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Abstract—In networks there are basically two methods to
tackle the problem of erroneous packets: Automatic Repeat
Requests (ARQ) and Forward Error Correction (FEC).
While ARQ means packet retransmissions, FEC uses ad-
ditional bits to detect and correct distorted data.

However, extensive field test of our sensor nodes have
shown that FEC can take effect only as long as both sender
and receiver are bit-wise synchronized. Otherwise, all fol-
lowing bits are misinterpreted which results in an uncor-
rectable number of errors. We will thus introduce a new
resync scheme which is particularly tailored for many sen-
sor network platforms using UARTs in conjunction with ra-
dio transmission. We can show that only using an appropri-
ate resync mechanism exploits the full potential of FEC.

I. INTRODUCTION

In traditional 802.x based WLANs, the strength of a ra-
dio signal will usually be sufficient to reliably cover a rel-
evant area. If not, a larger number of base stations will be
used. Thus, many evaluations come to the conclusion that
incorrect packets are distorted by burst errors in wireless
LANs caused by disturbing signal sources. Here, error
recovery by retransmission is more efficient than adding
redundant information to every packet in advance.

However, Riemann and Winstein have shown that out-
door settings and radio communication in a line of sight
over large distances or with weak radio signals exhibit dif-
ferent error characteristics [1]. Single bit errors occur with
a much lower variance which means that they are more
evenly distributed.

For example, consider a large packet with a size of 256
bytes. If we assume that there is a 50% chance for a single
bit error within 500 bits, the likelihood of receiving an
error free packet of 256 bytes is as low as 6%. Despite
the small number of single bit errors we would require to
retransmit more than 16 packets on average in order to
get one through. On the other hand, the small number of
bit errors could be compensated easily by Forward Error
Correction (FEC).

However, as we will see in the next section, in most

cases erroneous packets are completely destroyed because
the sender and receiver got out of sync during the ra-
dio transmission. Thus, rather ARQ than FEC is ad-
visable [2]. But if both sender and receiver are re-
synchronized periodically, FEC will be more efficient. We
will describe such a resync mechanism in the next section.
Section III then reviews some FEC codes that are evalu-
ated in Section IV. Finally, Section V concludes the paper.

II. RESYNC

We have shown in [3] that a significant amount of er-
rors are introduced by the ESB hardware itself. These er-
rors are due to some common hardware components being
used, particularly the so-called Universal Asynchronous
Receiver-Transmitter (UART) that interconnects the radio
transceiver and the CPU. UARTs are used to enable the
asynchronous communication by generating start-, data-
and stop-bits. Start-bits indicate the beginning of a new
byte, and the UART waits in an idle state until a start-bit is
detected. Thus, the missing of a start-bit might cause the
receiver’s UART state machine to get out of sync. More
precisely, all following bits are shifted to the left with re-
gard to the true bit-stream being sent. Getting the stream
re-synchronized is the task of our resync mechanism.

In order to re-synchronize the sender and the receiver
state machines, the sender sends eight high values (called
the resync byte) followed by a stop-bit. Since start-bits are
indicated by low values, the receiver will remain in a state
“waiting for a new start-bit”, no matter how many bits the
receiver fell behind before. Then with the next byte, both
state machines are bit-synchronized again.

In order to achieve a resync at the byte level, the fol-
lowing approach is used: Let n be the number of bytes
after a resync byte is stuffed into the stream and m be the
number of yet received data bytes by the receiver. The
stuffing of resync bytes starts with the first data byte, thus
the receiver expects one each n bytes, i.e., if

m mod n = 0. (1)
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Fig. 1. Cumulative Distribution of Byte Errors per Packet [3]

When a resync byte is detected, the receiver verifies if
the byte stream is still synchronous. Otherwise, Equa-
tion 1 is false and so is the receivers byte position. Since it
is likely that the receiver is some bytes behind, it increases
its byte position until Equation 1 is satisfied again.

If no resync byte could be recognized but m becomes a
multiple of n, the receiver might have missed the resync
byte. However, it is likely that the resync byte was con-
sidered as a data byte and therefore missed. Hence, the
current byte is skipped by the receiver.

The frequency with which resync bytes should be
stuffed into the data stream was also analyzed in [3]. Fig-
ure 1 shows the cumulative frequency vs. the number of
byte errors per packet1. For n → ∞, resync bytes are
used sparsely so that they might be effectless. On the other
hand, for n → 1, resync bytes are used too often so that
the byte stream will be DC unbalanced.

As it is shown in Figure 1, the best trade-off is achieved
for n = 8 with the highest number of correctly received
packets. If no FEC would be used, the number of packets
containing no error is improved by about 35%. If up to 16
or 32 errors per packet are allowed, the number of packets
is even more than twice as high.

The significant increase in the delivery rate with up
to e errors motivates us to further analyze different FEC
schemes that are able to correct such errors. If no resync
is used at all, i.e., for n = 0, FEC would improve the
delivery rate only marginally since most of the erroneous
packets are completely destroyed. This was also recently
reported in [2]. However, the resync mechanism now en-
ables the usage of FEC.

III. FORWARD ERROR CORRECTION

In this section, we will review three FEC codes that
might be able to correct certain kinds of errors. A com-
prehensive overview of FEC schemes, also in comparison

1The evaluation settings were very similar to the setup used in Sec-
tion IV.

with Automatic Repeat Request (ARQ) techniques, can be
found in [4].

A. Linear Block Codes

Let B = {0, 1} and n ∈ N . Then a code C ⊆ Bn is
called a linear block code if the sum of two codewords u
and v is a codeword, too. Let k ∈ N be the dimension of
C with {b1, . . . , bk} being a basis of C. The k× n matrix

G = [b1 . . . bk]
T

is called the generator matrix of the code C since C will
be constructed by G with

C = {xG | x ∈ Bk}.
Thus, C is also called a (n, k) code where k refers to

the number of data bits and n refers to the number of bits
the encoded codeword will have.

With Ik be the k × k identity matrix, G can be trans-
formed to [IkP ], where P is a k × r binary matrix and
r refers to the number of parity bits that are added to the
code C. Using the generator matrix G, the parity matrix
H is constructed and is of the form [P T Ir]. Then, for all
codewords x ∈ Bn we get

x ∈ C ⇔ xHT = 0 (2)

where xHT is called the syndrome s of x. If s 6= 0, an
error occurred during the encoding process.

B. Hamming Codes

Hamming codes are linear (n, k) codes that are able
to correct 1-bit errors [5]. The parity matrix H can be
constructed in a simple way by setting the j-th column
vector to the binary form of number j. Note that then H
and G are not in the form [P T Ir] resp. [IkP ], but can
easily be transformed to it by exchanging some column
vectors. If a one-bit error occurs, the syndrome s will give
the position of the erroneous bit. Let c ∈ Bn be a valid
codeword that is received as x = c + e with a 1-bit error
vector e ∈ Bn. Then we get

s = xHT = (c + e)HT = eHT .

Since eHT corresponds to the e-th column in H , s gives
the position of the error.

As the Hamming code is able to correct 1-bit and de-
tect up to 2-bit errors, it is referred to as a single-error-
correcting and double-error-detecting (SEC-DEC) code.
Other SEC-DEC codes are for example the odd-weight-
column codes [6] where each column of H has an odd
weight, i.e., the number of ones is odd. If the number of
ones is furthermore balanced in each row, the code can be
implemented very efficient [7].
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C. Double Error Detection Codes

A double-error-correcting and triple-error-detecting
(DEC-TED) (16, 8) code was proposed by Gulliver and
Bhargava. Please refer to [8] for the definitions of H and
G. If a 1-bit or 2-bit error occurs, the syndrome s will
either be equal to a single column of H or to an additive
(exclusive-or) combination of two columns. The index of
the involved columns then represents the position of the
bit error(s).

D. Interleaving

In order to combat the effects of burst errors, inter-
leaving can be used: Two or up to k codewords are in-
terleaved before they are transmitted. The number of in-
terleaved codewords refers to the depth of an interleaver.
The interleaver first stores the k codewords of size m in
a k × m buffer row-by-row. We thus call such an inter-
leaver a (k, m)-interleaver. It then outputs the interleaved
codewords column-by-column. Thus, in the output stream
there are always k − 1 other bits between two successive
codeword bits. At the other end, a deinterleaver works in
the reverse way.

If the interleaving depth is sufficiently large, the cor-
relation between two successive codeword bits will be
minimized. The deinterleaver might thus have enough
capability to decode the codeword successfully. As it is
shown in [9], interleaving is effective if tk exceeds the
average burst length, where t denotes the number of er-
rors the code is able to correct. For example, consider a
stream of 16 bytes where the first two bytes are completely
disturbed. A (8, 8)-interleaver would produce an output
stream with 16 bytes where 8 bytes contain a two-bit er-
ror. On the other hand, a (16, 8)-interleaver produces an
output stream with 16 bytes where all bytes contain only
a one-bit error.

E. Reed Solomon Codes

Reed Solomon (RS) codes [10] are widely used, includ-
ing digital television, wireless and satellite communica-
tion, broadband modems, CD’s and DVD’s, etc. Like the
abovementioned FEC codes, they work by adding some
redundancy to the original data that is later used to correct
a certain amount of errors. However, RS codes do not cor-
rect several single bit errors but complete symbols, which
contain a fixed number of bits. As before, the number of
errors being correctable mainly depends on the amount of
information added. For further information on the encod-
ing and decoding algorithm, please refer to [11] or [12].

RS codes belong to the class of systematic linear block
codes. Systematic means that the encoded data consists

of the original data and some redundant symbols added to
the end (called the code block). Each block is divided into
several m-bit symbols with a symbol size of typically 3 to
8 bits. Finally, the linearity property of the code ensures
that every possible m-bit word is valid for encoding.

Then, RS(n, k) specifies a RS code with n encoded
m-bit symbols per code block. The number of original
symbols is specified by k, thus n− k refers to the amount
of redundancy used. With 2t = n− k, a RS decoder will
be able to correct up to t symbol errors. That means that
either only t bits (single bit errors) or up to tm bits (all
symbol bits erroneous) may be corrupted, depending on
how many symbols are affected. Therefore, RS codes are
able to correct burst errors of up to t unknown symbols.

If the position of a symbol error is known, such an error
is called an erasure. Erasures are easier to correct, thus
a codeword containing r unknown symbol errors and s
erasures will still be recovered correctly if 2r + s ≤ 2t.

IV. EVALUATION

We will evaluate three FEC codes that were discussed
in the last section: The Hamming (12, 8) code, the DEC-
TED (16, 8) code, and the RS(255, 223) Reed-Solomon
code. The evaluation setup will be discussed in the next
section. Due to the RS code, the packet data size was
set to 223 bytes for all FEC codes. Thus, the redundancy
in bytes added to a packet is 112 bytes for the Hamming
code, 223 bytes for the DEC-TED code, and 32 bytes for
the RS code. However, note that the Hamming and the
DEC-TED code are able to correct one-bit resp. two-bit
errors per byte while the RS code is based on 8-bit sym-
bols and will thus correct up to 16 unknown symbol errors.

A. Setup

We placed 16 ESB nodes (including one source node)
in line on our office floor, each at a distance of 1 m as
depicted in Figure 2. The source node was powered by a
power supply unit while all other nodes used rechargeable
batteries. Thus, we hope to get similar signal strengths for
outgoing packets during each evaluation run.

In order to get different reception characteristics, the
transmission power is varied from 100 down to 0 in step
sizes of four. For each transmission power, the source
node broadcasts 100 data packets containing 255 bytes2.
The data rate was set to 1 packet/sec. Nodes receiving a
data packet do not send an acknowledgment but quietly
log the packet in a receiving buffer. Once the source node
broadcast its data packet, it polls each node to get infor-
mation concerning the packet reception. The polling is

2Note that no packet forwarding or routing are employed.
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Fig. 2. Placement of 16 ESB Nodes on our Office Floor

performed with the maximum transmission power and re-
peated until all information are received correctly. Nodes
that are polled by the source node answer with the data
currently contained in the receiving buffer. Due to the lim-
ited node’s memory space, the source node transmits the
polled information to a notebook over a serial connection.
The notebook then logs all received data in a database for
later processing.

This setup is repeated for different resync frequencies n
since the number of resyncs per packets influences the re-
ception characteristics remarkably. Based on the log files
we then evaluated the three FEC codes. As we will see in
the next section, the performance will be improved if the
data is interleaved as described in Section III-D. Thus, we
will also investigate the impact of different interleaving
depths k.

B. Measurements

We first analyze the number of bit errors that occur per
erroneous byte. Figure 3 depicts the number of errors for
different resync frequencies n and increasing interleaving
depths k. As it is shown, the influence of resync is actually
very small if no interleaving is performed since occurring
errors are not spread over the packet. For this case, the
number of bit errors per erroneous byte is four which is
equal to the mathematical expectation. If the interleav-
ing depth increases, the number of bit errors can be min-
imized, in the best case down to 1.2 bit errors on average
for a resync frequency of n = 8. This is in accordance
with [3] where we have shown that a resync frequency
of 8 trades off the number of resyncs and byte errors per
packet best (see Figure 1).

As shown in Figure 4, a packet contains about 210 byte
errors on average without resync. For n = 8 the errors per
packet are reduced to about 35. However, for resync fre-
quencies above 8 it becomes worse again since the resync
is performed too rarely.

Another effect that is shown in Figure 4 is that the num-
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ber of byte errors increases with an increasing interleav-
ing depth. Since interleaving is not able to reduce the total
number of bit errors per packet but only spreads burst er-
rors, the number of bytes containing at least one bit error
increases if the number of interleave bytes increases, too.

At this point we can already conclude that interleaving
might be beneficial for the SEC-DED(12, 8) and DEC-
TED(16, 8) codes since the number of bit errors per byte
are reduced with an increasing interleaving depth, but it
will certainly affect the RS(255, 223) code adversely be-
cause interleaving increases the total number of erroneous
bytes being affected.

How the number of bit errors per byte are distributed
is depicted in Figure 5 for a resync frequency of n = 8.
Without interleaving, about 90% of erroneous bytes con-
tain at least one bit error, 80% at least two bit errors. Thus,
these bytes would be uncorrectable for a SEC-DED code.
For k → ∞, the percentage of bytes containing at least
two bit errors can be reduced to about 27%. However, note
that the SEC-DEC code only allows at most one bit error
among 12 bits resp. two bit errors among 16 bits for the
DEC-TED code. Concerning the actual codeword length,
the percentage of at least e bit errors would therefore be
lower than the ones depicted in Figure 5. In addition, note
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that any codeword within a packet must be correctable in
order to decode the complete packet correctly.

Finally, Figure 6 depicts the error rate, which is defined
as the fraction of received packets containing no errors,
for all FEC codes using a resync frequency of n = 8. It
also shows the error rate if no coding is used at all. The
RS(255, 223) code performs best, with about 8% of pack-
ets containing no errors, followed by the DEC-TED code
with 11% and the SEC-DED code with 27%. The SEC-
DED code only improves the error rate slightly compared
to the case if no coding is used, even if the interleaving
depth increases. Thus, it is likely that most packets con-
tain at least one codeword that has more than one bit error,
preventing the entire packet from being corrected.

Since interleaving is not able to reduce the number of
bit errors on its own, it has no effect on the error rate if
no coding is used. However, burst errors are spread very
effectively, and in doing so interleaving reduces the max-
imum number of bit errors per byte on average but at the
same time increases the number of affected bytes contain-
ing bit errors. Therefore, interleaving has a negative ef-
fect on the RS code. On the other hand, the DEC-TED
code benefits from an increasing interleaving depth sig-
nificantly and almost achieves the same error rate as the
RS code. However, concerning the redundant bytes added
to the data, the RS code requires only 32 additional bytes,
the SEC-DEC code 112 bytes, and the DEC-TED code
even 223 bytes.

V. CONCLUSION

We have shown significant improvements of the packet
error rate by FEC, in case both the sender and receiver
perform a byte-wise resync periodically. While the RS
code is very efficient in terms of redundant bytes that are
added to a packet, it is quite complex and requires much
memory and processing time. The DEC-TED (16, 8) code
is easier to implement but requires twice as many bytes.
However, both FEC codes achieve nearly the same error
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rates, if the DEC-TED code is combined with interleav-
ing. The choice of an appropriate FEC code thus depends
on the application the Sensor Network is used for.
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