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Abstract We revisit the problem of detecting the termination of a dis-
tributed application in an asynchronous message-passing model with
crash-recovery failures and failure detectors. We derive a suitable defini-
tion of termination detection in this model but show that this definition
is impossible to implement unless you have a failure detector which can
predict the future. We subsequently weaken the problem and strengthen
the failure model to allow solvability.

1 Introduction

1.1 Termination detection

In practice, it is often necessary to know when the computation running in
a distributed system has terminated. For example, it is possible to construct
an efficient mutual exclusion algorithm in the following way: a first distributed
algorithm establishes a spanning tree in the network, while a second algorithm
circulates a token in a repeated depth-first traversal of the tree. To ensure the
correctness of mutual exclusion, it is vital that the second algorithm is only
started once the first algorithm has terminated, resulting in the problem of
termination detection.

A termination detection algorithm involves a computation of its own which
should not interfere with the underlying computation which it observes. Ad-
ditionally, it should satisfy two properties: (1) it should never announce ter-
mination unless the underlying computation has in fact terminated. (2) If the
underlying computation has terminated, the termination detection algorithm
should eventually announce termination.

But when is a computation in fact terminated? Answering this question
means to define an appropriate formal notion of termination. To be general,
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the states of processes are mapped to just two distinct states: active and pas-
sive. An active process still actively participates in the computation while a
passive process does not participate anymore unless it is activated by an active
process. Activation can only be done using communication. For message-passing
communication, which we also assume in this paper, a widely accepted definition
of termination is that (1) all processes are passive and (2) all channels are empty.

1.2 Related Work

Many algorithms for termination detection have been proposed in the literature
(see the early overview by Mattern [10] for an introduction). Most of them
assume a perfect environment in which no faults happen. There is relatively
little work on fault-tolerant termination detection [11,14,16,17,15,7,6,12]. All this
work assumes the crash-stop failure model meaning that the only failures which
may occur are crash faults where processes simply stop to execute steps. A
suitable definition of termination is to restrict the fault-free definition to fault-
free processes: A computation is terminated if all alive processes are passive and
no message is in-transit towards alive processes.

Most papers are versions of fault-free termination detection algorithms ex-
tended to the crash-stop model. It is well-known [6] that termination detection is
closely related to the problem of failure detection [3] in this setting. Intuitively, a
failure detector is an abstract device which detects whether a process is crashed
or not. One recent paper [12] presents a general transformation which can trans-
form an arbitrary termination detection algorithm for the fault-free setting into
a crash-stop-tolerant termination detection algorithm using the concept of a per-
fect failure detector. A perfect failure detector accurately detects every crash in
the system.

In this paper we revisit the termination detection problem in a more severe
failure model, namely that of crash-recovery. Roughly speaking, in the crash-
recovery model of failures, processes are allowed to crash just like in the crash-
stop model but they are also allowed to restart their execution later. The crash-
recovery model is much more realistic than the crash-stop model but also much
harder to deal with. This has been demonstrated by earlier work in this failure
model giving solutions to reliable broadcast [2], consensus using failure detec-
tors [1], or atomic broadcast [13]. We are unaware, however, of any termination
detection algorithm for the crash-recovery model.

1.3 Problems in the crash-recovery model

Solving the termination detection problem in the crash-recovery model is not an
easy task. First of all, it is not clear what a sensible definition of termination is
in the crash-recovery model. On the one hand, the classical (fault-free) definition
of termination as mentioned above is clearly not suitable: If an active process
crashes, there is always the possibility that it recovers later but there is no
guarantee that it actually will recover. So an algorithm is in the dilemma to either
making a false detection of termination or to possibly waiting infinitely long (see
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Figure 1). On the other hand, the definition used in the crash-stop model is also
not suitable: An algorithm might announce termination prematurely if an active
process which was crashed recovers again (see Figure 2).
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Figure 1: Classical termination in the crash-recovery model
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Figure 2: Correct-restricted classical termination in the crash-recovery model

1.4 Contributions

The setting of this paper is the crash-recovery model which is equipped with
failure detectors. We make the following contributions:

– We give a definition of what it means to detect termination of a distributed
computation in the crash-recovery model and argue that it is sensible. Our
definition is also a strict generalization of the definitions of termination de-
tection for fault-free and crash-stop models.

– We show that it is impossible to solve the termination detection problem
in the crash-recovery model if a process can restart in any state (active
or passive) on recovery. We do this by relating the problem of termination
detection to the problem of failure detection and show that the necessary
failure detector is not implementable.
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– We introduce the notion of stabilizing termination detection in which termi-
nation detection announcements may be revoked a finite number of times.
We show that even this weaker variant of termination detection is impossi-
ble to solve in the crash-recovery model if the system contains one or more
unstable processes—processes that crash and recover infinitely often.

– We introduce the notion of stabilizing crash-recovery model in which all pro-
cesses eventually either stay up or stay down (that is, the crash-recovery
model eventually behaves like the crash-stop model). We present an algo-
rithm for solving the stabilizing termination detection problem in the sta-
bilizing crash-recovery model that uses a failure detector which is strictly
weaker than the perfect failure detector.

In summary, the results give insight into the additional complexities induced
by the crash-recovery model in contrast to the crash-stop model. For lack of
space, proofs and our algorithm [9] have been moved to the appendix.

2 Model

2.1 Distributed System

A distributed system consists of a set of processes that are connected using a com-
munication network. The processes communicate with each other by exchanging
messages. There is no shared memory. We assume an asynchronous distributed
system meaning that there is no bound on delays of messages and relative speeds
of processes. We use Π to denote the set of processes and Γ to denote the set
of channels in the system.

We assume the existence of a discrete global clock. The global clock is solely
a fictional device and the processes do not have access to it. The range T of the
clock’s ticks is the set of natural numbers N.

In distributed systems it is usually assumed that communication networks
allow communication in duplex mode, that is, messages can be exchanged in
both directions between two processes. For our case, it is helpful to assume that
both communication directions can be observed independently.

2.2 Distributed Computation

A distributed system generates a distributed computation by executing a dis-
tributed program (sometimes also called algorithm or application). When exe-
cuting a local program, a process p can produce three types of events: (1) send
events for sending a messages m to process q, (2) receive events for receiving (or
delivering) a message m which was sent by process q, and (3) internal events
if an instruction is executed and no message is sent or received. Every event
executed by a process changes its local state. The state of the entire distributed
system—called configuration—consists of the set of local states of all processes
and the set of all messages in transit.
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An execution of a distributed algorithm is a maximal sequence E = (γ0, γ1, γ2,
. . .), where, for each i ≥ 0, γi is a configuration of the system, and γi+1 is ob-
tained from γi by executing an event on exactly one process. Maximality means
that the execution is either infinite or ends in a configuration where no further
events can be executed.

Computations and Executions. An execution of a distributed algorithm may
also be described as a partially ordered set of events that have been executed so
far. We define a causality relation ≺ as the partial order [8]:

1. If e and f are different events of the same process and e occurs before f ,
then e ≺ f .

2. If s is a send event and r the corresponding receive event, then s ≺ r.
3. If e ≺ g and g ≺ f , then e ≺ f .

In the partial order ≺ there may be pairs of events e and f for which neither
e ≺ f nor f ≺ e holds. Such events are called concurrent. Executions which
differ only in the permutation of concurrent events are called equivalent, denoted
E ∼ F . A computation of a distributed algorithm is an equivalence class (under
∼) of executions of the algorithm. A computation is the class of all interleavings
of events which respect to the same causality relation.

2.3 Failures

Crash-Recovery Model. We assume that processes fail by crashing and may
recover subsequently. A process may fail and recover more than once. When
a process crashes, it stops executing its algorithm and cannot send or receive
messages. Processes have two types of storage: volatile and stable. If a process
crashes, it looses the entire contents of its volatile storage. Stable storage is not
affected by a crash. However, access to stable storage is expensive and should
be avoided as much as possible.

A failure pattern specifies times at which processes crash and (possibly) re-
cover. It is a function F from the set of global clock ticks T to the powerset of
processes 2Π . If p ∈ F (t), then process p is crashed at time t. Given a failure
pattern F , a process p ∈ Π

– is said to be up at time t, if p �∈ F (t).
– is said to be down at time t, if p ∈ F (t).
– crashes at time t ≥ 1 if p is up at time t − 1 and down at time t.
– recovers at time t ≥ 1 if it is down at time t − 1 and up at time t.

As discussed in Aguilera et al. [1], a process p in the crash-recovery model
belongs to one of the four categories:

– Always-up. Process p never crashes.
– Eventually-up. Process p crashes at least once, but there is a time after which

p is permanently up.
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– Eventually-down. There is a time after which process p is permanently down.
– Unstable. Process p crashes and recovers infinitely many times.

Always-up and eventually-up processes are referred to as good processes.
Eventually-down and unstable processes are referred to as bad processes. We
use the phrases up process and live process synonymously.

In this paper, we assume that communication channels among processes are
eventually-reliable. A channel from process p to process q is said to be eventually-
reliable if it satisfies the following properties:

– Validity. If p sends a message to q and neither p nor q crashes, then the
message is eventually delivered to q.

– No Duplication. No message is delivered more than once.
– No Creation. No message is delivered unless it was sent.

We also assume that all messages sent by a process are distinct. One way to
ensure this is to maintain an incarnation number for a process in stable storage.
The incarnation number is incremented whenever the process recovers from a
crash and written back to stable storage. In addition, there is a sequence number
that is stored in volatile storage and is incremented whenever the process sends
a message. Each message is piggybacked with the incarnation number and the
sequence number, which ensures that all messages sent by a process are distinct.

2.4 Failure Detectors in the Crash-Recovery Model

Many important problems in distributed computing such as consensus, atomic
broadcast and termination detection are impossible to solve in an asynchronous
distributed system when processes are unreliable [5]. To that end, Chandra and
Toueg [3] introduced the notion of failure detector. A failure detector at a process
outputs its current view about the operational state (up or down) of other pro-
cesses in the system. Depending on the properties that failure detector output
has to satisfy, several classes of failure detectors can be defined [3]. With the aid
of failure detectors, problems such as consensus, atomic broadcast and termina-
tion detection become solvable in unreliable asynchronous distributed systems
that are otherwise impossible to solve. A failure detector itself is implemented
by making certain synchrony assumptions about the system [3].

The notion of failure detector, which was originally defined for crash-stop
failure model, has been extended to crash-recovery failure model as well [1]. The
failure detector defined by Aguilera et al. [1] for crash-recovery failure model,
denoted by ♦Se, outputs a list of processes which are deemed to be currently up
along with an epoch number for each such process. The epoch number associated
with a process roughly counts the number of times the process has crashed and
recovered.

In this paper, we use a failure detector with a simpler interface, denoted
by ♦Pcr. The failure detector at a process only outputs a list of processes it
currently deems to be up (we call this the trust-list). Processes which are not
on the trust-list are suspected to be down by the failure detector. A suspected
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process is unsuspected if it is put on the trust-list. This failure detector satisfies
the following properties:

– Completeness. Every eventually-down process is eventually permanently sus-
pected by all good processes. Every unstable process is suspected and un-
suspected infinitely often by all good processes.

– Accuracy. Every good process is eventually permanently trusted by all good
processes.

A failure detector from class ♦Pcr is strictly stronger than a failure detector
from class ♦Se because, in ♦Se, only one good process is required to be per-
manently trusted by all good processes. Nevertheless ♦Pcr can be implemented
under the same approach and the same assumptions of partial synchrony made
in the original paper of Aguilera et al. [1].

3 The Termination Detection Problem

In the termination detection problem, the system is executing a distributed
program, thereby generating a distributed computation referred to as underlying
computation. A process in the system can be in two states with respect to the
computation: active or passive. A process can execute an internal event of the
computation only if it is active. There are three rules that describe allowed state
changes between active and passive states:

– An active process may become passive at any time.
– A passive process can become active only on receiving a message.
– A process can send a message only when it is active.

We assume that processes have access to stable storage using which they
are able to maintain their last saved state during time intervals when they are
down. Especially, the state changes between active and passive are written to
stable storage (e.g., if an active process crashes it is still active after recovery).
This ensures that a process that fails in passive state, on recovery, does not
restart in active state. In other words, a process can restart in active state
only if it failed in active state. Otherwise, even after all processes have become
passive and all processes have become empty, which corresponds to termination
in failure-free model, the computation can simply restart by a process failing
and recovering later. Intuitively, this makes it impossible to detect termination
of the computation. As we show later, even under this strong assumption about
computation state on recovery, termination detection problem is impossible to
solve.

Intuitively, the underlying computation is said to be terminated if no process
is currently active or becomes active in the future. To provide a more formal
definition of termination in the crash-recovery model, we first examine the tra-
ditional definitions of termination in the failure-free and crash-stop models to
determine the fundamental properties that various definitions of termination
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have in common. This allows us to establish a sensible definition of termination
in any environment. To our knowledge, this is the first attempt at defining the
termination condition in the crash-recovery model.

3.1 Definitions of Termination in Other Failure Models

Termination depends on the events that can occur in the system. We distin-
guish between two kinds of events: application events, which are generated by
the application, and environment events, which occur according to the failure
model (e.g., crashes or recoveries). Let C denote the set of all possible partial
computations in a given failure model. A definition of termination, say TERM,
can be considered as a predicate on C.

A computation intuitively has come to an end if it does not produce appli-
cation events anymore. Thus, a computation C ∈ C should satisfy the following:

TERM(C) =⇒ C contains finitely many application events. (1)

A computation containing finitely many application events is said to be in its
final configuration after the last of the application events has been executed on
every process. Note that, in contrast to application events, environment events
can occur even in a terminated configuration. For example, a process may crash
after a computation has terminated. Let Cfinite denote the subset of computations
in C that contain only finite number of application events.

Classical Definitions of Termination. To formally define termination, we
consider classical definitions of termination.

Definition 1 A computation C ∈ Cfinite is classically terminated (notation:
C ∈ CT or CT(C)) if and only if the final configuration of C satisfies:

CT(C) ⇐⇒ (∀p ∈ Π : p is passive) ∧ (∀(p, q) ∈ Γ : (p, q) is empty)

The above definition of termination is suitable for the failure-free model. In
the crash-stop model, one or more processes may fail by crashing. A process is
said to be correct if it never fails.

Definition 2 A computation C ∈ Cfinite is correct-restricted classically termi-
nated (notation: C ∈ CRCT or CRCT(C)) if and only if the final configuration
of C satisfies:

CRCT(C) ⇐⇒ (∀p ∈ Π : p is passive)
∧ (∀(p, q) ∈ Γ, q is a correct process : (p, q) is empty).

The correct-restricted definition of termination is particularly suitable for
the crash-stop model.
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Backward Compatibility. If we consider the relation between the classical
termination and the correct-restricted termination, we see that CRCT is “back-
ward compatible”: In the crash-stop model, there may be fault-free runs and, in
that case, the definition of correct-restricted termination becomes identical to
that of classical termination. Formally expressed, let

– Cfault-free ⊂ C be the set of all computations where no failures happen,
– Ccrash-stop ⊂ C be the set of all computations where only crash-stop failures

happen and
– Ccrash-recovery ⊂ C be the set of all computations where crash-recovery failures

happen.

So, backward compatibility means that in the fault-free case CRCT is equiv-
alent to CT. Formally:

∀C ∈ Cfault-free : CT(C) ⇐⇒ CRCT(C). (2)

To achieve backward compatibility, it is clear that every new definition of
termination TERM for the crash-recovery model has to satisfy:

∀C ∈ Ccrash-stop : CRCT(C) ⇐⇒ TERM(C). (3)

A Necessary and Sufficient Condition. Termination condition has to be
“stable”. Once the termination condition holds, it should continue to hold. We
define a prefix relation � on set of computations as follows. The expression C �
C′ means that computation C is a strict prefix of computation C′. Informally,
computation C is a strict prefix of computation C′ (C � C′) if C′ differs from
C only in some application events “appended” to C. Formally

C � C′ ⇐⇒ (Capp ⊂ C′
app)

∧
(
(≺C⊆≺C′) ∧ (∀(e, e′) ∈≺C′ : e ∈ C′ \ C ⇒ e′ ∈ C′ \ C)

)
,

where ≺C and ≺C′ are the causality relations of C and C′ respectively, and Capp

and C′
app are the sets of application events in C and C′ respectively. It has to be

guaranteed that no “new” event in C′ causally precedes an event of computation
C. An example of the strict prefix relation is given in Figure 3.

������� �� ��������	
�

������� �� ��
�����������

����� A1 ����� A2 ����� B1 ����� B2 ����� C1 ����� C2

Figure 3: Example of the strict prefix relation
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Finally, the stability property of termination can be defined as follows:

TERM(C) ⇐⇒ �C′ ∈ C : C � C′ (4)

It is important to note that—of course—CRCT and CT satisfy condition 4
for C = Cfault-free and C = Ccrash-stop respectively.

3.2 Definition of Termination in the Crash-Recovery Model

Based on our argument so far, a definition of termination for the crash-recovery
model should satisfy the three conditions of finiteness (Eq. 1), backward compat-
ibility (Eq. 3), and stability (Eq. 4). For the crash-recovery model, we can define
a process to be correct if it is always-up. Since the termination condition should
be stable, it is not sufficient to use the correct-restricted classical termination
definition in the crash-recovery model, as explained in the introduction. Note
that a process may write its active state to stable storage and therefore recover
in an active state.

Let F be a failure pattern in the crash-recovery model. A process p ∈ Π is
called forever-down at time t if

∀t′ ≥ t : p ∈ F (t′).

Intuitively, a forever-down process is a down process that never recovers. Also,
a temporarily-down process is a process that eventually recovers (but may crash
again later). Using the notion of forever-down process, we now give a definition
of termination in the crash-recovery model.

Definition 3 A computation C ∈ Cfinite is robust-restricted terminated (nota-
tion: C ∈ RRT or RRT(C)) if and only if the final configuration of C satisfies:

RRT(C) ⇐⇒ (∀p ∈ Π : p is passive ∨ p is forever-down)
∧(∀(p, q) ∈ Γ : ¬(q is forever-down) ⇒ (p, q) is empty).

We call processes robust if they are so resilient against failures that they,
whenever they crash, they eventually recover. The term robust-restricted termi-
nated was chosen because we demand that the subset of robust processes should
have terminated.

The following two theorems show that robust-restricted termination satisfies
the backward compatibility property (property 2) and the stability condition
(property 4) that all definitions of termination should satisfy.

Theorem 4
∀C ∈ Ccrash-stop : RRT(C) ⇐⇒ CRCT(C)

Theorem 5

RRT(C) ⇐⇒ �C′ ∈ Ccrash-recovery : C � C′

where � is the strict prefix relation on computations.
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This, robust-restricted termination is a good definition of termination detec-
tion in the crash-recovery model.

3.3 Termination Detection Algorithm

Now that we know what it means for a computation to have terminated, we
specify formally the properties of the termination detection problem:

– Liveness. If the underlying computation satisfies the termination condition,
then the termination detection algorithm must announce termination even-
tually.

– Safety. If the termination detection algorithm announces termination, then
the underlying computation has indeed terminated.

– Non-Interference. The termination detection algorithm must not influence
the underlying computation.

To avoid confusion, we refer to messages sent by the underlying computa-
tion as application messages and messages sent by the termination detection
algorithm as control messages.

4 Impossibility of Termination Detection and its
Consequences

We assume that the processes have access to failure detector modules which
observe the occurrence of failures in the system. Failure detectors are defined
as general functions of the failure pattern, including functions that may pro-
vide information about future failures. Of course, such failure detectors cannot
be implemented in the real world. Delporte-Gallet et al. [4] introduced the no-
tion of realistic failure detector. A failure detector is called realistic if it cannot
guess the future behavior of the processes. In this work, we restrict ourselves
to realistic failure detectors. To determine, if an execution is robust-restricted
terminated it may be necessary to decide whether a currently down process is
temporarily-down or forever-down. The two kinds of processes only differ in their
future behavior. As a result, we postulate that no realistic failure detector can
distinguish between a temporarily-down process and a forever-down process.

Lemma 6 No realistic failure detector can decide at time t whether a process p
that is currently down is temporarily-down or forever-down in the crash-recovery
model.

Based on above lemma, it is possible to show that the termination detection
problem cannot be solved in the crash-recovery model using only a realistic
failure detector. This can be proved by reducing the problem of building a non-
realistic failure detector to the problem of solving termination detection.

Theorem 7 A non-realistic failure detector is necessary for solving termination
detection in the crash-recovery model.
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The next result is a direct consequence of Theorem 7.

Corollary 8 The termination detection problem cannot be solved in the crash-
recovery model using only a realistic failure detector.

4.1 From Impossibility to Solvability

Two common ways to circumvent the impossibility result of Corollary 8 are
to restrict the failure model and weaken the problem. We argue that both are
necessary here. As defined in Section 2.3, there are four classes of processes in
the crash-recovery model: always-up, eventually-up, eventually-down and unsta-
ble processes. By examining these four classes with regard to their potential to
impede the solvability of termination detection the class of unstable processes
causes most harm. Always-up, eventually up or down processes do not “cause
trouble”—after finite time their behavior becomes predictable. But the only pre-
dictable property of unstable processes is that they always stay unpredictable.
Thus, we restrict the crash-recovery model by assuming that there are no un-
stable processes.

Definition 9 Now we regard the crash-recovery model as defined in Section 2.3
and make the additional assumption that there are no unstable processes. We
refer to the resulting failure model as stabilizing crash-recovery model.

A simple implication of this restriction is that, in the stabilizing crash-
recovery model, eventually all crashed processes are forever-down. This can be
stated as the following lemma:

Lemma 10 Eventually the stabilizing crash-recovery model changes to crash-
stop model.

To weaken the problem, we weaken the safety property of the termination
detection algorithm. Specifically, a termination detection algorithm is allowed to
announce termination falsely albeit only a finite number of times. In other words,
a finite number of times the termination detection algorithm may announce
termination even through the underlying computation has not yet terminated,
and revoke the termination announcement. Eventually the algorithm “stabilizes”
and correctly detects termination.

Definition 11 An algorithm that solves the stabilizing termination detection
problem has to satisfy the following properties:

– Liveness. If the underlying computation has terminated, then eventually
the termination detection algorithm announces termination and henceforth
termination is not revoked.

– Eventual Safety. Eventually, if the termination detection algorithm announces
termination, then the underlying computation has indeed terminated.
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We use the notion of stabilization at two places: first, to restrict our problem
to stabilizing termination detection, and second, to restrict the failure model
to stabilizing crash-recovery model. Both assumptions are necessary as we now
show: (1) Termination detector in the crash-recovery model: Not solvable (Corol-
lary 8). (2) Termination detection in the stabilizing crash-recovery model: when
a process crashes, a realistic failure cannot distinguish between whether the
crash is temporary or permanent. If it assumes that crash is temporary (but it
actually is permanent), then termination is never announced and the liveness
property is violated. On the other hand, if it assumes that crash is permanent
(but it actually is temporary), termination is announced prematurely and the
safety property is violated. (3) Stabilizing termination detection in the stabilizing
crash-recovery model: we provide an algorithm in the next section. (4) Stabiliz-
ing termination detection in the crash-recovery model: Assume a computation
which never terminates because at least one active process crashes and recovers
infinitely often. As a result, the termination detection algorithm will never cease
announcing termination erroneously, because it expects the unstable process to
“stabilize”—that is, to eventually cease crashing/recovering.

Therefore, our approach to solve stabilizing termination detection in the sta-
bilizing crash-recovery model is a reasonable approach. In the next section we
solve stabilizing termination detection in the stabilizing crash-recovery model us-
ing a failure detector from class ♦Pcr. The next theorem shows that this kind of
failure detector is also necessary. Hence, the failure detector ♦Pcr is the weakest
one for solving stabilizing termination detection in the stabilizing crash-recovery
model. This can be shown by reducing the problem of stabilizing termination
detection to ♦Pcr.

Theorem 12 A failure detector from class ♦Pcr is necessary for solving stabi-
lizing termination detection in the stabilizing crash-recovery model.

5 Solving Stabilizing Termination Detection

In this section, we develop an algorithm for solving the stabilizing termination
detection problem in the stabilizing crash-recovery model. It turns out that since
we are solving a weaker version of the termination detection problem in more re-
stricted crash-recovery model, we can weaken some of the assumptions we made
earlier. First, we assume that a process, on recovery, may start in active state
only if it crashed in active state. This assumption may be weakened to: a process,
on recovery, may start in active or passive state irrespective of the state in which
it crashed. The actual state on recovery depends on the the application-specific
recovery mechanism including the extent to which the application utilizes stable
storage to log its state during execution. Second, we assume that channel does
not duplicate any message. This assumption may be weakened to: a channel
may duplicate a message finite number of times. With this weakened assump-
tion, our channel can easily implemented on top of a fair-lossy channel using
retransmissions and acknowledgments.
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5.1 Algorithm Ideas

The main idea of our termination detection algorithm is that every process saves
information about all messages it sends and receives. If the knowledge of all
processes is combined, then the total set of messages in transit may be computed.
Messages which are in transit towards a crashed process are assumed to be lost.
If such a message is delivered anyhow, then the corresponding channel may have
been incorrectly assumed to be empty as a result of which termination may have
announced prematurely. The termination announcement is then revoked. Finally,
the properties of the stabilizing crash-recovery model guarantee that eventually
erroneous announcements of termination will end.

The second idea is that every process is responsible for its own state and the
state of all its incoming channels. If a process becomes passive and it believes
all its incoming channels to be empty, then it proposes—by using a broadcast
primitive—the announcement of termination. If a process has received such a
termination announcement proposal from all live process, it announces termi-
nation. For the termination detection algorithm, we use a best-effort broadcast
primitive [2]. Informally, best-effort broadcast guarantees that a broadcast mes-
sage is correctly delivered to all processes which are currently up and do not
crash while executing the broadcast protocol. All currently up processes agree
on the delivered message. Of course, all messages are delivered only once and no
message is created by the best-effort broadcast primitive.

The whole system consists of (1) the underlying computation C which is
observed with respect to termination, (2) the superimposed and crash-recovery
tolerant termination detection algorithm A we develop now, and (3) a failure
detector D of class ♦Pcr. If a passive process delivers a message, then it executes
an 〈becoming active〉 event. We assume that all events that are executed satisfy
the following: the corresponding instructions are executed within one time unit
(atomically).

5.2 Algorithm in Words

Every processes saves all its sent and received messages in volatile storage. (It is
not necessary to store an entire message but rather it is sufficient to store some
uniquely identifying information about the message.) For this purpose a process
pi maintains two vector variables sent i[1..n] and rcvd i[1..n] of type “message
set”. Messages sent by process pi to process pj are stored in sent i[j], whereas
messages received by pi from pj are stored in rcvd i[j]. To minimize access to
stable storage, every process saves messages only up to its next crash. Upon
recovery it initializes all its variables.

If a process pi detects the crash of a process pj , then pi clears the content
of sent i[j]. Upon becoming passive, a process pi broadcasts its vector sent i to
all processes. Thereafter the vector sent i does not change as long as process pi

remains passive (because passive processes do not send messages).
Whenever a process detects recovery of another process (via its failure de-

tector), it again broadcasts its vector sent to all processes if it is passive. If a
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process pi receives such a vector sentj broadcast by process pj , then pi saves
the messages contained in sentj[i] in sent to mei[j], overwriting the previous
contents of sent to mei[j]. This ensures that pi does not wait for messages sent
by pj that may have been lost while pi was down. By comparing the variables
sent to mei and rcvd i, process pi determines whether there are any messages in
transit towards it. Once a passive process believes that all its incoming channels
with live processes have become empty, it broadcasts a TERM signal to all pro-
cesses. By sending such a TERM signal, a process proposes to all other processes
that termination should be announced.

Finally, a process announces termination once it has received TERM sig-
nals from all live processes through a termination event 〈TERMINATION〉. On
becoming active, a process broadcasts a NO TERM signal if it has proposed
TERM earlier. Because this algorithm solves stabilizing termination detection,
prematurely announced terminations have to be revoked. The revocation event
〈NO TERMINATION〉 is announced if the recovery of a process is detected or
if an application message is received. At the delivery of a NO TERM signal,
termination is also revoked. A formal description of the algorithm is given in the
appendix (Algorithm B.1).

Some Issues. The basic algorithm described above (Algorithm B.1) has some
shortcomings which have to be addressed for it to work correctly. First, we have
to ensure that an entry of vector sent to me is overwritten on receiving a sent
vector only if the entry in sent vector is “newer” than the corresponding entry
in sent to me vector. Second, a process may not detect all crashes of another
process. As a result, it may not reset the entry for that process in its sent vector.
To understand this better, consider the following scenario. Process pi sends a
message m to process pj . Before pj receives m, it crashes and m arrives while
pj is down. If pi does not reset sent i[j] (which purges m), pj will continue to
believe that m is in transit towards it. Third, proposal to announce termination
by various processes should be consistent with each other. Specifically, let ei and
ej be the events when pi and pj , respectively, propose to announce termination.
Let ai and bi be the last passive events on pi satisfying ai ≺ ei and bi ≺ ej ,
respectively. Termination should be announced only if ai = bi. If ai ≺ bi, then
pi’s proposal is based on “older” state of pi than pj’s proposal. A similar incon-
sistency exists if bi ≺ ai. Testing for consistency among termination proposals
ensures that the algorithm satisfies the following desirable properties: (1) if no
process fails during an execution and there are no false suspicions, our algo-
rithm satisfies the safety property, that is, it never announces false termination,
and (2) even if the computation never terminates, our algorithm announces and
revokes termination only a finite number of times.

These issues can be addressed by maintaining a vector current i on each pro-
cess pi whose each entry is a tuple. The first entry of current i[j] denotes pi’s
estimate of pj current incarnation number. The second entry of current i[j] de-
notes pi’s estimate of the number of application messages that pj has sent so
far. The vector is stored in a process’ volatile storage. Every message sent by a
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process is timestamped with this vector. It can be shown that, with this modi-
fication, all the issues mentioned above can be addressed using this vector. For
example, whenever pi’s estimate of pj ’s incarnation number changes, pi assumes
that it may have missed pj’s crash and resets sent i[j]. This vector can also be
used to appropriately timestamp a proposal by a process for termination an-
nouncement so that consistency among termination announcement proposals by
various processes can be tested.

Theorem 13 Our algorithm (Algorithm B.1) solves the stabilizing termination
detection problem in a stabilizing crash-recovery system using a failure detector
from class ♦Pcr.

6 Conclusion

In this paper, we have studied the termination detection problem under the
crash-recovery model. We have identified a necessary and sufficient condition
that a termination condition should satisfy and have shown that no termination
detection algorithm can solve the problem without knowing the future failure
pattern. We have also developed a stabilizing algorithm for solving the termina-
tion detection problem under the stabilizing crash-recovery model.
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A Omitted Proofs

Proof of Theorem 4

Proof sketch: At first, we show that in the crash-stop model down processes
are equivalent to forever-down processes. Then, we consider the definitions of
RRT and CRCT. These definitions can be transformed into each other if
“down” is replaced by “forever-down” and vice versa.
1. p down in C ⇐⇒ p forever-down in C

Proof: Follows from C ∈ Ccrash-stop. �
2. RRT(C) =⇒ CRCT(C)

Proof:
2.1. All processes in C are passive or forever-down and all channels towards

processes which are not forever-down are empty.
Proof: Follows from the definition of RRT(C) (Definition 3). �

2.2. Q.E.D.
Proof: Follows from step 1 and step 2.1 (“forever-down” can be replaced
by “down” in step 2.1). �

3. CRCT(C) =⇒ RRT(C)
Proof:
3.1. All processes in C are passive or down and all channels towards processes

which are not down are empty.
Proof: Follows from the definition of CRCT(C) (Definition 2). �

3.2. Q.E.D.
Proof: Follows from step 1 and step 3.1 (“down” can be replaced by
“forever-down” in step 3.1). �

4. Q.E.D.
Proof: Follows from steps 2 and 3. �

Proof of Theorem 5

Proof sketch: This proof is done by two indirect proofs. If there is a com-
putation C′ where C is a strict prefix of C′, then C is not robust-restricted
terminated. This is because application events may be appended to computa-
tion C. Conversely, if computation C is not robust-restrited terminated, then it
may be extended to a computation C′ with C � C′.
1. RRT(C) =⇒ �C′ ∈ Ccrash-recovery : C � C′

Proof:
1.1. Assume: ∃C′ ∈ Ccrash-recovery : C � C′

Prove: ¬RRT(C)
Proof:
1.1.1. Capp ⊂ C′

app

Proof: Follows from the definition of strict prefix. �
1.1.2. ∃ẽ ∈ C′

app \ Capp

Proof: Follows from step 1.1.1. �
1.1.3. ∃(e, ẽ) ∈≺C′ : e ∈ C
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Proof: Follows from step 1.1.2 and the definition of strict prefix. �
1.1.4. Case: ∃p ∈ Π : p is active-up in the final configuration of C.

Proof: Follows from step 1.1.3 and e and ẽ occur on the same process
p. �

1.1.5. Case: Message is in transit.
Proof: Follows from step 1.1.3 and ẽ is a receive event. �

1.1.6. Q.E.D.
Proof: Steps 1.1.4 and 1.1.5 cover all cases. �

1.2. Q.E.D.
Proof: Follows from step 1.1 and indirect proof ((A ⇒ B) ⇔ (¬B ⇒ ¬A)).�

2. �C′ ∈ Ccrash-recovery : C � C′ =⇒ RRT(C)
Proof:
2.1. Assume: ¬RRT(C)

Prove: ∃C′ ∈ Ccrash-recovery : C � C′

Proof:
2.1.1. Case: Exists process p in the final configuration of C which is active-

up.
Proof: Follows from the definition of ¬RRT(C). �

2.1.2. Case: Exists non-empty channel towards a non forever-down process
in the final configuration of C.

Proof: Follows from the definition of ¬RRT(C). �
2.1.3. An active-up process produces events.

Proof: Follows from the definition of active-up process. �
2.1.4. A message in transit towards a non forever-down process is possibly

delivered and produces a receive event.
Proof: Follows from the definition of a reliable channel. �

2.1.5. Q.E.D.
Proof: Follows from steps 2.1.1, 2.1.2, 2.1.3, 2.1.4 and the definition of
strict prefix. �

2.2. Q.E.D.
Proof: Follows from step 2.1 and indirect proof. �

3. Q.E.D.
Proof: Follows from steps 1 and 2. �

Proof of Lemma 6

Proof sketch: We assume a realistic failure detector that may decide whether
a process p is down or forever-down. Then we suppose two failure patterns which
are the same up to a particular time t. At time t process p is down in the first
failure pattern and forever-down in the second one. Because the failure detector
distinguishes down from forever-down processes the failure detector histories are
different at time t. This contradicts the assumption that the failure detector is
realistic.
1. Assume: (1) D is a realistic failure detector.
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(2) D can decide at time t whether process p is down or forever-
down.

Prove: false
Proof:
1.1. There exist two failure patterns F1 and F2 with the following properties

regarding process p:
(a) Up to time t, F1 and F2 are the same, formally ∀t′ ≤ t : F1(t′) =

F2(t′).
(b) p crashes at time t in F1 and F2, formally p ∈ F1(t) ∧ p ∈ F2(t).
(c) p eventually recovers in F1, formally ∃t̃ > t : p �∈ F1(t̃).
(d) p is forever-down in F2, formally ∀t̃ ≥ t : p ∈ F2(t̃).

Proof: F1 and F2 are valid failure patterns in the crash-recovery model.�
1.2. D will declare p as forever-down in F2 but not in F1 at time t.

Proof: Follows from assumption 1.(2) and step 1.1. �
1.3. There exist failure detector histories H1 ∈ D(F1) and H2 ∈ D(F2) such

that H1 ∈ D(F1) �= H2 ∈ D(F2).
Proof: Follows from step 1.2 and the definition of a failure detector. �

1.4. D is not a realistic failure detector.
Proof: From step 1.1.(a) follows that F1 and F2 are the same up to time
t. From step 1.3 follows that there exist two failure detector histories which
are different at time t. The step follows from the definition of a realistic
failure detector. �

1.5. Q.E.D.
Proof: Step 1.4 contradicts assumption 1.(1). �

2. Q.E.D.
Proof: Follows from step 1 and proof by contradiction. �

Proof of Theorem 7

Proof sketch: We implement a non-realistic failure detector by using a ter-
mination detection algorithm for the crash-recovery model. Every process runs
a computation with only one process which is always active. Additionally, ev-
ery process executes n instances of the termination detection algorithm, where
every instance observes one computation of every other process. If the termina-
tion detection algorithm announces one computation to be terminated, then the
corresponding process is forever-down. Namely, the computation of a process
pi only terminates if pi is forever-down, because all processes are supposed to
be always active. By Lemma 6, a failure detector that recognizes forever-down
processes is not realistic.
1. Any termination detection algorithm can be transformed into a non-realistic

failure detector.
Proof:
1.1. Let TCRM be any termination detection algorithm in the crash-

recovery model.
Proof: Exists from step 1. �
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1.2. Consider the following construction:
– Every process pi runs a computation Ci consisting of just process pi

which is always active.
– All processes start n instances T i

CRM of TCRM , one for every compu-
tation Ci.

– Upon announcement of termination of T i
CRM , the process declares pi

as forever-down.
If the construction announces pi as forever-down, then pi in fact is forever-
down.

Proof: Follows from the safety property of TCRM which is a correct algo-
rithm (step 1.1). �

1.3. If pi is forever-down, then eventually the construction in step 1.2 will
announce pi as forever-down.

Proof: Follows from the liveness property of TCRM and step 1.1. �
1.4. The failure detector implemented in step 1.2 is non-realistic.

Proof: The failure detector can decide at time t whether p is down or
forever-down in the crash-recovery model (steps 1.2 and 1.3). The step fol-
lows from Lemma 6. �

1.5. Q.E.D.
Proof: Follows from step 1.4. �

2. Q.E.D.
Proof: Follows from step 1 and definition of “necessary”. �

Proof of Theorem 13

Proof sketch: We will show that the liveness and the eventual safety property
of stabilizing termination detection are satisfied. The liveness proof is straight-
forward. To prove eventual safety, we will construct a finite point in time where
the safety property holds. Naturally non-interference is satisfied because the
processes do not influence the underlying computation.
1. Assume: RRT(C) holds.

Prove: Eventually, all live processes announce 〈TERMINATION〉 and hence-
forth never revoke termination.

Proof:
1.1. All non-forever-down processes are passive and all channels towards non-

forever-down processes are empty.
Proof: Follows from the definition of RRT. �

1.2. ∃ point in time t1 when the last process pl performs its final recovery.
Proof: Follows from the definition of the stabilizing crash-recovery model.�

1.3. After t1 all down processes are forever-down.
Proof: Follows from step 1.2. �

1.4. At time t1 process pl broadcasts its sent l variable.
Proof: Follows from steps 1.1 and 1.2 and lines 25-28. �

1.5. ∃ time t2 > t1: After t2 all other live processes broadcast their sent
variables.
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Proof: Follows from steps 1.1, 1.2 and the correctness of the failure detector
and lines 11-17. �

1.6. ∃ time t3 > t2: After t3 all live processes have received sent variables
from all other live processes.

Proof: Follows from the termination property of broadcast and steps 1.4
and 1.5. �

1.7. After t3: Every live process knows which messages have been sent to it
and which messages it has received since its final recovery.

Proof: Follows from step 1.6 and lines 36-38 and 22-24. �
1.8. After time t3: Every live process broadcasts a TERM signal.

Proof:
1.8.1. After t3: Every live process is passive.

Proof: Follows from step 1.1. �
1.8.2. After t3: All messages sent to a live process after its final recovery

have been received.
Proof: Follows from step 1.1. �

1.8.3. Q.E.D.
Proof: Follows from steps 1.8.1, 1.8.2 and 1.7 and lines 43-48. �

1.9. ∃ time t4 > t3: After t4 every live process has delivered a TERM signal
from every live process.

Proof: Follows from step 1.8 and properties of broadcast. �
1.10. After t4: Every live process announces 〈TERMINATION〉.

Proof: Follows from step 1.9 and lines 49-51 and 52-54. �
1.11. After t4: No live process revokes termination.

Proof: Follows from step 1.2 and lines 11-12, step 1.1 and lines 18-19, 29-35
and 39-42. �

1.12. Q.E.D.
Proof: Follows from steps 1.10 and 1.11 and the definition of stabilizing
termination detection. �

2. Prove: ∃ finite point in time where henceforward holds: If a live process
announces 〈TERMINATION〉, then RRT holds.

Proof:
2.1. ∃ point in time t1: After t1 all live processes have performed their final

recovery.
Proof: Follows from the definition of the stabilizing crash-recovery model.�

2.2. After t1: For every process pi there is only a finite number of messages
sent to pi before pi’s final recovery, which have not yet been delivered to
pi (pi-spurious messages).

Proof: Follows from step 2.1 and only a finite number of messages may be
sent in finite time. �

2.3. ∃ time t2 > t1: After t2 no spurious messages are in transit.
Proof: Follows from step 2.2 and the channel property that eventually all
messages are delivered or lost. �



23

2.4. For any time after t2: If pl announces 〈TERMINATION〉, then RRT
holds.

Proof:
2.4.1. pl has delivered a TERM signal from every live process.

Proof: Follows from lines 49-54. �
2.4.2. All live processes have broadcast TERM.

Proof: Follows from step 2.4.1 and the properties of broadcast and line
45. �

2.4.3. All live processes are passive.
Proof: Follows from line 44 and step 2.4.2. �

2.4.4. If sent to mel[j]\recl[j] = ∅, then all channels towards pl are empty.
Proof:
2.4.4.1. pl has received variable sentj from every live process pj after pj ’s

final recovery.
Proof: Follows from step 2.1 and lines 36-38 and 25-28 and the initial
value of sent to me. �

2.4.4.2. sent to mel[j] contains all messages sent to pl by pj after the final
recovery of pl.

Proof: Follows from steps 2.4.4.1 and 2.3. �
2.4.4.3. Q.E.D.

Proof: Follows from steps 2.4.4.1 and 2.4.4.2 and the definition of
empty. �

2.4.5. Q.E.D.
Follows from steps 2.4.3 and 2.4.4. �

2.5. Q.E.D.
Proof: Follows from step 2.4 and the eventual safety property. �

3. Q.E.D.
Proof: Follows from steps 1 and 2 and the definition of stabilizing termination
detection. �
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B Formal Description of the Algorithm

Algorithm B.1 Superimposed Termination Detection

On every monitor process pi:
Variables:
1: failed i set of processes init ∅
2: rcvd i[1..n] array of message sets init empty {*received messages*}
3: senti[1..n] array of message sets init empty {*sent messages*}
4: passivei boolean init defined by accordant event
5: termi[1..n] array of boolean init false
6: sent to mei[1..n] array of message sets init ⊥

Process pi:
7: upon 〈crashi(pj)〉 do
8: failed i := failed i ∪ pj

9: senti[j] := ∅
10: end do

11: upon 〈recover i(pj)〉 do
12: 〈NO TERMINATION〉
13: termi[j] := false
14: if (passivei = true)∧(i �= j) then
15: beb Broadcast(senti)
16: end if
17: end do

18: upon 〈receive appi(m), pj〉 do
19: 〈NO TERMINATION〉
20: rcvd i[j] :=rcvd i[j] ∪ m
21: end do

22: upon 〈send appi(m), pj〉 do
23: senti[j] :=senti[j] ∪ m
24: end do continued on next page
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Algorithm B.1 Superimposed Termination Detection (cont.)

25: upon 〈pi becoming passive〉 do
26: passivei := true
27: beb Broadcast(senti)
28: end do

29: upon 〈pi becoming active〉 do
30: passivei := false
31: if (termi[i] = true) then
32: termi[i] := false
33: beb Broadcast(NO TERM)
34: end if
35: end do

36: upon 〈beb Deliver i(s), pj〉 do
37: sent to mei[j] := s[i]
38: end do

39: upon 〈beb Deliver i(NO TERM), pj〉 do
40: termi[j] := false
41: 〈NO TERMINATION〉
42: end do

43: upon 〈∀pj �∈failed i : sent to mei[j]\rcvd i [j] = ∅〉 do
44: if (passivei = true) then
45: beb Broadcast(TERM)
46: termi[i] := true
47: end if
48: end do

49: upon 〈beb Deliver i(TERM), pj〉 do
50: termi[j] := true
51: end do

52: upon 〈∀pj �∈failed i : termi[j] = true〉 do
53: 〈TERMINATION〉
54: end do

55: upon 〈pi itself recovers〉 do
56: for k = 1 . . . n do
57: rcvd i[k] := ∅
58: senti[k] := ∅
59: termi[k] := false
60: sent to mei[k] := ⊥
61: end for
62: trigger either 〈pi becoming passive〉 or 〈pi becoming active〉
63: initialize failed i according to current failure detector output
64: end do


