
DP-Counter Analytics

Guido Moerkotte

Technical Report TR-2006-002

University of Mannheim
February 9, 2006

Abstract

In the literature mainly two variants of dynamic programming for con-
structing join trees are described. We show analytically and experimen-
tally that the runtime behaviors of those two variants differ vastly for
different query graphs. The query graphs we consider are chain, cycle,
star, and clique. More specifically, one of the variants is highly superior
for chain and cycle queries whereas the other is highly superior for star and
cliques queries. This motivates us to derive an optimal algorithm which is
— apart from a small overhead — superior to all algorithms in all cases.

1 Introduction

The problem of generating optimal join trees has been extensively studied1.
Since there are many different join ordering problems, let us state precisely
which one we investigate here: We consider the generation of optimal bushy
join trees not containing cross products. Note that this implies that the join
graph is connected. The only approach we consider is dynamic programming.

Already starting with the seminal paper by Selinger et al. [7], there seems
to be a habit to hide the actual code: only few papers present (pseudo-) code
(e.g. [3]). This code reveals one variant of dynamic programming. It generates
join trees by increasing size. We call this variant size-chained (SzCh or DPsize
for short).

An alternative to dynamic programming is memoization which generates
plans top-down instead of bottom-up. A very efficient approach has been pro-
posed in the seminal paper written by Vance and Maier [11]. The core of their
algorithm is a code snippet that allows for very efficient generation of subsets
of a set represented as a bitvector. It is an easy exercise to derive a dynamic
programming variant from their memoization algorithm. In fact, two variants
with slight differences can be derived, which we denote by Sub and SubAlt.
The latter is also called DPsub.

The first question we want to answer in this paper is which of the two
variants (presented in detail in Section 2) is the better one. We could run

1For a complete coverage see manuscript by Moerkotte (http://pi3.informatik.uni-
mannheim.de/moer/querycompiler.pdf)
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experiments, of course, but we thought that analytical results would give us
more insight. Scanning the literature revealed that only a single paper presents
analytical results. It is the paper written by Ono and Lohman [5]. For three
different kinds of query graphs (chains, stars, and cliques), they analyze the
number of rule applications (or calls to cost functions). These are important
results. However, these numbers are independent of the variant of dynamic
programming used and give lower complexity bounds as pointed out by Vance
[10]. As a consequence, the variants remain indistinguishable with this analysis.
Hence, though fundamental, the results by Ono and Lohman do not help to
answer our question.

The analytical approach we take in order to answer the question works as
follows. We place a counter in the innermost loop of the variants and analyti-
cally derive the value of the counter after termination (see Section 3). That is,
we count the number of executions of the innermost loop of the variants. This
reveals the following:

1. In all cases but one, the value of the counter is much higher than the
number of rule applications which is the lower bound for the inner counter.

2. For chain and cycle queries, the SzCh variant exhibits a vastly lower
counter value than the Sub and SubAlt variants.

3. For star and clique queries, the Sub and SubAlt variants exhibit a vastly
lower counter value than the SzCh variant.

These findings immediately spawn a second question: Is it possible to derive a
dynamic programming variant whose inner counter is equal to the lower bound
derived by Ono and Lohman? If so, this variant would beat the others. The
positive answer to this question is presented in Section 4. Since the Sub and
SubAlt alternatives use the very efficient subset generation code of Vance and
Maier, the new variant exhibits a higher overhead which eludes a theoretical
analysis. Therefore, and because we wanted to demonstrate the practical im-
pact of choosing a certain variant, we experimentally evaluated the variants
(Section 5).

2 The Existing Algorithms

In this section, we present two dynamic programming algorithms to generate
optimal bushy trees without cross products. The first two subsections discuss
the pseudocode of these algorithms. The next subsections give implementation
details. We start by discussing the common infrastructure used by all our
algorithms (including our new one). Subsection 2.1 sketches the most prominent
size-chained variant. Subsection 2.2 presents two variants based on fast subset
generation [10, 11].

2.1 Size Driven Enumeration

In general, dynamic programming generates solutions for a larger problem in
a bottom-up fashion by combining solutions for smaller problems [1]. Taking
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DPsize

Input: a connected query graph with relations R0, . . . , Rn−1

Output: an optimal bushy join tree without cross products

for (i = 0; i < n; ++i) {
BestPlan(1 << i) = Ri;

}
for (s = 2; s ≤ n; ++s) // size of plan to be constructed

for (s1 = 1; s1 < s; ++s) { // size of left subplan

s2 = s − s1; // size of right subplan

for (all plans P1 containing s1 relations)

for (all plans P2 containing s2 relations) {
++InnerCounter;

if (∅ ! = P1 ∩ P2) continue;

if (not P1 connected to P2) continue;

++OnoLohmanCounter;

CurrPlan = CreateJoinTree(P1, P2);

S = relations contained in CurrPlan;

if (BestPlan(S) == NULL ||

cost(BestPlan(S)) > cost(CurrPlan)) {
BestPlan(S) = CurrPlan;

}
}

}
return BestPlan({R0, . . . , Rn−1});

Figure 1: Algorithm DPsize (SzCh)
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this description literally, we can construct optimal plans of size n by joining
plans P1 and P2 of size k and n − k. We just have to take care that (1) the
sets of relations contained in P1 and P2 do not overlap, and (2) there is a join
predicate connecting a relation P1 with a relation in P2. After this remark
we are ready to understand the pseudocode for algorithm DPsize (see Fig. 1).
A table BestPlan associates with each set of relations the best plan found so
far. The algorithm starts by initializing this table with plans of size one, i.e.
single relations. After that, it constructs plans of increasing size (loop over s).
Thereby, the first size considered is two, since plans of size one have already
been constructed. Every plan joining n relations can be constructed by joining
a plan containing s1 relations with a plan containing s2 relations. Thereby,
si > 0 and s1 + s2 = n must hold. Thus, the pseudocode loops over s1 and sets
s2 accordingly. Since for every possible size there exist many plans, two more
loops are necessary in order to loop over the plans of sizes s1 and s2. Then,
conditions (1) and (2) from above are tested. Only if their outcome is positive,
we consider joining the plans P1 and P2. The result is a plan CurrPlan. Let
S be the relations contained in CurrPlan. If BestPlan does not contain a plan
for the relations in S or the one it contains is more expensive than CurrPlan,
we register CurrPlan with BestPlan.

The algorithm DPsize can be made more efficient in case of s1 = s2. In this
case, the complexity can be decreased from s1 ∗ s2 to s1 ∗ s2/2 (see below for
details). The following formulas are valid only for the variant of DPsize where
this optimization has been incorporated.

2.2 Counter Driven Enumeration with Fast Subset Generation

Figure 2 contains the pseudocode for the two algorithms DPsub (Sub for short)
and DPsubalt (SubAlt for short). Differing from DPsize, these two variants do
not leave the implementor a choice of how to represent sets. Instead, bitvectors
are used to encode sets. In a bitvector representing a set, the i-th bit is equal
to ’1’ if Ri is contained in the set. As a consequence, the table BestPlan is now
indexed by bitvectors.

Let us comment on the pseudocode given in Fig. 2. The algorithm first
initializes the table BestPlan with all possible plans containing a single relation.
Then, the main loop starts. It iterates over all possible non-empty subsets of
{R0, . . . , Rn−1} and constructs the best possible plan for each of them. The
subsets are successively represented by the bitvector S. It not only represents a
subset of {R0, . . . , Rn−1}, but is also interpreted as a positive integer. Taken as
bitvectors, the integers in the range from 1 to 2n − 1 exactly represent the set
of all non-empty subsets of {R0, . . . , Rn−1}, including the set itself. Further,
by starting with 1 and incrementing by 1, the enumeration order is valid for
dynamic programming: for every subset, all its subsets are generated before the
subset itself.

This enumeration is very fast, since increment by one is a very fast operation.
However, the relations contained in S may not induce a connected subgraph of
the query graph. Therefore, we must test for connectedness. The goal of the
next loop over all subsets of S is to find the best plan joining all the relations
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DPsub/DPsubalt

Input: a connected query graph with relations R0, . . . , Rn−1

Output: an optimal bushy join tree

for (i = 0; i < n; ++i) {
BestPlan(1 << i) = Ri;

}
for (S = 1; S < 2n-1; ++S) {

if (not connected S) continue; // delete this line for DPsub

for all S1 ⊂ S, S1 6= ∅ do {
++InnerCounter;

S2 = S \ S1;

if (S2 = ∅) continue;

if (not connected S1) continue;

if (not connected S2) continue;

if (not S1 connected to S2) continue;

CurrPlan = CreateJoinTree(BestPlan(S1), BestPlan(S2));

if (BestPlan(S) == NULL || cost(BestPlan(S)) > cost(CurrPlan)) {
BestPlan(S) = CurrPlan;

}
}

}
return BestPlan(2n − 1);

Figure 2: Algorithms DPsub (Sub) and DPsubalt (SubAlt)
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in S. Therefore, S1 ranges over all non-empty, strict subsets of S. This can be
done very efficiently by applying the code snippet of Vance and Maier [10, 11].
Then, the subset of relations contained in S but not in S1 is assigned to S2.
Clearly, S1 and S2 are disjoint. Hence, only connectedness tests have to be
performed. Since we want to avoid cross products, S1 and S2 must both induce
connected subgraphs of the query graph, and there must be a join predicate
between a relation in S1 and one in S2. If these conditions are fulfilled, we can
construct a plan CurrPlan by joining the plans associated with S1 and S2. If
BestPlan does not contain a plan for the relations in S or the one it contains
is more expensive than CurrPlan, we register CurrPlan with BestPlan.

2.3 Implementation Details

2.3.1 Common Infrastructure

Figure 3 contains the most important parts of the common infrastructure. Plans
are grouped into plan classes. Each plan class contains all plans with the
same logical properties. The most interesting logical properties are the set of
relations a plan joins ( contained) and its result cardinality ( cardinality).
Other logical properties like result tuple width exist but have been excluded
from the figure. Instead, we have introduced the set of relations to which the
relations joined in a plan connect via join predicates ( connectedTo). We chose
to represent all sets as bitvectors. Given two plan classes c1 and c2 whose plans
join two disjoint sets of relations and whose corresponding sets of relations are
connected by some join predicates, we can calculate the logical properties of
the plan class resulting from joining plans in c1 and c2 as follows:

_contained = c1._contained | c2._contained

_connectedTo = (c1._connectedTo | c2._connectedto) & ~_contained

The output cardinality can be calculated by iterating over the relations con-
tained in

lLinkRelations = c1._connectedTo & c2._contained

and considering for each relation the selectivity of the predicates connecting it
to the relations in c2. contained.

The plans belonging to the same plan class are linked via the next member
of plan nodes. Further, each plan class contains a link to the first of its plans
( plan). Plan classes hold the logical properties of their plans. For the size-
chained variant of dynamic programming, we additionally need a list of all plans
of equal size (i.e. containing the same number of relations). For this purpose,
each plan class contains a next pointer. This pointer is not used by the other
variants.

Plan nodes contain the physical properties of a plan. The most important
physical property is the cost of a plan. Other physical properties like sorted-
ness and groupedness of a plan’s result are not shown. The member function
dominates of physical properties is used to prune dominated plans.

Each plan node contains a back pointer to its class. Though this pointer
can be avoided, it is very convenient. The members left and right are
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pointers to the arguments of a plan. If the algebraic operator is unary (e.g. a
selection), the right pointer is unused. The last member to be explained is
rule. It contains a pointer to the rule that constructed this plan. There are
different rules to introduce different algebraic operators. This pointer allows to
reconstruct the generated plan. The rule engine is similar to the one described
in a paper by Lohman [4]. It is shared by all dynamic programming variants.

The last common infrastructure class is the memotable. Its main purpose
is to provide a mapping from a set of relations to the plan class representing
all plans which comprise exactly this set of relations. For simplicity, we imple-
mented the memotable as a simple array with 2n entries for a query involving
n relations.

2.3.2 DP-Variant: Chaining by Size

For the rest of the paper we assume that n is the number of relations to be
joined. The code of the first dynamic programming variant is shown in Fig-
ure 4. It generates plans with an increasing size by first joining two subplans
each containing a single relation. Then, the subplan sizes are increased until
all n relations have been joined. Therefore, the sizes of the left and the right
argument of the next joins to be performed are increased in two nested loops.
Given the size of the left and the right argument, a loop is performed over all
plan classes representing plans with exactly these numbers of joins (sizeLoop).
Then, a further loop iterates over all plans in these classes. This loop is imple-
mented in a member function planLoop of the abstract base class of all dynamic
programming variants.

Some optimization potential exists if the left and the right argument are
of the same size. Then, instead of traversing the single list of plan classes in
two nested loops both considering the list from its beginning to its end, we
have to consider the whole list for the left argument and only the rest of the list
(starting from the successor of left argument) for the right argument. Therefore,
this case is distinguished in the main optimize procedure in Figure 4. The
implementations of the overloaded member functions sizeLoop are shown in
Figure 5.

Note that the work performed by iterating over the plans of two classes is
the same for all dynamic programming variants. Moreover, for our experiments,
we excluded all physical properties except for the costs. This has the nice effect
that only one plan per plan class is retained. Differing from the analytical
approach by Ono and Lohman [5], our rules do not consider commutativity.
Hence, our numbers will be twice as large as theirs for counting the number of
planLoop calls.

Within the member function sizeLoop the following situations can occur:

1. the sets of relations of the two argument classes are not connected by a
join predicate, and/or

2. the sets of relations of the two argument classes are not disjoint.

Since we do not consider cross products and do not want to join a relation
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class PlanPropertyLog {

Bitvector _contained;

Bitvector _connectedTo;

card_t _cardinality;

...

};

class PlanPropertyPhys {

int dominates(PlanPropertyPhys& x); // best: -1 this, 0 uncomparable, 1 x

cost_t _cost;

...

};

class PlanClass {

PlanPropertyLog& prop() { return _prop; }

PlanNode* plan() { return _plan; }

PlanClass* next() { return _next; }

public:

PlanPropertyLog _prop;

PlanNode* _plan;

PlanClass* _next; // for size chain

};

class PlanNode {

PlanClass* _class;

RuleBase* _rule;

PlanNode* _left;

PlanNode* _right;

PlanNode* _next;

PlanPropertyPhys _prop;

};

class MemoTable {

PlanClass& find(Bitvector& aContained);

};

Figure 3: Common infrastructure
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PlanGeneratorSizeChained::optimize() {

for(int lSizeLeft = 1; lSizeLeft < n; ++lSizeLeft) {

int lSizeRightLimit = 0;

lSizeRightLimit = (lSizeLeft <= n - lSizeLeft) ? lSizeLeft : n - lSizeLeft;

for(int lSizeRight = 1; lSizeRight <= lSizeRightLimit; ++lSizeRight) {

if(lSizeLeft != lSizeRight) {

sizeLoop(lSizeLeft, lSizeRight);

} else {

sizeLoop(lSizeLeft); // special treatment

}

}

}

}

Figure 4: Dynamic programming variant DPcsg

more than once, two tests have been introduced. Just before the two tests, we
introduce the inner counter.

2.3.3 DP-Variant: Subset

Figure 6 shows the code of the dynamic programming variants Sub and SubAlt.
The core idea of the algorithm is the following. For every subset S of the
relations to be joined, it generates all subsets S1 and S2 of S. The foundation
for this is the fast subset enumeration algorithm of Vance and Maier [10, 11] to
enumerate the subsets S1 of S. Then, S2 is easily determined by S2 = S \ S1.
However, one of the following situations may arise:

1. The subset S1 does not induce a connected subgraph of the query graph,

2. the complement S2 of the subset S1 does not induce a connected subgraph
of the query graph, and/or

3. the subset S1 and its complement S2 are not connected by join predicates.

In any of these cases, the pair (S1, S2) must be condemned. Hence, tests have
to be introduced before passing the plan classes to loopPlan. Again, the inner
counter is placed before the necessary tests.

If S is not connected, at least one of the above situations arises. Thus, it
does make a lot of sense to test S for connectedness before deriving S1 and
S2. Hence, we considered a variant (called SubAlt) where this is checked and a
variant (called Sub) that does not contain this test. It should be obvious that
including this test leads to a better performance as long as the query graph is
not (close to) a clique.
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PlanGeneratorSizeChained::sizeLoop(int aSizeLeft, int aSizeRight) {

PlanClass* lClassLeftStart = _sizeArray[aSizeLeft];

PlanClass* lClassRightStart = _sizeArray[aSizeRight];

PlanClass* lClassLeft = 0;

PlanClass* lClassRight = 0;

for(lClassLeft = lClassLeftStart; lClassLeft != 0; lClassLeft = lClassLeft->next()) {

for(lClassRight = lClassRightStart; lClassRight != 0;

lClassRight = lClassRight->next()) {

Bitvector lContained = lClassLeft->prop().contained();

lContained |= lClassRight->prop().contained();

++(_stat._countInner); // counter for innermost loop

// problems: 1. left/right may overlap, 2. left/right may not be connected

if((lClassLeft->prop().contained().overlap(lClassRight->prop().contained())) ||

(lClassLeft->prop().contained().disjoint(lClassRight->prop().connected()))) {

continue;

}

PlanClass& lClassResult = getPlanClass(lContained);

loopPlan(*lClassLeft, *lClassRight, lClassResult);

loopPlan(*lClassRight, *lClassLeft, lClassResult);

}

}

}

PlanGeneratorSizeChained::sizeLoop(int aSize) {

PlanClass* lClassLeftStart = _sizeArray[aSize];

PlanClass* lClassLeft = 0;

PlanClass* lClassRight = 0;

for(lClassLeft = lClassLeftStart; lClassLeft != 0; lClassLeft = lClassLeft->next()) {

for(lClassRight = lClassLeft->next(); lClassRight != 0;

lClassRight = lClassRight->next()) {

Bitvector lContained = lClassLeft->prop().contained();

lContained |= lClassRight->prop().contained();

++(_stat._countInner); // counter for innermost loop

// problems: 1. left/right may overlap, 2. left/right maybe not connected

if((lClassLeft->prop().contained().overlap(lClassRight->prop().contained())) ||

(lClassLeft->prop().contained().disjoint(lClassRight->prop().connected()))) {

continue;

}

PlanClass& lClassResult = getPlanClass(lContained);

loopPlan(*lClassLeft, *lClassRight, lClassResult);

loopPlan(*lClassRight, *lClassLeft, lClassResult);

}

}

}

Figure 5: Dynamic programming variant DPsize sizeLoop
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PlanGeneratorSubset::optimize() {

for(Bitvector s = 1; s <= ((1 << n) - 1); ++s) {

if(!isConnectedSubgraph(s)) { continue; } // only for SubAlt

const Bitvector lBvCurrent(s);

PlanClass& lClassCurrent = memo().find(s);

bool first = true;

for(Bitvector::IteratorSubset iter = lBvCurrent.beginSub();

iter != lBvCurrent.endSub(); ++iter) {

Bitvector lBvLeft = (*iter);

Bitvector lBvRight(lBvCurrent ^ lBvLeft);

++(_stat._countInner); // counter for innermost loop

PlanClass& lClassLeft = memo().find(lBvLeft);

PlanClass& lClassRight = memo().find(lBvRight);

// check whether left and right induce connected subgraph

if((0 == lClassLeft.plan()) ||

(0 == lClassRight.plan())) {

continue;

}

// check for predicates connecting left and right

if(lClassLeft.prop().contained().disjoint(lClassRight.prop().connected())) {

continue;

}

loopPlan(lClassLeft, lClassRight, lClassCurrent);

}

}

}

Figure 6: Dynamic programming variant DPsub
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3 Analysis

3.1 Algorithm-Independent Results

Every subset of nodes (relations) of the join graph induces a subgraph. Since we
do not consider cross products, we are interested in connected subgraphs. For a
given graph G with n nodes, we denote by #csg(n) the number of non-empty
connected subgraphs and by #csg(n, k) the number of non-empty connected
subgraphs with k (k > 0) nodes. Sometimes, for small n up to 2 or 3 some of
the following formulas do not hold. Hence, we assume n > 3. The concrete
values for these n and up to 20 are contained in the next subsection. We do
not give any proofs in this section. All proofs are contained in the appendices.

For chains, cycles, stars, and cliques with n nodes we have

#csgchain(n) =
n(n + 1)

2
(1)

#csgcycle(n) = n2 − n + 1 (2)

#csgstar(n) = 2n−1 + n − 1 (3)

#csgclique(n) = 2n − 1 (4)

It would be very nice to have an algorithm which takes a query graph and re-
turns the number of node-induced connected subgraphs. This algorithm could
then be used to estimate the runtime of the plan generator and to decide which
data structure to use for the memotable. Further, we could deduce from this
information the expected memory consumption for the memotable. Unfortu-
nately, no efficient such algorithm exist. Moreover, we cannot expect to find
one, since the problem of calculating the number of connected subgraphs of a
given graph is #P -hard [9].

The above equations can be derived from the following by summing over k:

#csgchain(n, k) = (n − k + 1) (5)

#csgcycle(n, k) =

{

1 n = k
n else

(6)

#csgstar(n, k) =

{

n k = 1
(

n−1
k−1

)

k > 1
(7)

#csgclique(n, k) =

(

n

k

)

(8)

(9)

These results are also used to derive the values for the inner counter for the
size-chained variant.

For the number of rule applications we have

#rapchain(n) =
1

3
((n + 1)3 − (n + 1)2 + 2 ∗ (n + 1)) (10)

#rapcycle(n) = n3 − 2n2 + n (11)

#rapstar(n) = (n − 1)2n−2 (12)

#rapclique(n) = 3n − 2n+1 + 1 (13)
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The results for chain, star, and clique are due to Ono and Lohman [5]. However,
there is a minor difference: we count calls to CreateJoinTree(T1, T2) and its
counterpart CreateJoinTree(T2, T1) as two calls, whereas Ono and Lohman
count these commutative calls only once. Thus, the above formulas have to
be divided by two in order to give Ono and Lohman’s formulas. Further note
that #rap is a lower bound on the work to be performed by any dynamic
programming variant. It corresponds to the number of calls to loopPlan in all
our dynamic programming variants.

3.2 Algorithm-Dependent Results

The value of the inner counter of the DP-Variant SzCh can be calculated as
follows. For chains, we have:

Ichain
SzCh (n) =

{

1/48(5n4 + 6n3 − 14n2 − 12n) n even
1/48(5n4 + 6n3 − 14n2 − 6n + 11) n odd

(14)

For cycles, we have:

Icycle
SzCh(n) =

{

1
4 (n4 − n3 − n2) n even
1
4 (n4 − n3 − n2 + n) n odd

(15)

For stars, we have:

Istar
SzCh(n) =

{

22n−4 − 1/4
(2(n−1)

n−1

)

) + q(n) n even

22n−4 − 1/4
(2(n−1)

n−1

)

+ 1/4
( n−1
(n−1)/2

)

+ q(n) n odd
(16)

with q(n) = n2n−1 − 5 ∗ 2n−3 + 1/2(n2 − 5n + 4).
For cliques, we have:

Iclique
SzCh (n) =

{

22n−2 − 5 ∗ 2n−2 + 1/4
(2n

n

)

− 1/4
( n
n/2

)

+ 1 n even

22n−2 − 5 ∗ 2n−2 + 1/4
(2n

n

)

+ 1 n odd
(17)

Note that
(2n

n

)

is in the order of Θ(n4/
√

n).
The Inner Counter of the DP-Variant Sub is independent of the query graph

and can be calculated as follows:

ISub = 3n − 2n+1 + 1 (18)

The value of the inner counter for the DP-Variant SubAlt can be calculated
as follows:

Ichain
SubAlt(n) = 2n+2 − nn − 3n − 4 (19)

Icycle
SubAlt(n) = n2n + 2n − 2n2 − 2 (20)

Istar
SubAlt(n) = 23n−1 − 2n (21)

Iclique
SubAlt(n) = 3n − 2n+1 + 1 (22)
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Chain Cycle Star Clique

n Csg Rap Csg Rap Csg Rap Csg Rap

2 3 2 3 2 3 2 3 2
3 6 8 7 12 6 8 7 12
4 10 20 13 36 11 24 15 50
5 15 40 21 80 20 64 31 180
6 21 70 31 150 37 160 63 602
7 28 112 43 252 70 384 127 1932
8 36 168 57 392 135 896 255 6050
9 45 240 73 576 264 2048 511 18660

10 55 330 91 810 521 4608 1023 57002
11 66 440 111 1100 1034 10240 2047 173052
12 78 572 133 1452 2059 22528 4095 523250
13 91 728 157 1872 4108 49152 8191 1577940
14 105 910 183 2366 8205 106496 16383 4750202
15 120 1120 211 2940 16398 229376 32767 14283372
16 136 1360 241 3600 32783 491520 65535 42915650
17 153 1632 273 4352 65552 1048576 131071 128878020
18 171 1938 307 5202 131089 2228224 262143 386896202
19 190 2280 343 6156 262162 4718592 524287 1161212892
20 210 2660 381 7220 524307 9961472 1048575 3484687250

Table 1: Sample values for #csg and #rap

3.3 Sample Numbers

Tables 1 and 3.3 provide concrete values for join graph sizes between 2 and 20.
For different query graphs, Table 1 gives the number of connected subgraphs
and the number of rule applications. Table 3.3 shows the values for the inner
counter for different variants of dynamic programming. We already list the
inner counter values for the new variant DPcsg, which will be presented in the
next section. Since for the DP-variant Sub the value of its inner counter is
independent of the query graph, there is only one column for it.

We observe the following:

• As expected, SubAlt is clearly superior to Sub.

• For chain and cycle queries, the SizeChained variant behaves much better
than the Sub and SubAlt variant,

• For star and clique queries, the Sub and SubAlt variants behaves much
better than the SizeChained variant.

• By comparison with the numbers given in Table 1 it becomes clear that
except for cliques, the number of rule applications is far less than the
value of InnerCounter for all DP-variants.

These observations motivate us to derive a new algorithm whose InnerCounter
value is equal to the number of rule applications.
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Chain Cycle Star Clique All Graphs

n SubAlt SzCh CSG SubAlt SzCh CSG SubAlt SzCh CSG SubAlt SzCh CSG Sub

2 2 1 1 2 1 1 2 1 1 2 1 1 2
3 10 9 4 12 12 6 10 9 4 12 12 6 12
4 32 29 10 46 44 18 38 33 12 50 61 25 50
5 84 73 20 140 120 40 130 110 32 180 280 90 180
6 198 150 35 374 261 75 422 350 80 602 1171 301 602
7 438 278 56 924 504 126 1330 1175 192 1932 4795 966 1932
8 932 470 84 2174 880 196 4118 4116 448 6050 19265 3025 6050
9 1936 750 120 4956 1440 288 12610 15188 1024 18660 77052 9330 18660

10 3962 1135 165 11062 2225 405 38342 57888 2304 57002 306991 28501 57002
11 8034 1655 220 24332 3300 550 116050 226037 5120 173052 1222375 86526 173052
12 16200 2331 286 52958 4716 726 350198 894278 11264 523250 4864993 261625 523250
13 32556 3199 364 114348 6552 936 1054690 3566678 24576 1577940 19367127 788970 1577940
14 65294 4284 455 245366 8869 1183 3172262 14281579 53248 4750202 77116677 2375101 4750202
15 130798 5628 560 523836 11760 1470 9533170 57305929 114688 14283372 307173877 7141686 14283372
16 261836 7260 680 1113598 15296 1800 28632278 230139494 245760 42915650 1223926785 21457825 42915650
17 523944 9228 816 2358716 19584 2176 85962370 924507240 524288 128878020 4878205012 64439010 128878020
18 1048194 11565 969 4980086 24705 2601 258018182 3713761316 1114112 386896202 19448313175 193448101 386896202
19 2096730 14325 1140 10485036 30780 3078 774316690 14915750705 2359296 1161212892 77555137327 580606446 1161212892
20 4193840 17545 1330 22019294 37900 3610 2323474358 59892991338 4980736 3484687250 309338182241 1742343625 3484687250

Table 3.3: Sample Values for Inner Count
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4 The New Algorithm DPcsg

4.1 Problem Statement

Consider a join ordering problem with n relations R0, . . . , Rn−1. We assume
the query graph to be connected. Any subset S of {R0, . . . , Rn−1} induces a
subgraph of the query graph. If the subgraph induced by S is connected, we
call S connected.

The goal of this new algorithm is to enumerate

• non-empty subsets S1 of {R0, . . . , Rn−1}, and

• non-empty subsets S2 of {R0, . . . , Rn−1}

such that

1. S1 is connected,

2. S2 is connected,

3. S1 ∩ S2 = ∅,

4. there exist nodes v1 ∈ S1 and v2 ∈ S2 such that there is an edge between
v1 and v2 in the query graph.

Let us call a pair fulfilling all these conditions a csg-cmp-pair.
We want to enumerate only csg-cmp-pairs (S1, S2). Clearly, we want to

enumerate every pair once and only once. Further, the enumeration must be
performed in a way valid for dynamic programming. That is, whenever a pair
(S1, S2) is generated, all non-empty subsets of S1 and S2 must have been gener-
ated before as a component of a pair. The last requirement is that the overhead
for generating a single pair of that kind must be constant or at most linear. This
condition is necessary in order to beat DPsize and DPsub.

If we meet all these requirements, the algorithm DPcsg is easily specified:
iterate over all csg-cmp-pairs (S1, S2) and consider joining the best plans as-
sociated with them. Figure 7 shows the pseudocode. Note that the algorithm
explicitly exploits join commutativity. This is due to our enumeration algo-
rithm developed below. If (S1, S2) is a csg-cmp-pair, then either (S1, S2) or
(S2, S1) will be generated, but never both of them.

The rest of this section is organized as follows. The next subsection discusses
an algorithm enumerating non-empty connected subsets S1 of {R0, . . . , Rn−1}.
Subsection 4.3 then shows how to enumerate the complements S2 such that
(S1, S2) is a csg-cmp-pair.

4.2 Enumerating Connected Subsets

Scanning the literature for algorithms enumerating connected subgraphs, we
found only two algorithms. The first one turned out to be highly inefficient [6].
From the second one, we took the basic idea of using a breadth-first numbering
of the nodes in the query graph [8]. We could not use the whole algorithm
directly for a number of reasons: the algorithm was flawed; it maintained a
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DPcsg

Input: a connected query graph with relations R0, . . . , Rn−1

Output: an optimal bushy join tree

for (i = 0; i < n; ++i) {
BestPlan({Ri}) = Ri;

}
forall csg-cmp-pairs (S1, S2) {
++InnerCounter;

CurrPlan = CreateJoinTree(BestPlan(S1), BestPlan(S2));

if (BestPlan(S) == NULL || cost(BestPlan(S)) > cost(CurrPlan)) {
BestPlan(S) = CurrPlan;

}
CurrPlan = CreateJoinTree(BestPlan(S2), BestPlan(S1));

if (cost(BestPlan(S)) > cost(CurrPlan)) {
BestPlan(S) = CurrPlan;

}
}
return BestPlan({R0, . . . , Rn−1});

Figure 7: Algorithm DPcsg

set of all generated connected subgraphs and had to test every generated one
against those already generated in order to avoid duplicates; it did not generate
the subgraphs in an order expedient for dynamic programming.

Let us start the exposition by fixing some notations. Let G = (V,E) be
an undirected graph. For a node v ∈ V define the neighborhood N (v) of v as
N (v) := {v′|(v, v′) ∈ E}. For a subset S ⊆ V of V we define the neighborhood of
S as N (S) := ∪v∈SN (v) \ S. The neighborhood of a set of nodes thus consists
of all nodes reachable by a single edge. Note that for all S, S′ ⊂ V we have
N (S ∪ S′) = (N (S) ∪N (S′)) \ (S ∪ S′). This allows for an efficient bottom-up
calculation of neighborhoods.

The following statement gives a hint on how to construct an enumeration
procedure for connected subsets. Let S be a connected subset of an undirected
graph G and S′ be any subset of N (S). Then S ∪ S′ is connected.

We could generate all connected subsets as follows. For every node vi ∈ V
we proceed as follows. First, we emit {vi} as a connected subset. Then, we call
a routine that extends a given connected set to bigger connected sets. We call
this routine for every set {vi}. Let the routine be called with some connected
set S. It then calculates the neighborhood N (S). For every non-empty subset
N ⊆ N (S), it emits S′ = S ∪ N as a further connected subset and recursively
calls itself with S′. The only problem with this routine is that it produces
duplicates.

This is the point where the breadth-first numbering comes into play. Let
V = {v0, . . . , vn−1}, where the indices are consistent with a breadth-first num-
bering produced by a breadth-first search starting at node v0 [1]. The idea of
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the following algorithm is as follows. In order to avoid duplicates, it enumerates
connected subgraphs for every node vi but restricts them to contain no vj with
j < i. Using the definition Bi = {vj |j ≤ i}, the pseudocode looks as follows:

EnumerateCsg

Input: a connected query graph G = (V,E)
Precondition: nodes in V are numbered according a breadth-first search

Output: emits all subsets of V inducing a connected sugraph of G
for (i = n − 1; i ≥ 0; --i) {

emit {vi};
EnumerateCsgRec(G, {vi}, Bi);

}

EnumerateCsgRec(G, S, X)

N = N (S) \ X;

for all (S′ ⊆ N; S′ 6= ∅) {
emit (S ∪ S′);

}
for all (S′ ⊆ N; S′ 6= ∅) {
EnumerateCsgRec(G, (S ∪ S′), (X ∪ S′));

}

4.3 Enumerating Complements of Connected Subgraphs

In order to generate all csg-cmp-pairs, we procede as follows. We first generate
all connected subsets S1 in an outer loop using the procedure described in the
previous subsection. Then, for each such S1, we generate all its complements
S2. Again, the challenge is to generate each csg-cmp-pair only once.

To achieve this, we have to restrict the subsets generated for a given con-
nected subset S. We only consider complements S2 of S1 (with (S1, S2) being a
csg-cmp-pair) such that S2 only contains vj with j larger than any i for which
vi ∈ S. This avoids the generation of duplicates.

We need some definitions to state the actual algorithm. Let S ⊆ V be a
non-empty subset of V . Then, we define min(S) := min({i|vi ∈ S}). This is
used to extract the starting node from which S was constructed. Let W ⊂ V
be a non-empty subset of V . Then, we define Bi(W ) := {vj |vj ∈ W, j ≤ i}.
Using this notation, the algorithm looks as follows:

EnumerateCmp

Input: a connected query graph G = (V,E), a connected subset S
Precondition: nodes in V are numbered according a breadth-first search

Output: emits all complements S′ for S such that (S, S′) is a csg-cmp-pair

X = Bmin(S) ∪ S;

N = N (S) \ X;
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for all (vi ∈ N by descending i) {
emit {vi};
EnumerateCsgRec(G, {vi}, X ∪ Bi(N));

}

4.4 Implementation Details

It is straight-forward to implementat the pseudocode given in Figure 7. Figure 8
gives the resulting code for the dynamic programming variant using an iterator
to enumerate connected components and their complements.

The procedure EnumerateCsg could also easily be implemented. However,
for our dynamic programming routine we need an iterator based implementa-
tiont of it. First note that EnumerateCsg calls a recursive subroutine. Evaluat-
ing this requires a stack. Hence, the class representing the iterator for connected
subgraphs has a stack as its member. On this stack, we keep the parameters of
EnumerateCsgRec. Note that EnumerateCsgRec has two loops: one for gener-
ating subsets of a neighborhood and one for calling itself recursively on these
subsets. Generating subsets can be done highly efficiently by a code fragment
introduced by Vance and Maier [10, 11]: This code fragment generates all sub-
sets of a given set S including the empty set and S itself. The enumeration
order suits our purpose except that the before-last element generated is the
empty set, which we do not need to consider, and the last element is the full set
S, which we do have to consider. Thus, we stop enumeration as soon as we see
the empty set and consider the full set S separately. These considerations lead
to the following states (steps) for our iterator implementing EnumerateCsg and
EnumerateCsgRec.

1. iterator not yet initialized

2. iterator initialized, emit results corresponding to subsets S′ with ∅ ⊂ S′ ⊂
S

3. emit result corresponding to S

4. subset iterator needs to be reinitialized

5. consider subsets S′ with ∅ ⊂ S′ ⊂ S

6. consider S

After the last step, we have to emulate the return from EnumerateCsgRec and
hence pop the stack. These different activities necessary in different states
can be implemented using an array of function pointers or using a switch

statement. Figure 9 shows the implementation using the latter. The procedures
implementing the stack operations are given in Figure 10.

The iterator IteratorCsgAndComplement, which steps through csg-cmp-
pairs consists of two different csg-iterators. The first one generates the first
component of a csg-cmp-pair, while the second steps through the second com-
ponents. Its initialization looks as follows:
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void

PlanGeneratorCsg::optimize() {

IteratorCsgAndComplement lIterCsgCmp(qg(), memo());

Bitvector lBvLeft;

Bitvector lBvRight;

Bitvector lBvCurrent;

for(lIterCsgCmp.init(); lIterCsgCmp.isValid(); ++lIterCsgCmp) {

lIterCsgCmp.getCombination(lBvLeft, lBvRight);

lBvCurrent = unionOf(lBvLeft, lBvRight);

PlanClass& lClassLeft = memo().find(lBvLeft);

PlanClass& lClassRight = memo().find(lBvRight);

PlanClass& lClassCurrent = memo().find(lBvCurrent);

++(_stat._countInner);

// combine

//

loopPlan(lClassLeft, lClassRight, lClassCurrent);

loopPlan(lClassRight, lClassLeft, lClassCurrent);

}

}

Figure 8: Dynamic programming variant DPcsg

void

PlanGeneratorCsg::IteratorCsgAndComplement::init() {

for(_bfsCsgCounter = (qgraph().noNodes() - 1);

0 <= _bfsCsgCounter;

--_bfsCsgCounter) {

_bfsXclCsg.set_first_n(_bfsCsgCounter);

for(_iterCsg.init( (1 << _bfsCsgCounter), _bfsXclCsg.bitvector());

_iterCsg.isValid(); ++_iterCsg) {

_iterCsg.collectBfsNeibor((*_iterCsg), _csgConnection);

_csgConnection.set_difference((*_iterCsg).bitvector() | _bfsXclCsg.bitvector());

while(_csgConnection.is_not_empty()) {

const Bitvector lCsgConnectionLowestBit = _csgConnection.lowest_bit();

_csgConnection.set_difference(lCsgConnectionLowestBit);

Bitvector lComplementExclude = ( (*_iterCsg).bitvector()

| _bfsXclCsg.bitvector()

| _csgConnection.bitvector() );

_iterCmp.init(lCsgConnectionLowestBit.bitvector(),

lComplementExclude.bitvector());

if(_iterCmp.isValid()) {

_valid = true;

return;

}

}

}

}

_valid = false;
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bool PlanGeneratorCsg::IteratorCsg::nextSwitch() {

StackEntry& lX = *(top());

switch(lX._round) {

case 1: lX._neiborSubsetIter = lX._bfsNeibor.beginSub();

lX._round = 2;

if(lX._neiborSubsetIter.isValid()) {

_current = ( (*(lX._neiborSubsetIter)) | lX._visited );

break;

}

goto L017;

case 2: ++(lX._neiborSubsetIter);

if(lX._neiborSubsetIter.isValid()) {

_current = ( (*(lX._neiborSubsetIter)) | lX._visited );

break;

}

L017: _current = (lX._bfsNeibor | lX._visited);

lX._round = 4;

break;

case 4: bool lFound = false;

if(_allNodes == (lX.exclude() | lX._bfsNeibor)) {

nextUpSwitch(lX);

break;

}

lX._neiborSubsetIter = lX._bfsNeibor.beginSub();

lX._round = 5;

while((lX._neiborSubsetIter.isValid())

&& (!(lFound = nextDownSwitch(lX, *(lX._neiborSubsetIter))))) {

++(lX._neiborSubsetIter);

}

if(lFound) { break; }

case 5: bool lFound = false;

++(lX._neiborSubsetIter);

while((lX._neiborSubsetIter.isValid())

&& (!(lFound = nextDownSwitch(lX, *(lX._neiborSubsetIter))))) {

++(lX._neiborSubsetIter);

}

if(lFound) { break; }

case 6: lX._round = 7;

if(nextDownSwitch(lX, lX._bfsNeibor)) {

break;

}

case 7: nextUpSwitch(lX);

break;

}

return _valid;

}

Figure 9: Iterator for CSGs
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bool

PlanGeneratorCsg::IteratorCsg::nextDownSwitch(StackEntry& aFormer,

Bitvector& aNeiborSet) {

StackEntry& lX = *(++_stackTop);

lX._visited = (aFormer._visited | aNeiborSet);

collectBfsNeibor(aNeiborSet, lX._bfsNeibor);

lX._bfsNeibor.set_difference(aFormer._toExclude);

lX._toExclude = (aFormer._toExclude | lX._bfsNeibor);

if(lX._bfsNeibor.is_empty()) {

--_stackTop;

return false;

}

lX._round = 1;

_valid = true;

return nextSwitch();

}

bool

PlanGeneratorCsg::IteratorCsg::nextUpSwitch(StackEntry& aStackEntry) {

if(bottom() == top()) { return (_valid = false); }

--_stackTop;

return nextSwitch();

}

Figure 10: Subroutines for iterator for CSGs
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}

In order to implement the next routine on this iterator, the init code must
be unwinded to provide all necessary entry points. Since this is an easy exercise
and the result is quite lengthy, we restrain from giving the code here. It can be
obtained from the author.

5 Evaluation

The next four tables contain the cpu times for chain, cycle, star, and clique
graphs. We first observe that except for cliques, SubAlt is always superior to
Sub. Further, even for cliques SubAlt exhibits only a negligible overhead over
Sub. This essentially means that Sub is no candidate for an efficient implemen-
tation of a join ordering algorithm.

As indicated by the theoretical investigations of Section 3, SzCh and DPcsg

are superior to Sub and SubAlt for chain and cycle queries. For star and clique
queries, Sub, SubAlt, and DPcsg are superior to SzCh.

Also, DPcsg is highly superior to SubAlg for star queries. Only for clique
queries the overhead imposed by the iterator for csg-cmp-pairs shows. But
it is always below 30%. Furthermore, since star queries are of high practical
importance in data warehouses and clique queries do not have any practical
value, DPcsg is the algorithm of choice.

Chain

n Sub SubAlt SzCh Csg

2 1.47977e-06 1.55976e-06 1.54977e-06 1.78973e-06
3 3.04953e-06 3.41948e-06 2.56961e-06 3.39948e-06
4 5.24921e-06 5.8891e-06 4.96925e-06 6.06907e-06
5 8.75866e-06 9.72852e-06 7.76882e-06 9.2586e-06
6 1.69074e-05 1.71074e-05 1.17182e-05 1.39179e-05
7 3.56546e-05 2.98255e-05 1.73974e-05 2.04169e-05
8 8.22775e-05 5.2802e-05 2.53262e-05 2.97355e-05
9 0.000205189 9.62854e-05 3.88441e-05 4.41733e-05

10 0.000545147 0.000178973 5.86511e-05 6.44802e-05
11 0.00151177 0.000335949 9.02463e-05 9.72752e-05
12 0.00442833 0.000644902 0.000144318 0.000151837
13 0.012878 0.00138679 0.000371944 0.000379443
14 0.0382092 0.00270759 0.000666899 0.000675397
15 0.115032 0.00561715 0.0013093 0.0013173
16 0.363045 0.0124281 0.00278708 0.00279858
17 1.24114 0.026146 0.00604208 0.00601359
18 4.6063 0.0535769 0.0121392 0.0119812
19 17.0454 0.107784 0.0240364 0.0240313
20 61.9326 0.218167 0.0482477 0.0479477
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Cycle

n Sub SubAlt SzCh Csg

2 1.47978e-06 1.55976e-06 1.54976e-06 1.78973e-06
3 3.50947e-06 3.87941e-06 2.95955e-06 3.83942e-06
4 6.73897e-06 7.58885e-06 6.63899e-06 7.91879e-06
5 1.27881e-05 1.45578e-05 1.11683e-05 1.37979e-05
6 2.44463e-05 2.73058e-05 1.86272e-05 2.33065e-05
7 5.01724e-05 5.06523e-05 2.95355e-05 3.68544e-05
8 0.000107983 9.2386e-05 4.66129e-05 5.59615e-05
9 0.000250762 0.000168114 6.97594e-05 8.30774e-05

10 0.000629404 0.000313972 0.000104074 0.000118402
11 0.00166225 0.00059291 0.000152297 0.000172644
12 0.0045933 0.00113383 0.000229605 0.000251152
13 0.0135329 0.00237764 0.000484516 0.000508422
14 0.0390991 0.00470878 0.000824575 0.000845371
15 0.116532 0.0102414 0.00153227 0.00154027
16 0.366194 0.0246912 0.00308203 0.00308203
17 1.26314 0.0557415 0.00627705 0.00626105
18 4.6093 0.114633 0.0125911 0.0125991
19 17.0384 0.235614 0.0248662 0.0247012
20 61.7496 0.478277 0.0486126 0.0484176

Star

n Sub SubAlt SzCh Csg

2 1.46978e-06 1.53976e-06 1.52977e-06 1.76973e-06
3 3.14952e-06 3.43948e-06 2.6196e-06 3.24951e-06
4 5.71913e-06 6.20906e-06 5.27919e-06 6.04908e-06
5 1.08684e-05 1.19282e-05 9.80851e-06 1.04984e-05
6 2.47662e-05 2.6336e-05 2.03769e-05 2.05869e-05
7 5.62614e-05 5.8971e-05 4.43333e-05 4.24736e-05
8 0.000138979 0.000139519 0.000103494 9.51955e-05
9 0.000345447 0.00032909 0.000257311 0.000208969

10 0.000871927 0.000797379 0.000689396 0.000447512
11 0.00227665 0.0019847 0.00214817 0.000999848
12 0.00614607 0.00503024 0.00876367 0.00218617
13 0.0168974 0.013378 0.0369244 0.00481527
14 0.0476228 0.0360745 0.157026 0.0103774
15 0.137129 0.100385 0.706993 0.0223616
16 0.417587 0.298955 3.54679 0.0495175
17 1.37879 0.931158 34.8567 0.102884
18 4.89892 3.21418 233.397 0.219917
19 18.1885 11.526 1133.95 0.468629
20 67.9017 42.6665 4791.74 0.998448
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Figure 11: Overhead of CSG compared to SubAlt in case of Cliques

Clique

n Sub SubAlt SzCh Csg

2 1.47978e-06 1.55976e-06 1.52977e-06 1.77973e-06
3 3.53946e-06 3.9394e-06 2.90956e-06 3.80942e-06
4 8.09877e-06 9.10861e-06 7.80882e-06 9.56854e-06
5 2.14767e-05 2.38664e-05 2.09368e-05 2.40863e-05
6 6.06208e-05 6.67899e-05 6.08008e-05 6.73897e-05
7 0.000176473 0.000191041 0.000186802 0.00019555
8 0.000516851 0.000550417 0.000570683 0.000571413
9 0.00155076 0.00162725 0.00179373 0.00169374

10 0.0046063 0.00482727 0.00578412 0.00498024
11 0.0139779 0.0144028 0.0206769 0.0146778
12 0.0421186 0.0431984 0.0768883 0.0436184
13 0.127881 0.12933 0.288706 0.13023
14 0.387991 0.388841 1.11483 0.39544
15 1.17982 1.18649 4.61097 1.24948
16 3.69777 3.70244 30.5883 4.14837
17 11.829 11.8877 214.408 14.1496
18 39.746 40.0739 1059.55 48.7646
19 129.182 135.581 4706.31 164.616
20 436.875 439.507 21294.2 529.699

Figure 11 analyses the overhead more carefully. The overhead clearly differs
with n. It decreases until n = 14. This is due to the case that the initialization
overhead for the iterator for the complement amortizes. After that, this effect is
overrun by an increasing number of cache misses of the algorithm DPcsg. After
n = 19 the cache misses for SubAlt also increase and thus the relative overhead
decreases again.

Since star queries are of high practical relevance, we evaluated the scalability
of all algorithms for star queries beyond n = 20. The results are shown in
Figure 12.
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Figure 12: Scalability of the variants

6 Conclusion

The main contributions of this paper are the following: we analyzed the com-
plexity of DPsize and DPsub both analytically and experimentally. The con-
clusions drawn in both cases are that

1. DPsize is superior to DPsub for chain and cycle queries, and

2. DPsub is superior to DPsize for star and clique queries.

We then designed an algorithm that efficiently enumerates csg-cmp-pairs in
an order valid for dynamic programming. This can be used to derive the join
ordering algorithm DPcsg, which is highly superior to DPsize and DPsub. DPcsg
should thus be the algorithm of choice when implementing a plan generator.

A DP-Variant Independent Results

This section analyses the join ordering problem for chain, cycle, and clique
queries. For each kind of query graph, we calculate the number of connected
subgraphs (#csg, Csg) and the number of rule applications (#rap,Rap). The
number of connected subgraphs and the number of rule applications are in-
dependent of the dynamic programming algorithm used. Further, we anal-
yse the value of InnerCounter of the DP-Variantes after termination. For the
SizeChained variant, this value is dependent on the join graph. For the Subsets
variant the value of InnerCounter after termination is independent of the query
graph.
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A.1 Chain Queries

Consider a chain of length n. Then, the number of connected subgraphs of size
k > 0 is

#csg(n, k) = (n − k + 1)

and, hence, the total number of non-empty connected subgraphs becomes

#csg(n) =
n

∑

k=1

(n − k + 1)

=
n(n + 1)

2
(23)

To calculate the number of rule applications consider the following chain of
size n:

R1 . . . Ri . . . Rj . . . Rn

and assume that the subchain Ri . . . Rj consists of k relations. This subchain
can be joined with

• Ri−1, Ri−2Ri−1, . . . , R1 . . . Ri−1 and with

• Rj+1, Rj+1Rj+2, . . . , Rj+1 . . . Rn.

These are exactly n− k subchains. Hence, the number of rule applications can
be calculated as

#rap =
n−1
∑

k=1

(n − k + 1)(n − k)

=
n−1
∑

k=1

k(k + 1)

= 2

(

n + 1

3

)

=
1

3
((n + 1)3 − (n + 1)2 + 2 ∗ (n + 1)) (24)

A.2 Cycle Queries

The number of connected subgraphs of size k > 0 of a cyle of size n is

#csg(n, k) =

{

1 n = k
n else

(25)

The number of non-empty connected subgraphs of a cylce of size n is easy to
calculate. For every relation Ri, we have n− 1 connected subgraphs. However,
we have to be careful not to count the subgraph of size n, i.e. the whole
graph, multiple times as it occurs only once. Hence, the number of non-empty
connected subgraphs of a cycle of size n is

#csg(n) = n2 − n + 1 (26)
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n − k

k

Rj−1Ri+1

Ri
Rj

Figure 13: A cyclic join query

To calculate the number of rule applications, consider Figure 13. Given
a connected subgraph of size k, there remain n − k relations. Every relation
gives rise to two join partners. However, we have to be careful to not count the
join-partner consisting of all n − k relations twice. Hence, the number of rule
applications is

#rap =

n−1
∑

k=1

n(2(n − k) − 1)

= n3 − 2n2 + n (27)

A.3 Star Queries

The number of connected subgraphs of size k > 0 of a cyle of size n is

#csg(n, k) =

{

n k = 1
(n−1
k−1

)

k > 1

The total number of non-empty connected subgraphs is

#csg(n) =
n

∑

k=1

#csg(n, k)

= n +
n

∑

k=2

(

n − 1

k − 1

)

= n +
n−1
∑

k=1

(

n − 1

k

)

= 2n−1 + n − 1
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The number of rule applications is

#rap = (n − 1)2n−2 (28)

This result is due to Ono and Lohman [5]

A.4 Clique Queries

The number of connected subgraphs of size k > 0 of a clique of size n is

#csg(n, k) =

(

n

k

)

(29)

Number of non-empty connected subgraphs of a clique of size n:

#csg(n) = 2n − 1 (30)

For a clique every subset of vertices is a connected subgraph. Hence, the
total number of rule applications can be calculated as follows:

#rap =

n
∑

k=1

(

n

k

) k−1
∑

i=1

(

k

i

)

= 3n − 2n+1 + 1 (31)

The second equality follow from

n
∑

k=1

(

n

k

) k−1
∑

i=1

(

k

i

)

=

n
∑

k=1

(

n

k

) k
∑

i=0

(

k

i

)

− 2

n
∑

k=1

(

n

k

)

=

n
∑

k=0

(

n

k

) k
∑

i=0

(

k

i

)

− 1 − 2(2n − 1)

=
n

∑

k=0

2k

(

n

k

)

− 2n+1 + 1

= 3n − 2n+1 + 1 (32)

where we used Identity 50 in the last step. This result is due to Ono and
Lohman [5].

B Dynamic Programming Variant Size-Chained

B.1 Dynamic Programming Variant Size Chained: General Re-

marks

We first calculate the number of executions of the innermost loop in general
terms (#csg). Then, we instanciate the resulting sums for the different query
graphs.
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Given #csg, the number of executions of the innermost loop follows directly
from the pseudocode:

ISzCh(n) =

n−1
∑

k=1

#csg(n, k)

min(k,n−k)
∑

i=1

f(n, k, i) (33)

where

f(n, k, i) =

{

(#csg(n, i) − 1)/2 (i = k)
#csg(n, i) (i 6= k)

The following table illustrates the situation for even n:

k\i 0 1 2 . . . n/2 − 2 n/2 − 1 n/2 n/2 + 1 n/2 + 2 . . . n − 2 n − 1 n
0 ∗ − − − − − − − − − − − −
1 − 1∗ −
2 − 1 1∗ −

. . . − 1 1 1∗ −
n/2 − 2 − 1 1 1 1∗ −
n/2 − 1 − 1 1 1 1 1∗ −

n/2 − 2 2 2 2 2 2∗ −
n/2 + 1 − 2 2 2 2 2 ∗ −
n/2 + 2 − 2 2 2 2 ∗ −

. . . − 2 2 2 ∗ −
n − 2 − 2 2 ∗ −
n − 1 − 2 ∗ −

n − − − − − − − − − − − − −

In the matrix, k and i take values for 0 and n which our original sum does
not. Therefore, the according fields are marked by −. The diagonal is labeled
with ∗’s. This is where for f(n, k, i), we have to take the case i = k. As long
as k < n/2, we have min(k, n − k) = k. We have

min(k, n − k) =







k k < n/2
n/2 k = n/2
n − k k > n/2

We will split the sum into two sums: the first sum will cover the part where
k < n/2 (labelled with 1 in the matrix), the second sum the rest (labelled
with 2). Most of the diagonal will be covered by the first sum; only the case
k = n/2 ∧ i = n/2 is covered by the second sum.

The two cases in f ’s definition and the minimum in the upper bound of the
second sum disturb a direct summation. In a first step, we get rid of them. Let
us call the above sum I(n). We first split the sum to cover the diagonal case.

ISzCh(n) =
n−1
∑

k=1

min(k,n−k)
∑

i=1

f1(n, k, i) +

⌊n/2⌋
∑

k=1

min(k,n−k)
∑

i=1

f2(n, k, i)

where

f1(n, k, i) =

{

0 (i = k)
#csg(n, k)#csg(n, i) (i 6= k)
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and

f2(n, k, i) =

{

#csg(n, k)(#csg(n, i) − 1)/2 (i = k)
0 (i 6= k)

In the next step, we split the first sum in order to get rid of the minimum
calculation later on. This results in

ISzCh(n) =

⌊n/2⌋−1
∑

k=1

min(k,n−k)
∑

i=1

f1(n, k, i)+

n−1
∑

k=⌊n/2⌋

min(k,n−k)
∑

i=1

f1(n, k, i)+

⌊n/2⌋
∑

k=1

min(k,n−k)
∑

i=1

f2(n, k, i)

In order to calculate the third sum, we must distinguish whether n is odd or
even. We add a correcting summand in case n is even. Additionally, we remove
the minimum calcuations. This results in

ISzCh(n) =

⌊(n+1)/2⌋−1
∑

k=1

k−1
∑

i=1

f1(n, k, i)+

n−1
∑

k=⌊(n+1)/2⌋

n−k
∑

i=1

f1(n, k, i)+

⌊n/2⌋
∑

k=1

f2(n, k, k)−feven(n)

where

feven(n) =

{

#csg(n, n/2)#csg(n, n/2) (n mod 2 ≡ 0)
0 else

With

S1(n) =

⌊(n+1)/2⌋−1
∑

k=1

k−1
∑

i=1

#csg(n, k)#csg(n, i)

S2(n) =

n−1
∑

k=⌊(n+1)/2⌋

n−k
∑

i=1

#csg(n, k)#csg(n, i)

S3(n) =

⌊n/2⌋
∑

k=1

#csg(n, k)(#csg(n, k) − 1)/2

we now have

ISzCh(n) = S1(n) + S2(n) + S3(n) − feven(n)

For n even, we have:

ISzCh(n) =

n/2−1
∑

k=1

k−1
∑

i=1

#csg(n, k)#csg(n, i) +

n−1
∑

k=n/2

n−k
∑

i=1

#csg(n, k)#csg(n, i)

+

(n/2)
∑

k=1

#csg(n, k)(#csg(n, k) − 1)/2 − #csg(n, n/2)#csg(n, n/2)

and for n odd, we have

ISzCh(n) =

(n+1)/2−1
∑

k=1

k−1
∑

i=1

#csg(n, k)#csg(n, i) +

n−1
∑

k=(n+1)/2

n−k
∑

i=1

#csg(n, k)#csg(n, i)

+

(n−1)/2
∑

k=1

#csg(n, k)(#csg(n, k) − 1)/2
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B.2 Dynamic Programming Variant Size Chained: Chain

We have #csg(n, k) = (n − k + 1) for all k < n.

B.2.1 Case I: n even

For n even, we have:

ISzCh(n) =

n/2−1
∑

k=1

k−1
∑

i=1

#csg(n, k)#csg(n, i) +
n−1
∑

k=n/2

n−k
∑

i=1

#csg(n, k)#csg(n, i)

+

(n/2)
∑

k=1

#csg(n, k)(#csg(n, k) − 1)/2 − #csg(n, n/2)#csg(n, n/2)

=

n/2−1
∑

k=1

k−1
∑

i=1

(n − k + 1)(n − i + 1) +

n−1
∑

k=n/2

n−k
∑

i=1

(n − k + 1)(n − i + 1)

+

(n/2)
∑

k=1

(n − k + 1)((n − k + 1) − 1)/2 − (n − (n/2) + 1)2

=

n/2−1
∑

k=1

(n − k + 1)
k−1
∑

i=1

(n − i + 1) +
n−1
∑

k=n/2

(n − k + 1)
n−k
∑

i=1

(n − i + 1)

+

(n/2)
∑

k=1

(n − k + 1)(n − k)/2 − ((n/2) + 1)2

First, we consider each sum separately.
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Consider the first sum:

S1 =

n/2−1
∑

k=1

(n − k + 1)
k−1
∑

i=1

(n − i + 1)

=

n/2−1
∑

k=1

(n − k + 1)(n(k − 1) − 1

2
k(k − 1) + (k − 1))

=

n/2−1
∑

k=1

(n − (k − 1))(k − 1)(n − 1

2
k + 1)

=

n/2−1
∑

k=1

n(k − 1)(n + 1 − 1

2
k) −

n/2−1
∑

k=1

(k − 1)(k − 1)(n + 1 − 1

2
k)

= n(n + 1)

n/2−1
∑

k=1

(k − 1) − 1

2
n

n/2−1
∑

k=1

(k − 1)k

−(n + 1)

n/2−1
∑

k=1

(k − 1)(k − 1) +
1

2

n/2−1
∑

k=1

(k − 1)(k − 1)k

= n(n + 1)

n/2−2
∑

k=1

k − 1

2
n

n/2−1
∑

k=1

(k − 1)k

−(n + 1)

n/2−2
∑

k=1

k2 +
1

2

n/2−1
∑

k=1

(k − 1)(k − 1)k

= n(n + 1)

(

n/2 − 1

2

)

− 1

2
n2

(

n/2

3

)

−(n + 1)(2

(

n/2

3

)

−
(

n/2 − 1

2

)

) +
1

2
(6

(

n/2

4

)

+ 2

(

n/2

3

)

)

= n(n + 1)

(

n/2 − 1

2

)

− n

(

n/2

3

)

−(n + 1)(2

(

n/2

3

)

−
(

n/2 − 1

2

)

) + (3

(

n/2

4

)

+

(

n/2

3

)

)

= n(n + 1)

(

n/2 − 1

2

)

+ (n + 1)

(

n/2 − 1

2

)

− n

(

n/2

3

)

−(n + 1)2

(

n/2

3

)

+

(

n/2

3

)

+ 3

(

n/2

4

)

= (n + 1)(n + 1)

(

n/2 − 1

2

)

+ 3

(

n/2

4

)

− (3n + 1)

(

n/2

3

)
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Consider the second sum:

S2 =

n−1
∑

k=n/2

(n − k + 1)

n−k
∑

i=1

(n − i + 1)

=

n−1
∑

k=n/2

(n − k + 1)

n−k
∑

i=1

(k + i)

=

n−1
∑

k=n/2

(n − k + 1)(k(n − k) +

(

n − k + 1

2

)

)

=

n/2
∑

k=1

(n − (n − k) + 1)(((n − k)(n − (n − k)) +

(

n − (n − k) + 1

2

)

))

=

n/2
∑

k=1

(k + 1)((n − k)k +

(

k + 1

2

)

)

= n

n/2
∑

k=1

k(k + 1) −
n/2
∑

k=1

k2(k + 1) +

n/2
∑

k=1

(k + 1)

(

k + 1

2

)

)

= 2n

(

n/2 + 2

3

)

−(6

(

n/2 + 2

4

)

+

(

n/2 + 1

2

)

+ 2

(

n/2 + 2

3

)

−
(

n/2 + 1

2

)

)

+3

(

n/2 + 3

4

)

− 1

(

n/2 + 2

3

)

= 2n

(

n/2 + 2

3

)

− 3

(

n/2 + 2

3

)

− 6

(

n/2 + 2

4

)

+ 3

(

n/2 + 3

4

)

= 2n

(

n/2 + 2

3

)

− 3

(

n/2 + 2

3

)

− 3

(

n/2 + 2

4

)

+ 3(

(

n/2 + 3

4

)

−
(

n/2 + 2

4

)

)

= 2n

(

n/2 + 2

3

)

− 3

(

n/2 + 2

3

)

− 3

(

n/2 + 2

4

)

+ 3

(

n/2 + 2

3

)

= 2n

(

n/2 + 2

3

)

− 3

(

n/2 + 2

4

)

Consider the third sum.

S3 =

(n/2)
∑

k=1

(n − k + 1)(n − k)

=

n
∑

k=1

k(k − 1) −
n/2
∑

k=1

k(k − 1)

= 2(

(

n + 1

3

)

−
(

n/2 + 1

3

)

)
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Altogether we now have

ISzCh(n) = (n + 1)(n + 1)

(

n/2 − 1

2

)

+ 3

(

n/2

4

)

− (3n + 1)

(

n/2

3

)

+2n

(

n/2 + 2

3

)

− 3

(

n/2 + 2

4

)

+

(

n + 1

3

)

−
(

n/2 + 1

3

)

−((n/2) + 1)2

Let us simplify this expression by first considering

3

(

n/2 + 2

4

)

− 3

(

n/2

4

)

=
3

4!
[(n/2 + 2)(n/2 + 1)n/2(n/2 − 1) − n/2(n/2 − 1)(n/2 − 2)(n/2 − 3)]

=
3

4!
[n/2(n/2 − 1)((n/2 + 2)(n/2 + 1) − (n/2 − 2)(n/2 − 3))]

=
3

3 ∗ 4
[((n/2)2 + 3n/2 + 2) − ((n/2)2 − 5n/2 + 6)]

(

n/2

2

)

=
1

4
[8n/2 − 4]

(

n/2

2

)

= (n − 1)

(

n/2

2

)

Using this leaves us with

ISzCh(n) =

(

n + 1

3

)

+ (n + 1)(n + 1)

(

n/2 − 1

2

)

− (n − 1)

(

n/2

2

)

− (3n + 1)

(

n/2

3

)

+2n

(

n/2 + 2

3

)

−
(

n/2 + 1

3

)

− ((n/2) + 1)2

Using

2n

(

n/2 + 2

3

)

−
(

n/2 + 1

3

)

= 2n(

(

n/2 + 2

3

)

−
(

n/2 + 1

3

)

) + (2n − 1)

(

n/2 + 1

3

)

= 2n

(

n/2 + 1

2

)

+ (2n − 1)

(

n/2 + 1

3

)

yields

ISzCh(n) =

(

n + 1

3

)

+ (n + 1)(n + 1)

(

n/2 − 1

2

)

+ 2n

(

n/2 + 1

2

)

−(n − 1)

(

n/2

2

)

+ (2n − 1)

(

n/2 + 1

3

)

− (3n + 1)

(

n/2

3

)

− ((n/2) + 1)2

=

(

n + 1

3

)

+ (n + 1)(n + 1)

(

n/2 − 1

2

)

+ 2n

(

n/2 + 1

2

)

+n

(

n/2

2

)

− (n + 2)

(

n/2

3

)

− ((n/2) + 1)2
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by using

(2n − 1)

(

n/2 + 1

3

)

− (3n + 1)

(

n/2

3

)

= (2n − 1)(

(

n/2 + 1

3

)

−
(

n/2

3

)

) − (n + 2)

(

n/2

3

)

= (2n − 1)

(

n/2

2

)

− (n + 2)

(

n/2

3

)

Finally, adding up

(n + 1)(n + 1)

(

n/2 − 1

2

)

= 1/4(n4/2 − 2n3 − 3n2/2 + 5n + 4)

−((n/2) + 1)2 = −1/4(n2 − 4n − 4)

2n

(

n/2 + 1

2

)

+ n

(

n/2

2

)

= 1/4(3 ∗ n3/2 + n2)

yields
1/4(n4/2 − n3/2 − 3n2/2 + n)

which leaves us with

I(n) =

(

n + 1

3

)

− (n + 2)

(

n/2

3

)

+ 1/4(n4/2 − n3/2 − 3n2/2 + n) (34)

We continue with observing that

(

n + 1

3

)

= 1/6(n + 1)n(n − 1)

= 1/6(n3 − n)

(n + 2)

(

n/2

3

)

= 1/6(n + 2)(n/2(n/2 − 1)(n/2 − 2))

= 1/6(n + 2)n/2(n2/4 − 3n/2 + 2)

= 1/6(n + 1)(n3/8 − 3n2/4 + n)

= 1/6(n4/8 − 3n3/4 + n2 + n3/4 − 3n2/2 + 2n)

= 1/6(n4/8 − n3/2 − n2/2 + 2n)

Subtracting these two items and adding the polynomial from I(n) gives

ISzCh(n) = 1/6(n3 − n) − 1/6(n4/8 − n3/2 − n2/2 + 2n)

+1/4(n4/2 − n3/2 − 3n2/2 + n)

= 1/12(−n4/4 + 6n3/2 + 2n2/2 − 6n)

+1/12(3n4/2 − 3n3/2 − 9n2/2 + 3n)

= 1/12(5n4/4 + 3n3/2 − 7n2/2 − 3n)

= 1/48(5n4 + 6n3 − 14n2 − 12n)
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B.2.2 Case II: n odd

For n odd, we have:

ISzCh(n) =

(n+1)/2−1
∑

k=1

k−1
∑

i=1

#csg(n, k)#csg(n, i) +
n−1
∑

k=(n+1)/2

n−k
∑

i=1

#csg(n, k)#csg(n, i)

+

(n−1)/2
∑

k=1

#csg(n, k)(#csg(n, k) − 1)/2

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(n − k + 1)(n − i + 1) +

n−1
∑

k=(n+1)/2

n−k
∑

i=1

(n − k + 1)(n − i + 1)

+

(n−1)/2
∑

k=1

(n − k + 1)((n − k + 1) − 1)/2

=

⌊n/2⌋
∑

k=1

(n − k + 1)

k−1
∑

i=1

(n − i + 1) +

n−1
∑

k=⌈n/2⌉

(n − k + 1)

n−k
∑

i=1

(n − i + 1)

+

⌊n/2⌋
∑

k=1

(n − k + 1)((n − k + 1) − 1)/2

First, we consider each sum separately.
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Consider the first sum:

S1 =

(n+1)/2−1
∑

k=1

(n − k + 1)
k−1
∑

i=1

(n − i + 1)

=

⌊n/2⌋
∑

k=1

(n − k + 1)(n(k − 1) − 1

2
k(k − 1) + (k − 1))

=

⌊n/2⌋
∑

k=1

(n − (k − 1))(k − 1)(n − 1

2
k + 1)

=

⌊n/2⌋
∑

k=1

n(k − 1)(n + 1 − 1

2
k) −

⌊n/2⌋
∑

k=1

(k − 1)(k − 1)(n + 1 − 1

2
k)

= n(n + 1)

⌊n/2⌋
∑

k=1

(k − 1) − 1

2
n

⌊n/2⌋
∑

k=1

(k − 1)k

−(n + 1)

⌊n/2⌋
∑

k=1

(k − 1)(k − 1) +
1

2

⌊n/2⌋
∑

k=1

(k − 1)(k − 1)k

= n(n + 1)

⌊n/2−1⌋
∑

k=1

k − 1

2
n

⌊n/2⌋
∑

k=1

(k − 1)k

−(n + 1)

⌊n/2−1⌋
∑

k=1

k2 +
1

2

⌊n/2⌋
∑

k=1

(k − 1)(k − 1)k

= n(n + 1)

(⌊n/2⌋
2

)

− 1

2
n2

(⌊n/2⌋ + 1

3

)

−(n + 1)(2

(⌊n/2⌋ + 1

3

)

−
(⌊n/2⌋

2

)

) +
1

2
(6

(⌊n/2⌋ + 1

4

)

+ 2

(⌊n/2⌋ + 1

3

)

)

= 3

(⌊n/2⌋ + 1

4

)

+ (n + 1)(n + 1)

(⌊n/2⌋
2

)

− (3n + 1)

(⌊n/2⌋ + 1

3

)
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Consider the second sum:

S2 =

n−1
∑

k=(n+1)/2

(n − k + 1)

n−k
∑

i=1

(n − i + 1)

=

n−1
∑

k=⌈n/2⌉

(n − k + 1)

n−k
∑

i=1

(k + i)

=

n−1
∑

k=⌈n/2⌉

(n − k + 1)(k(n − k) +

(

n − k + 1

2

)

)

=

⌊n/2⌋
∑

k=1

(n − (n − k) + 1)(((n − k)(n − (n − k)) +

(

n − (n − k) + 1

2

)

))

=

⌊n/2⌋
∑

k=1

(k + 1)((n − k)k +

(

k + 1

2

)

)

= n

⌊n/2⌋
∑

k=1

k(k + 1) −
⌊n/2⌋
∑

k=1

k2(k + 1) +

⌊n/2⌋
∑

k=1

(k + 1)

(

k + 1

2

)

)

= 2n

(⌊n/2⌋ + 2

3

)

−(6

(⌊n/2⌋ + 2

4

)

+

(⌊n/2⌋ + 1

2

)

+ 2

(⌊n/2⌋ + 2

3

)

−
(⌊n/2⌋ + 1

2

)

)

+3

(⌊n/2⌋ + 3

4

)

−
(⌊n/2⌋ + 2

3

)

= 2n

(⌊n/2⌋ + 2

3

)

− 3

(⌊n/2⌋ + 2

3

)

− 6

(⌊n/2⌋ + 2

4

)

+ 3

(⌊n/2⌋ + 3

4

)

= 2n

(⌊n/2⌋ + 2

3

)

+ 3(

(⌊n/2⌋ + 3

4

)

−
(⌊n/2⌋ + 2

3

)

) − 6

(⌊n/2⌋ + 2

4

)

= 2n

(⌊n/2⌋ + 2

3

)

− 3

(⌊n/2⌋ + 2

4

)

Consider the third sum.

S3 = 1/2

⌊n/2⌋
∑

k=1

(n − k + 1)(n − k)

= 1/2(

n
∑

k=1

k(k − 1) −
⌊n/2⌋+1

∑

k=1

k(k − 1))

=

(

n + 1

3

)

−
(⌊n/2⌋ + 2

3

)
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Altogether we now have

ISzCh(n) = 3

(⌊n/2⌋ + 1

4

)

+ (n + 1)2
(⌊n/2⌋

2

)

− (3n + 1)

(⌊n/2⌋ + 1

3

)

+2n

(⌊n/2⌋ + 2

3

)

− 3

(⌊n/2⌋ + 2

4

)

+

(

n + 1

3

)

−
(⌊n/2⌋ + 2

3

)

=

(

n + 1

3

)

+ (n + 1)2
(⌊n/2⌋

2

)

− (3n + 4)

(⌊n/2⌋ + 1

3

)

+ (2n − 1)

(⌊n/2⌋ + 2

3

)

=

(

n + 1

3

)

+ (n + 1)2
(⌊n/2⌋

2

)

+ (2n − 1)(

(⌊n/2⌋ + 2

3

)

−
(⌊n/2⌋ + 1

3

)

)

−(n + 5)

(⌊n/2⌋ + 1

3

)

=

(

n + 1

3

)

+ (n + 1)2
(⌊n/2⌋

2

)

+ (2n − 1)

(⌊n/2⌋ + 1

2

)

− (n + 5)

(⌊n/2⌋ + 1

3

)

Considering each summand separately
(

n + 1

3

)

= 1/6(n + 1)n(n − 1)

= 1/6(n3 − n)

= 1/6n3 − 1/6n

(n + 1)2
(⌊n/2⌋

2

)

= 1/2(n + 1)2⌊n/2⌋(⌊n/2⌋ − 1)

= 3/6(n + 1)2⌊n/2⌋2 − 1/6(3n2 + 6n + 3)⌊n/2⌋

(2n − 1)

(⌊n/2⌋ + 1

2

)

= 1/2(2n − 1)⌊n/2⌋(⌊n/2⌋ + 1)

= 1/6(6n − 3)⌊n/2⌋2 + 1/6(6n − 3)⌊n/2⌋

−(n + 5)

(⌊n/2⌋ + 1

3

)

= 1/6(5 − n)⌊n/2⌋3 − 1/6(5 − n)⌊n/2⌋

and summing up again yields

ISzCh(n) = 1/6(n3 − n + (n + 1)2⌊n/2⌋2 − (3n2 + 6n + 3)⌊n/2⌋
+(6n − 3)⌊n/2⌋2 + (6n − 3)⌊n/2⌋ − n(⌊n/2⌋3 − ⌊n/2⌋) − 5(⌊n/2⌋3 − ⌊n/2⌋))

= 1/48(8n3 − 8n + 24(n + 1)2⌊n/2⌋2 − 8(3n2 + 6n + 3)⌊n/2⌋
+8(6n − 3)⌊n/2⌋2 + 8(6n − 3)⌊n/2⌋ − 8n(⌊n/2⌋3 − ⌊n/2⌋) − 40(⌊n/2⌋3 − ⌊n/2⌋))

= 1/48(8n3 − 8n + 6(n + 1)2(n − 1)2 − 12n3 − 24n2 − 12n + 12n2 + 24n + 12

+(12n − 6) ∗ (n2 − 2n + 1) + (24n − 12) ∗ (n − 1)

−8n⌊n/2⌋3 + 4n(n − 1) − 40⌊n/2⌋3 + 20(n − 1))

= 1/48(+8n3 − 8n + 6n4 − 12n2 + 6 − 12n3 − 24n2 − 12n + 122n + 24n + 12

+12n3 − 24n2 + 12n − 6n2 + 12n − 6 + 24n2 − 24n − 12n + 12

−n4 + 3n3 − 3n2 + n + 4n2 − 4n − 5n3 + 15n2 − 15n + 15 + 20n − 20)

= 1/48(5n4 + 6n3 − 14n2 − 6n + 11)
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B.3 Dynamic Programming Variant Size Chained: Cycle

We have #csg(n, k) = n for all k < n.
For n even, we have:

ISzCh(n) =

n/2−1
∑

k=1

k−1
∑

i=1

n2 +
n−1
∑

k=n/2

n−k
∑

i=1

n2 +

(n/2)
∑

k=1

n(n − 1)/2 − n2

= n2(

n/2−1
∑

k=1

k−1
∑

i=1

1) + n2(
n−1
∑

k=n/2

n−k
∑

i=1

1) + n(n − 1)/2

(n/2)
∑

k=1

1 − n2

= n2(

n/2−1
∑

k=1

(k − 1)) + n2(
n−1
∑

k=n/2

(n − k)) + n(n − 1)/2(n/2) − n2

= n2(((n/2) ∗ ((n/2) − 1)/2) − ((n/2) − 1))

+n2(((n/2) ∗ (n/2 + 1))/2) + n2((n − 1)/4) − n2

=
1

8
n2[n ∗ (n − 2) − (4n − 8) + n ∗ (n + 2) + (2n − 2) − 8]

=
1

8
n2[n2 − 2n − 4n + 8 + n2 + 2n + 2n − 2 − 8]

=
1

8
n2[2n2 − 2n − 2]

=
1

4
n2[n2 − n − 1]

=
1

4
(n4 − n3 − n2)
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For n odd, we have:

ISzCh(n) =

(n+1)/2−1
∑

k=1

k−1
∑

i=1

n2 +

n−1
∑

k=(n+1)/2

n−k
∑

i=1

n2 +

(n−1)/2
∑

k=1

n(n − 1)/2

= n2(

(n+1)/2−1
∑

k=1

k−1
∑

i=1

1) + n2(

n−1
∑

k=(n+1)/2

n−k
∑

i=1

1) + n(n − 1)/2(

(n−1)/2
∑

k=1

1)

= n2(

(n+1)/2−1
∑

k=1

(k − 1)) + n2(

n−1
∑

k=(n+1)/2

(n − k)) + (n(n − 1)/2)((n − 1)/2)

= n2(((((n + 1)/2) − 2) ∗ (((n + 1)/2) − 1))/2)

+n2((((n − 1)/2) ∗ (((n − 1)/2) + 1))/2)

+
1

4
n(n − 1)2

=
1

8
n2[((n + 1) − 4) ∗ ((n + 1) − 2) + (n − 1) ∗ ((n − 1) + 2)]

+
1

4
n(n − 1)2

=
1

8
n2[(n − 3) ∗ (n − 1) + (n − 1) ∗ (n + 1)] +

1

4
n(n − 1)2

=
1

8
n2(n − 1)[(n − 3) + (n + 1)] +

1

4
n(n − 1)2

=
1

4
n2(n − 1)[n − 1] +

1

4
n(n − 1)2

=
1

4
n2(n − 1)2 +

1

4
n(n − 1)2

=
1

4
(n − 1)2n(n + 1)

=
1

4
(n4 − n3 − n2 + n)

B.4 Matrix of Binomial Coefficients

For analyzing the behavior of the size-chained variant for stars and cliques,
we have to consider a matrix M whose values are the result of products of
binomial coefficients. The sums S1 and S2 then cover a certain area in the
matrix. A direct summation of the values in this area is not possible. Hence,
we take a direct approach by calculating the sum of all values in the matrix
and subtracting those parts that are not covered by S1 or S2.

Define M(n) to be the (n × n)-matrix with

Mk,i =

(

n

k

)(

n

i

)

in cell (k, i). The matrix is highly symmetrical, as the following holds: Mk,i =
Mi,k = Mn−k,i = Mk,n−i = Mn−k,n−i and so on.
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The sum over all values stored in M(n) is

n
∑

k=0

n
∑

i=0

(

n

k

)(

n

i

)

= 22n (35)

We will be interested in the sum of those values of M which are contained in
some regular fragment of M . The first fragment we are interested in excludes
the values on the diagonals. The second fragment excludes the diagonals, the
borders, and, in case n is even, the middle column and row. Since the cal-
culation of the first part follows from the second fragment, we start with the
second fragment and only state the result for the first afterwards. The appendix
contains some useful information for subsequent calculations.

To proceed any further, we have to distinguish whether n is even or odd.
We start with the case where n is even. For the first subset GM (n), we wish to
exclude

1. the sum or the values on the four borderlines (k = 0 or i = 0)
four times

n
∑

j=0

(

n

j

)

= 2n

2. the sum of the values in the diagonal

n
∑

k=0

(

n

k

)(

n

k

)

=

(

2n

n

)

3. the sum of the values in the secondary diagonal (k + i = n)

n
∑

k=0

(

n

k

)(

n

n − k

)

=

(

2n

n

)

4. the sum of the values in the middle column and row (k = n/2 or i = n/2).
That is, two times

n
∑

k=0

(

n

n/2

)(

n

k

)

= 2n

(

n

n/2

)

Let us denote by GM the sum of the remaining values of M . We can calculate
the value GM as follows

GM = 22n − 4 ∗ 2n − 2

(

2n

n

)

− 2 ∗ 2n

(

n

n/2

)

+ 8 + 4

(

n

n/2

)

+ 3

(

n

n/2

)(

n

n/2

)

We had to be careful not to subtract the cells where the excluded subsets overlap
more than once. The cells are:

1. the corner cells ((k = 0 or k = n) and (i = 0 or i = n))

2. the border middle cells ((k = n/2 or i = n/2) and (k = 0, k = n, i = 0,
or i = n))
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3. the middle cell (k = n/2, i = n/2)

For n odd, the values we have to subtract to yield GM (n) are

1. the sum or the values on the four borderlines (k = 0 or i = 0)
four times

n
∑

j=0

(

n

j

)

= 2n

2. the sum of the values in the diagonal

n
∑

k=0

(

n

k

)(

n

k

)

=

(

2n

n

)

3. the sum of the values in the secondary diagonal (k + i = n)

n
∑

k=0

(

n

k

)(

n

n − k

)

=

(

2n

n

)

For n odd, we can calculate the value GM as follows

GM (n) = 22n − 4 ∗ 2n − 2

(

2n

n

)

+ 8

Some cells in the matrix are subtracted several times. This has to be corrected.
The cells are:

• the corner cells ((k = 0 or k = n) and (i = 0 or i = n))

Summarizing, we have

GM (n) =

{

22n − 4 ∗ 2n − 2
(2n

n

)

+ 8 − 2 ∗ 2n
( n
n/2

)

+ 4
( n
n/2

)

+ 3
( n
n/2

)( n
n/2

)

n even

22n − 4 ∗ 2n − 2
(2n

n

)

+ 8 n odd

(36)
The second subset we are interested in only excludes the values in the diag-

onals. We denote the result by AM and find

AM (n) =

{

22n − 2
(

2n
n

)

+
(

n
n/2

)(

n
n/2

)

n even

22n − 2
(

2n
n

)

n odd
(37)

B.5 Dynamic Programming Variant Size Chained: Clique

B.5.1 Case I: n even

Again, consider the matrix from the beginning. Call M the (n×n)-matrix that
contains the value of

(

n
k

)(

n
i

)

in cell Mk,i. Then, we can calculate the value of
I(n) as follows. Take GM . One fourth of it covers most of the values we have
to sum up for I(n), except for
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Figure 14: Q1 of M (clique)

1. the values on the diagonal from k = 1 to k = n/2. The sum of these
values is equal to DM where

DM =

n/2
∑

k=1

1/2

(

n

k

)

(

(

n

k

)

− 1)

=

n/2
∑

k=0

1/2

(

n

k

)

(

(

n

k

)

− 1)

= 1/2(

n/2
∑

k=0

(

n

k

)(

n

k

)

−
n/2
∑

k=0

(

n

k

)

)

= 1/4(

(

2n

n

)

−
(

n

n/2

)(

n

n/2

)

− 2n −
(

n

n/2

)

)

= 1/4

(

2n

n

)

+ 1/4

(

n

n/2

)(

n

n/2

)

− 2n−2 − 1/4

(

n

n/2

)

2. the middle row k = n/2 for i = 1 to k = n/2−1. The sum of these values
is equal to RM −

( n
n/2

)( n
n/2

)

where

RM =

n/2
∑

i=1

(

n

n/2

)(

n

i

)

=

(

n

n/2

)

(2n−1 + 1/2

(

n

n/2

)

− 1)

= 2n−1

(

n

n/2

)

+ 1/2

(

n

n/2

)(

n

n/2

)

−
(

n

n/2

)

3. the secondary diagonal for k = n − 1 down to k = n/2 + 1 and i = n − k
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The sum of these values is equal to SM −
( n
n/2

)( n
n/2

)

where

SM =
n−1
∑

k=n/2

(

n

k

)(

n

n − k

)

=

n/2−1
∑

k=1

(

n

k

)(

n

k

)

= 1/2

(

2n

n

)

+ 1/2

(

n

n/2

)(

n

n/2

)

− 1

Summarizing, we have

ISzCh(n) = GM/4 + DM + RM + SM − 2

(

n

n/2

)(

n

n/2

)

= 22n−2 − 2n − 1/2

(

2n

n

)

− 2n−1

(

n

n/2

)

+ 2 +

(

n

n/2

)

+ 3/4

(

n

n/2

)(

n

n/2

)

+1/4

(

2n

n

)

− 1/4

(

n

n/2

)(

n

n/2

)

− 2n−2 − 1/4

(

n

n/2

)

+2n−1

(

n

n/2

)

+ 1/2

(

n

n/2

)(

n

n/2

)

−
(

n

n/2

)

+1/2

(

2n

n

)

+ 1/2

(

n

n/2

)(

n

n/2

)

− 1

−2

(

n

n/2

)(

n

n/2

)

= 22n−2 − 5 ∗ 2n−2 + 1/4

(

2n

n

)

− 1/4

(

n

n/2

)

+ 1

B.5.2 Case II: n odd

Consider the matrix from the beginning again. We can calculate the value of
ISzCh(n) for odd n as follows. Let us start with GM . One fourth of it covers
most of the values we have to sum up for ISzCh(n), except for

1. the values on the diagonal from k = 1 to k = ⌊n/2⌋. The sum of these
values is equal to DM where

DM =

⌊n/2⌋
∑

k=1

1/2

(

n

k

)

(

(

n

k

)

− 1)

=

⌊n/2⌋
∑

k=0

1/2

(

n

k

)

(

(

n

k

)

− 1)

= 1/2(

⌊n/2⌋
∑

k=0

(

n

k

)(

n

k

)

−
⌊n/2⌋
∑

k=0

(

n

k

)

)

= 1/4(

(

2n

n

)

− 2n
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2. the secondary diagonal for k = n−1 down to k = ⌊n/2⌋+1 and i = n−k
The sum of these values is equal to SM where

SM =
n−1
∑

k=⌈n/2⌉

(

n

k

)(

n

n − k

)

=

⌊n/2⌋−1
∑

k=1

(

n

k

)(

n

k

)

= 1/2

(

2n

n

)

− 1

For odd n we thus have

ISzCh(n) = GM/4 + DM + RM + SM

= 22n−2 − 2n − 1/2

(

2n

n

)

+ 2

+1/4

(

2n

n

)

− 2n−2

+1/2

(

2n

n

)

− 1

= 22n−2 − 5 ∗ 2n−2 + 1/4

(

2n

n

)

+ 1

B.6 Dynamic Programming Variant Size Chained: Star

#csg(n, k) =

{

n k = 1
(n−1
k−1

)

k > 1
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B.6.1 Case I: n even

Consider the first sum (k > 2):

S1 =

n/2−1
∑

k=1

k−1
∑

i=1

#csg(n, k) ∗ #csg(n, i)

=

n/2−1
∑

k=1

k−1
∑

i=2

(

n − 1

k − 1

)(

n − 1

i − 1

)

+

n/2−1
∑

k=2

n

(

n − 1

k − 1

)

=

n/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+

n/2−1
∑

k=2

n

(

n − 1

k − 1

)

−
n/2−1
∑

k=2

(

n − 1

k − 1

)

=

n/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+

n/2−1
∑

k=1

n

(

n − 1

k − 1

)

−
n/2−1
∑

k=1

(

n − 1

k − 1

)

− n + 1

=

n/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)

n/2−1
∑

k=1

(

n − 1

k − 1

)

− n + 1

=

n/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)(2n−2 −
(

n − 1

(n/2) − 1

)

) − n + 1

Define

C1 =

n/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

(38)

K1 = (n − 1)(2n−2 −
(

n − 1

(n/2) − 1

)

) − n + 1 (39)
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Consider the second sum (k > 2):

S2 =
n−1
∑

k=n/2

n−k
∑

i=1

#csg(n, k)#csg(n, i)

=

n−1
∑

k=n/2

n−k
∑

i=2

#csg(n, k)#csg(n, i) +

n−1
∑

k=n/2

n

(

n − 1

k − 1

)

=

n−1
∑

k=n/2

n−k
∑

i=2

(

n − 1

k − 1

)(

n − 1

i − 1

)

+

n−1
∑

k=n/2

n

(

n − 1

k − 1

)

=
n−1
∑

k=n/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+
n−1
∑

k=n/2

n

(

n − 1

k − 1

)

−
n−1
∑

k=n/2

(

n − 1

k − 1

)

=

n−1
∑

k=n/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1) ∗
n−1
∑

k=n/2

(

n − 1

k − 1

)

=

n−1
∑

k=n/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1) ∗ (2n−2 +

(

n − 1

⌊(n − 1)/2⌋

)

− 1)

Define

C2 =
n−1
∑

k=n/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

(40)

K1 = (n − 1) ∗ (2n−2 +

(

n − 1

⌊(n − 1)/2⌋

)

− 1) (41)

Consider the third sum (k > 2):

S3 =

(n/2)
∑

k=1

#csg(n, k)(#csg(n, k) − 1)/2

=

(n/2)
∑

k=2

(

n − 1

k − 1

)

(

(

n − 1

k − 1

)

− 1)/2 + n(n − 1)/2

=

(n/2)
∑

k=1

(

n − 1

k − 1

)

(

(

n − 1

k − 1

)

− 1)/2 + n(n − 1)/2

= 1/2

(n/2)−1
∑

k=0

(

n − 1

k

)

(

(

n − 1

k

)

− 1) + 1/2n(n − 1)

= 1/2

⌊(n−1)/2⌋
∑

k=0

(

n − 1

k

)

(

(

n − 1

k

)

− 1) + 1/2n(n − 1)

= 1/4(

(

2(n − 1)

n − 1

)

− 2n−1) + 1/2n(n − 1)
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One fourth of matrix M without diagonals exactly covers C1 and C2. Note
that the correcting term for the center is excluded by AM (n − 1) and hence
does not have to be subtracted. Summarizing, we have

ISzCh(n) = AM (n − 1)/4 + K1 + K + 2 + S3

= 1/4(22(n−1) − 2

(

2(n − 1)

n − 1

)

) + K1 + K2 + S3

= 1/4(22(n−1) − 2

(

2(n − 1)

n − 1

)

)

+(n − 1)(2n−2 −
(

n − 1

(n/2) − 1

)

) − n + 1

+(n − 1)(2n−2 +

(

n − 1

(n/2) − 1

)

− 1)

+1/4(

(

2(n − 1)

n − 1

)

− 2n−1) + 1/2n(n − 1)

= 22n−4) − 1/4

(

2(n − 1)

n − 1

)

)

+n2n−1 − 5 ∗ 2n−3 + 1/2(n2 − 5n + 4)
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B.6.2 Case II: n odd

Let us start with the first sum

S1 =

(n+1)/2−1
∑

k=1

k−1
∑

i=1

#csg(n, k)#csg(n, i)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=2

#csg(n, k)#csg(n, i) +

(n+1)/2−1
∑

k=2

#csg(n, k)#csg(n, 1)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=2

(

n − 1

k − 1

)(

n − 1

i − 1

)

+

(n+1)/2−1
∑

k=2

(

n − 1

k − 1

)

n

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ n

(n+1)/2−1
∑

k=2

(

n − 1

k − 1

)

−
(n+1)/2−1

∑

k=2

(

n − 1

k − 1

)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)

(n+1)/2−1
∑

k=2

(

n − 1

k − 1

)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)

(n+1)/2−2
∑

k=1

(

n − 1

k

)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)

(n−1)/2−1
∑

k=1

(

n − 1

k

)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)

(n−1)/2−1
∑

k=1

(

n − 1

k

)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)(

(n−1)/2
∑

k=0

(

n − 1

k

)

−
(

n − 1

(n − 1)/2

)

− 1)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)(2n−2 + 1/2

(

n − 1

(n − 1)/2

)

−
(

n − 1

(n − 1)/2

)

− 1)

=

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)(2n−2 − 1/2

(

n − 1

(n − 1)/2

)

− 1)

Define

C1 =

(n+1)/2−1
∑

k=1

k−1
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

(42)

K1 = (n − 1)(2n−2 − 1/2

(

n − 1

(n − 1)/2

)

− 1) (43)
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For the second sum we have

S2 =

n−1
∑

k=(n+1)/2

n−k
∑

i=1

#csg(n, k)#csg(n, i)

=

n−1
∑

k=(n+1)/2

n−k
∑

i=2

#csg(n, k)#csg(n, i) +

n−1
∑

k=(n+1)/2

#csg(n, k)#csg(n, i)

=
n−1
∑

k=(n+1)/2

n−k
∑

i=2

(

n − 1

k − 1

)(

n − 1

i − 1

)

+
n−1
∑

k=(n+1)/2

(

n − 1

k − 1

)

n

=
n−1
∑

k=(n+1)/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ n
n−1
∑

k=(n+1)/2

(

n − 1

k − 1

)

−
n−1
∑

k=(n+1)/2

(

n − 1

k − 1

)

=

n−1
∑

k=(n+1)/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)

n−1
∑

k=(n+1)/2

(

n − 1

k − 1

)

=

n−1
∑

k=(n+1)/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)

n−2
∑

k=(n−1)/2

(

n − 1

k

)

=
n−1
∑

k=(n+1)/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

+ (n − 1)(2n−2 + 1/2

(

n − 1

(n − 1)/2

)

− 1)

Define

C2 =
n−1
∑

k=(n+1)/2

n−k
∑

i=1

(

n − 1

k − 1

)(

n − 1

i − 1

)

(44)

K2 = (n − 1)(2n−2 + 1/2

(

n − 1

(n − 1)/2

)

− 1) (45)
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The third sum can be calculated as follows:

S3 =

(n−1)/2
∑

k=1

#csg(n, k)(#csg(n, k) − 1)/2

=

(n−1)/2
∑

k=2

#csg(n, k)(#csg(n, k) − 1)/2 + #csg(n, 1)(#csg(n, 1) − 1)/2

= 1/2

(n−1)/2
∑

k=2

(

n − 1

k − 1

)

(

(

n − 1

k − 1

)

− 1) + n(n − 1)/2

= 1/2

(n−1)/2
∑

k=1

(

n − 1

k − 1

)

(

(

n − 1

k − 1

)

− 1) + n(n − 1)/2

= 1/2

(n−1)/2−1
∑

k=0

(

n − 1

k

)

(

(

n − 1

k

)

− 1) + n(n − 1)/2

= 1/2

(n−1)/2
∑

k=1

(

n − 1

k

)

(

(

n − 1

k

)

− 1) − 1/2

(

n − 1

(n − 1)/2

)

(

(

n − 1

(n − 1)/2

)

− 1) + n(n − 1)/2

= 1/4(

(

2(n − 1)

n − 1

)

+

(

n − 1

(n − 1)/2

)(

n − 1

(n − 1)/2

)

− 2n−1 −
(

n − 1

(n − 1)/2

)

)

−1/2

(

n − 1

(n − 1)/2

)

(

(

n − 1

(n − 1)/2

)

− 1) + n(n − 1)/2

AM (n − 1)/4 exactly covers C1 and C2. Hence, we have

ISzCh(n) = AM (n − 1)/4 + K1 + K2 + S3

= 1/4(22(n−1) +

(

n − 1

(n − 1)/2

)(

n − 1

(n − 1)/2

)

− 2

(

2(n − 1)

n − 1

)

)

+(n − 1)(2n−2 − 1/2

(

n − 1

(n − 1)/2

)

− 1)

+(n − 1)(2n−2 + 1/2

(

n − 1

(n − 1)/2

)

− 1)

+1/4(

(

2(n − 1)

n − 1

)

+

(

n − 1

(n − 1)/2

)(

n − 1

(n − 1)/2

)

− 2n−1 −
(

n − 1

(n − 1)/2

)

)

−1/2

(

n − 1

(n − 1)/2

)

(

(

n − 1

(n − 1)/2

)

− 1) + n(n − 1)/2

= 22n−4 − 1/4

(

2(n − 1)

n − 1

)

+ 1/4

(

n − 1

(n − 1)/2

)

+ n2n−1 − 5 ∗ 2n−3 + 1/2(n2 − 5n + 4)
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C DP-Variants Based on Subset Generation

The Inner Counter of the DP-Variant Sub is independent of the query graph
and can be calculated as follows:

ISub =

n
∑

k=1

(

n

k

) k−1
∑

i=1

(

k

i

)

= 3n − 2n+1 + 1 (46)

Subsequently, we investigate the variant SubAlt.

C.1 DP Variant SubAlt: General Remarks

Independent of the query graph, we can derive the following formula for cal-
culating the value of the inner counter after termination of the DP-Variant
SubAlt:

ISubAlt(n) =
n

∑

k=1

#csg(n, k)
k−1
∑

i=1

(

k

i

)

=

n
∑

k=1

#csg(n, k)

k
∑

i=0

(

k

i

)

− 2

n
∑

k=1

#csg(n, k)

=

n
∑

k=1

2k#csg(n, k) − 2

n
∑

k=1

#csg(n, k)

C.2 DP-Variant SubAlt: Chain

Remembering

#csg(n, k) = (n − k + 1)

#csg(n) = n(n + 1)/2

we easily derive

ISubAlt(n) =
n

∑

k=1

2k#csg(n, k) − 2
n

∑

k=1

#csg(n, k)

=
n

∑

k=1

2k(n − k + 1) − 2(n(n + 1)/2)

= n

n
∑

k=1

2k −
n

∑

k=1

k2k +

n
∑

k=1

2k − nn − n)

= n(2n+1 − 2) − ((n − 1)2n+1 + 2) + 2n+1 − 2 − nn − n

= 2n+2 − nn − 3n − 4

where we applied Identity 68.
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C.3 DP-Variant SubAlt: Cycle

Remembering

#csg(n, k) =

{

1 n = k
n else

and #csg(n) = n2 − n + 1 we easily derive

ISubAlt(n) =

n
∑

k=1

2k#csg(n, k) − 2

n
∑

k=1

#csg(n, k)

=

n−1
∑

k=1

2kn + 2n − 2(n2 − n + 1)

= n(2n − 2) + 2n − 2n2 + 2n − 2

= n2n + 2n − 2n2 − 2

C.4 DP-Variant SubAlt: Star

Remembering

#csg(n, k) =

{

n k = 1
(n−1
k−1

)

k > 1

and #csg(n) = 2n−1 + n − 1, we easily derive

ISubAlt(n) =

n
∑

k=1

2k#csg(n, k) − 2

n
∑

k=1

#csg(n, k)

=
n

∑

k=1

2k

(

n − 1

k − 1

)

+ 2n − 2 − 2(2n−1 + n − 1)

= 2

n−1
∑

k=1

2k−1

(

n − 1

k − 1

)

+ 2n − 2 − 2n − 2n + 2

= 23n−1 − 2n

C.5 DP-Variant SubAlt: Clique

For cliques, the additional test always succeeds and hence

ISubAlt(n) =
n

∑

k=1

2k#csg(n, k) − 2
n

∑

k=1

#csg(n, k)

= 3n − 2n+1 + 1
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D Useful Identities

It is well known that (see [2]):

(

n

k

)

=

(

n

n − k

)

(47)

n
∑

k=0

(

m + k

k

)

=

(

m + n + 1

m + 1

)

=

(

m + n + 1

n

)

(48)

Combining these two identities results in

m
∑

k=0

(

k + r

r

)

=
m

∑

k=0

(

k + r

k

)

=

(

m + r + 1

r + 1

)

(49)

The following identity will also be used:

n
∑

k=0

2k

(

n

k

)

= 3n (50)

This identity follows inductively from (case n = 0:
√

)

n+1
∑

k=0

2k

(

n + 1

k

)

=
n

∑

k=1

2k

(

n + 1

k

)

+ 2n+1

(

n + 1

n + 1

)

+ 20

(

n + 1

0

)

=
n

∑

k=1

2k(

(

n

k

)

+

(

n

k − 1

)

) + 2n+1

(

n + 1

n + 1

)

+ 20

(

n + 1

0

)

=
n

∑

k=1

2k

(

n

k

)

+
n

∑

k=1

2k

(

n

k − 1

)

+ 2n+1

(

n + 1

n + 1

)

+ 20

(

n + 1

0

)

=
n

∑

k=1

2k

(

n

k

)

+ 20

(

n + 1

0

)

+ 2 ∗
n−1
∑

k=0

2k

(

n

k

)

+ 2 ∗ 2n

(

n

n

)

=
n

∑

k=0

2k

(

n

k

)

+ 2 ∗
n

∑

k=0

2k

(

n

k

)

= 3n + 2 ∗ 3n

= 3n+1
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From Identity 49 we derive some more useful identities:

m
∑

k=1

k =

(

m + 1

2

)

(51)

m
∑

k=1

k(k + 1) = 2

(

m + 2

3

)

(52)

m
∑

k=1

k(k − 1) = 2

(

m + 1

3

)

(53)

m
∑

k=1

k2 = 2

(

m + 1

3

)

+

(

m + 1

2

)

(54)

m
∑

k=1

k2 = 2

(

m + 2

3

)

−
(

m + 1

2

)

(55)

m
∑

k=1

k(k + 1)(k + 2) = 6

(

m + 3

4

)

(56)

m
∑

k=1

k(k + 1)(k + 1) = 6

(

m + 3

4

)

− 2

(

m + 2

3

)

(57)

m
∑

k=1

k(k − 1)(k − 2) = 6

(

m + 1

4

)

(58)

m
∑

k=1

k(k − 1)(k − 1) = 6

(

m + 1

4

)

+ 2

(

m + 1

3

)

(59)

m
∑

k=1

k3 = 6

(

m + 2

4

)

+

(

m + 1

2

)

(60)

Identity 51:

m
∑

k=1

k =

m
∑

k=1

(

k

1

)

=

(

m + 1

2

)

Identity 52:

m
∑

k=1

k(k + 1) = 2

m
∑

k=1

(

k + 1

2

)

= 2
m−1
∑

k=0

(

k + 2

2

)

= 2

(

m + 2

3

)
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Identity 53:

m
∑

k=1

k(k − 1) =
m−1
∑

k=0

k(k + 1)

= 2

(

m + 1

3

)

Identity 54:

m
∑

k=1

k2 =
m

∑

k=1

k(k − 1 + 1)

=
m

∑

k=1

k(k − 1) +
m

∑

k=1

k

= 2

(

m + 1

3

)

+

(

m + 1

2

)

Identity 55:

m
∑

k=1

k2 =
m

∑

k=1

k(k + 1 − 1)

=
m

∑

k=1

k(k − 1) −
m

∑

k=1

k

= 2

(

m + 2

3

)

−
(

k + 1

2

)

Identity 56:

m
∑

k=1

k(k + 1)(k + 2) = 6
m

∑

k=1

(

k + 2

3

)

= 6

m−1
∑

k=0

(

k + 3

3

)

= 6

(

m + 3

4

)

Identity 57:

m
∑

k=1

k(k + 1)(k + 1) =

m
∑

k=1

k(k + 1)(k + 2) −
m

∑

k=1

k(k + 1)

= 6

(

m + 3

4

)

− 2

(

m + 2

3

)
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Identity 58:

m
∑

k=1

k(k − 1)(k − 2) =
m−3
∑

k=0

k(k + 1)(k + 2)

= 6
m−3
∑

k=0

(

k + 3

3

)

= 6

(

m + 1

4

)

Identity 59:

m
∑

k=1

k(k − 1)(k − 1) =

m
∑

k=1

k(k − 1)(k − 2 + 1)

=

m
∑

k=1

k(k − 1)(k − 2) +

m
∑

k=1

k(k − 1)

= 6

(

m + 1

4

)

+ 2

(

m + 1

3

)

Identity 60:

m
∑

k=1

k3 =

m+1
∑

k=2

(k − 1)(k − 1)(k − 1)

=
m+1
∑

k=2

k(k − 1)(k − 1) −
m+1
∑

k=2

(k − 1)(k − 1)

=
m+1
∑

k=1

k(k − 1)(k − 1) −
m

∑

k=1

k2

= 6

(

m + 2

4

)

+ 2

(

m + 2

3

)

− 2

(

m + 1

3

)

−
(

m + 1

2

)

= 6

(

m + 2

4

)

+

(

m + 2

3

)

− 2

(

m + 1

3

)

+

(

m + 2

3

)

−
(

m + 1

2

)

= 6

(

m + 2

4

)

+

(

m + 2

3

)

− 2

(

m + 1

3

)

+

(

m + 1

3

)

= 6

(

m + 2

4

)

+

(

m + 2

3

)

−
(

m + 1

3

)

= 6

(

m + 2

4

)

+

(

m + 1

2

)

where we used
(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

(61)

(

n

k

)

−
(

n − 1

k − 1

)

=

(

n − 1

k

)

(62)

(

n

k

)

−
(

n − 1

k

)

=

(

n − 1

k − 1

)

(63)
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From Vandermonde’s Convolution we can derive

n
∑

0

(

n

k

)(

n

k

)

=

(

2n

n

)

(64)

[Note that this is equal to 1
n+1C(n) where C(n) are the catalan numbers.]

Further, it is helpful to know that

⌊n/2⌋
∑

k=0

(

n

k

)

=

{

2n−1 + 1/2
( n
n/2

)

n mod 2 ≡ 0

2n−1 n mod 2 ≡ 1
(65)

and
⌊n/2⌋
∑

k=0

(

n

k

)(

n

k

)

=

{

1/2
(2n

n

)

+ 1/2
( n
n/2

)( n
n/2

)

n mod 2 ≡ 0

1/2
(2n

n

)

n mod 2 ≡ 1
(66)

For a double sum of the product of binomial coefficients, we have

⌊n/2⌋
∑

k=0

⌊n/2⌋
∑

j=0

(

n

k

)(

n

j

)

=

{

(2n−1 + 1/2
( n
n/2

)

)2 n mod 2 ≡ 0

(2n−1)2 n mod 2 ≡ 1
(67)

A last identity used is

n
∑

k=1

k2k = (n − 1)2n+1 + 2 (68)

This identity follows directly by induction (n = 1:
√

) from:

n+1
∑

k=1

k2k =

n
∑

k=1

k2k + (n + 1)2n+1

= (n − 1)2n+1 + 2 + (n + 1)2n+1

= n2n+2 + 2
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