panel data on national CO2

emissions for the period 1960-1997, and panel data on US state-level SO2 and NOx

emissions for the period 1929-1994, respectively. Stern and Common (2001) found

the relationship between national SO2 emissions and income from 1850 to 1990 to be

sensitive to econometric specifications and data sampling: they obtain a monotonous

increasing curve for the whole sample but an EKC for a sample of high-income

countries; a monotonous increasing curve arises for both the high-income sample and

for the complete sample when estimation in first differences is performed.4 Using the

complete panel data on ambient air pollution, Harbaugh et al. (2002) showed that the

relationship between national income and pollution is highly sensitive to the choice

of functional form, covariates, and to the choice data sampling. Thus, despite these

flexible specifications, the criticism addressed to the ad hoc parametric functional

forms still applies. Aslanidis and Xepapadeas (2004) use a smooth transition model,

and thus an even more flexible parametric specification, to study US state-level SO2

and NO emissions over the period 1929-1994 and find an N shape for SO2 emissions,

while the profile for NO emissions is first increasing and then flattens out. They use

a fixed-effects-type estimator, to which we come back in Section 5.2.

Recently, some authors resorted to semi- and nonparametric techniques, which

4This is an important point, to which we shall come back in our own empirical work (Sub-section

5.2).
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do not require the specification of a functional form, in order to investigate the ex-

istence of EKCs. Taskin and Zaim (2000) used a nonparametric approach to study

the environmental efficiency. On the basis of cross-sectional data for CO2 emissions,

they computed environmental efficiency indices for low- and high income countries

between 1975 and 1990. The relationship between the environmental efficiency index

and GDP per capita displayed a U shape followed by an inverted U, i.e. the EKC

hypothesis holds only for countries with sufficiently high GDP per capita (more than

$5000). Millimet and Stengos (2000), and Millimet et al. (2003), used semiparamet-

ric partially linear models for US data, and obtained EKCs for SO2 and NOx, and

N-shaped curves for some other pollutants (stack air releases, water releases, under-

ground injections, and total pollutants emissions). Roy and van Kooten (2004) use a

similar model for US data for the year 1990, and find U shapes (not inverted) for CO

and NOx. Bertinelli and Strobl (2005) also use a partially linear model for a panel

of countries for 1950-1990, again using a fixed-effects-type estimator, and for SO2

and CO2 they find a positive relationship at low incomes which flattens out before

increasing again for high incomes.

3 Nonparametric analysis

This section states the methodological background of the study. We use a nonpara-

metric specification to investigate the relationship between CO2 emissions per capita

and real GDP per capita. This specification enables us to estimate the shape of the

relationship, avoiding any ad hoc choice of a parametric functional form, e.g. linear,

quadratic or cubic functions. The model accounts for heterogeneity in a limited way

by incorporating country-specific effects and by allowing a priori the effect of GDP

per capita on CO2 emissions to vary with time. Our main concern is the specifica-

tion issue related to the functional form and its stability over time, rather than the

heterogeneity issue discussed in Koop and Tole (1999), Dijkgraaf et al. (2005), and

List and Gallet (1999).

3.1 Model

Let us consider the following nonparametric panel model with individual effects for

the relationship between CO2 emissions of country i in period t, yit, and the country’s

per capita GDP in the same period, xit:

yit = Gt (xit) + εit, i = 1, ..., N, t = 1, ..., T, (1)
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with εit = µi + νit. Under the null hypothesis of poolability, to which we shall come

back, Gt does not vary with t and thus Gt = G for all t. Let us denote by v
t
i the vector

of idiosyncratic error terms pertaining to unit i up to period t : v
t
i = (νi1, ..., νit)

′. We

assume that the vectors v
T
1 , ...,vT

N are independent and identically distributed, but

unless otherwise stated no restriction is placed on the temporal variance structure of

each vector v
T
i . We may want to assume predeterminedness of xit for this model, in

the sense of conditional mean independence of νit from xit given x
t−1
i :

E
[
νit|xit,x

t−1
i

]
= E [νit|xit, xi,t−1, ..., xi1] = E

(
νit|xt

i

)
= 0, (2)

but we remain agnostic about the joint distribution of the individual effect µi and

x
T
i . Thus we make no assumption on E [µi|xis1

, ..., xisK
] for any set of dates s1, ..., sK

in {1, ..., T}.5

In order to eliminate the country-specific effect µi we take first differences in

equation (1), which gives

yit − yit−1 = Gt (xit) − Gt−1 (xit−1) + νit − νit−1. (3)

The following central assumption, which we shall call the first difference assumption,

E[νit − νit−1|xit, xit−1] = 0, i = 1, ..., N, t = 2, ..., T, (4)

identifies the functions Ψt defined as:

Ψt (xit) := E [yit − yit−1|xit, xit−1] = Gt (xit) − Gt−1 (xit−1) , (5)

with xit = (xit, xit−1)
′. For later reference, a discussion of (4) will be useful, but the

reader may choose to skip it first.6

A special case under which (4) is satisfied is strict exogeneity, defined here as7

E[νit|xT
i ] = E[νit|xi1, ..., xiT ] = 0, i = 1, ..., N, t = 1, ..., T, (6)

since then E [yit − yit−1|xi1, ..., xiT ] = Gt (xit)−Gt−1 (xit−1) = Ψt (xit), and applying

the theorem of successive projections to the latter gives relation (5). Strict exogeneity

is needed for within estimation of parametric panel models similar to in our situation,

strict exogeneity precludes any feedback from the current value of CO2 emissions on

future values of GDP, which is not a realistic assumption.

5See Arellano and Honoré (2001), Section 3.2.
6Given that T=37 in our empirical work, we do not discuss the very special case where T=2.
7In this framework where we focus on elimination of the individual effect, conditioning on the

latter (see e.g. Wooldridge, 2002) does not seem useful. See also Arellano and Honoré (2001).
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It is also revealing to note that predeterminedness is neither necessary nor suffi-

cient for (4). It is not sufficient, because under predeterminedness alone

E[νit − νit−1|xt
i] = −E[νit−1|xt

i], (7)

which will not be zero in general. Thus the extension of predeterminedness yielding

(5) is

E[νit|xt+1
i ] = E[νit|xt

i, xit+1] = 0, i = 1, ..., N, t = 1, ..., T − 1, (8)

with (2) still holding for t = T . In our situation, this only precludes feedback from

the current value of CO2 emissions on next year’s value of GDP, but not on later

values, which appears much less stringent than strict exogeneity. However, (2) is not

a necessary condition for the first difference assumption, since if νit is a random walk

(4) is satisfied without further assumption on E
[
νit|xt

i

]
. This closes our discussion

of assumption (4), which we maintain in the sequel.

If there is enough variation in xit and xit−1 over the index i and between t−1 and

t, then function Ψt is identified, and Gt and Gt−1 will be identified up to a common

constant. Thus, even in the nonpooled nonparametric model, the country-specific

effects can be eliminated up to an additive constant.

We now turn to a test for data poolability, the question being whether it is suitable

to assume the constancy of the relationship over time. The main reason why we are

interested in the poolability test in the time dimension is that we are looking for

some structural change in the relationship. Nonrejection of this assumption does not

imply that countries represented in the sample have the same pattern of reaction to

economic growth in their emission behaviour. Indeed browsing over the 100 scatter

plots of CO2 emissions against GDP reveals that there are six types of profile (the

numbers in brackets give the number of countries of this type): flat (48), increasing

(25), increasing then flat (14), inverted U (5), elongated N shape (5), decreasing (3).

Appendix A lists the countries together with their type. While the last three types

concern the upper range of the (per capita) GDP distribution, and the first the lower

range, types 2 and 3 are spread across the whole distribution. Testing for poolability

in the cross-country dimension would certainly reject, but it would be beside the

point, since what we are looking for is a relationship at all levels of GDP.

Baltagi et al. (1996) proposed a nonparametric poolability test which has the

advantage of being robust to functional form misspecification. The null is H0: Gt =

Gs for all t and s almost everywhere, and the alternative is H1: Gt 6= Gs for some

t 6= s with probability greater than 0. Appendix B provides a description of the test

statistic and computational details.
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3.2 Estimation

The estimation procedure is based on the assumption of poolability over all the

sample, or a subset for which we cannot reject the poolability hypothesis. We use

the local linear kernel regression to estimate Ψ (xit) with xit = (xit, xjt−1)
′ .8 The

local linear (polynomial of order 1) kernel estimator performs better than the local

constant (polynomial of order 0) kernel estimator or Nadaraya-Watson estimator,

since it is less affected by the bias resulting from data asymmetry (notably at the

boundaries of the sample).

Let Y denote the N (T − 1) vector of first differences yit − yit−1, the first T − 1

elements of which correspond to the first country, and so on. Let X
∗ denote a

N(T − 1) × 2 matrix, organized in the same way as Y, with x
′
it as typical row. We

set X = (ι,X∗) where ι is a N(T − 1) vector of 1. Let Kh (.) be a multivariate

kernel satisfying the usual regularity conditions, and h = (h1, h2)
′, a 2 × 1 vector of

bandwidths (or smoothing parameters) corresponding respectively to xit and xit−1.

The idea of the local linear regression is to simultaneously estimate the value and

the local slope of the conditional expectation, and this is done by performing what

amounts to a weighted least squares local linear regression. Indeed the local linear

estimator of Ψ (x0) is given by

Ψ̂(x0) = e
′
1

(
X

′
Zx0

X
)−1

X
′
Zx0

Y, (9)

where e1 = (1, 0, 0)′, and Zx0
= diag

{
Kh

(
X

∗
1,1 − x0

)
, · · · , Kh

(
X

∗
N,T−1 − x0

)}
. It

is well known that, compared to the selection of the bandwidths, the choice of the

kernel is of minor importance for the properties of the resulting estimator. We use

the product kernel Kh (τ1, τ2) = 1
h1

K( τ1
h1

) 1
h2

K( τ2
h2

) with K the standard univariate

Gaussian kernel. We use the least squares cross-validation method to select the

bandwidths h. This data-driven method is frequently used in the literature. See

Wand and Jones (1995) for a discussion on the choice of smoothing parameters.9

Once Ψ̂ (x) is obtained by local linear kernel estimation, we use the marginal

8Härdle (1990) provides an extensive discussion of various nonparametric methods. Those based

on kernel estimators include local polynomial kernel estimators.
9Since xit and xi,t−1 are similar variables, we choose h1 = h2. Moreover, this choice facilitates

the computational procedure and does save computational time. It should be noticed that the use of

different values for h1 and h2 would allow to smooth by different amounts in each of two coordinate

directions. The full 2×2 smoothing matrix (employed with a bivariate kernel in place of the product

kernel function Kh) would smooth in directions different from those of the two coordinate axes.

However, both alternatives lead to an increasing time burden in computations (see Wand and Jones,

1995).
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integration method proposed by Linton and Nielsen (1995) to retrieve the individual

functions G (xit) and G (xit−1). The main idea of this method can be described as

follows. For simplicity, let us rename the arguments of Ψ̂ as x and y. We can write

Ey

[
Ψ̂ (x, Y )

]
=

∫
Ψ̂ (x, y) f(y)dy (10)

= G(x) − Ey [G (Y )] (11)

= G(x) − k, (12)

and similarly,

Ex

[
Ψ̂ (X, y)

]
=

∫
Ψ̂ (x, y) f(x)dx (13)

= k − G (y) . (14)

We thus obtain estimators of G (xit) and G (xit−1) up to the same constant by taking

the sample averages

Ĝ(1) (xit) =
1

N (T − 1)

N(T−1)∑

j=1

Ψ̂ (xit, xj) . (15)

Similarly, we can obtain an estimator for G (xit−1), i.e.

Ĝ(2) (xit−1) = − 1

N (T − 1)

N(T−1)∑

j=1

Ψ̂ (xj , xit−1) . (16)

A more precise estimator of G can be obtained by a weighted average between Ĝ(1)

and Ĝ(2), and a simple estimator is given by Ĝ(x) =
[
Ĝ(1) (x) + Ĝ(2) (x)

]
/2.

4 Data

The data structure is a balanced panel of 100 countries over the period 1960-1996.

The list of countries is provided in Appendix A.10 The series stem from three sources.

The national CO2 emission per capita series, measured in metric tons, were pro-

vided by the Carbon Dioxide Information Analysis Center (CDIC) of the Oak Ridge

National Laboratory (see Marland et al., 1999). The real GDP per capita series,

measured in thousand constant dollars in 1985 international prices, were extracted

from the Penn World Table 5.6 (Summers and Heston, 1991 ). Since the series for

10The balanced nature of the panel excludes countries with separation/reunification during the

data collecting period (e.g., Russia and other former Soviet Republics, Germany).
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GDP per capita are available only until 1992 in the Penn World Table 5.6, the miss-

ing values were completed by the series of GDP per capita from the bases Global

Development Finance and World Development Indicators. The CO2 series include

emissions from fossil fuel burning, gas flaring and cement manufacture, but exclude

emissions from bunker fuels used in international transport. More details on the data

can be found in Holtz-Eakin and Selden (1995).

Table 1 provides descriptive statistics and takes account of the panel structure

of the sample by reporting also between and within country magnitudes.

Table 1

CO2 emissions per capita vary from 0 (the level of, e.g., Chad in 1960) to 10.99

metric tons (the level of Luxembourg in 1970). GDP per capita varies from 126

(Congo Dem. Rep., former Zaire, in 1996) to 19,474 thousands of 1985 dollars (USA

in 1996) for the overall statistic. The within patterns refer to deviation from each

country’s average over time. The between standard deviations for CO2 emissions

and GDP are both approximately three times larger than their within counterparts.

Kernel density estimates for GDP per capita in 1960, 1980 and 1996 (Figure

1) indicate a bi-modal and highly skewed distribution in all periods. We observe

that the proportion of low GDP per capita countries slightly decreases during the

sampling period. However, while the left (and overall) mode remains more or less

constant, the right mode increases considerably over time. In the subsequent section,

the effect of this change in the distribution of per capita GDP on the functional form

of Gt is shown to be insignificant for the whole sample at hand.

Figure 1

5 Estimation results

This section first discusses the results related to model specification and then outlines

the economic implications of the estimation results.11 In Subsection 5.1 we present

the results of the nonparametric poolability test, the results of the nonparametric

regression, and a monotonicity test. The latter does not reject monotonicity, and thus

produces evidence against the existence of an EKC for CO2 emissions. In Subsection

5.2 we present parametric estimation and test results. Subsection 5.3 is devoted to

the economic and environmental implications of these results.

11All the computations in this study were performed with GAUSS Version 6.0.
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5.1 Poolability test and nonparametric regression

The nonparametric poolability test statistic of Baltagi et al. (1996) is equal to −1.623

for the whole sample period, which is much lower than 1.645, the 95% quantile of the

standard normal distribution. This means that there is no evidence for a structural

shift in the relation between CO2 emissions and GDP per capita over the period of

study (1960-1996). As a result, the retained nonparametric specification is

yit = G (xit) + µi + vit, (17)

where the function G does not depend on t. We now turn to the estimation of G.

Writing equation (17) in first difference gives

yit − yit−1 = G (xit) − G (xit−1) + vit − vit−1. (18)

Using local linear kernel estimation and marginal integration as described in Subsec-

tion 3.2 and in Appendix B, we obtain the estimates of G (xit−1) and G (xit). We

thus have two estimators for the same function, and a more precise estimator will be

the simple average of the two, which we denote Ĝ. Figure 2 plots the graph of the

corresponding estimate with bootstrap 95% pointwise confidence intervals. In the

estimation procedure, the common bandwidth obtained by cross-validation is 1.92.

In order to construct the confidence intervals, we use the wild bootstrap with 1000

bootstrap samples. The wild bootstrap allows us to account for heteroskedasticity

and autocorrelation between observations for a given country (see Appendix C for

further details).

Figure 2

At first sight, the shape of Ĝ (x) seems monotone. In order to formally test this

assumption, we perform the monotonicity test of Bowman et al. (1998). See Ap-

pendix D for details. The null hypothesis is monotonicity. The intuition behind this

test is that the monotonicity of the nonparametric estimate is less likely for small

values of the bandwidth than for large values, since increasing the bandwidth leads

to a smoother estimate. In fact, there is a critical bandwidth at which the estimate

changes from the nonmonotonicity exhibited at all smaller bandwidths to mono-

tonicity which persists for all larger bandwidths. As a result, if the null hypothesis

of monotonicity is true, the critical bandwidth should be relatively small, whereas if

monotonicity is false, the critical bandwidth needs to be larger to force monotonicity.

Thus the idea of the test is (i) to find the critical bandwidth hc defined as the small-

est value of the bandwidth that gives rise to regression monotonicity, i.e. Ĝ (x, hc)
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monotone in x, even if there exists a larger bandwidth for which the function is not

monotone, and (ii) to construct the p−value of the test by bootstrap (here we use

the wild bootstrap again). As a result, we obtain hc = 1.1 with a p−value = 0.173

for Ĝ (x). Therefore, we conclude that the relationship between CO2 emissions and

per capita GDP is monotone. This clearly contradicts the existence of an EKC for

CO2 emissions.

5.2 Parametric specifications

For comparison purposes, we also provide a parametric version of the result of the

poolability test. We consider the model

yit = β1xit + β2x
2
it + β3x

3
it + µi + vit, (19)

where µi denotes a country effect. Efficient estimation of model (19) in the absence

of further assumptions on the individual effects can be carried out by Ordinary Least

Squares (OLS) on the data transformed by the within operator (i.e. centered on indi-

vidual means), assuming strict exogeneity of GDP per capita, an assumption which

we subsequently test. The F−test statistic for the null of absence of fixed country-

specific effects is 160.45 > F(99,3579) = 1.25 at the 5% level, implying rejection: fixed

country-specific effects do exist. We also perform an F−test for the null of absence

of fixed year effects in the presence of fixed country effects (see, e.g., Baltagi, 1995).12

The value of F−statistic is 0.79 < F(36,3561) = 1.42 at the 5% level. We can conclude

that fixed year effects do not exist. Note that the nonexistence of fixed year effects is

compatible with the result obtained by the nonparametric poolability test. We thus

retain the parametric model (19) with country effects only. For the within estimator,

we compute a variance matrix estimator which is robust to heteroskedasticity and

serial correlation of unknown form (see, e.g., Arellano, 1987, and Wooldridge, 2002)

. In the results for the within estimates, only linear and cubic terms of the GDP per

capita are significant at the 5% level.

We also apply OLS on the first-difference version of model (19). Provided as-

sumption (4) holds, the resulting estimator remains consistent even if strict exogene-

ity of GDP per capita does not hold, in contrast to the within estimator. Again,

we compute a variance matrix estimator which is robust to heteroskedasticity and

unrestricted serial correlation. Note that estimating first order correlation in the

first difference residuals leads to a value of -0.022 with a robust t-value of -0.31,

12In this case, the model is yit = xitβ1 + x2

itβ2 + x3

itβ3 + µi + λt + vit where µi and λt indicate

fixed country effects and fixed year effects, respectively.
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which supports assumption FDA (4) for the parametric model (since it is not in

contradiction with a random walk for vit).

Table 2

Table 2 reports the parametric estimation results and Figure 3 depicts the corre-

sponding relationships. A very interesting result is that, whereas within estimation

gives an inverted U-shaped relationship between CO2 emissions per capita and GDP

per capita, with a maximum well within the span of the data, the first-difference

estimation gives a monotonous increasing relationship. A Hausman test based on

robust variance estimators is performed to test strict exogeneity of GDP per capita

on the basis of a comparison of the within and first-difference estimators. The value

of the statistic is 275.32 > χ2 (3) = 7.8 at the 5% level, implying the rejection of the

null hypothesis of strict exogeneity. However, given the finding of a random walk for

the idiosyncratic error term, the first difference estimator is efficient under the null,

which questions the validity of the Hausman test. Therefore we also test strict exo-

geneity on the basis of the first difference estimator alone, checking the significance

of the current level of per capita GDP as an additional variable (see e.g. Wooldridge,

2002, p.285). The obtained t-value (based on the same robust variance estimate as

above) is -2.91, and it leads to clear rejection of strict exogeneity.

Figure 3

Our nonparametric result of a monotonous increasing relationship between CO2

emissions per capita and GDP per capita is consistent with the results obtained

by Shafik (1994), Holtz-Eakin and Selden (1995), and Heil and Selden (2001), but

contradicts those obtained by Roberts and Grimes (1997), Schmalensee et al. (1998),

Sun (1999), and Taskin and Zaim (2000). Two major explanations for the difference

between our parametric findings and those of Holtz-Eakin and Selden (1995) and

Heil and Selden (2001) can be put forward. Firstly, we do not use the same data as

those studies. The data used in Holtz-Eakin and Selden (1995) concern the period

1951 to 1992, whereas our data are from 1960 to 1996. The second reason lies

in the estimation method. When we use the first-difference estimator, we find a

result consistent with that of Holtz-Eakin and Selden (1995), that is, a monotonous

relationship. With the within estimator, we obtain an EKC. The latter is in line with

the finding of Schmalensee et al. (1998) and Galeotti and Lanza (1999). However, the

assumption yielding consistency of the within estimator, namely strict exogeneity of

per capita GDP, is rejected. It is conceivable that the same kind of misspecification
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affects the conclusions of Aslanidis and Xepapadeas (2004) and Bertinelli and Strobl

(2005), since they also use fixed-effects type estimators.

Next, we use the nonparametric specification test proposed by Li and Wang

(1998) to check whether the parametric model in (19) can be rejected against the

nonparametric model in (17). Details on the test can be found in Appendix E. The

null hypothesis is the first-difference version of the parametric model in (19) and the

alternative is (18). The statistic for this one-sided test has an asymptotic standard

normal distribution under the null of correct specification of the parametric model.13

This is computed as 11.12, much higher than 1.65, the value of the standard normal

distribution at the 5% level. Therefore, we reject the parametric specification in

favour of the nonparametric model. We also performed the Li and Wang test for the

first difference model with a linear term only. The test statistic is 4.74, which still

leads to a rejection. Given the confidence bands shown in Figure 2, this rejection may

seem surprising, since it appears easy to fit a straight through these. However the

alternative in the test is the expectation of the first difference in CO2 emissions given

GDP and lagged GDP (see equation (18)). This may be considered a too flexible

alternative. Yet the alternative based on conditioning on the first differences in the

three powers of GDP is not attractive. We thus also performed the Li and Wang test

for the first difference model with the three powers of GDP, using E[∆CO2|∆GDP]

as the alternative. The test statistic is 5.16, which still leads to a rejection of the

parametric model.

As a whole, the analysis underlines the importance of functional specification

and estimation method. First-difference and nonparametric estimations produce

similar results, and perform significantly better than within estimation. The latter

is consistent only in the case where strict exogeneity assumption holds, and this is

rejected by our data.

5.3 Economic and environmental implications

How can we explain the monotonous relation between CO2 emissions per capita and

economic development obtained in this study? Several arguments can be put for-

ward. The earlier stage of economic development are associated with comparatively

13The test proposed by Li and Wang (1998) works for models with no serial correlation. If the

idiosyncratic error term in the parametric model is a random walk, i.e. vit = vit−1 + ηit where ηit

is a white noise, first-differencing will eliminate the serial correlation. This is then consistent with

our framework. Li and Wang (1998) also note that the normal approximation for the test statistic

does not work well for small or moderate samples. But as our sample contains 3600 observations

after first-differencing, we can have some confidence in the asymptotic version of this test.
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slow economic activities. One may think that at such a stage, obsolete technologies

are still used. At the same time, government policies are more aimed at economic

development than at environmental protection. Consequently, CO2 emissions rise

with economic activities. In rich countries, the positive effect on emissions due to

intensive economic activities seems to exceed the reduction in emissions due to the

use of modern technologies. On the whole, the economic development process always

results in increased CO2 emissions.

As regards policy concerns, our results suggest that not only poor countries, but

also richer countries, face environmental pollution. It implies that economic devel-

opment is not a sufficient condition to reduce CO2 emissions, and so all countries,

especially developed countries because of their important resources (financial, tech-

nological, etc.), should make an effort to reduce these emissions in order to reduce

global warming.

This study focuses on one particular type of environmental problem, CO2 emis-

sions. The question arises whether or not our results are specific to CO2. An answer

to this question can only be obtained by using data relating to these pollutants.

Before embarking on such a task, it seems of more direct interest to discuss the

specificity of CO2 in order to underline both the limits and the contributions of our

study.

The question of the specificity of CO2 can be articulated in two ways: the com-

plementarity of the production factors and restrictions on energy substitution on the

one hand, and the deceleration of the efforts of energy saving on the other hand. The

problem of CO2 emissions is directly related to that of energy use, and there is a

strong correlation between fossil energy use, CO2 emissions, and economic activity.

The specificity of CO2 follows from the fact that there is a level of CO2 emissions

related to economic activity which cannot be reduced, and that economic activity

cannot be reduced to zero. Thus, CO2 emissions are much more difficult to reduce

than other gas emissions. This may be a reason for the unwillingness of some coun-

tries to contribute to CO2 reduction under a given threshold (this is particularly

revealing in the current debate about the Kyoto protocol). Indeed, that would auto-

matically have a detrimental effect on their economic activities. This may be also an

explanation for the monotonous curve obtained from the nonparametric model. The

question of the determination of a threshold and its modulation country by coun-

try during a period of time remains unsolved. The efforts to be made will directly

depend on this threshold.

Therefore, we observe a difficulty of CO2 abatement. This is due to the absence
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of incentives to save energy and to use less polluting or renewable energies, which

is related to energy substitution. New green technologies are costly to use. At

the present stage of technology, renewable energies cannot be produced in large

quantities, and thus are not profitable. The debate concerning the deceleration of

energy-saving efforts is well-known. Indeed, since the two oil crises, the real price of

an oil barrel has not ceased to fall until very recently. Thus there seems to be no

incentive on behalf of the political leaders to carry out energy-saving policies and

to reduce CO2 emissions. In order to reduce CO2 emissions in the future, public

policy should create incentives for energy saving and encourage the use of renewable

energies and new green technologies.

6 Conclusion

This paper investigates the empirical relationship between CO2 emissions and eco-

nomic development using an international panel data set. We find evidence sup-

porting specifications which assume the stability of the relationship between CO2

emissions per capita and GDP per capita over time during the period of the study.

We show that within estimation of a parametric specification yields an EKC, but that

the underlying strict exogeneity assumption of per capita GDP is rejected, whereas

both the nonparametric and the first-difference estimations clearly contradict the

existence of an EKC for CO2 emissions. Still, it also turns out that the parametric

model is rejected against the nonparametric specification.

An extension of this study would be to introduce a country-specific trend in

the model. Another natural extension would be to investigate a VAR-type model

for CO2 emissions and per capita GDP, and to analyse the long-run and short-

run effects of GDP. However, accounting for this in a nonparametric context is by

no means trivial. Finally, structural nonparametric modelling (which incorporates

potential endogeneity problems) may also deserve more attention.

Our study can be replicated on other environmental indicators like to urban air

pollution, deforestation, water quality, etc. in order to settle the animated but often

also unedifying debate on the form of relationship between environmental quality

and growth which arises from the use of parametric models. The important policy

implications of this apparently purely methodological point cannot be overstated.
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Appendix A: list of countries

Table A: List of countries and types of CO2–GDP profiles.

2 Algeria 2 Dominican Rep. 1 Ivory Coast 2 Philippines

1 Angola 2 Ecuador 2 Jamaica 2 Portugal

2 Argentina 2 Egypt 5 Japan 3 Romania

2 Australia 2 El Salvador 3 Jordan 3 Saudi Arabia

3 Austria 1 Ethiopia 1 Kenya 2 Senegal

5 Belgium 1 Fiji 2 Korean Rep. 5 Seychelles

2 Belize 3 Finland 6 Luxembourg 1 Sierra Leone

1 Benin 4 France 3 Madagascar 2 Singapore

2 Bermuda 3 Gabon 1 Mali 2 South Africa

2 Bolivia 2 Gambia 3 Malta 2 Spain

2 Brazil 1 Ghana 1 Mauritania 1 Sri Lanka

2 Burkina Faso 2 Greece 2 Mauritius 1 Sudan

2 Cameroon 2 Guatemala 2 Mexico 4 Sweden

4 Canada 1 Guinea 2 Morocco 4 Switzerland

1 Cape Verde 1 Guinea-Bissau 2 Mozambique 2 Syria

1 Central African Rep. 1 Haiti 2 Nepal 2 Thailand

1 Chad 3 Honduras 5 Netherlands 1 Togo

2 Chile 3 Hong Kong 2 New Zealand 3 Trinidad & Tobago

2 China 3 Hungary 2 Nicaragua 2 Tunisia

2 Colombia 4 Iceland 1 Niger 2 Turkey

1 Comoro 2 India 3 Nigeria 1 Uganda

2 Congo Democratic Rep. 2 Indonesia 2 Norway 6 United Kingdom

1 Congo Rep. 2 Ireland 1 Papua New Guinea 5 United States

2 Costa Rica 2 Israel 2 Paraguay 1 Uruguay

3 Denmark 2 Italy 2 Peru 6 Venezuela

Note: the numbers refer to types of CO2–GDP profiles. 1. flat; 2. increasing; 3. increasing

then flat; 4. inverted U; 5. N shape; 6. decreasing.
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Appendix B: poolability test

Let us consider the following nonparametric regression for panel data:

yit = gt (xit) + uit, (20)

with i = 1, . . . , N , t = 1, . . . , T , where independence across individuals i is assumed

as well as mean independence of uit from xit. Moreover the uit are assumed uncor-

related over time. The poolability test aims to test the assumption gt = g for all

t against the alternative H1 : gt 6= g for some t. The parametric analogue of this

test is the well-known Chow test. However, as pointed out by Baltagi et al.(1996),

the Chow test is based on parametric specifications and it is not clear whether a

rejection of the null follows from a non constancy of parameters over time or if it is

due to a misspecification problem.

The relationship between this framework and the one described in Section 3.1 is

the following. Rewriting equation (1) as

yit = (Gt (xit) + E [µi|xit]) + (µi − E [µi|xit] + νit) , (21)

yields the identification gt (xit) = Gt (xit)+E [µi|xit] and uit = µi − E [µi|xit] + νit,

where E [uit|xit] = 0 by construction. Under the supplementary and not unreasonable

assumption that E [µi|xit], as a function of xit does not depend on t, we obtain the

equivalence between the assumptions gt = g for all t and Gt = G for all t.

The test statistic is given by

J =
Nb1/2I√

2σ̂2
0

,

where

I =
1

N(N − 1)Tb

∑

t

∑

i

∑

j 6=i

(
ûitf̂it

) (
ûjtf̂jt

)
Kb (xit − xjt) ,

and

σ̂2
0 =

1

T 2

∑

t



 1

N (N − 1) b

∑

i

∑

j 6=i

(
ûitf̂it

)2 (
ûjtf̂jt

)2
K2

b (xit − xjt)



 ,

with ûit = yit−ŷit denoting the nonparametric residual from the pooled model (under

H0), and f̂it = 1
NTa

∑
j

∑
s Ka (xit − xjs) denoting the kernel density estimate for

the pooled data. Kr = K
(

.
r

)
denotes the kernel function corresponding to the

bandwidth r where r = a, b. So Ka and Kb are respectively the kernel functions

corresponding to the pooled data for the whole period of the study and the N -cross
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sectional data for a fixed value of t. We use a standard Gaussian kernel. In order to

select the bandwidths, we use a data-driven method, least squares cross-validation.

The computation of a is based on the pooled data. As regards b, we first compute

a bandwidth bt for each cross-section separately, and set b to the minimum of the bt.

With this choice, the condition that (b2/a) → 0 (see Baltagi et al., 1996) appears to

be satisfied, as we obtain a = 0.6 and b = 0.1, and thus (b2/a) < 0.02.14

J has a standard normal distribution under H0. Under H1, J
p−→ J0 > 0. Thus,

the poolability test is one-sided. To compute the test statistic, Baltagi et al. (1996)

used the Nadaraya-Watson kernel estimator for estimating ŷit = E [yit|xit] . Here we

use the local linear kernel estimator as it has a better behaviour at the boundaries.

The estimator is then similar to the one given in (9), except that we are now in the

univariate case.

Appendix C: the wild bootstrap

Several bootstrap methods are available (see, e.g., Horowitz, 2001). To construct the

confidence bands for nonparametric estimators as well as the critical values of the

nonparametric tests, we use the wild bootstrap as now described. Let us consider the

nonparametric regression model

y = m (x) + ε, (22)

where m (x) represents a unknown function of x, whose nonparametric estimator is

denoted m̂ (x, h), h being the smoothing parameter. Let us denote by ε̂ = y−m̂ (x, h)

the regression residuals. The different steps of the wild bootstrap algorithm are the

following:

s = 1

Repeat

Step 1: Generate the bootstrap errors ε∗ using the two points distri-

bution probability: P (ε∗ = ε̂λ) = δ; P (ε∗ = ε̂µ) = 1 − δ, with λ =
(
1 −

√
5
)
/2, µ =

(
1 +

√
5
)
/2, δ =

(
5 +

√
5
)
/10.

Step 2: Generate new bootstrap samples y∗ = m̂ (x, hb) + ε∗, where

hb is the bandwidth slightly greater than h. Then, m̂ (x, hb) is slightly

over-smoothed compared to m̂ (x, h). Compute m̂∗ (x, h), that is the

nonparametric estimator applied to the bootstrap sample {y∗; x}.
14Thanks to Qi Li for a private communication approving this choice.
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s = s + 1

Until s = B (number of bootstrap samples, here we set B = 1000).

In order to compute the pointwise bootstrap confidence interval of level (100 − α)

for m̂ (x, h), we define the lower and upper bounds as the (α/2)th and (100 − α/2)

percentiles of the distribution of the bootstrap estimators {m̂∗ (x, h)}, respectively.

Remark 1 The wild bootstrap yields estimations which account for heteroskedasticity

and correlation between observations. This can be easily observed from the resulting

covariance structure. Indeed, let ûn denote a random variable, and u∗
n the associate

bootstrap sample, where u∗
n has realization probabilities p and 1 − p corresponding

to βûn and γûn, respectively. Then, we can write, from the covariance decomposi-

tion, cov
(
u∗

i , u
∗
j

)
= E

[
cov

(
u∗

i , u
∗
j

)
| ûi, ûj

]
+ cov

[
E (u∗

i | ûi, ûj) , E
(
u∗

j | ûi, ûj

)]
.

Since E [cov (u∗
i , u

∗
i ) | ûi, ûj ] = 0; and E (u∗

k | ûi, ûj) = ûk, k = i, j, we obtain

cov
(
u∗

i , u
∗
j

)
= cov (ûi, ûj).

Remark 2 Another advantage of the bootstrap in constructing confidence intervals

is that it avoids the computation of constants such as the bias of the estimator (see

Härdle, 1990).

Remark 3 Other types of bootstrap confidence intervals can be used (for example,

uniform confidence intervals) but their computation is not trivial.

Appendix D: monotonicity test

This test was proposed by Bowman et al. (1998). We use it as follows. Let Ĝ (x, h)

be an individual function obtained by marginal integration with h the bandwidth.

We add h in this functional notation for a better understanding of the test. We

first determine the critical bandwidth hc as the smallest value of the bandwidth

that gives rise to regression monotonicity, i.e. Ĝ (x, hc) monotone, even if there

exists a larger bandwidth for which the function is not monotone. As stated in

Section 5.1, increasing the bandwidth leads to a smoother estimate. If we let the

bandwidth grow indefinitely, the estimate becomes flat, and thus monotonous in the

wide sense. This guarantees the existence of a bandwidth for which the estimated

curve is monotonic. Then we construct the p−value of the test by bootstrap (here

we use the wild bootstrap). The test is implemented as follows:

k = 1
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Repeat

Step 1: Find the critical bandwidth hc which is the smallest value

of bandwidth such that Ĝ (x, hc) is monotone, regardless of whether

Ĝ (xit, hm) might be non-monotone for some hm > hc.

Step 2: Compute ε̂it = 4yit − Ψ̂(xt,h), where 4yit = yit − yi,t−1,

Ψ̂(xt,h) = Ĝ(1) (xit, h1) − Ĝ(2) (xi,t−1, h2) and h = (h1, h2)
′ is obtained

by least squares cross-validation, as described in the text. We have chosen

h1 = h2.

Step 3: Generate a bootstrap sample ε̂∗it from ε̂it using the two-point

distribution with P (ε∗it = ε̂itβ) = δ, P (ε∗it = ε̂iγ) = 1 − δ, where β =
(
1 −

√
5
)
/2, γ =

(
1 +

√
5
)
/2, δ =

(
5 +

√
5
)
/10. Construct new obser-

vations 4y∗it = Ψ̂(xt,hc) + ε̂∗it, where hc = (hc,1, hc,2)
′.

Step 4: Compute Ψ̂∗(xt,hc) using the bootstrap sample generated in

Step 3 and observe whether or not the result is monotone for the function

of interest.

k = k + 1.

Until k > B (= number of bootstrap samples, here we set B = 1000).

Finally, construct the p−value by determining the proportion of estimates at Step 4

which are not monotonic.

Appendix E: specification test

The statistic test of Li and Wang (1998) is used in testing the parametric specification

(19) against the nonparametric alternative (17). The test is based on the residuals of

the parametric first-difference model. The underlying idea is that if the parametric

model satisfactorily tracks the conditional expectation E[y|x], the covariance between

the error term u and E[y|x] should be zero. Equivalently, the covariance between u

and E[u|x] should be zero. The test statistic is thus based on the following magnitude

I which is the empirical counterpart of E[uE[u|x]]. The test statistic is

I =
1

n

n∑

i=1

ûi



 1

nhq

n∑

j=1,j 6=i

ûjKh (xi − xj)





=
1

n2hq

n∑

i=1

n∑

j=1,j 6=i

ûiûjKh (xi − xj) ,
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where n = N (T − 1), x =(x, x−1)
′ with x−1 being the one-period lag of x, q = 2

(dimension of x), and û is the parametric residuals of the first-difference model.

Kh (τ1, τ1) = K
(

τ1
h

)
K

(
τ2
h

)
is the kernel function and h is the smoothing param-

eter obtained by least squares cross-validation. Under H0, nhq/2I → N (0, Ω) in

distribution as n → ∞, where Ω = 2
[∫

K2 (u) du
]
E

[
f(x)σ4 (x)

]
. Ω is consistently

estimated by Ω̂ =
(
2/

(
n2hq

)) ∑
i

∑
j 6=i û

2
i û

2
jK

2
ij , where Kij = Kh (xi − xj). It fol-

lows that J := nhq/2I/
√

Ω̂ → N (0, 1) in distribution.
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Table 1: Descriptive statistics

Variables Mean Std.dev. Min. Max.

CO2 emissions per capita (metric tons)

overall 0.937 1.371 0 10.99

between 1.307 0.007 8.300

within 0.432 -1.932 4.238

GDP per capita (thousands $1985)

overall 4.134 4.218 0.216 19.474

between 3.932 0.305 14.825

within 1.573 -2.438 13.829

100 countries

37 years

Table 2: Parametric estimation results

Within First-difference

Variables Coef. t−stat. Coef. t−stat.

Linear term 2.401∗ 7.25 0.275 0.52

Quadratic term 0.570 1.08 1.791∗ 2.14

Cubic term -0.733∗ -3.22 -0.649∗ -2.03

Notes. Dependent variable is CO2 emissions per capita (metric tons). Per capita

GDP is expressed here in 10,000 $ 1985. t−statistics are based on standard error

estimates robust to both heteroskedasticity and serial correlation of unknown

form. Significant coefficients at the 5% level starred.
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Figure 1: Kernel density estimate for GDP per capita in 1960, 1980, and 1996 using

the Epanechnikov kernel.
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Figure 2: Nonparametric estimation of the relationship between CO2 emissions and

GDP per capita. The solid curve represents Ĝ. The dashed curves correspond to

upper and lower bootstrap 95% pointwise confidence intervals.
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Figure 3: Parametric estimation of the relationship between CO2 emissions and

GDP per capita. The solid and the dashed curves correspond to the within and the

first-difference estimators, respectively.
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