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ABSTRACT

Document insertion into a native XML Data Store (XDS) reqair
to partition the document tree into a number of storage wniits
limited capacity, such as records on disk pages. As intratipar
navigation is much faster than navigation between panttionin-
imizing the number of partitions has a beneficial effect orrgu
performance.

We present a linear time algorithm to optimally partition@n
dered, labeled, weighted tree such that each partition doiesx-
ceed a fixed weight limit. Whereas traditionally tree patiing
algorithms only allow child nodes to share a partition witleit
parent node (i.e. a partition corresponds to a subtreeglgarithm
also considers partitions containing several subtreesnasds their
roots are adjacent siblings. We call tkibling partitioning

Based on our study of the optimal algorithm, we further intro
duce two novel, near-optimal heuristics. They are easianpde-
ment, do not need to hold the whole document instance in memor
and require much less runtime than the optimal algorithm.

Finally, we provide an experimental study comparing ourahov
and existing algorithms. One important finding is that coregao
partitioning that exclusively considers parent-childtp@amns, in-
cluding sibling partitioning as well can decrease the tatahber
of partitions by more than 90%, and improve query performanc
by more than a factor of two.

1. INTRODUCTION

We consider the problem of tree partitioning from the pectipe
of native XML data stores (XDSs). In particular, we are conee
with the quality of the storage representation of XML docuatsen
systems that natively store the ordered, labeled tree geptation
of the XML documents, and use navigational primitives toessc
this representation during query processing. Any storamggne
designed to store trees that require more space than a sinigle
of secondary storage must have a tree partitioning algoriffree
partitioning decomposes the logical document tree intditjzars
smaller than a weight limit, which corresponds to the stenagjt's
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Figure 1: Partitioning with parent-child edges

capacity, e.g. the disk page size. The tree partitioningrélgms
may be ad-hoc in some systems which arbitrarily place nodhes-w
ever there is sufficient space. In general, however, it iscal gdea
to carefully design partitioning algorithms for XDSs besay(1)
the number and structure of partitions is an important dateant
of query performance, since crossing storage units durireryq
processing is expensive, and (2) performance of the parititj
algorithm itself affects overall system performance bseadocu-
ment insertion is a frequent operation.

An important feature of the XML data model is order, and this
must be taken into account when designing partitioningréttyos.
The storage engine of an XDS not only has to store parend-chil
edges of a tree, but must also capture the sibling order.agtor
engines for native XDSs such as IBM’s System RX/DB2 Viper [2]
and the Natix system [6] provide such ordered tree storagey T
go even further and provide optimized storage for conseesib-
lings that share a storage unit, even if their parent is &mtamn
a separate storage unit. Without such an optimization,sacte
nodes with a large number of children would suffer from bad pe
formance. Consider the tree shown in Fig. 1. Assume that the
root nodep that does not fit on a storage unit together with any
of its children’s subtrees. If the storage format does nloinato
put consecutive siblings into a storage unit that does notado
their parent, the resulting partitioning looks as indidatey the
dashed lines in Fig. 1. In this case, each child is storedrsepe
ately, and every partition corresponds teiagle subtree. Query
evaluation with an XML query language such as XPath [1] and
XQuery [3] is expensive here. In case of an in-order traverfsall



Figure 2: Partitioning with parent-child and sibling edges

children or descendants pf such as the evaluation of tiedi | d
or descendant axis starting for context node would access a
different storage unit for every child of, i.e. 5 storage units in
total. If siblings can share a storage unit even if their paigin a
different storage unit, then we have a situation as showngnZ-
Here,severalsubtrees may share a partition, as long as their roots
are siblings. We call this partitioning stygbling partitioning It
results in fewer expensive crossings of storage unit ber@ierour
example, there are three), which in turn improves the queriop
mance. To keep the number of such crossings as low as pgossible
tree partitioning algorithm for XDS should create siblirayition-
ings and minimize the total number of partitions.

Our primary motivation for studying the tree sibling paait-
ing problem is our experience with the storage engine of ative
XML data store Natix [6]. Natix uses a storage format where th
storage units are physical records, each of which contafmsga

ment of the document tree whose nodes are connected by parent

child or sibling edges. Natix has two algorithms to detenirich
nodes share a physical record [9, 10]. The node-at-a-tiguithm
[9] maintains the clustered XML storage format on increraéap-
dates. Insertions of whole documents are handled by thédaalk
component, whose design and implementation is describd®jn
Its standard partitioning algorithm for document imporaisimple
heuristics.

In practive, for several cases we observed peculiar pariitg
decisions by this simple algorithm that lead to inaccegtajplery
performance. Ad-hoc attempts to refine the heuristics wetreary
robust, i.e. always vulnerable to new pathological casesésof
them are presented throughout this paper). To be able teejudg
the quality of the various algorithms and to get an insight o
construct a more robust one, we wanted to know the theoretica
optimum, i.e. a partitioning with a minimal number of padits.
However, determining the minimal number of partitions fdyp-
ical document is not an easy task: The number of potentikhgib
partitionings is exponential with respect to the numberarfes, so
a brute force algorithm for determining the optimum is netsiiele.

Over the last decades, a number of algorithms for tree jmartit
ing has been developed, including [4, 5, 11, 12, 14, 16]. &¢ve
of them were specifically designed for the then-currentagferen-
gines. Tree partitioning algorithms have been studiederctntext
of hierarchical DBMS [12, 14], object-oriented DBMSs [16]ca
recently, XDSs [4, 5]. Unfortunately, none of the algorighoon-
siders sibling order or allows sibling subtrees to sharerttioen if
their parent is in a different partition.

The three main contributions of this paper are:
1. We present a linear time algorithm for optimal tree siplin
partitioning.

. We present two novel, near-optimal heuristics that havelm
better runtime than the optimal algorithm.

. We provide experimental results, comparing our algorith
and several existing heuristics with respect to the number o
generated partitions and the query performance on the pro-
duced patrtitioning.

The paper is structured as follows. Sec. 2 formalizes thb-pro
lem. Sec. 3 develops a sequence of algorithms for treeipaitigy
problems which culminate in a complete optimal algorithmtfee
sibling partitioning. We discuss the problem substructorgetail,
supported by formal proofs where necessary. The first okthés
gorithms is limited to flat trees and uses dynamic progrargrton
partition the sequence of children. We proceed with an &lgaor
that applies the flat tree algorithm in a bottom-up mannereiepd
trees, using optimal solutions for subtrees to obtain aajleblu-
tion. Unfortunately, this does not always yield an optin@lgon.

In some situations, a locally suboptimal tree partitiorisygequired
for the global optimum. We present a method to generate the re
quired local solutions. In a final step, we show how the propzal
solutions can be chosen to achieve the global optimum. Agho
the algorithms get progressively more complex, all of thewmeha
runtime proportional to the number of document nodes in thisstv
case. Sec. 4 explains why the optimal algorithm is not alvways
wise choice for document import into real XDSs, and presants
number of both existing and novel heuristics that are bstiéed
for real systems. Sec. 5 assesses other existing algorftrmree
partitioning and XML document clustering. Sec. 6 evaluates
three novel and four existing sibling partitioning algbnts. Sec. 7
concludes the paper.

2. PROBLEM STATEMENT

2.1 Terms and Definitions

LetT = (V,t,p,<,w) be a rooted, ordered, and weighted tree
with nodesV, a roott, a parent functiorp, a transitive sibling
ordering<, and a weight functiomv. p maps each nonroot node to
its parent and the root tdIL, andw maps each node to a positive
integer weight. In the following, the term tree always desoa
rooted, ordered and weighted tree.

Fig. 3 shows an example trée= ({a,b,c,d,e,f,g,h},a, p, <, w),
which we will use to illustrate our definitions below. In thgure,
the nodes are represented as ovals with identifiers, thetpiarec-
tion p is represented using solid child-parent arrows, the gblin
ordering is represented by tkesymbols (with the transitive rela-
tionships such ab<g omitted), and the node weights are the
numbers in the ovals.

Given atreel’ = (V,t, p, <, w), we denote the subtree induced
by a nodev € V with T,. Thesubtree weight¥r (v) is the sum of
the weights of all nodes iff,. In our example, the treE. consists
of the nodeg, d, ande. c's subtree weightV(c) is 5.

A sibling interval (I, ) of T is a set of consecutive siblings
determined by a first siblingand a last sibling with [<r, such that
(I,m)r = {z|zr = rva =1Viazar}. Atree sibling partitioning
P of T is a set of disjoint sibling intervals. The subtree weight of
a sibling interval isWr (1, r) := X,cq,r, Wr(x). The weight of
a setS of sibling intervalsWr(S) is the sum of the weights of the



Figure 3: Example tree

contained intervals. In our example, the interialf)r consists of
the noded, c, andf, and has a subtree weight of 8.

Given atredl’ and a tree sibling partitioning as above, thpar-
tition forest *Y’ of T with respect taP is the set of trees that results

minimality is all we need for the overall solution, the sutiglems
we solve must also be lean to guarantee minimality on higher |
els.

3. OPTIMAL TREE SIBLING
PARTITIONING

The number of feasible tree sibling partitionings for a givee
with n nodes is very large, even if a fixed weight linfif is pro-
vided. For every parent node, we have to decide which suliset o
children to place in the same partition as the parent. Fordhe
maining children, we must decide how to combine the siblings
partitions. Itis not at all obvious how to find a minimal p&dning
in time proportional to, given a fixed partition weight limif. In
fact, we shall see that even simplified versions of the protdee
not obviously solvable in linear time.

We pursue an incremental strategy. We approach tree sibling
partitioning formally, proving a sequence of propertiesttbnable

fromT" when cutting the parent edges from those nodes that belong s to develop progressively more advanced algorithms.

to a sibling interval inP. This is equivalent to having a parent
functionp” such that for al(l, 7)7 € P, Y,e,r),p" (v) := NIL.
Hence, inF;,l?, each node that is contained in an intervaHrbe-
comes the root of a tree. Tipartition defined by an intervdl, r)

is the set of all trees fronf’X whose root is in(l,)r. In our ex-
ample, the partition defined t.f)r is {13, T., T }.

The partition weightiW£ (v) of a nodev is its subtree weight in
FF . Analogously, the partition weight of a sibling interda? (1, )
is the sum of all the partition weights of its nodes, and theipa
tion weight of a set of sibling intervals is the sum of the {lizm
weights of its intervals. Theoot weightof a partitioning is the
partition weight of the root nodel’f (¢). In our example tree,
consider the partitioning® := {(b,f)z}. The root weight ofP is
6, because only the nodasg, andh remain in the tree of the root
a after the parent edges bf ¢, andf have been removed.

GivenT and a positive integek’, a tree sibling partitioning® of
T is calledfeasibleiff (¢,t)r € P and¥, .),.cp W7 (I,7) < K.
A feasible partitioning of our example tree ad = 5 is P :=
{(a,a)r, (b,b)r, (c,c)r, (f,g)r}. Herehis in the same partition
as the root, and the root weight is 5.

A tree sibling partitioning is calledchinimaliff it is feasible and
has the smallest possible cardinality of all feasible partings.
A tree sibling partitioningP is calledlean iff its root weight is
minimal among all partitionings with the same cardinalifytree
sibling partitioning is calle@ptimaliff it is both minimal and lean.
In our exampleR := {(a,a)r, (c,c)r, (f,h)r} is a minimal par-
titioning (X' = 5) with cardinality of 3.b is in the same partition
as the root, sk has a root weight of 5. HoweveR is not lean.
There is a partitioning with the same cardinality and a senatiot
weight: InP := {(a,a)r, (¢c,h)r, (d,e)r}, the root weight is 3P
is optimal. We will often denote optimal tree sibling paditings
with calligraphic letters such &8 or D.

2.2 The Tree Sibling Partitioning Problem

Given these terms, the problem we want to solve is formally
stated as follows:

Tree Sibling Partitioning: Given a tred’ and a weight
limit K, determine a minimal tree sibling partitioning.

To solve this problem, we develop algorithms that find partit
ings with a stronger property, namely optimality. Accoglio our
definition, this means that the partitionings must have matiroot
weight among all minimal partitionings. We will see belovath
the reason for this lies in our recursive, bottom-up apgros¢hile

We start out by showing that a bottom-up approach is viable be
cause we can combine partitionings for subtrees to obtalakemb
solution. As a second step, we present a dynamic programahing
gorithm that can partition flat trees (i.e. trees where atlesobut
the root node are leaves) M(nK?) time.

Unfortunately, we will see that the bottom-up applicatidrnhis
algorithm to a deep tree does not necessarily yield an optota
lution: Sometimes we have to choose a suboptimal solutidhen
lower levels of the tree to avoid extra partitions on the riegher
level. However, we can show that at each step, we only need to
choose between an optimal and a nearly optimal solutionafor
rather simple definition of "nearly optimal”. We also showhto
incorporate this choice into our dynamic programming atpar,
finally arriving at anO(nK?) algorithm for optimal tree sibling
partitioning.

3.1 Bottom-Up Tree Partitioning

Our algorithms are based on the assumption that in order-to de
termine a globally optimal partitioning, we can select agoffom
the tree and determine a partitioning for the subtree indlbyethat
node. Then we can recursively determine a global partitigpfhor
the remainder of the tree and combine the two solutions tailobt
the global solution. We will now formalize this basic assti@.

Recall that we consider a solution optimal if it is not onlynini
mal, but also lean. The reason for this is explained below.

In the following lemma, we dmotassume that the local subtree
partitioning for a subtre&,, calledS, is locally optimal. We just
assume that we know for some reason t$i& part of some global
solution, and show how to get a global solution basedsoriVe
do this by collapsindl’, from the original tree into a single node
v with a weight that represents the whole collapsed subtree. W
recursively determe an optimal solutidhfor this new treel’, and
merge this result witt$ to obtain an optimal solutio®"’.

LEMMA 1. LetT = (V,t,p,<,w) be a tree. Le € V be
a node fromT'. LetV, be the nodes df’,. LetS be a feasible
tree sibling partitioning of7’, such that there exists some optimal
tree sibling partitioning? of T' that containsS and has no other
intervals among the descendantswofi.e. withS — {(v,v)r} =
{@r)r ePl(l,r)r CTo}

Further, letT = (V —V,U{v}, ,p, <, w) be the treel” with the
descendants af removed, such thai, < and w are the functions
from T restricted toT, with the exception of a new weight for

@(v) := Wi(v). LetP be an optimal tree sibling partitioning of



T.
ThenP’ := P U (S — {(v,v)r}) is an optimal tree sibling
partitioning of T".

PROOF LetR = P — (S — {(v,v)r)}. Ris afeasible tree
sibling partitioning of T’ becalise the partition weight of t~he only
modified nodev is the same if” and inF7. by definition of 7.

P’ is a tree sibling partitioning None of the intervals ir$ andP
overlap because there are no descendantsrof.

P’ is feasible All the partition weights of intervals ifP and S are
smaller than or equal t&" by definition.

P’ is minimal We need to show thdP’| < |P|. From construc-
tion of P’ and R, we know thatP’| = |P| + |S| — 1 and
R = |P| — (|S] — 1). Hence, we only need to show that
|P| < |R|. But this follows from the fact thaR is a feasible
tree sibling partitioning of andP is a minimal tree sibling
partitioning of 7.

P’ is lean We have{P| > |R|, otherwise we could construct a tree
sibling partitioning) smaller tharP’: M =P’ — RUP.
From the item on minimality above, we know tha?| <
|R|. Hence,|P| = |R|, and R is a minimal tree sibling
partitioning of7".

From the construction aR follows W& (v) = W7 (v), and

from the construction o’ follows W (v) = WF (v).
Further, from|P| = |R| follows W& (v) > WZ (v). Oth-
erwise R would be a minimal sibling partitioning fof in
which the root node has a smaller weight tharfin This
contradicts the fact tha® is lean.

Hence W7 (v) < W.F (v). We havelP’| = |P| since both
are minimal.P’ is lean.

O

Lemma 1 suggests an algorithm that traverses the tree inaniot
up manner. For each non-leaf nodewe call a subroutine that de-
termines a partitioning for T, that is part of a global solution. We
then remove the sibling intervals i (except(v, v)r), and replace
the whole subtre&, by a single node whose weight is equal to the
total weight of all the nodes iffi, that are not part of an interval in
S. Then we proceed with the next node.

This approach reduces our original problem of finding partit
ings for arbitrary trees to the simpler problem of findingtjem-
ings only for flat trees. Flat trees are trees in which all isoolat
the root node are leaves. Our bottom-up approach guarathizes
once we reach an inner node, all deeply nested subtrees tedow
node have been pruned and only a flat tree remains.

The bottom-up traversal is also the reason why we require the

local solutions to be lean in addition to be minimal: By audti
away as much of the tree weight as possible, we generate &esimp
subproblem in the next higher level of the tree. Of coursepnlg

do so if it does not introduce additional sibling intervdigcause
the ultimate goal is to find a minimal partitioning.

However, we have not yet specified the subroutine to compute a

suitable partitioning for flat trees. We turn to this problénthe
next section.

3.2 Flat Tree Partitioning

Before looking at an optimized way to determine an optinmee tr
sibling partitioning for flat trees, we want to verify that imple
brute-force algorithm is not a viable solution. Let us lodklze
number of feasible tree sibling partitionings in a flat tréssume
a flat tree withn leaf nodes in which all the nodes have weight 1. In
this case, we can put up 6 — 1 leaves of the: leaves in the same
partition as the root. There at(e;{jl) possible ways to do this.
Hence, a lower bound for the number of feasible root parttis
Q(n*~1). This estimate does not yet include the different possibil-
ities to group the remaining sibling nodes into interval&nkke, it
is reasonable to conclude that a brute force algorithm isactjzal
for typical value$ of K.

We approach the problem by showing that an optimal solution
for a tree withn leaf nodes contains an optimal solution for a tree
with less tham leaves. Then, we use this knowledge to develop a
dynamic programming algorithm that finds the optimal solutin
O(nK?) time. Finally, we discuss the optimization potential of the
algorithm.

3.2.1 Optimal Substructure for Flat Trees

Consider the options we have for a leaf in the solution: eithe
child is put into the same partition with the root, or it bejsrto an
interval of the result partitioning. Together with the fécat there
is only a limited number of feasible intervals to which théldh
can belong, this forms a useful problem substructure foadyn
programming.

The following lemma states that we can find an optimal tree sib
ling partitioning for a flat tree witln leaf nodes by choosing the
best candidate solution from one of the following two suljbems:
Either (1) the solution is the same as an optimal tree sitpaugi-
tioning for a similar tree witm — 1 nodes, which represents the
original tree with the last child put into the root partitioor (2)
the solution can be constructed by adding a single inteovaint
optimal partitioning for a smaller tree.

LEMMA 2. LetT = ({t,c1,...,¢n},t,p,<,w) be a tree in
which all nodes but the root node are leaves, i.p(c;) = t.
< orders thec; according to their index valué. The treeT; =
({t,c1,...,¢i},t,p,<,wj) is the treeT” with all children {c;|i >
j} removed and a different weightfor the root node, with p and
< regarded as restricted tc, ..., c; }, andwj(t) := s, and for
v € {c1,..., ¢}, wi(ei) == w(c). LetD; be the set of optimal
tree sibling partitionings fofl’; .

Then, forj = 0 and anys < K holdsD§ = {{(t,t)r}} .

For eachj with 1 < 5 < n, at least one of the following state-
ments holds:

1. D;l,l C D; with s’ := s + w(c;).
2. ForsomemwithO<m<jAm<K:
Vmeps (M U{(¢j—m,c;)r}) € Dj.

PROOF Since the root node has a weight smaller than or equal
to K, and sinc€t, t)r must be an element of any sibling partition-
ing, the case foj = 0 is trivial.

For anyj and anys (with1 < j <nandl < s < K, letP be
any optimal tree sibling partitioning faF;, i.e. P € D;. We have
two cases:

—m—1

Case 1 There is no intervaf{l, r)r € P with¢; € (I,r)r.
We know thats + w(c;) < K, because ifP, ¢; fits into one
partition together with the root, hend@i1 with s" := s +

!Keep in mind thaiX is the size limit for a storage unit, and typical
disk page sizes are thousands of bytes.



w(c;) is a tree which has a feasible tree sibling partitioning.

We will now show that allD € Dj’,l are optimal tree sibling
partitionings of7’;’:
D is afeasible tree sibling partitioning f@t’: The intervals
containing the leaf nodes have the same weigtit’inand
T;‘Ll, and inTj‘i1 they have a weight smaller than or equal
to K by definition. Further, the subtree weight of the root
node inTjL1 is made up of the weight’ of the root node
plus the total weight of the sef of leaf nodes that do not
belong ot any interval irD. Hence,WfS/ t) =xz+5¢

j—1
wherez is the total weight of all the nodes ifi. SinceD

is a feasible tree sibling partitioning fdf'fll, we know that
z +s" < K. If Dis considered as a partitioning @,
the root weight consists of the root node’s weighplus the
total weight of the nodes iff, plus the weight of;. Hence,
WP (t) = x+s+w(c;) = -+, i.e. the subtree weight of
J
the root node with respect @ is the same il ande‘il.
Hence,D is a feasible tree sibling partitioning @t;.
By the same line of argument, we can show tRat a fea-
sible tree sibling partitioning foTj"Ll; in the previous para-
graph, we only have to replac@ by P and exchange the
roles of7; andeSLl.
D is also a minimal tree sibling partitioning far;. |D| <
|P| would contradict the minimality ofP. However,P is

also a feasible tree sibling partitioning Eﬂl, hencdD| >
|P| would contradict the minimality o. It follows that
|P| = |D|: Hence,D is minimal.

D is lean inT}: We have already shown thwfs, (t) =
j—1

Wq?js (t). We also knOV\M/ngs (t) = W%} (t), otherwise, ei-
ther P would not be lean i’} or D would not be lean in
lel. HenceD is lean inT7.
Since eachD € D;’Ll is a minimal and lean tree sibling
partitioning of T}, it follows thatDj'/,1 C D3, so statement
1 holds.

Case 2There is aninterva(l, r)r € P such that; € (I,r)r.

In this case,r = ¢; becausec; is the rightmost child of
the root. We also know thdt = ¢;_,, for somem with

and|R| = |P| — 1. Since bothM U {(¢j—m,¢;)r} andP
are feasible tree sibling partitionings f@y"_,,,_,, we know
that|P| < |M|+ 1. As a consequencé&)/ | + 1 = |P|, and
M U {(¢cj—m,c;)r}is minimalinT;.

The subtree weight of the root node is the saméiand
MU {(¢j—m,cj)r}. Hence, M U {(¢j—m,c;)r} is lean.
MU{(¢j—m,c;)r}is minimal and lean, so statement 2 holds
true.

O

Given the notation used above, the problem that has to bedolv
by our algorithm can be stated like thisind an arbitrary element
of DX,

Since such an arbitrary elementBf’") can be computed from
optimal sibling partitioningg; for smaller treesf{ < n), the prob-
lem is susceptible to a dynamic programming approach, asiove s
below.

3.2.2 Algorithm FDW for Flat Trees

Our algorithm FDW Flat trees Dynamic programming for tree
Width) employs dynamic programming by starting out with atre
that only contains the root node. We then successively ddeladl
nodes in left-to-right order and iterate over all potentiaights
of the root node. For each such intermediate tree, we congute
optimal partitioning. For each node, we have to decide wdreth
is going to be part of a sibling interval in the solution, oratimer it
will be part of the root partition. This decision is based qtimal
solutions for already processed intermediate trees.

More formally, for eacty < nand eacly € {w(t),..., K}, we
determine a single eleme® € D3, and store it in a table indexed
by j ands.

Forj = 0, we haveD§ = {{(¢,t)r}} for all s, henceP =
{(t,t)r}. Forj > 0, Lemma 2 states that we only have to consider
a limited number of candidates: Either our desired partitig P
is an arbitrary element dD;’,l, or, forsomen with0 < m < K,
an arbitrary element ab;_,,,_; together with(c; .., ¢;).

Hence, we have at mo#f + 1 candidates in each step. We pro-
cess the steps in increasing orderjofl his makes sure we already
know a partitioning from evenp; with i < j. To determineP
in each step, we just check all candidates for feasibility store
a candidate with minimum cardinality that also has minimamwtr

0 < m < j, because there must be at least one node in the Weight.

interval, and there exist no nodeswith ¢ < 1. Further,

The algorithm in Fig. 4 implements this strategy. It usestdeta

because each node has a weight of at least 1, there can be nd’(s, j) to store a partitioning fronDj. It is assumed that out-of-

more thank nodes in a sibling interval, henee < K. The
subtree weight of the interval is smaller than or equakto
because it belongs to a feasible tree sibling partitioning.
Let R = P — {(¢j—m,cj)r}. R is a feasible tree sibling
partitioning forT’;_,,,_;, since inT; the intervals ink have
a weight smaller than or equal @ by definition, and the
weights of the nodes are the samdihand7;_,,_;.
Further, for allM € Dj_,,_1, M U {(¢j—m,c;)r} is a
feasible tree sibling partitioning fdf;. (c;—m,c;)r has a
subtree weight smaller thalR' by definition of P, and the
weight of the intervals iV are the same id;_,,,_, andT7

bounds accesses 10 (i.e. wheres > K) always return a dummy
interval with card= oo. This makes exposition of our algorithm
simpler (we do not need to check for out-of-bounds condition
the pseudocode).

Lemma 2 tells us that each partitioniny s, 7) is either the same
as an existing partitioning, or it extends an existing piarting by
at most one interval. Hence, it is sufficient to store as estin D
either a copy of another partitioning, or only the addedrirgkand
a pointer to the remaining chain of intervals. Thisxt pointer
is implemented as a pair of indices of another partitionimghie
table. The new or copied interval is represented by the twmbo
ing nodes pegi n andend). In addition, each entry i (Fig. 4)

because all node weights are the same in both trees, and allhas two fields that contain the cardinality and the weighhefroot

the nodes that are presentliii but notin7;_,,_; belong to
(¢j—m,c;)r and hence do not modify the subtree weight of
the root node.

Since both\/ and R are feasible tree sibling partitionings for
T;_—1, we know thaj M| + 1 < |P| sinceM is minimal

partition to avoid recomputing them during comparisons.

Having run the algorithm, an optimal tree sibling partifiggncan
be obtained by starting at the intervaliw(t), n) and traversing
the list of next pointers until we reach a next pointer wittuea
(0,0).



input T'= ({t,c1,...,¢en}, t,p,<, w) flat tree input T tree

output D dynamic programming table with final result d(w(t), n) output D dynamic programming table
for s :=w(t) tok for all nodesv of T"in postorder
D(s, 0).begin:=t for s :=wr(v) to K
D(s,0).end:=t D(v, s,0).begin:NIL
D(s,0).card:=1 D(v, s,0).end:NIL
D(s, 0).rootweight:zw(¢) D(v, s,0).card:=0
D(s 0).next:=(0,0) D(v, s,0).rootweight:=
for j:=1ton D(v, s,0).next:=(0,0)
for s:=w(t)to K for j := 1to childcount(v)
s’ :s-i—w(cj) for s :=wp(v) to K
P:=D(s',j—1) s’ := s+ D(v).rootweight
w:=0 P:=D(v,s',j—1)
m:=0 w:=0
whilem <jAm<KAw< K m:=0
w:=w+w(cj—m) whilem <jAm<KAw<K
ifw<K w :=w + D(cj_m (v)).rootweight
crd:= D(s,j —m — 1).cardt1 ifw<K
rw:= D(s,j — m — 1).rootweight crd= D(v,s,j —m — 1).cardt1
if crd< P.card/(crd= P.card\rw< P.rootweigh) rw:= D(v, s,j — m — 1).rootweight
P.begin:=;_, if crd< P.card
P.end:=; V(crd= P.card\rw< P.rootweigh}
P.card:=crd P.begin:=;j_m, (v)
P.rootweight:=rw P.end:=;(v)
P.next=s,j —m —1) P .card:=crd
m:=m+1 P.rootweight:=rw
D(s,j) =P P.next=s,j —m —1)
m:=m+1
Entries in the dynamic programming table D(i, j) D(v,s,j) =P
begin first node of interval
end last node of interval
card cardinality of best parititioning so far
(length of next chain) Figure 5: Algorithm GHDW for deep tree partitioning
rootweight rootweight of best parititioning so far
next index of next interval

lution for our partitioning problem sometimes requiresaibg sub-
optimal solutions. We then characterize the kind of locallpop-
Figure 4: Algorithm FDW for Flat Tree Partitioning timal partitionings that are needed and show how to genéreta.
We incorporate this into our dynamic programming algorithfi
nally, we arrive at a linear time algorithm for optimal treblisg
Itis easy to specify the runtime of this algorithm: Theretaree partitioning.
nested loops, the outermost loop is processed at mbstes, and
the two inner loops are processed at mistimes. Hence, the 3.3.1 The GHDW Algorithm

algorithm has a worst-case runtime@fn.k*). It is tempting to use the result of the FDW algorithm $sn
T Lemma 1. In a bottom-up manner, we can collapse flat subtnézs i
3.2.3 Optimizations single nodes, producing a flat tree at the next higher leveieiV

We do not need to determing(s, ;) for every value ofs. For reaching the root, we have a feasible tree sibling partitipthat is
eachy, we only need to consider those valuessdhat are needed  constructed from locally optimal partitionings. This apach uses
by higher values. These are always the sum of node weighteesle  our dynamic programming algorithm for each inner node, Lith w
we only needs values that are sums of the weight of the root node respect to the "height” of the tree, it procedes in a greedymes
and the weights of nodes to the right«gt always choosing an optimal partitioning for each subtree. dall

A simple way to achieve this is to use the memoization tech- this approach GHDW (employing@reedy strategy for theleight
nique: We do not precompute all entries in thetable as shown of the tree, andynamic programming for the/idth).
in our pseudocode. Instead, we only compute the entries on de  The pseudo-code is shown in Fig. 5. The code looks like FDW
mand and remember them In. Subsequent requests for the same with an additional outer loop over all nodes. However, we now
entry can then be satisfied @(1) time. This does not affect the  deal with deep trees and use appropriate primitives to adtes

asymptotical complexity, but significantly reduces reald run- tree structure: We use;(v) to specify thejth child of v, and
time: Only a fraction of the wholé table is really needed for real  childcount(v) to denote the number of children of
trees (for an example, see Sec. 3.3.6). For each node, flat tree partitioning is performed once aad th
. e . results are stored in the dynamic programming tdblén GHDW,
3.3 Optimal Deep Tree Partitioning D has an extra dimension compared to FDW because we have one
In this section, we extend the FDW algorithm for optimal ftatt "flat” result for each node. We abbreviate withD(v) the result
partitioning to deep trees. We first propose a straightfoveaten- of D(v,w(c;(v)), childcount(v)), which is the best partitioning
sion of FDW to deep trees, called GHDW (for Greedy—Heighti@yic— for T, that GHDW can find. Note that thear d field in the D
Width). GHDW uses locally optimal partitionings to constria entries counts only the extra partitions that result fromipaning
global partitioning. However, there are cases in which GHDW the children ofv, not the partitions on the lower levels. We do not
yields suboptimal results, and we show that a globally optiso- need the actual partition count, but only need to chooseoitsdly



GHDW Result: 4 Partitions Optimal Result: 3 Partitions

Figure 6: Failure of the greedy strategy (' = 5)

minimal one here. Collapsing the optimally partitionedtse into
a single node at the next higher level is realized in a simplg: \in

those places where FDW uses the weight of a node, GHDW uses

the rootweight field of the optimal subtree partitioningtioe nodes
on the lower level.

Note that the initials loop for ; = 0 is different from FDW;
instead of an intervalv, v)r for the subtree’s root, we store an
empty "dummy” interval, because the actual interval to whide-
longs is determined in a higher level. The global result tseeted
from the D table by returning for each node the next-chain of parti-
tions (without the empty interval), and finally adding anraxbot
interval (¢, t) 7.

The complexity of GHDW is the same as FDW{nK?). At
first glance, there is an extra outer loop wittsteps. However, the
inner loop onj does not range over all nodes any more, but only
over the children of the current outer nodeHence, the total num-
ber of iterations of thg loop over allv is n, and the asymptotical
complexity remains the same as for FDW.

We will see in the evaluation (Sec. 6) that the GHDW algorithm
yields good results. However, the results obtained by thizrghm
are not always optimal.

As an example for a suboptimal result of GHDW, consider Fig. 6
Here, the weight limit iSK' = 5. The numbers represent the node
weights.

The left part of the figure shows the result of the GHDW al-
gorithm, which consists of the four interva{$a,a), (b,b), (c,c),
(f,f)}. When processing bottom-up, GHDW decides that the opti-
mal solution for the flat subtree induced by nade to maked and
e share a partition witke. This optimal subtree partitioning yields
a treeT. with a total weight of 5. Hence, on the next lexels
treated as a single node of weight 5. But this means that tboth
andf get a partition of their own: They can neither be put into the
same partition as the roat nor with thec subtree, because both
alternatives would exceed the weight limit.

The right part of the figure shows a feasible partition{rig,a),
(b,f), (d,e)} with just three partitions. By introducing an extra par-
tition at the lowest level of the tree @nde), it becomes possible
to merge all of the siblings on the middle level into a singhetip
tion. This is an optimal sibling partitioning for this tredlere, the
subtree ot is distributed over two partitions instead of the locally
optimal solution, which requires only one partition forttsabtree.

Before we investigate what kind of locally suboptimal péoti-
ings we have to take into account, we first provide some auiditi
definitions needed in the remaining sections.

3.3.2 Definitions

LetT = (V,t,p,<,w) be a tree and) be a tree sibling par-
titioning for T'. @ is callednearly minimaliff it contains exactly
one more interval than a minimal partitioning is callednearly
optimaliff it is both nearly minimal and lean.

AW (v) describes for any node € V the difference in root
weight of the optimal and nearly optimal partitioning of thebtree
T, induced byv. LetP be an optimal and) a nearly optimal tree
sibling partitioning forT’,, respectively. Then we define

0 if Q does not exist
WF, (v) — Wi (v) otherwise

AW@y:{

3.3.3 Optimal Substructure for Deep Trees

We now show which partitionings of subtrees are suitable can
didates to construct an optimal tree sibling partitionibghe next
higher level. It turns out that there are only two candidabke$act,
the following lemma shows that if an optimal subtree pamiing
for a subtree is not part of a globally optimal solution, tlamearly
optimal one must be.

LEmMMA 3. LetT = (V,t,p,<,w) be atree, and let € V be
a node inT. Then, there exists an optimal tree sibling partitioning
P of T, and a tree sibling partitioningS of T, such thatS is
either optimal or nearly optimal, anfl — {(v,v)r} = {({,r)r €
Pl(l,r)r C T} — {(v,v)r}, i.e. the set of intervals i that lie
in the subtree below is exactlys.

Further, if S is nearly optimal, thelAW (v) > 0.

PROOF. Let P’ be an arbitrary optimal tree sibling partitioning
for T. Let P, be any optimal tree sibling partitioning f@r,. Let
P} be the set of all sibling intervals fro®’ that lie somewhere in
the subtree of. We will now show how to construct a minimal tree
sibling partitioning based on the cardinalities/f and P,

Case 1|P)| < |Pys| — 1

This case is not possible: Otherwige, | U {(v, v)r} would
be a feasible tree sibling partitioning of smaller cardiyal
thanP,, contradicting the minimality oP,,.

Case 2|P)| = |Ps| — 1
LetS = P,. LetP =P — P, U (S — {(v,v)r)}. The
intervals in S are feasible by definition. Sincg is lean,
Wi (v) < Wf“ (v). Hence, the interval to which belongs

in P has a weight smaller than or equal to its weighfih
It is feasible inP’, thus also feasible if.

Further|P| = |P'|—|P;|+]|S|—1 = |P’|, soP is minimal.

Case 3|P)| = |Py|:
In this case, there always exists a nearly minimal treergjbli
partitioning, e.g.P; U{(v,v)r}. Let.S be an arbitrary nearly
optimal tree sibling partitioning df,.
LetP =P — P, U (S — (v,v)r). The intervals inS are
feasible by definition. Sinc# is lean andP,| = |S| — 1,
W:ff{(“’“)”(v) < W;fv (v). Hence, the interval to which
belongs inP has a weight smaller than or equal to its weight
in P’. Itis feasible inP’, thus also feasible i®.

Further|P| = |P'|—|P;|+]|S|—1 = |P’|, soP is minimal.

Case 4|P}| > |Py|:
Let (I, 7)r be the interval withy € (I,7)7.

Case 4aThere is no interva(l, r)r with v € (I,r)7:
This case is not possible: L&t = P’ — P, UP,. P
is feasible because the intervals7m are feasible by
definition of P,. However,|P| = |P'| — |P;| + |P,]
and with the assumption from Casg®| < |P’|. This
contradicts the optimality oP’.



Casedbl=r=uv:
This case is also not possible: LBt = P’ — P, U
(Py — {(v,v)r}). P is feasible because the intervals
in P, are feasible by definition oP,. However, with
the assumption from Case 4, we ha®d = |P’| — 1,
contradicting the optimality oP’.

Case4dcl =v Ar #v:
Again, this case is not possible: LBt= P’ — P, —
{{, r)r}UP, U{(v',r)r} wherev' is the right sibling
of v. P is feasible because the intervalsfy are fea-
sible by definition ofP,,, and(v’, r)r feasible because
it is a subset of the feasible interv@l, r)r. Further,
we have|P| = |P'| — |P)| — 1 + |Py| + 1. With the
assumption from Case 4 folloW®| < |P’|.

Caseddr =v Al #v:
Analogous to Case 4c.

Casedel v Ar # v:
LetS = P,. LetP =P — P, — {(,,r)r} US U
{(,v")r, (W",r)r}, with v andv” being the left and
right siblings ofv, respectively.P is feasible because
the intervals inS are feasible by definition &®,. (I,v")r
and(v”, r)r feasible because they are subsetd of) ,
which is feasible.
[P| =|P'| —|P)| — 1+ |S| + 2, with our assumption
from Case 4 followgP| < |P’|. Hence,P is minimal.

P and P’ are both minimal, henc&P| = |P’|. In all cases
above, W7 (v) < WF' (v), henceP is lean.

Note that, in all cases, to obtai, P, was removed fronP’,
and either an optimal or a nearly optimal tree sibling paring S
of T, was added. Hence, there are no interval®ithat lie inT’,
apart from those in the added partitioniSgf 7.

Further, in the only case where a nearly minimal tree sibling
partitioning S of T;, was used (Case 3), we know tH&tZ (v) <
va (v). Otherwise, we could have us@y, to constructP, con-
tradicting the optimality ofP. It follows thatWw.>” (v) — W (v) >
0, andAW (v) > 0.

O

So, the good news is that we only need to consider at most two
candidate subtree partitionings for each node. The bad iscivat
we do not know which of the two is part of a global solution unti
we are processing the next higher level.

Before we can tackle this problem, we need an algorithm that
computes a nearly optimal tree partitioning. Fortunatelg, can
use any algorithm for optimal tree sibling partitioning teaobtain
nearly optimal partitionings, as we show in the next sulisect

3.3.4 Nearly Optimal Partitioning

Once we have an optimal tree sibling partitioning for a tfree
obtaining a nearly optimal partitioning is just a matter@funning
the algorithm with a slightly modified tree, as the followilegnma
shows.

LEMMA 4. LetT = (V,t,p, <, w) be a tree andP an optimal
tree sibling partitioning forT. LetT’ = (V,t,p,<,w’) be the tree
T with a modified weight for the root nodée/ (t) := w(t) + K —
WZE(t) + 1, and forv € V — {t}, w'(v) := w(v).

Then, any optimal tree sibling partitioning faf’ is a nearly
optimal tree sibling partitioning foff".

Further, if there is no optimal tree sibling partitioning f@”,
then AW (¢) = 0.

PROOF. LetP’ be any optimal tree sibling partitioning far .

If we useP as a partitioning fofl”, the weight of the root par-
tition is the weight of the root partition ifi’ plus the difference
in weight of the root node, hend&?, (t) = WX (t) + wr (t) —
wt) =WEE#) +wit)+ K —WEE) +1—w(t) =K+ 1.

Hence,P is not a feasible partitioning fof”. Further, P is
lean, which means that we cannot find a partitioning of theesam
cardinality with a lower weight of the root partition. It folvs that
[P| < |P'].

However, since the weight of the root partitiondH is exactly
K + 1, we know that adding t® anyfeasible interval that is not in
P yet will makeP a feasible partitioning df’ because the weight
of an interval is always greater or equal to 1. Hence, we kriaw t
[P'| =|P| + 1.

We also know thaf’ is a feasible sibling partitioning df’ be-
cause the intervals are smaller or equakidy definition, and the
root partition has less weight ifi than inT”. Hence,P’ is a nearly
minimal tree sibling partitioning of".

P’ is also lean with respect t6 because any partitioning far
with the same cardinality &8’ and with a lower weight of the root
partition would also have a lower weight of the root partitio T,
contradicting the fact tha®’ is lean with respect t@”.

Hence,P’ is a nearly optimal tree sibling partitioning f@t.

If we cannot find an optimal tree sibling partitioning Bf, this
means that there are no children of the root that are notciingart
of an interval inP. Hence, there is no nearly optimal tree sibling
partitioning ofT" in which the root partition has a lower weight than
in P. This meansAW (¢t) = 0.

O

Lemma 4 states that we can find the nearly optimal partitions
in the D table of the GHDW algorithm by looking at entries with
modified s values. The nearly optimal partitiaf(v) for the sub-
treeT, can be determined using tti2table as follows (remember
that D(v) stands for the optimal partitioning of the subtfgg:

Qv) :

D (v, w(v)+K—D(v).rootweight+1, childcount(v))

While Lemma 4 provides us with a simple way to obtain a nearly
optimal partitioning, we still have to address the issue tha do
not know whether to choose an optimal or nearly optimal parti
ing until we have reached the next higher level in the treew itto
efficiently solve this problem is explained in the next suibise.

3.3.5 Algorithm DHW for Deep Trees

A brute-force approach for deep trees is easy to specifyefsa
ing the tree bottom-up, we determine both an optimal and gynea
optimal sibling partitioning for each non-leaf node. Theadis to
two potential weights for this node in the next higher lew&lhen
determining the optimal sibling partitioning in the nexgher level,
we run the flat-tree algorithm once for each of the two poé&nti
weights of each node, trying to determine which one yielaset
total interval count.

However, with two choices for the weight of each node, in the
worst case the brute-force algorithm has to compute an aptim
tree sibling partitioning foR™ weight combinations, each requir-
ing O(nK?) time to check. This exponential time usage prohibits
its usage on real-world document sizes.

Instead of such a brute-force approach, we again use dynamic
programming for the decision whether to use an optimal orlypea
optimal tree sibling partitioning for each child node’s sel, and
incorporate this choice into the GHDW algorithm from Se@8.B.



We call the resulting algorithm DHWDynamic programming for
Height andwidth).

The following lemma shows that the use of nearly optimal par-
titionings is an exception rather than the rule. In a lot es
only an optimal tree sibling partitioning for a nodeneeds to be
considered as part of an optimal solution. In particulacoading
to the statements of the lemma below, (1) an optimal paniitip
is sufficient ifv shares a partition with its parent, and (2) we only
need to consider a nearly optimal partitioning for the sebwf a
nodevw if all the other nodes: in the same interval with a greater
AW already use a nearly optimal partitioning for their sutdgree

Given a treel’ = (V,t,p,<,w), for any nodex € V, let P,
be an optimal tree sibling partitioning f@r,, andQ.. be a nearly
optimal tree sibling partitioning df;, such thatAWW (z) > 0. Note
that@, may not exist.

LEMMA 5. For each treeT' = (V,t,p,<,w) there exists an
optimal tree sibling partitioning? of T' such that for each € V,
P» — {(v,v)r} C P if any of the following statements are true:

1. Thereis nointervall, r)r € P such thaw € (I, 7).

2. There is an intervall,r)r € P such thatv € (I,r)r,
and there is au € (I,r)r for which Q. exists and@. —
{(u,u)r} Z P ANAW (u) < AW (v).

PROOF We know that there exists an optimal tree sibling parti-
tioning P’ of T such that for each, eitherQ., — {(v,v)r} C P’
or Py, — {(v,v)r} C P’ (Lemma 3). For each statement above, if
itis true inP’ andP, — {(v,v)r} C P’, there is nothing to show,
because our desirgd is equal toP’.

Hence, we will assume in the following th@t, exists, and), —
{(v,v)r} C P’. For each statement in turn, we show that we can
constructP from P’ such that?, — {(v,v)r} C P.

1. LetP =P — (Qv — {(v,v)r}) UP,. Then|P| < |P'| —
(|Qv| — 1) + |Py|. Further, due to the (nearly) minimality of
(Qv) Py, we havelP,| = |Qv| — 1. Hence|P| < |P’|, and
‘P is minimal. The weight of the partition to whiehbelongs
is lower inP than inP’, because from the fadt, has been
partitioned with a nearly optimal partitioning iR’ follows
AW (v) > 0 (Lemma 3). Hencey cannot be part of the
root partition, otherwisé®’ could not be lean. This means
the weight of the root partition is the same7mand?’, and
P is lean.

2. Here,T,, has been partitioned iR’ using an optimal parti-
tioning, andT’, using a nearly optimal partitioning. We can
switch the roles ofi andv: LetP = P'—(Qv—{(v,v)r })U
(Po —{(v,v)1}) = (Pu— {(v, u)7}) U (Qu — {(u, u)r}).
We have added weight 1@, )7 by replacing@., with P,,
but we have removed weight frofd, )z by replacingP,

input T tree
output D dynamic programming table

for all nodesv of T in postorder
for s :=wr(v) to K

D(v, s,0).begin:=t

D(v, s,0).end:=t

D(v, s, 0).nearlyopt:#

D(v, s,0).card:=1

D(v, s, 0).rootweight:=s

D(v, s, 0).next:=(0,0)

for j := 1to childcount(v)
for s:=wr(v) to K

=5+ D(c;(v), wr(cj(v)), childcount(c;(v))).rootweight

S/
P:=D(v,s',j—1)
w:=0

dw :=0

m:=0

whilem <jAm<KAw—dw < K
w :=w + D(cj_m).rootweight
dw = dw + AW (cj—m(v))
ifw—dw <K
crd= D(v,s,j —m — 1).cardt1
rw:= D(v, s,j — m — 1).rootweight
C :=nodes(cj—m (v), c; (V)T
ordered by descendin W (c;(v))
w' = w
N:=0
while w’ > K
u := head(C)
w' = w — AW (u)
N := NU{u}
C:=C—{u}
crd:=cro+1
if crd< P.cardv(crd= P.card\rw< P.rootweigh)
P.begin:=;_n, (v)
P.end:=; (v)
P.nearlyopt:2V
P.card:=crd
P.rootweight:=rw
P.next<s,j —m —1)
m:=m+1
D(v,s,j) =P

Figure 7: Algorithm DHW for deep tree partitioning

trees, whether to put the new node into a partition with threma
or whether to create a new sibling interval containing the nede.
From statement 1 in Lemma 5 it follows that the only point ia th
algorithm where we need to consider nearly optimal treetjart
ings is when adding new intervals, i.e. in the loopran

Further, statement 2 tells us that we only need to considathne
optimal partitionings for the subtree of a node if a nearlyiropl

with Q,. The assumption in the statement guarantees that partitioning has already been used for all nodes the same in-

the weight differenceAW (v) more than compensates for
the weight differencé\WW (v), hence the weight ofl, 7)r is
now smaller tharf{. Hence,P is feasible. We substitute one
nearly optimal subtree partitioning with an optimal oned an
one optimal subtree partititioning with a nearly optimakon
so the total cardinality remaines unchangé&@} = |P’|, so
‘P is minimal. Since we keep the intervdl ), the weight
of the root partition remains unchanged, gnds lean.

O

This result helps us to extend the GHDW algorithm (see Fig. 5)
GHDW decides for each node, based on partitionings of smalle

terval which have a greatex1 (v). Hence, given an interval with
a weight larger tharf<, we can order the contained nodes by de-
scendingA W value and store them in a list. Then, we select a node
from the beginning of the list and use a nearly optimal parting
for that node. This will decrease the weight of the interyalie
node'sAW. We continue to do so while the weight of the interval
is larger thank" and there are still nodes in the list. We remember
each node for which we use a nearly optimal partitioning. Whe
considering the resulting interval as part of a global soiuand
comparing the overall cardinalities, we must take into aotohat
we have not only added the interval itself, but also use omeaex
interval for each node that uses a nearly optimal partitigni

The resulting algorithm DHW is shown in Fig. 7. As explained,



it is an extension of the GHDW algorithm. The dynamic program
ming tableD has a new fielashear | yopt which contains the sub-
set of nodes in the interval that use a nearly optimal partitig.

The algorithm uses the functiah W (v), which is computed as
AW (v) := D(v).rootweight — Q(v).rootweight. For the nodes
required in each step, these results are already availatiie table.
As explained in Sec. 3.3.4, the entries f9rcan be found in the
table for D using modifieds values.

New intervals are added by ranging over all possihlealues as
before. However, to determine the maximal size of the itemwe
do not use the sum of root weights of optimally partitionebtsees
w, but the sum of root weights of nearly optimal partitionings-
dw. The loop terminates if the interval becomes heavier than
even if only nearly optimal partitionings are used.

For eachm value, a listC' of the interval's nodes is built as ex-
plained above. The algorithm consecutively removes the ffran
the beginning of this list and uses a nearly optimal partitig for
the corresponding subtree. This list determines for whidirees a
nearly optimal partitioning has to be used. Those nod8&sihose
subtrees use a nearly optimal partitioning are stored inyinamic
programming table as field nearlyopt.

We now turn to the runtime complexity of the algorithm. The
computation of the nearly optimal partitionings does natreie the
asymptotical complexity because the required entriesrasept in
the D table anyway (refer to Sec. 3.3.4 for an explanation). In
addition to the loops present in the GHDW algorithm, DHW has
an additional loop wittO(K) steps to determine the subsgtfor
each interval candidate. DHW also needs to create the atdere
list, which require®) (K log K) time in the worst case. Hence, the
added complexity for each inner stepO% K log K). In GHDW,
there wereD(nK?) steps, so the overall time complexity of DHW
is O(nK?log K).

This means DHW is a linear time algorithm for optimal tree sib
ling partitioning.

3.3.6 Optimizations

The DHW algorithm provides several opportunities for ofitian
tion. The memoization approach already discussed in S2& 3.
still applicable, of course. For example, measurementa fir MB
sample document anll = 256 show that on average, less than 4
of the potential 256 values faractually occur for inner nodes.

Further, it can be shown that for the subtree induced by the fir
and last nodes of an interval, an optimal partitioning isealsvsuf-
ficient to generate a globally optimal solution. Hence, wedh®
add toC all nodes but the first and last node of an interval. We omit
the proof here for brevity reasons, as it does not impact p&ytin
cal complexity.

It is also possible to avoid the construction @ffrom scratch
during each iteration of the loop on. Instead,C' could be stored
as a priority queue and incrementally maintained by addieg n
nodes in every step. This lowers the overall complexit@{@K )
(the inner loop withK™ steps remains).

4. |IMPLEMENTATION ASPECTS AND
APPROXIMATION ALGORITHMS

Our optimal algorithm DHW runs in linear time with respect to
the number of nodes, and enables us to determine optimaigsibl
partitionings for real documents in a reasonable amouninué.t
Unfortunately, the DHW algorithm has a number of disadvgesa
that make its application as an algorithm for document tiseia
suboptimal choice, as we will see below.

In this section, we discuss practical issues that influemeetoice
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of a partitioning algorithm for native XML Data Stores. Wether

present several tree partitioning algorithms that do nbiexe op-
timal results, but are better suited for inclusion in realS&€ Some
of these algorithms are existing algorithms in their oragiform,

some of them are minor modifications of existing algorithars

one is a novel variation of an existing algorithm that we sp
based on our study of the optimal algorithm.

4.1 Implementation Aspects

A partitioning algorithm for document import in a native XDS
must meet a number of requirements in addition to a small num-
ber of generated partitions. While implementation detaits out
of the scope of this paper (details about Natix’ documentortey
can be found in [10]), there are some properties that a goodi-ca
date algorithm for a real XDS must have: (1) It must be as fast a
possible, (2) it must scale to very large documents, and (Bust
be robust, i.e. the quality of its result should not vary ¢yetor
typical documents.

Unfortunately, our DHW algorithm has resource requireraent
that can be a problem in practice:

1. The dynamic programming table requires a large amount of
memory.

2. While the algorithm is linear with respect to the number of
nodes, the factor ofC® is significant, as we will see in the
evaluation section.

3. The final partitioning is only determined after the whaksst
has been processed, because the decision on whether to use
an optimal or nearly optimal partitioning for each subtree d
pends on the decision at the next higher level of the tree. Ul-
timately, these decisions depend on the partitioning of the
children of the root node. This means that, when used as an
algorithm for document insertion, the whole document to be
inserted must be kept in main memory until the partitioning
is completed. This does not scale to very large documents.

These issues prompt us to investigate approximation &lhgosi
that are better suited for implementation and still dely@od (small)
partitionings.

To avoid issue (3) above, algorithms must be able to decidetab
the definitive assignment of a node to a partition beforestdeen
all the document nodes. If this is the case, a node may bedsbore
secondary storage as soon as it is assigned to a partitiotheFuf
the associated information for such a node is not requiregrio
cessing of the remaining nodes, the whole node can be removed
from main memory. We call algorithm that exhibit this prager
main-memory friendly We have already seen that DHW is not
main-memory friendly.

In the following, we will present several approximation @g
rithms with respect to their applicability as XDS partitiog algo-
rithms.

4.2 Top-Down Approximation Algorithms

Tsangaris et al. [16] study several partitioning algorisimthe
context of object-oriented DBMS. We consider two of theip-to
down algorithms. For both algorithms, the resulting cltstgis
not optimal and does not produce storage units that onlyagont
connected nodes. However, we can easily adapt two of their al
gorithms to produce approximate tree sibling partitiosings ex-
plained below.

4.2.1 DFS



The DFS algorithm processes a graph using depth-first search
assigning nodes greedily to the current cluster. New dsisiee
created whenever the current cluster cannot hold the duncete.

The original algorithm does not care for the connectednéss o
the partitions, as required by tree sibling partitioningwéver, we
can modify the algorithm such that it starts a new partitionanly
when the current one is full, but also when a node to be predess
is not connected with any of the nodes in the current pantitip
sibling or parent-child edges.

This variant of DFS is main-memory friendly because we decid
immediately for each node to which partition it belongs. Hhe
gorithm is particularly suited to XML processing becausgidgl
XML parsers deliver the input documents as a stream of pgrsin
events in depth-first preorder of the document tree.

4.2.2 BFS

The same strategy explained above can also be applied dtbrea
first search, where for each visited node, we try to add itéqothr-
tition of its parent, and if that is full, to the partition dbiprevious
sibling. BFS is not main-memory friendly, as we need to skefal
the nodes in the document to perform proper breadth-firstkea
We include it for reasons of completeness.

4.3 Bottom-Up Approximation Algorithms

We now discuss algorithms that operate in depth-first pdstor
i.e. bottom-up. While the typical result delivery of XML [sars
is depth-first preorder, all of the algorithms below can belen
mented in a main-memory friendly way because they can start a
signing nodes to partitions before the whole document has be
parsed: Whenever the algorithms leave a subtree that isrldrgn
K, they process its nodes, creating partitions until therselfalls
below K.

In the worst case, i.e. when the document consists of a rat® no
with a very large fan-out, these algorithms still need topké®e
whole document tree in memory. However, it is possible td-mit
gate this problem, as proposed in [10]. Instead of waitinigj ah
of the children of the currently processed nodes have bdee
by the parser, we can already run the algorithm if the main argm
consumption for the representation of the current nodesrea
exceeds a certain threshold. We partition the subtree seéar,s
moving some partitions from main memory to secondary memory
and then continue accepting further nodes from the parséileW
this technique deteriorates the quality of the result, iti@es an
upper bound for the memory usage that is proportional to ¢we d
ument height, and not to the number of document nodes.

4.3.1 GHDW

We have already presented a bottom-up approximation #hgori
in detail: The GHDW algorithm that we developed as a pregurso
to the optimal algorithm in Sec. 3.3.1. It achieves very graeslilts
in practice (see Sec. 6), and is also memory-friendly, beeau
determines a definitive subtree partitioning for every emtered
subtree that is heavier thdf.

4.3.2 Rightmost Siblings (RS)

The existing Natix document insertion algorithm [10] applia
very simple heuristic. When processing a node whose sulsree
larger thanK, it iterates over the node’s children from right to
left and adds siblings to a new partition until the partitisaight
reachesK. The algorithm continues to create partitions until the
current node’s subtree weight falls beld

This approach is main-memory friendly and very simple to im-
plement.
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Figure 8: Binary tree for Enhanced KM ( K = 5)

4.3.3 Kundu and Misra (KM)

The algorithm of Kundu and Misra [11] minimizes the total rum
ber of partitions for a given tree, and enforces connectloé
partitions, albeit only based on parent-child edges.

The algorithm KM operates by processing the nodes in bottom-
up fashion. Whenever the subtree induced by the current pigle
heavier thank, the algorithm selects the heaviest childf p and
creates a partition for its subtree. This is repeated umgilsubtree
weight of p falls below K. The result is a tree partitioning with
minimal cardinality.

In our terminology, the produced partitionings only contai-
tervals with a single node, i.e. of the forfn, v)r. Neighboring
intervals are not merged even if their respective subtrese la
combined weight equal to or smaller thafk This introduces
costly and unnecessary extra storage units. However, gloeitdm
is very fast. It has linear runtime and processes each naatelgx
once. Its complexity does not depend on the weight likitand it
is memory-friendly.

4.3.4 Enhanced Kundu and Misra (EKM)

One way of extending the Kundu and Misra algorithm to sib-
ling partitioning can be derived from a problematic casetaf t
GHDW algorithm. Recall Fig. 6, where the optimal result was o
tained by a "layered” partitioning that created one pantitior ev-
ery level of the tree. Further, recall that the reason forfdilare
of GHDW's greedy strategy is that an optimal partitioningnes
times requires additional partitions at one level belowdheently
processed level.

This knowledge about tree sibling partitioning can be laged
to create a variant of the Kundu and Misra algorithm: Instefd
running the algorithm on the n-ary tree representation #ssiorig-
inal, we convert the tree into a binary tree representatidrere
every node has only two children: the left child is its firsfldh
in n-ary representation (if there is one), and the rightccislthe
right sibling in n-ary representation (if there is one). Thieary
representation of the tree from Fig. 6 is shown in Fig. 8.

We propose the "enhanced Kundu and Misra algorithm” EKM,
which is simply KM applied to the binary representation. Hu
tree from Fig. 8, the algorithm proceeds as follows: Whertess-
ing nodec, the algorithm finds that the subtree ®{comprising
nodesc,d,e,f) is heavier thark’ = 5. It decides to create a parti-
tion for the heaviest child af, which isd, because its subtree has a
weight of 4, while the subtree dfonly has a weight of 1. The final
result is the optimal partitioning as produced by DHW on thes
tree.

This is plausible: The algorithm has, for each node, thecehta
create a partition either for the right siblings of the nooefor its
children one level below the current node. Hence, it sonegioan
make exactly those choices that make the DHW algorithm super
to GHDW. The EKM algorithm is also memory-friendly, and very
easy to implement, even easier than the original KM algoritiihe



EKM Result: 3 Clusters

Optimal Result: 2 Clusters

Figure 9: Failure of Enhanced KM (K = 5)

KM algorithm must consider a large number of children forteac
node, and sort them according to weight, whereas EKM onlgdsiee
to select the heavier out of at most two children.

However, the algorithm is still a heuristic, and has its owolbp
lematic cases. A simple example can be seen in Fig. 9. Fordhe t
shown on the right in n-ary representation, the optimalifianing
has two partitions and,e are in the same partition as the root. On
the left side we see the same tree in binary representatioithe
partitioning created by EKM. EKM decides to create a pantitior
the subtree of the right child of b, because the subtree withand
e is heavier tharm. The result, with three partitions, is suboptimal.

5. OTHER ALGORITHMS AND
RELATED WORK

Looking at an extreme end of the spectrum of available algo-
rithms, BIN PACKING can be used to minimize the number of
partitionings while completely ignoring the tree strueturHow-
ever, BIN PACKING is NP-hard. Further, disregarding thestre
structure may have severe negative consequences on parcem
as closely related nodes be placed in different storags.unit

Schkolnick [14] partitions hierarchical structures basedac-
cess patterns. However, the algorithm does not enforceedisiit
for clusters, and does not consider nodes of varying weibf.al-
gorithm clusters objects into base collections, which cajpined
to efficiently answer queries. While this may be applied to-o
based XML query processing, it does not solve our problem of
finding weight-limited partitions.

Lukes [12] presents a linear time algorithm for tree pamitng
that incorporates edge weights. It finds a partitioning dirogl
value, e.g. one where the total weight of all edges that dgoot
across partitions are maximized. For unit edge weightsathe-
rithm solves the same problem as the Kundu and Misra algorith
It finds a partition with minimal cardinality. The algorithdoes
not consider sibling partitioning.

Bordawekar and Shmueli [4] investigate Lukes’ algorithnthia
context of XML, and report runtimes of several hours on mader
PCs for very small documents-(L00K). They extend Lukes’ algo-
rithm by introducing several techniques to limit memorygesand
improve runtime. This breaks the optimality, but achievesrax-
imate partitionings whose value is quite close to the optmfar
single-node intervals. They also do not consider siblingitian-
ing.

The strength of Lukes’ algorithm and its extensions lieshiirt
ability to optimize the partitioning for anticipated quemprkloads.
However, in many environments it is unclear how to anti@pat
query workloads. In such cases, the default is to assumedgé
weights, in which case the algorithm will produce a pantiimy
of minimum cardinality, albeit without allowing siblinge share a
partition.
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6. EVALUATION

We have presented seven algorithms for tree sibling pamtitg.

We now evaluate them as partitioning algorithms for docuniren
sertion into an XDS. Only DHW generates an optimal resulhan t
sense of our problem statement.

Our initial experiments are based on a simple main-memory im
plementation of the algorithms, to compare their "pure”fper
mance without the overhead of integration into a real XDS. We
compare the runtime of the algorithms, and the cardinalitfiethe
produced partitionings. As it turns out, the EKM heurisscsur-
prisingly good, both in terms of result quality and runtime.

In a final experiment, we show the impact of sibling partitian
on query performance. To this end, we integrate the EKM and KM
algorithms into Natix and evaluate the runtime of variousrégs.

6.1 Environment

The documents to partition were chosen from the University o
Washington’s XML data repository [13] and the XMark bench-
mark [15], the latter with a scaling factor of 0.1. Some of tloe-
uments, such as the XML representation of e t supp and
or der s relations, have a very simple structure, while others, such
as the Mondial data, represent nested structures withrlarge
trees.

The documents are mapped into instances of our problem-as fol
lows. An ordered tree is constructed by parsing the docusnent
and converting the parser's DOM [8] representation intonape
main-memory representation. This simple representati@s ot
retain tag names of elements or node contents for text nattés a
attribute nodes, but has a weight value for each node inskeeal-
world storage engines typically align objects on secondtoyage
to some "slot” size for efficiency reasons. This is reflecredur
weight value, which does not represent the node’s size inbeam
of bytes, but in number of "slots” it requires on disk. Eacliads
considered to use one slot for its metadata, such as tag nasne a
node type. In addition, text and attributes nodes take upmzbeu
of slots proportional to the length of the node’s conteringtr\We
use a slot size of 8 bytes.

We have implemented the algorithms in C++. The executables
were compiled using g++ 3.3.5 with O3 optimization. Expeim
tal results were obtained on a machine with 1 GB memory and an
Intel Pentium IV CPU at 2.46GHz.

6.2 Number of Partitions

In our first experiment, we compare the number of partitians g
erated by the algorithms for the various documents, usingighw
limit of K = 256 slots of 8 bytes, corresponing to a storage unit
capacity of 2KB. The results are presented in Tab. 1. We &so |
for each document, its size in the file system, number of naes
the total weight of the document tree (including alignmeffeas
as explained in Sec. 6.1) divided by = 256. The latter is a lower
bound for the number of partitions if connectedness of théi-pa
tions is not enforced and every partition reaches maximam si

It becomes obvious what can be gained by a tree sibling parti-
tioning: For all documents, the sibling partitioning aligoms that
were specifically designed for XML storage (DHW, GHDW, EKM,
RS) produce a much smaller number of partitions than the kM al
gorithm, which only considers single node intervals. Fer XML
documents that represent relational dggar(t supp, or ders),
the number of partitions is less than 10% of the KM result.

The DFS and BFS algorithms, although allowing siblings &rsh
a partition, perform sometimes even worse than KM. Their top
down approach results in premature decisions about whidesho
to put into a partition. Overall, these two algorithms aré very



Algorithm
DHW | GHDW | EKM RS| DFS KM BFS
Document Size| Nodes| Weight/K || (Optimal)
SigmodRecord.xm| 477KB | 42054 337 365 367 | 382| 384 | 1101 1287 | 2985
mondial-3.0.xml 1785KB | 152218 1036 1139 1158 | 1175| 1203 | 2813 | 11087 | 17037
partsupp.xml 2242KB | 96005 1026 1083 1083 | 1091 | 1091 | 2282| 15876| 8192
uwm.xml 2338KB | 189542 1446 1727 1790 | 1746 | 1817 | 4345| 5449| 11039
orders.xml 5379KB | 300005 2247 2476 2476 | 2482 | 2482 | 5832 | 29876 | 15474
xmarkOp1.xml 11670KB | 549213 7257 8292 8512 | 8630 | 9258 | 24420 | 20175 | 40406
Table 1: Number of generated partitions
Algorithm
Document DHW | GHDW | EKM RS| DFS| KM BFS
SigmodRecord.xm 24.83 0.28 | <0.01 | <0.01| <0.01| 0.05| <0.01
mondial-3.0.xml 184.17 6.02 | <0.01| <0.01| <0.01| 0.11| 0.02
partsupp.xml 474.13 555| <0.01| <0.01| <0.01| 0.16 0.02
uwm.xml 401.38 1.18| <0.01 | <0.01| <0.01| 0.21| 0.04
orders.xml 565.01 9.73] <0.01| <0.01| <0.01| 0.35| 0.07
xmarkOpl1.xmi 2041.18 6.24| 0.02| 0.03| <0.01|0.63| 0.11

Table 2: CPU time (in seconds)

robust, as the quality of their result relative to the otHgoathms
varies greatly for the various documents.

Another observation is that the GHDW algorithm comes very
close to the optimal result. For the data with relationalctire
(par t supp. xm , orders. xm ), optimality is achieved. The
difference between GHDW and the optimal result for the otloer
uments is always below 4%.

The biggest surprise is the EKM algorithm, whose qualityssa
very close to the optimal result, although the algorithmuigegsim-
ple toimplement. It even beats GHDW for them xm document
by a margin of a few partitions. For the others, EKM is alwdyes t
third-best algorithm.

6.3 Partitioning Time

The higher result quality of GHDW and DHW comes at a price,
as shown in Tab. 2, which lists the algorithm runtime. In akes,
the time needed to partition a tree is much larger for DHW and
GHDW than for the other algorithms. The document structure
has a significant impact on the runtime of GHDW and DHW. For
uwm xml they both are much faster than for the equally large
part supp. xnm document.

The simple structure of the EKM algorithm is reflected in tee r
sults: For all documents but the XMark document, EKMs ruetim
is below the precision of measurement.

tion above, we have chosen to incorporate implementatibbsth
EKM and KM into Natix [6].

Our claim is that on average, fewer storage units result iremo
navigation between nodes of the same storage unit, leaolenbet-
ter query performance. The goal of this experiment is tdfydhis
claim by comparing query evaluation times on storage lag/pu-
duced by the different algorithms. We want to focus on théqper
mance of pure navigation operations when accessing the Eata
this reason we have chosen a set of simple queries from thithXPa
Mark benchmark (Q1-Q7 from [7]), which are evaluated agains
an XMark document of scaling factor 0.1.

We loaded the document into the XDS with both EKM and KM,
using a size limitK' = 256 that corresponds to storage units of
2KB. We executed the queries several times to increaseswaci
but do not include the time for the very first execution of equlry
to preload the buffer. We also use a buffer pool that is latigen
the document, so that there is no page fault during queryatiah.
We also measured the total amount of disk space used in Natix f
the document for the two algorithms. This deviates somevvbat
the theoretical results, as additional metadata is neededintain
the on-disk structures, and fragmentation effects occur.

The results are shown in Tab. 3.

Remarkably, KM uses slightly less total space, becausenhéier
partitions (records in the Natix storage format) can bedogtiaced

DHWs performance makes it an unlikely candidate for use as an by the record manager, which stores several records onla slisy

"online” document insertion algorithm. However, there htidpe
applications where the optimal partitioning is important gar-
titioning can be done "offline” as part of physical reorgatian.
GHDW is faster (around 500KB/sec), but is only useful if docu
ment insertion is rare, and a large number of queries canfibene
from the smaller number of partitions, compensating forgasi-
tioning effort.

In terms of quality and speed, EKM is the much better choice. |
is faster by five orders of magnitude than DHW, with a very good
quality of the result.

6.4 Query Performance

page. For the larger partitions of the EKM algorithms, theord
manager chooses to allocate a new page slightly more oftertod
page fragmentation.

Query evaluation on the sibling partitioning produced byMEK
outperforms evaluation on the KM partitioning for all quesi In
some cases, the performance is improved by more than a factor
of 2. This confirms our claim that sibling partitioning sifjantly
improves the query performance of an XDS.

7. CONCLUSION

We have investigated algorithms to efficiently solve tree pa

Based on the results for the pure main-memory implementa- titioning problems for document insertion in XML Data Stere
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Query KM EKM
Total Occupied Disk Space ca. 8192KB| ca. 8232KB
/sitelregions/*/item 0.065 0.036
/'sitelcl osed_auctions/cl osed_auction/annotati on/
description/parlist/listitentext/keyword 0.033 0.023
/| keywor d 0.770 0.595
[ descendant-or-sel f::listitem descendant-or-self::keyword 0.344 0.262
/sitelregions/+/itenparent::nanmerica or parent::sanerica] 0.150 0.074
[l keywor d/ ancestor::listitem 0.870 0.650
/| keywor d/ ancest or-or-sel f:: mail 0.854 0.607

Table 3: Query processing time (in seconds)

where variable-size document nodes have to be assignedrto st
age units of limited capacity, such as disk pages. Motivéted
current tree storage engine designs [2, 6], and previouk {461,

we have based our work on the assumption that an importaetasp
of such tree partitioning is whether it allows siblings togdaced

in the same partition even if their parent node belongs tdéferdnt
partition. Further, we assume that navigation between sofl@
partition is much cheaper than navigation between nodesps-s
rate partitions. Hence, our goal was to minimize the totahber

of partitions to optimize query performance.

We have formalized thitree sibling partitioningproblem, and
studied its structure. We presented a dynamic programnigw a
rithm called DHW that is capable of finding a minimal tree sigl
partitioning inO(nK?®) time in the worst case, whereis the num-
ber of nodes.

While this is an interesting result in its own right, and may b
of use in other areas than XDSs, we also discussed concrete im
plementation issues for XDSs. The large resource requines e
DHW prompted us to investigate approximation algorithnas tre
better suited to implementation in an XDS. In addition toiey
several existing algorithms to tree sibling partitioningg intro-
duced two novel heuristics, GHDW and EKM, based on our study
of the optimal algorithm.

We implemented the algorithms and performed some expetimen
We demonstrated that sibling partitioning can reduce tta tmum-
ber of partitions by more than 90% compared to the optimal-sol
tion for partitions that are connected by parent-child sdgely.
However, the algorithm for the optimal solution, DHW, iswslo
compared to existing simple suboptimal algorithms and diap
cable only if document insertion is rare or the optimal pieming
is of critical importance.

The EKM algorithm, a novel approximation algorithm based on
the Kundu and Misra algorithm for (non-sibling) tree paotit, pro-
vides by far the best trade-off between result quality andime.
EKM is now the default partitioning algorithm for the Natiyss
tem.

To validate our claim of better query performance of sibliag-
titioning, we ran some experiments using Natix query prsces
In some cases, queries can be executed twice as fast when £EKM i
used for partitioning compared to simple partitioning tlag¢s not
consider sibling edges.
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