
Network Synchronization in the Crash-Recovery

Model

Felix C. Freiling1, Sven Henkel2, and Josef Widder3

1 Department of Computer Science, University of Mannheim,
freiling@uni-mannheim.de

2 Student, RWTH Aachen University, sven.henkel@rwth-aachen.de
3 Embedded Computing Systems Group, Technical University of Vienna,

widder@ecs.tuwien.ac.at

University of Mannheim Technical University of Vienna
Department for Mathematics and Embedded Computing
Computer Science Systems Group
Technical Report TR 2006-09 Research Report 49/2006

May 15, 2006

Abstract. This work investigates the amount of information about fail-
ures required to simulate a synchronous distributed system by an asyn-
chronous distributed system prone to crash-recovery failures. A failure
detection sequencer ΣCR for the crash-recovery failure model is defined,
which outputs information about crashes and recoveries and about the
state of the crashed or recovered processes. Using the simulation tech-
nique of a synchronizer, it is shown that in general it is impossible to
implement a synchronizer in an asynchronous distributed system with an
arbitrary number of concurrent crash-recovery faults. It is shown that a
synchronizer is implementable given ΣCR and an asynchronous distrib-
uted system with at least one correct process. Furthermore, it is proven
that ΣCR can be emulated in a synchronous distributed system and
hence can be regarded as the weakest failure detection device suitable to
implement a synchronizer in the crash-recovery failure model.

1 Introduction

In a synchronous distributed message-passing system, processes are tightly cou-
pled: The computation proceeds in rounds meaning that all processes execute
their local algorithm at the same speed. The local executions in such a system
are triggered by a global pulse and thus performed concurrently on all processes.
All messages sent in such a system are guaranteed to be delivered within the
same round, i.e., before the next pulse happens. In contrast to synchronous sys-
tems, an asynchronous system does not provide any guarantees about processing
speed differences or message delivery delays. Consequently, algorithms designed



for synchronous systems do not necessarily work in an asynchronous system
whereas asynchronous algorithms trivially work in synchronous systems.

It is well known that, in general, algorithms solving a specific problem in
an asynchronous distributed system have a higher algorithmic complexity than
algorithms solving the same problem in a synchronous one. Intuitively, this is
because the asynchronous algorithm needs to put some effort into the synchro-
nization of the processes. In order to reduce the algorithmic complexity of an
asynchronous algorithm, it was proposed by Awerbuch [Awe85] to extract this
synchronization task out of the algorithm and put it into a new module, called
a synchronizer. Using a synchronizer module, it is possible to use synchronous
algorithms in asynchronous systems (see Figure 1).

synchronizer module

events

synchronous algorithm

asynchronous process

synchronizer module

events

synchronous algorithm

asynchronous process

asynchronous

messages

Fig. 1. Synchronizer concept

Related work. In a seminal paper, Awerbuch [Awe85] showed that a synchro-
nizer is implementable in a fault-free environment. This implies that synchronous
and asynchronous systems are equivalent regarding the solvability of distributed
computing problems in this case. Faults, even simple ones like crash faults, make
some difference, as is manifested by the famous impossibility result of Fischer,
Lynch, and Paterson [FLP85] on fault tolerant consensus.

How much difference faults and their detectability make was explored by
Chandra and Toueg [CT96] who proved that consensus is in fact solvable in asyn-
chronous systems, provided that information about faults is eventually present.

Still, it is not perfectly understood how information on faults and the task of
network synchronization are correlated. On the one hand, the results by Chandra
and Toueg [CT96] suggest that this correlation is strong. On the other hand,
the results by Charron-Bost, Guerraoui, and Schiper [CBGS00] showed that
synchronous systems and the perfect failure detector are not equivalent.

2



Gärtner and Pleisch [GP02] later showed that in the crash-stop failure model
a failure detection sequencer is sufficient and necessary to implement a synchro-
nizer. Their failure detection sequencer Σ is mainly based on the perfect failure
detector P — presented by Chandra and Toueg [CT96]. In contrast to P , Σ

not only outputs information about the crashes in the system, but also about
the state of the crashed processes. It was shown that Σ is implementable in
synchronous systems.

Setting. In this paper we consider the task of network synchronization under a
more realistic fault model by investigating whether such an equivalence can be
found in the crash-recovery failure model. Thus, we assume that processes that
crash may recover later and resume participating in the distributed computation.
Our setting is that processes recover from scratch, i.e., we assume the absence
of stable storage. Under these assumptions we explore what kinds of properties
a failure detection sequencer is required to have in order to be equivalent to the
synchronous (lockstep) crash-recovery system.

Contributions. In this paper we provide definitions of the necessary and sufficient
abstractions to implement a synchronizer in the crash-recovery model of failures.

– We define an appropriate failure detection sequencer for the crash-recovery
model and show that it is sufficient to implement a synchronizer in this
model as long as one process remains up all the time. Intuitively, such a
sequencer accurately indicates crashes and recoveries of processes together
with all messages sent by the crashing process since its most recent recovery.
Hence, such a sequencer is a strict generalization of the sequencer of Gärtner
and Pleisch [GP02].

– We show that the assumption of one “always-up” process is necessary, i.e.,
it is impossible to implement a synchronizer in the crash-recovery model if
it is possible that all processes are down simultaneously— even with failure
detectors or failure detector sequencers.

– Our results are based on an event-based definition of what a synchronous
system is, which we call lockstep synchrony. We show that given such a lock-
step synchronous system we can implement the failure detection sequencer
for the crash-recovery model. Hence, our sequencer abstraction can be re-
garded as necessary to allow network synchronization in the crash-recovery
model.

Roadmap. The paper is structured as follows: After a presentation of our system
model in section 2, we define lockstep synchrony and synchronizers in section 3.
Section 4 introduces the failure detection sequencer for the crash-recovery failure
model, followed by the named impossibility result in section 5. In section 6 we
present our synchronizer algorithm for systems with one correct process and we
show that the used sequencer is the weakest failure detection device allowing
such an implementation. Section 7 concludes this work.

Due to space limitations, only proof sketches are given. Detailed proofs for
the main theorems can be found in the appendix.

3



2 Model

2.1 Asynchronous distributed system

An asynchronous distributed system consists of a set of processes Π = {p1, . . . , pn}.
Each process pi has a local state si, which is determined by the values of its local
variables. The local algorithm Ai of process pi describes state transitions of si,
denoted as events. We distinguish

– internal events si → s′i, which just affect the local state of pi,
– send events si → (s′i, m) , describing the sending of a message m, and
– receive events (si, m) → s′i, representing the reception of a message m.

The global state S = (s1, . . . , sn,M) is composed of the local states of the
system’s processes and the set of messages in transit. The distributed algorithm
A = (A1, . . . , An) is the collection of the local algorithms. Hence the transitions
of the local algorithms yield the transitions of the distributed algorithm: Internal
events modify the state of the corresponding process, send and receive events
additionally modify the set of messages in transit.

An execution of A is a maximal sequence (S1, S2, . . .) of global states, such
that A provides a transition Si → Si+1 for all i. We assume weak fairness for
all executions, hence any event which is applicable in an infinite number of
concurrent states is eventually executed. Consequently, every sent message is
eventually delivered, since the receive event is applicable as soon as a message
is sent.

Note that we assume a “sane” communication system, i.e. every message is
sent to a designated recipient, only the recipient may receive the message, and
the recipient is notified of the identity of the sender. No message is received twice
and messages may only be lost under certain circumstances, as described in the
following section.

We define the causal order as the smallest relation ≺ on the events of an
execution, which satisfies:

– If e and f are different events on the same process and e happens before f ,
then e ≺ f .

– If e is a send event and f is the corresponding receive event, then e ≺ f .
– ≺ is transitive, i.e. if e ≺ f and f ≺ g, then e ≺ g.

2.2 Failures

In order to model the failures in a distributed system, we introduce the failure
pattern F : T → 2Π . It maps from an element of the time domain T to a subset
of processes. F (t) denotes the set of processes which are down at time t — i.e. not
functional and not executing any algorithmic steps. The time t is only used for
modelling purposes, the processes do not have access to the current time t or
F (t). For simplicity we assume that the time domain equals the set of natural
numbers, i.e. T = N.

4



A process pi ∈ Π is called up at time t, iff pi 6∈ F (t). We say that pi crashes
at time t, iff pi is up at time t − 1 and down at time t. Moreover, pi recovers
at time t, iff pi is down at time t − 1 and up at time t. If a process crashes, it
loses its local state and stops to execute any steps of its algorithm. Messages
which are in transit to pi while pi is down may be lost. If a process recovers, it
continues to execute its local algorithm from some initial state. We demand that
a recovering process “knows” that it is recovering. Note that we do not require
stable storage in the sequel of this work.

Following the naming conventions introduced by Aguilera et al. [ACT00], a
process pi is denoted as

– always up, iff ∀t : p 6∈ F (t),
– eventually up, iff ∃t : (p ∈ F (t)) ∧ (∀t′ > t : p 6∈ F (t′)),
– eventually down, iff ∃t : ∀t′ > t : p ∈ F (t′), and
– unstable, iff ∀t : ((p ∈ F (t) ⇒ ∃t′ > t : p 6∈ F (t′)) ∧ (p 6∈ F (t) ⇒ ∃t′ > t : p ∈

F (t′))).

A process pi is called finally up at time t, iff ∀t′ ≥ t : pi 6∈ F (t′). Process pi is
denoted as finally down at time t, iff ∀t′ ≥ t : pi ∈ F (t′). Always up processes
are finally up at time 0.

3 Synchronization

To describe the interface provided by the synchronizer module, we introduce a
new system model: the lockstep synchronous distributed system. It provides the
same functionality at its interface as a truly synchronous distributed system. It
is based on rounds and guarantees the delivery of messages in the same round as
they were sent. It is well known that a lockstep synchronous distributed system
is implementable in an asynchronous distributed system in fault-free settings
[Awe85]. An algorithm implementing such a lockstep synchronous distributed
system is called synchronizer.

The main difference between a synchronous and a lockstep synchronous dis-
tributed system is the concurrency of the round pulses: While the pulse in a
synchronous distributed system happens at the same real time on all processes,
in a lockstep synchronous distributed system we only demand that the pulses
happen at the same “causal time” (i.e. the causal order of the pulse events is
the same as if they were issued at the same real time). This change is neces-
sary because true simultaneousness is unfeasible in an asynchronous distributed
system.

Furthermore, we introduce explicit pulse requests in a lockstep synchronous
distributed system. While one may argue that each process of a synchronous
distributed system is just fast enough to complete the calculations of each round
before the next pulse happens, such an assumption is too optimistic in a lockstep
synchronous distributed system due to the arbitrary processing speeds of the
underlying asynchronous distributed system. Thus we introduce an explicit pulse
request, which has to be issued by a process once it finished the current round.

5



The lockstep synchronous distributed system reflects the behavior of a syn-
chronous distributed system in the presence of failures: If a process crashes, the
messages sent by the crashing process in the round of the crash are still guaran-
teed to be delivered. When a process recovers, it will eventually resynchronize
by being granted some pulse numer and continue to take part in the distributed
computation. Note that the pulse number granted during resynchronization has
to be bigger than any other ever granted round number in the distributed system
to allow the resynchronizing process to start in a “fresh” round.

An example execution for a lockstep synchronous distributed system is de-
picted in figure 2. The processes request the next pulse as soon as they finished
the algorithmic steps for the current round. The next pulse is granted when all
messages of the current round are delivered. Note that in a realistic implementa-
tion of a lockstep synchronous distributed system no process can be granted the
next pulse before every other process initiated a request for that pulse. Thus for
each pulse we can find a point in time, which separates all pulse requests from
all pulse grants, as illustrated by the solid vertical lines in figure 2. Also note
that the pulse grants provide an easy mean to find a consistent cut [Mat89] of
the distributed computation.

p1

p2

p3

rr r rr r rrr r rr r rr
0 1 2 3 4

Fig. 2. Example execution in a lockstep synchronous distributed system: Pulse requests
are abbreviated by “r”, pulse grants for equal pulse numbers are connected by dotted
lines.

Definition 1 (Lockstep Synchrony). Let S be a distributed system with pro-
cesses p1, . . . , pn and crash-recovery faults. The system provides the following
interface to the processes:

– pulsereqi(r): Process pi request pulse r from the system.
– pulsegranti(r): The system grants pulse r to process pi.
– sync sendi(m): Process pi sends message m.
– sync receivei(m): Process pi receives message m.

Let ri be the biggest r′ for which pulsegranti(r
′) occurred. If no pulsegranti(r

′)
ever occurred, ri is defined as 0. Let F be a failure pattern and let T (e) denote
the time at the occurrence of the event e.

A process pi is called participating in round r, if

∀t ∈ {T (pulsegranti(r)), . . . , T (pulsegranti(r + 1))} : pi 6∈ F (t) .

6



pi is called participating if it participates in round ri.
The following assumptions are made for the algorithm running on the pro-

cesses:

– No process pi performs a sync sendi(m) (for any m) between the occurrences
of pulsereqi(r) and pulsegranti(r) (for any r).

– Every participating process pi eventually executes pulsereqi(ri + 1).
– Every process pi executes pulsereqi(r) at most once for each r.
– Initially every process pi waits for a pulsegranti(0) before executing any re-

quest.
– Every recovering process pi waits for a pulsegranti(r) before executing any

request.

Such a system S is called lockstep synchronous distributed system, if it sat-
isfies the following conditions:

– Integrity: Every message received by process pi from process pj between
pulsegranti(r−1) and pulsegranti(r) was sent by pj between pulsegrantj(r−1)
and pulsegrantj(r).

– No Duplication: No message is received more than once.
– Validity: If a process pi gets a pulsegranti(r), it has received all messages

sent by each process pj in each round r′, r′ < r, in which pi participated.
– Progress: If a process pi invokes pulsereqi(r) at some time t and pi is finally

up at time t, it will eventually experience pulsegranti(r).
– Startup: Initially every correct process pi will experience pulsegranti(0).
– Resynchronization Liveness: If a process pi recovers at some time t and pi

is finally up at time t, it will eventually receive a pulsegranti(r).
– Resynchronization Safety: If a process pi recovers and receives a pulsegranti(r)

for some r, r is at least larger by 2 than any number of a round in which
some process participated.

A synchronizer is a distributed algorithm, whose local modules provide the
interface of a lockstep synchronous distributed system to the encapsulated algo-
rithms.

4 Failure Detection Devices

A failure detection device is a distributed oracle which outputs information about
the failures in an asynchronous distributed system based on the failure pattern
F (t). We focus on interrupt-style failure detection devices which notify their
local algorithms of changes in the failure information by triggering events.

Roughly speaking, a failure detection device outputs, at some time t and
some process pi, information about F (t) and the computation history up to t.
The definition of a failure detection devices includes the “classical” failure de-
tectors of Chandra and Toueg [CT96] as well as the failure detection sequencers
of Gärtner and Pleisch [GP02]. Failure detectors provide information about the

7



mere occurrence of failures in the system. Failure detection sequencers addition-
ally output state information about the crashed processes.

Given two failure detection devices D and D′, we say that D emulates D′

(denoted D � D′), iff there exists an asynchronous algorithm TD→D′ which uses
D as an algorithmic module and whose output is indistinguishable from the
output of D′. If D � D′ and D′ 6� D, we say that D is strictly stronger than D′.

A failure detection device D is called the weakest failure detection device for
some algorithmic problem P , if D is necessary and sufficient to solve P in a
fault-prone environment. The existence of an algorithm AD, which uses D and
solves P , proves that D suffices to solve P . To prove the necessity of D, it has to
be shown that any failure detection device D′ which allows to solve P emulates
D.

Since this work extends the result of Gärtner and Pleisch [GP02] to the
crash-recovery model, the concept of a failure detection sequencer needs to be
adapted to the crash-recovery failure model. Thus at first we introduce a new
failure detector for the crash-recovery model — the perfect failure detector PCR

— which will be the basis for the sequencer defined later.

Definition 2 (Perfect Failure Detector (Crash-Recovery)). The perfect
failure detector for the crash-recovery failure model PCR is an interrupt-style
failure detector, which issues two events at its interface:

– suspecti(pj): The failure detector of process pi suspects pj to be crashed.
– welcomei(pj): The failure detector of process pi claims that pj recovered. We

say that pi welcomes pj.

PCR satisfies the following properties:

– Integrity: Every process is suspected at most once for every crash.
– Crash Completeness: If a process crashes and is finally down, it will eventu-

ally be suspected and no longer welcomed by every finally up process.
– Recovery Completeness: If a process recovers and is finally up, it will even-

tually be welcomed and no longer suspected by every finally up process.
– Unstable Completeness: Every unstable process will be suspected and wel-

comed an infinite number of times by every finally up process.
– Suspect Validity: If a process is suspected, it either was never suspected be-

fore, or it was welcomed after the last time it was suspected.
– Welcome Validity: Each process is welcomed at most once after each time

being suspected.

Note that PCR may miss crashes and recoveries. The properties only guar-
antee the detection of the last crash or recovery of each process.

In the following we extend PCR by adding state information to the suspect
and welcome events. Gärtner and Pleisch [GP02] originally used an arbitrary
number of predicates on the state of the crashed process as state information.
We use a slightly weaker variant here and set the state information to the set
of messages which were recently sent by the suspected (or welcomed) process to
the suspecting (or welcoming) process. This weaker failure detection sequencer
suffices in our context.

8



Definition 3 (Failure Detection Sequencer (Crash-Recovery)). The fail-
ure detection sequencer for the crash-recovery failure model ΣCR is an inter-
rupt-style failure detection sequencer, which issues two events at its interface:

– suspecti(pj , s) indicates a crash of pj in the state s, and
– welcomei(pj , s) indicates a recovery of pj after a crash in state s,

both issued by the failure detection sequencer module of process pi.
The state-information about a process pj delivered by the crash-recovery se-

quencer module of process pi is the set of messages that were sent by pj to pi

after time t′, where t′ is the time of the last recovery of pi. Formally:

last recovery(pi, t) = max{t′|pi recovered at time t′, t′ ≤ t}

Statei(pj , t) = {m|message m was sent by pj to pi

after last recovery(pi, t) and until time t}

ΣCR satisfies the following properties:

– Integrity: Every process is suspected at most once for every crash.
– Accuracy: If a process is suspected to be crashed in state s or welcomed after

a crash in state s, it did crash in state s.
– Crash Completeness: If a process crashes in some state s and is finally down,

it will eventually be suspected to be crashed in s and no longer welcomed by
every finally up process.

– Recovery Completeness: If a process recovers after a crash in state s and
is finally up, it will eventually be welcomed after a crash in state s and no
longer suspected by every finally up process.

– Unstable Completeness: Every unstable process will be suspected and wel-
comed an infinite number of times by every finally up process.

– Suspect Validity: If a process is suspected, it either was never suspected be-
fore, or it was welcomed after the last time it was suspected.

– Welcome Validity: Each process is welcomed at most once after each time
being suspected.

We will later show that ΣCR can be implemented in lockstep synchrony.
This implies that it is implemented under the same synchrony assumptions as
the original sequencer of Gärtner and Pleisch [GP02].

5 Impossibility Result

We will now present a result which shows that it is impossible to implement
a synchronizer in an asynchronous distributed system prone to crash-recovery
failures, when we allow an arbitrary number of process crashes. Hence, in the
remainder of this work, we postulate that at least one process in the distributed
system is correct.

9



Theorem 1. It is impossible to implement a lockstep synchronous distributed
system in the crash-recovery failure model even with a crash-recovery sequencer
if all processes are allowed to be down at the same time.

Proof sketch: Assume by ways of contradition that a synchronizer algorithm
exists. We construct two indistinguishable runs of that algorithm, where one of
them violates the resynchronization safety requirement (see Figures 3 and 4): In
run R1 two processes p1 and p2 are initially down. Process p2 eventually recovers
and is granted some round number r > 0. In run R2, p2 is initially down, and
p1 is granted rounds 0 to r + 1 and crashes. Afterwards, p2 recovers. Due to the
indistinguishability of runs R1 and R2 from the point of view of p2, p2 is granted
round r, violating the resynchronization safety requirement, a contradiction.

p1

p2

r > 0

t1 t2

Fig. 3. Run R1 in the proof of theorem 1. The pulsegrant events are annotated with
their respective round numbers.

p1

p2

0 1 2 r r + 1

r > 0

t1 t2

Fig. 4. Run R2 in the proof of theorem 1. The pulsegrant events are annotated with
their respective round numbers. The pulsereq events executed by p1 are omitted.

6 Algorithms

In this section we first implement a synchronizer for the crash-recovery fail-
ure model using the crash-recovery failure detection sequencer ΣCR. We subse-
quently show that ΣCR is also necessary to implement a synchronizer in that
model.

10



6.1 Synchronizer Algorithm

As shown in Section 5, it is justifiable to assume at least one correct process. Us-
ing such a process, algorithm 1 implements a synchronizer for the crash-recovery
failure model. The algorithmic ideas are based on the synchronizer α proposed
by Awerbuch [Awe85]. It can be regarded as an extension of a simplified version
of the crash-stop synchronizer of Gärtner and Pleisch [GP02].

Messages sent by the synchronous algorithm are asynchronously transmitted
to the recipient (lines 18–21). If a process finishes the computation of the current
round, it signals this fact to the synchronizer by executing the pulsereq event
and the synchronizer broadcasts a “done” message to all other processes in the
system, along with the number of messages sent in the current round to the
respective process (lines 22–27). Once a synchronizer received a done message
for the current round from every process in the system, and it is certain that
no more messages are in transit, it grants the next round to the encapsulated
algorithm (lines 48–59). The issue of messages being delivered too early (pointed
out by Lakshmanan and Thulasiraman [LT88]) is dealt with by buffering (lines
42–46) and delayed delivery (lines 60–66).

If a process crashes, it is eventually suspected by the sequencer module of
every finally up process. In this case, the suspecting process no longer waits
for the “done” message of the suspected process. Furthermore it extracts all
messages out of the state information provided by the sequencer and initiates
the delivery of not yet delivered messages.

The algorithm uses a variant of crash-stop fault tolerant uniform consensus
as a building block — denoted as max-consensus. An algorithm solves the max-
consensus problem if it satisfies the following properties:

– Termination: Every correct process eventually decides.
– Uniform Agreement : No two processes decide differently.
– Validity: Every decided value is greater than or equal to the maximum of

the values proposed by correct processes.
– Integrity: No process decides twice.

Unlike uniform consensus, max-consensus does not decide on any value proposed
by a correct process, but on a value which is at least as large as the maximum of
all values proposed by correct processes. Max-consensus is easily implementable
as a slight modification of the FloodSet algorithm proposed by Lynch [Lyn96].
The use of max-consensus together with the assumption of one correct process
are crucial in achieving the resynchronization properties of the algorithm. Both
ensure that round numbers monotonically increase.

If a crashed process recovers, it broadcasts an “I want to join” message and
starts an instance of a max-consensus algorithm (lines 84–89). Every currently
up process proposes its current round number incremented by 2 (lines 29–31).
The processes decide on a common round number, which will be used as the first
round number of the resynchronizing process (line 93).

Note that a crash-stop failure resistant version of max-consensus suffices in
our case, although the synchronizer is prone to crash-recovery faults. Processes

11



which crash during the execution of max-consensus do not take part in the
rest of the max-consensus execution (regardless of a later recovery), since their
proposal becomes irrelevant due to the crash. Thus we may “emulate” a crash-
stop environment by assuming that all crashes are permanent. Furthermore, we
can easily emulate a perfect crash-stop failure detector P by mapping the suspect
events of ΣCR to suspect events of P once for every crashing process.

Theorem 2. Algorithm 1 provides the interface of a lockstep synchronous dis-
tributed system (as defined in definition 1) to the underlying processes, if they
satisfy the assumptions in definition 1 and if they are prone to crash-recovery
failures and at least one process is correct.

6.2 ΣCR is Necessary

Theorem 2 shows that ΣCR is sufficient to implement a synchronizer in an asyn-
chronous crash-recovery distributed system. We now show that ΣCR is not only
sufficient, but also necessary. We do this by implementing ΣCR directly in a
lockstep synchronous distributed system.

Algorithm 2 implements ΣCR by the usage of a monitor process. Every mon-
itor sends an “I’m in round r” message in every round. If some process misses
to send this message due to a crash, it is suspected by all other processes. Every
recovering monitor sends an “I recovered” message to every other monitor in the
system as soon as it receives its first pulsegrant event after the recovery (line
11). Every monitor receiving this messages signals the recovery to its underlying
process by issuing a welcome event (lines 30–34).

Theorem 3. Algorithm 2 implements the sequencer ΣCR in a lockstep synchro-
nous distributed system.

Proof sketch: We prove the properties of ΣCR one by one: The crash com-
pleteness property is ensured by the progress property of the lockstep synchro-
nous distributed system. The recovery and unstable completeness properties are
guaranteed by the validity property of the lockstep synchronous distributed sys-
tem. The accuracy property is also proven with the validity property.

Together with theorem 2 follows that ΣCR is the weakest failure detection
device suitable to implement such a synchronizer.

7 Discussion

In this work we investigated the problem of network synchronization in asynchro-
nous distributed systems prone to crash-recovery faults. We reduced this problem
to the problem of implementing a synchronizer, which provides a universal syn-
chronization abstraction (roughly) by transforming an asynchronous distributed
system into a synchronous one. We proved that this problem in unsolvable if all
processes in the system are allowed to be down concurrently. Informally, the in-
formation about the synchrony of the whole system gets lost in such a scenario.

12



Algorithm 1 Crash-recovery synchronizer with sequencer ΣCR (part 1)
Variables:

1: current request ∈ N

2: current round ∈ N

3: receive buffer ⊆ Π × N × M
4: participating ⊆ {1, . . . , n}
5: joining ∈ (N ∪ {⊥, ?})n

6: send count ∈ N
n

7: receive count ∈ N
n

8: wait count ∈ (N ∪ {⊥})n

Process pi:
9: upon 〈initi〉 do

10: current request := 0
11: current round := 0
12: wait count := (0, . . . , 0)
13: receive buffer := ∅
14: participating := {1, . . . , n}
15: joining := (⊥, . . . ,⊥)
16: trigger 〈pulsegranti(0)〉
17: end upon

18: upon 〈sync sendi(pj , m)〉 do

19: trigger 〈async sendi(pj , (current round, m))〉
20: send count[j] := send count[j] + 1
21: end upon

22: upon 〈pulsereqi(r)〉 do

23: current request := r

24: for all j ∈ {1, . . . , n} do

25: trigger 〈async sendi(pj , (current round, (“done”, send count[j])))〉
26: end for

27: end upon

28: upon 〈async receivei(pj , (r, m))〉 do

29: if m = “I want to join” then

30: joining[j] :=?
31: trigger 〈max consensus propose(j, current round + 2)〉
32: else

33: if r = current round then

34: if m = (“done”, cnt) then

35: wait count[j] := cnt

36: else

37: if m is no duplicate message then

38: trigger 〈sync receivei(pj , m)〉
39: receive count[j] := receive count[j] + 1
40: end if

41: end if

42: else

43: /* message is too early, store it */
44: receive buffer := receive buffer ∪ {(pj , r, m)}
45: end if

46: end if

47: end upon

13



Algorithm 1 Crash-recovery synchronizer with sequencer ΣCR (part 2)

48: upon 〈(∀j ∈ participating : wait count[j] = receive count[j]) ∧ (∀j : joining[j] 6=?〉 do

49: wait count := (⊥, . . . ,⊥)
50: send count := (0, . . . , 0)
51: receive count := (0, . . . , 0)
52: current round := current request

53: for all j ∈ {1, . . . , n} do

54: if joining[j] = current round then

55: participating := participating ∪ {j}
56: joining[j] := ⊥
57: end if

58: end for

59: trigger 〈pulsegranti(current request)〉
60: for all (p, r, m) ∈ receive buffer do

61: /* receive messages that are “on time” now */
62: if r = current round then

63: trigger 〈async receive fifoi(p, (r, m))〉
64: receive buffer := receive buffer \ {(p, r, m)}
65: end if

66: end for

67: end upon

68: upon 〈Σ suspects pj in state s〉 do

69: /* Emulate reception of sent messages */
70: for all (r, m) ∈ s do

71: trigger 〈async receive fifoi(pj , (r, m))〉
72: end for

73: participating := participating \ {j}
74: joining[j] := ⊥
75: end upon

76: upon 〈recoveryi〉 do

77: /* Perform initialization */
78: current request := 0
79: current round := 0
80: wait count := (0, . . . , 0)
81: receive buffer := ∅
82: participating := {1, . . . , n}
83: joining := (⊥, . . . ,⊥)
84: /* Inform other processes about resynchronization */
85: for all j ∈ {1, . . . , n} \ {i} do

86: trigger 〈async send fifoi(pj , (0, “I want to join”)〉
87: end for

88: /* Propose 0 to instance i of max-consensus */
89: trigger 〈max consensus propose(i, 0)〉
90: end upon

91: upon 〈max consensus decidei(j, r)〉 do

92: if i = j then

93: trigger 〈pulsegranti(r)〉
94: else

95: joining[j] := r

96: end if

97: end upon

14



Algorithm 2 Emulating crash-recovery sequencer ΣCR in a lockstep synchro-
nous distributed system.
Variables:

1: current round ∈ N
n

2: state ∈ M(M)n

3: suspected ∈ {0, 1}n

Process monitor of process pi:
4: upon 〈pulse granti(r)〉 do

5: for all j ∈ {1, . . . , n} \ {i} do

6: trigger 〈sync sendi(j,“I’m in round r”)〉
7: end for

8: if recovery then

9: for all j ∈ {1, . . . , n} \ {i} do

10: trigger 〈sync sendi(j,“I recovered”)〉
11: end for

12: state := (∅, . . . , ∅)
13: current round := (r − 1, . . . , r − 1)
14: suspected := (0, . . . , 0)
15: else

16: for all j ∈ {1, . . . , n} \ {i} do

17: if r ≥ current round[j] + 2 then

18: if suspected[j] = 0 then

19: trigger 〈suspect(pj, state[j])〉
20: suspected[j] := 1
21: end if

22: end if

23: end for

24: trigger 〈pulse granti(r)〉 at underlying process pi

25: end if

26: end upon

27: upon 〈sync receivei(j, m)〉 do

28: if m =“I’m in round r” then

29: current round[j] := r

30: else if m =“I recovered” then

31: if suspected[j] = 0 then

32: trigger 〈suspect(pj, state[j])〉
33: end if

34: trigger 〈welcome(pj, state[j])〉
35: suspected[j] := 0
36: else

37: state[j] := state[j] ∪ {m}
38: trigger 〈sync receivei(j, m)〉 at underlying process pi

39: end if

40: end upon

41: upon 〈init〉 do

42: state := (∅, . . . , ∅)
43: current round := (−1, . . . ,−1)
44: suspected := (0, . . . , 0)
45: end upon

15



Consequently, recovering processes are unable to continue their computation in
a state which satisfies the synchrony properties of the distributed system.

Given one correct process, we showed that the failure detection sequencer
ΣCR is the weakest failure detection device suitable to implement a synchronizer.
It provides information about the crashes and recoveries in the system and about
the state of the outgoing communication channels of crashed processes. This
channel state information is essential for the implementation of a synchronizer.
Since ΣCR suffices to implement a synchronizer, it encapsulates all information
that an asynchronous distributed system prone to crash-recovery failures lacks
compared to a synchronous one.

Future work. We did not elaborate on the efficiency of our synchronizer algorithm
in this work. Future work might concentrate on the improvement its efficiency by
means already proposed for the fault-free synchronizer α by Awerbuch [Awe85]
or Peleg and Ullman [PU87]. But these improvements rely on more efficient
communication trees, which would have to be reconstructed upon every failure
and thus might not lead to actual improvements in our failure model.

An open question is the relation of the perfect failure detector for the crash-
recovery failure model, PCR, to other failure detectors for this failure model:
PCR can easily emulate the ACT failure detector by Aguilera, Chen, and Toueg
[ACT00]. Hence PCR is at least as strong as ACT. We conjecture that it is even
strictly stronger than the ACT failure detector, because ACT does not provide
means to guarantee the integrity property in an emulation of PCR.

References

[ACT00] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and
consensus in the crash recovery model. Distributed Computing, 13(2):99–125,
April 2000.

[Awe85] Baruch Awerbuch. Complexity of network synchronization. Journal of the
ACM, 32(4):804–823, October 1985.

[CBGS00] Bernadette Charron-Bost, Rachid Guerraoui, and André Schiper. Synchro-
nous system and perfect failure detector: solvability and efficiency issues. In
Proceedings of the IEEE International Conference on Dependable Systems
and Networks (DSN), pages 523–532, New York, USA, 2000. IEEE Com-
puter Society.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–267, March
1996.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibil-
ity of distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985.

[GP02] Felix C. Gärtner and Stefan Pleisch. Failure detection sequencers: Necessary
and sufficient information about failures to solve predicate detection. In
DISC ’02: Proceedings of the 16th International Conference on Distributed
Computing, pages 280–294, London, UK, 2002. Springer-Verlag.

16



[Lam95] Leslie Lamport. How to write a proof. American Mathematical Monthly,
102(7):600–608, August/September 1995.

[LT88] Kadathur B. Lakshmanan and Krishnaiyan Thulasiraman. On the use of
synchronizers for asynchronous communication networks. In Proceedings of
the 2nd International Workshop on Distributed Algorithms, pages 257–277,
London, UK, 1988. Springer-Verlag.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco,
CS, 1996.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed sys-
tems. In M. Cosnard et al., editor, Proceedings of the International Workshop
on Parallel and Distributed Algorithms, pages 215–226, Chateau de Bonas,
France, 1989. Elsevier Science Publishers.

[PU87] David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hy-
percube. In PODC ’87: Proceedings of the sixth annual ACM Symposium
on Principles of distributed computi ng, pages 77–85, New York, NY, USA,
1987. ACM Press.

A Proofs

Proofs are written in a structured style similar to proof trees of interactive
theorem proving environments. This approach is advocated by Lamport who
promises that this style “makes it much harder to prove things that are not
true” [Lam95]. The proof is a sequence of numbered proof steps at different levels.
Every proof step has a proof which may be refined at lower levels by additional
proof steps. Proofs may also be read in a structured way, for example, by reading
only the top level proof steps and going into sublevels only when necessary.

Theorem 1. It is impossible to implement a lockstep synchronous distributed
system in the crash-recovery failure model even with a crash-recovery sequencer
if all processes are allowed to be down at the same time.

Proof sketch: We prove this theorem by showing that it is impossible for
any algorithm trying to implement a lockstep synchronous distributed system to
satisfy the resynchronization safety requirement. We show this by constructing
two indistinguishable runs, where one of them violates the resynchronization
safety requirement.
Proof:
1. Assume: There exists an algorithm A that implements a lockstep synchro-

nous distributed system in an asynchronous distributed system
given an arbitrary number of crash-recovery failures and a crash-
recovery sequencer.

Prove: False.
1.1. Consider the run R1 depicted in figure 3: p1 initially crashes and p2

initially crashes, recovers at time t1 and is finally up. When the algorithm
A is executed with this failure pattern, there exists a time t2 > t1 when
p2 experiences a pulsegrant2(r) with r > 0.

17



Proof: We assume that A is a correct implementation of a lockstep syn-
chronous distributed system. Hence the resynchronization safety and live-
ness properties are satisfied by A. Therefore, there must exist some time t2
after the recovery of p2 when p2 is granted a pulse number r with r > 0. ⊓⊔

1.2. Consider the run R2 of A, depicted in figure 4: p2 initially crashes, revovers
at time t1 and is finally up, p1 is granted the round numbers 0 to r + 1
and crashes before the recovery of p2. This run is indistinguishable from
R1 from the point of view of p2.

Proof: Let A1 and A2 be the local parts of the algorithm A on p1 and p2.
In both runs R1 and R2, A1 and A2 are not able to exchange any messages:
In run R1 A1 is never executed, because p1 is initially down and never
recovers. In run R2 p2 is down when p1 is up and thus we may assume that
any message sent by A1 is lost. Hence the message-trace observed by p2 in
run R1 is indistinguishable from the message-trace observed by p2 in run
R2. Furthermore, the output of the sequencer module of A2 is equal in R1

and R2: In both runs p1 is eventually suspected by the sequencer module
of A2 with an empty set of messages as state information. Thus R1 and R2

are indistinguishable from the viewpoint of p2. ⊓⊔
1.3. In run R2 the algorithm A must issue pulsegrant2(r) with the same r as

in run R1.
Proof: Step 1.1 shows that p2 must be granted a round number r with r > 0
at some time t2 > t1. Furthermore, the runs R1 and R2 are indistinguishable
for p2, as shown in step 1.2. Because A is a deterministic algorithm, it has to
issue pulsegrant2(r) at time t2 in run R2, with the same r as in run R1. ⊓⊔

1.4. Q.E.D.
Proof: Step 1.3 contradicts the assumption that A is correct: It violates
the resynchronization safety requirement. ⊓⊔

2. Q.E.D.
Proof: Follows indirectly from step 1.

Theorem 2. Algorithm 1 provides the interface of a lockstep synchronous dis-
tributed system (as defined in definition 1) to the underlying processes, if they
satisfy the assumptions in definition 1 and if they are prone to crash-recovery
failures and at least one process is correct.

Proof sketch: We are going to prove the properties of a lockstep synchronous
distributed system one by one: The no duplication property is achieved by the
explicit no duplication check in the algorithm. Progress is satisfied because of
the liveness assumptions of the underlying processes, the communication system,
and the sequencer. Validity and integrity are guaranteed by the preconditions
of the sync receive and pulsegrant events. The resynchronization properties are
guaranteed by the used max-consensus subprotocol. The startup property is
ensured by granting the initial pulse in the initialization of the algorithm.
Proof:
1. Assume: At least one process is correct.

Prove: The algorithm satisfies all properties of a lockstep synchronous dis-
tributed system.

18



1.1. The algorithm satisfies no duplication, i.e. no message is received more
than once.

Proof: The delivery of each synchronous message m is triggered in line 38
of the algorithm. Thus m must have passed the check for duplicate messages
in line 37. Hence no message can be received twice. ⊓⊔

1.2. The algorithm satisfies integrity, i.e. every message received by process
pi from process pj between pulsegranti(r− 1) and pulsegranti(r) was sent
by pj between pulsegrantj(r − 1) and pulsegrantj(r).

1.2.1. If pi delivers a message m sent by pj and the last round number
granted to pi is r′, the last round number granted to pj was also r′

when it sent the message.
Proof: The delivery of the message m is initiated in line 38 of the algo-
rithm. Thus the test in line 33 was passed and r = current round holds.
current round contains the latest round number which was granted to pi,
hence current round = r′ = r. Furthermore r is the latest round number
granted to pj when it sent m. ⊓⊔

1.2.2. Q.E.D.
Follows from step 1.2.1 and the fact that the processes are granted con-
secutive round numbers. ⊓⊔

1.3. The algorithm satisfies progress, i.e. if a finally up process pi invokes
pulsereqi(r), it will eventually experience pulsegranti(r).

1.3.1. Assume: Process pi is finally up in round r and invokes pulsereqi(r+
1) at time t1.

Prove: ∃t2 > t1: process pi experiences pulsegranti(r + 1) at time
t2.

1.3.1.1. Every process pj which participates in round r eventually exe-
cutes pulsereqj(r + 1).

Proof: Follows from the assumption in definition 1. ⊓⊔
1.3.1.2. Every synchronizer module at each process pj participating in

round r eventually asynchronously sends a “done” message for
round r to each process.

Proof: Follows from step 1.3.1.1 and lines 22–26 of the algorithm. ⊓⊔
1.3.1.3. Process pi will eventually receive “done” messages from all pro-

cesses participating in round r.
Proof: Process pi will never crash, because we assume that it is finally
up. Thus the liveness property of the underlying communication system
and step 1.3.1.2 guarantee that the “done” messages will eventually be
received. ⊓⊔

1.3.1.4. Process pi eventually suspects all processes, which do not partic-
ipate in round r.

Proof: Process pi will never crash, because we assume that it is finally
up. Thus the completeness properties of the sequencer guarantee that
every process which is not participating will eventually be suspected.

⊓⊔

19



1.3.1.5. Eventually pi will decide some value for all instances of max-
consensus started in the current round.

Proof: pi is finally up, i.e. it looks like a correct process to the crash-
stop max-consensus algorithm. Hence the termination property of max-
consensus guarantees that pi will eventually decide some value for all
instances of max-consensus. ⊓⊔

1.3.1.6. ∃t2 > t1: at time t2 the synchronizer module of pi triggers a
pulsegranti(r + 1) at the underlying process.

Proof: From step 1.3.1.4 and line 73 follows that eventually holds:

j ∈ participating ⇒ pj participates in round r

Moreover step 1.3.1.3 and line 35 guarantee that eventually holds:

j ∈ participating ⇒ received[j] = 1

From step 1.3.1.5 and line 95 follows that eventually holds:

∀j ∈ {1, . . . , n} : joining[j] 6=?

Thus the condition in line 48 will eventually be true and
pulsegranti(r + 1) will be executed. ⊓⊔

1.3.1.7. Q.E.D.
Follows directly from step 1.3.1.6. ⊓⊔

1.3.2. Q.E.D.
Follows directly from the step 1.3.1. ⊓⊔

1.4. The algorithm satisfies validity, i.e. if a process pi gets a pulsegranti(r), it
has received all messages sent by each process pj in each round r′, with
r′ < r, in which pi participated.

1.4.1. If a process pi participates in round r − 1 and gets a pulsegranti(r),
it has received all messages sent by all processes in round r − 1.

1.4.1.1. pi has received all messages sent by all processes pj in round r−1,
with j ∈ participating.

Proof: The condition in line 48 guarantees that a “done” was received
for every pj with j ∈ participating. Furthermore, the condition guaran-
tees that for each process pj the number of messages received from pj

by pi matches the number of messages sent by pj to pi. Due to the no
duplication property shown in step 1.1, all messages must have been
received. ⊓⊔

1.4.1.2. pi has received all messages sent by all processes pj in round r−1,
with j 6∈ participating.

Proof: When j is removed from participating (line 73), information
about all messages sent by pj in round r−1 is provided by the sequencer
and their reception is initiated (line 71). ⊓⊔

1.4.1.3. Q.E.D.
Follows from steps 1.4.1.1 and 1.4.1.2. ⊓⊔

1.4.2. Q.E.D.
Follows from step 1.4.1 and the fact that each process requests and is
granted growing pulse numbers. ⊓⊔

20



1.5. The algorithm satisfies resynchronization safety, i.e. if a process pi recov-
ers and receives a pulsegranti(r), r is at least larger by 2 than any number
of a round in which some process participated.

1.5.1. The maximum value proposed to instance i of max-consensus is larger
by 2 than any number of a round in which some process participated.

Proof: Each proposed value is the current round number of the proposing
process incremented by 2. Thus the maximum value is larger by 2 than
any ever reached round. ⊓⊔

1.5.2. If instance i of max-consensus decides some value, it is at least larger
by 2 than any number of a round in which some process participated.

Proof: Step 1.5.1 shows that all proposed values are bigger by 2 than any
ever reached round. The validity property of max-consensus guarantees,
that the decided value is at least equal to the maximum of all proposed
values. ⊓⊔

1.5.3. Q.E.D.
Step 1.5.2 shows that the value decided by pi is at least larger by 2 than
any round number of a round in which some process participated. This
value is granted as the next round number in line 93. ⊓⊔

1.6. The algorithm satisfies resynchronization liveness, i.e. if a process pi re-
covers and is finally up, it will eventually receive a pulsegranti(r).

1.6.1. Assume: pi recovers at time t1 and is finally up.
Prove: ∃t2 > t1: pi invokes pulsegranti(r) at time t2.

1.6.1.1. ∃t3 > t1 : pi proposes a value for max-consensus at time t3.
Proof: After recovery pi will eventually execute line 89 of the algo-
rithm. Hence t3 exists. ⊓⊔

1.6.1.2. ∃t4 ≥ t3 : All finally up processes proposed a value for max-
consensus at time t4.

Proof: Step 1.6.1.1 shows that pi eventually proposes a value. All other
finally up processes eventually receive the “I want to join” message
from pi. Hence all finally up processes eventually propose some value
for max-consensus in line 31. Thus t4 exists. ⊓⊔

1.6.1.3. ∃t2 > t4 : pi decides a value for max-consensus at time t2.
Proof: Step 1.6.1.2 shows that all finally up process eventually pro-
pose a value for max-consensus. Thus the termination property of max-
consensus ensures that eventually all finally up processes decide some
value. As pi is finally up, there exists a time t2 > t4 when pi decides a
value. ⊓⊔

1.6.1.4. Q.E.D.
Step 1.6.1.3 shows that pi eventually decides some value for max-
consensus. This value is granted to pi as the next round number in
line 93. ⊓⊔

1.6.2. Q.E.D.
Follows from step 1.6.1. ⊓⊔

1.7. The algorithm satisfies startup, i.e. initially every correct process pi will
experience pulsegranti(0).

21



Proof:Follows directly from line 16 of the algorithm. ⊓⊔
1.8. Q.E.D.

Proof: The algorithm satisfies all seven properties of a lockstep synchro-
nous distributed system, as shown in steps 1.1–1.7. ⊓⊔

2. Q.E.D.
Proof: Follows from step 1. ⊓⊔

Theorem 3. Algorithm 2 implements the sequencer ΣCR in a lockstep synchro-
nous distributed system.

Proof sketch: We will prove the properties of ΣCR one by one: The crash
completeness property is ensured by the progress property of the lockstep syn-
chronous distributed system. The recovery and unstable completeness properties
are guaranteed by the validity property of the lockstep synchronous distributed
system. The accuracy property is also proven with the validity property.
Proof:
1. The algorithm satisfies all properties of the crash-recovery sequencer ΣCR.

1.1. The algorithm satisfies accuracy, i.e. if a process is suspected to be crashed
in state s or welcomed after a crash in state s, it did crash in state s.

Proof: If a process is suspected or welcomed it must have crashed, be-
cause it either missed to send an “I’m in round r” message for some round
or it sent an “I recovered” message after recovery. Furthermore the pro-
vided state information matches the set of messages that were received by
the suspecting process after its last recovery. The validity property of the
lockstep synchronous distributed system ensures that this set contains all
messages sent by the suspected process. ⊓⊔

1.2. The algorithm satisfies crash completeness, i.e. if a process crashes in
some state s and is finally down, it will eventually be suspected to be
crashed in s and no longer welcomed by every finally up process.

1.2.1. Assume: Process pi crashes and is finally down.
Prove: pi is eventually suspected by all finally up processes.

Proof: The progress property of the lockstep synchronous distributed
system ensures that each finally up process will eventually receive a pulseg-
rant(r) with r ≥ r′ + 2, where r′ is the last round number that was ac-
knowledged by pi by sending an “I’m in round r′” message. Thus each
finally up process will eventually suspect pi. ⊓⊔

1.2.2. Assume: Process pi crashes and is finally down.
Prove: pi is no longer welcomed by any process.

Proof: If a process is welcomed, it must have sent an “I recovered”
message (line 30–34). As pi is finally down, it will never recover and
therefore never send an “I recovered” message. Thus pi will no longer be
welcomed. ⊓⊔

1.2.3. Q.E.D.
Steps 1.2.1 and 1.2.2 show that a finally down process is eventually sus-
pected by every finally up process and no longer welcomed by any process.
Moreover the provided state information contains all messages that were

22



sent by the crashed process to the suspecting process, because accuracy
holds (as shown in step 1.1). ⊓⊔

1.3. The algorithm satisfies recovery completeness, i.e. if a process recovers
after a crash in state s and is finally up, it will eventually be welcomed
after a crash in state s and no longer suspected by every finally up process.

1.3.1. Assume: Process pi recovers and is finally up.
Prove: Every finally up process eventually welcomes pi.

Proof: When pi recovers, it sends an “I recovered” message to each
other process. Every finally up process will receive this message (due to
the validity property of the lockstep synchronous distributed system) and
welcome the recovered process. ⊓⊔

1.3.2. Assume: Process pi recovers and is finally up.
Prove: pi is no longer suspected by any process.

Proof: As pi is finally up, it sends an “I’m in round r” message in every
round. Thus no process will ever suspect pi. ⊓⊔

1.3.3. Q.E.D.
Steps 1.3.1 and 1.3.2 show that a finally up process is eventually wel-
comed by every finally up process and no longer suspected. Moreover
the provided state information contains all messages that were sent by
the crashed process to the suspecting process, because accuracy holds (as
shown in step 1.1). ⊓⊔

1.4. The algorithm satisfies unstable completeness, i.e. every unstable process
will be suspected and welcomed an infinite number of times by every
finally up process.

Proof: An unstable process recovers an infinite number of times. Thus it
will be suspected by each process an infinite number of times, because it
sends an infinite number of “I recovered” messages. ⊓⊔

1.5. The algorithm satisfies integrity, i.e. every process is suspected at most
once for every crash.

Proof: The algorithm keeps track of the current suspicion status of each
process in the variable suspected. Due to the check in line 18, each process is
suspected at most once after a crash. Before being suspected the next time,
each process must be welcomed first and thus will not be suspected until
its next crash. ⊓⊔

1.6. The algorithm satisfies suspect validity, i.e. if a process is suspected, it
either was never suspected before, or it was welcomed after the last time
it was suspected.

Proof: The algorithm keeps track of the current suspicion status of each
process in the variable suspected. Due to the check in line 18, no process can
be suspected twice without being welcomed in between (lines 34–35). ⊓⊔

1.7. The algorithm satisfies welcome validity, i.e. each process is welcomed at
most once after each time being suspected.

Proof: A process is only welcomed when it sends an “I recovered” message
(lines 30–35). This message is only sent once per recovery. Thus the no du-
plication property of the lockstep synchronous distributed system ensures

23



that each process is welcomed only once per recovery. Furthermore the al-
gorithm ensures in lines 31–32 that a process is suspected for a crash before
being welcomed after that crash. ⊓⊔

1.8. Q.E.D.
Follows from steps 1.1–1.7 of the algorithm. ⊓⊔

2. Q.E.D.
Follows from step 1. ⊓⊔

24


