On the Locality of Grammatical Evolution

Franz Rothlauf and Marie Oetzel

Working Paper 11/2005
December 2005

Working Papers in Information Systems

University of Mannheim
Department of Business Administration and Information Systems
D-68131 Mannheim/Germany
Phone +49 621 1811691, Fax +49 621 1811692
E-Mail: wifol@uni-mannheim.de
Internet: http://www.bwl.uni-mannheim.de/wifol

On the Locality of Grammatical Evolution

Franz Rothlauf
Dept. of Business Administration and Information Systems
University of Mannheim
D-68131 Mannheim/Germany
rothlauf@uni-mannheim.de

Marie Oetzel
Dept. of Business Administration and Information Systems
University of Mannheim
D-68131 Mannheim/Germany

December 10, 2005

Abstract

It is well known that using high-locality representations is important for
efficient evolutionary search. This paper investigates the locality of the
genotype-phenotype mapping (representation) used in grammatical evolu-
tion (GE). The results show that the representation used in GE has prob-
lems with locality as many neighboring genotypes do not correspond to
neighboring phenotypes. Experiments with a simple local search strategy
reveal that the GE representation leads to lower performance for mutation-
based search approaches in comparison to standard GP representations.
The results suggest that locality issues should be considered for further
development of the representation used in GE.

1 Introduction

Grammatical Evolution (GE) [1] is a variant of Genetic Programming (GP) [2]
that can evolve complete programs in an arbitrary language using a variable-
length binary string. In GE, phenotypic expressions or programs are created
from binary genotypes by using a complex representation (genotype-phenotype
mapping). The representation selects production rules in a Backus-Naur form
grammar and thereby creates a phenotype. GE approaches have been applied
to several test problems and real-world applications and good performance has
been reported [1, 3, 4].

The locality of a genotype-phenotype mapping describes how well genotypic
neighbors correspond to phenotypic neighbors. Previous work has indicated
that a high locality of representations is necessary for efficient evolutionary
search [5, 6, 7, 8, 9]. Until now locality has mainly been used in the context of
standard genetic algorithms to explain performance differences.

The purpose of this paper is to investigate the locality of the genotype-
phenotype mapping used in GE. In GE there is a large semantic gap between
genotypic binary strings and phenotypic programs or expressions. Therefore,
the design of high-locality genotype-phenotype encodings is important to ensure
high GE performance. We present experiments for standard GE test problems
such as the Santa Fe trail and symbolic regression. The results show that the
mapping used in GE has low locality leading to low performance of standard
mutation operators. The study at hand is an example of how basic GA design
principles can be applied to explain performance differences between different
GP approaches and demonstrates current challenges in the design of GE-based
systems.

The paper is structured as follows: the next section presents some pre-
requisites for our investigation. It discusses genotypes and phenotypes, intro-
duces the locality of a representation, and discusses how mutation operators
are based on the metric that is defined on the genotypic search space. Sect. 3
reviews GE and describes characteristic properties of this GP variant. Two
standard benchmark problems are described in Sect. 4. Sect. 5 presents an
investigation into the locality of the genotype-phenotype mapping used in GE.
Consequently in Sect. 6, results are presented on how the locality of the rep-
resentation influences the performance of the mutation search operator used in
GE. The paper ends with concluding remarks.

2 Representations, Locality and Mutation Opera-
tors

This section introduces some prerequisites necessary for our investigation. It
introduces representations, defines the locality of representations and discusses
the relationship between locality and mutation-based search.

2.1 Genotypes and Phenotypes

When using a representation, every optimization problem f can be decomposed
into a genotype-phenotype mapping f;, and a phenotype-fitness mapping f,
[10]. We define ®, as the genotypic search space (e.g. binary strings) where
the genetic operators such as recombination or mutation are applied. An opti-
mization problem on ®, could be formulated as follows: The search space ®, is
either discrete or continuous, and the functionf(x) : ®, — R assigns an element
in R to every element in the genotypic space ®,. The optimization problem
is defined by finding the unique global optimal solution & = maxgzes, (f(x)),
where @ is a vector of decision variables (or alleles), and f(x) is a function
which assigns a fitness value to every x. The vector & is the global maximum.

When using a representation it must be distinguished between phenotypes
and genotypes [11]. Thus, f can be decomposed into two parts. The first maps
the genotypic space ®, on the phenotypic space ®,, and the second maps @,

on the fitness space R. Using the phenotypic space ®, we get:

fo(@9): @y — Dy,
fp(x?): &), — R,

where f = f, 0 fg = fp(fy(x?)). The genotype-phenotype mapping f, is the
used representation. f, represents the fitness function and assigns a fitness
value fp(x?) to every individual P € ®,. The genetic operators are applied to
the individuals in ®, which means on the level of genotypes [12, 13].

2.2 Metrics

When using search algorithms, a metric has to be defined on the search space
®. Based on the metric, the distance dg, », between two individuals x, € ®
and x, € ® describes how different the two individuals are. The larger the
distance, the more different two individuals are. In general, different metrics
can be defined for the same search space. Different metrics result in different
distances and different measurements of the similarity of solutions.

Two individuals are neighbors if the distance between two individuals is
minimal. For example, when using the Hamming metric for binary strings
the minimal distance between two individuals is d,n;, = 1. Therefore, two
individuals @, and x; are neighbors if the distance dg, », = 1.

If we use a representation f, there are two different search spaces, ®, and
®,,. Therefore, different metrics can be used for the phenotypic and the geno-
typic search space. In general, the metric used on the phenotypic search space
®,, is determined by the specific problem that should be solved and describes
which problem solutions are similar to each other. For GP approaches, com-
mon phenotypes are tree structures that describe programs or expressions and
possible distances are tree edit distances. In contrast, the metric defined on ®,
is not given a priori but depends on the used genotypes. In the context of GP,
different GP variants use different types of genotypes. For example, GE uses
linear bitstrings, Cartesian Genetic Programming [14] uses integer strings, and
standard GP [2] uses tree structures and applies search operators directly to
trees.

2.3 Locality

The locality [5, 6] of a representation describes how well neighboring geno-
types correspond to neighboring phenotypes. The locality of a representation
is high if all neighboring genotypes correspond to neighboring phenotypes. In
contrast, the locality of a representation is low if some neighboring genotypes
do not correspond to neighboring phenotypes. Therefore, the locality d,, of a
representation can be defined for example as

dn= Y |y, —dpl, (1)

dg,y=d;,

where df , is the phenotypic distance between the phenotypes zP and y?, d.,

is the genotypic distance between the corresponding genotypes, and d” . . resp.

dg

2 in 15 the minimum distance between two (neighboring) phenotypes, resp.

genotypes. Without loss of generality, we can assume that dgu-n = dfnm. For
dm = 0, all genotypic neighbors correspond to phenotypic neighbors and the
encoding has perfect (high) locality.

We want to emphasize that the locality of a representation depends on the
representation f; and the metrics that are defined on ®, and ®,,. f, only deter-
mines which phenotypes are represented by which genotypes and says nothing
about the similarity between solutions. To describe or measure the locality of

a representation, a metric must be defined on ®, and ®,,.

2.4 Locality and Mutation-based Search

The metric defined on the genotypic search space ®, and the functionality of
search operators like mutation depend on each other and are closely related.
In EAs and most of the individual-based search heuristics like simulated an-
nealing, tabu search, and others, the search operator mutation is designed to
create new solutions (offspring) with similar properties as its/their parent(s)
[15]. Mutation usually creates offspring that have a small or sometimes even
minimal distance to their parents (for example the bit-flipping operator for
binary genotypes). As the metric used on the genotypic search space defines
which genotypes are similar to each other, the used genotypic metric directly
determines the functionality of mutation operators.

In mutation-based search approaches, mutation steps must be small and
should result in similar solutions as larger search steps would result in a ran-
domization of the search. Then, guided search around good solutions would be-
come impossible as the mutation-based search algorithm would jump randomly
around the search space. However, low-locality representation show exactly
this behavior, as small changes in a genotype do not result in small changes
of a phenotype. Therefore, for low-locality representations, guided search is
no longer possible as local search steps in ®, result into random (large) search
steps in ®,. This leads to a low performance of EA approaches when using
low-locality encodings.

3 Grammatical Evolution

Grammatical evolution is a form of linear GP that differs from traditional GP
in three ways: it employs linear genomes, it uses a grammar in Backus-Naur
form (BNF) to define the phenotypic structures, and it performs an ontogenetic
mapping from the genotype to the phenotype. Altogether these three character-
istics enable GE to evolve complete computer programs in an arbitrary language
using a variable-length binary string.

3.1 Functionality

GE is an EA variant that can evolve computer programs defined in BNF. In
contrast to standard GP [2], the genotypes are not parse trees but bitstrings of a
variable length. A genotype consists of groups of eight bits (denoted as codons)

that select production rules from a BNF grammar. For the construction of the
phenotype from the genotype, see Sect. 3.3.

The functionality of GE follows standard EA approaches using binary geno-
types. As simple binary strings are used as genotypes, no specific crossover
or mutation operators are necessary. Therefore, standard crossover operators
like one-point or uniform crossover and standard mutation operators like bit-
flipping mutation can be used. A common metric for measuring the similarity
of binary strings (compare Sect. 2.2) is the Hamming distance. Therefore, the
application of bit-flipping mutation creates a new solution with genotypic dis-
tance d9 = 1. For selection, standard operators like tournament selection or
roulette-wheel selection can be used. Some GE implementations use steady
state replacement mechanisms and duplication operators that duplicate a ran-
dom number of codons and insert these after the last codon position. As usual,
selection decisions are performed based on the fitness of the phenotypes.

GE has been successfully applied to a number of diverse problem domains
such as symbolic regression [1, 3|, trigonometric identities [4], symbolic integra-
tion [3], the Santa Fe trail [1], and others. The results indicate that GE can be
applied to a wide range of problems and validates the ability of GE to generate
multi-line functions in any language following BNF notation.

3.2 Backus-Naur-Form

In GE, the Backus-Naur form (BNF) grammar is used to define the grammar
of a language as production rules. Based on the information stored in the
genotypes, BNF-production rules are selected and form the phenotype. In BNF,
it can be distinguished between terminals, which are equivalent to leaf nodes in
trees, and non-terminals, which can be interpreted as interior nodes in a tree
and can be expanded. A grammar in BNF is defined by the set {N,T, P, S},
where N is the set of non-terminals, 7" is the set of terminals, P is a set of
production rules that maps N to T, and S € N is a start symbol.

To apply GE to a problem, it is necessary to define the BNF grammar
for the problem. The BNF grammar must be defined such that the optimal
solution for a specific problem can be created from the elements defined by the
grammar.

3.3 Genotype-phenotype Mapping of Grammatical Evolution

In GE, a phenotype is created from binary genotypes in two steps. In a first
step, integer values are calculated from codons of eight bits. Therefore, from a
binary genotype x9%" of length 8] we get an integer genotype x9 of length I,
where each integer :z:f-”mt € {0,...,255}, for i € {0,...,l — 1}. Beginning with
the start symbol S € N, the integer value z 1t 55 used to select production rules
from the BNF grammar. We denote with np the number of production rules in
P. To select a rule, we calculate the number of the used rule as z¢ M od np,
where mod denotes the modulo operation. In this manner, the mapping process
traverses the genome beginning from the left hand side (z3"") until one of the

following situations arises:

e The mapping is complete. All non-terminals are transformed into termi-
nals and a complete phenotype xP is generated.

e The end of the genome is reached (i = [— 1) but the mapping process
is not yet finished. The individual is wrapped, the alleles are reused,
and the reading of codons continues. As the genotype is iteratively used
with different meaning, mapping can have a negative effect on locality.
However, without mapping a larger number of individuals is incomplete
and invalid.

e An upper threshold on the number of wrapping events is reached and
the mapping is not yet complete. The mapping process is halted and the
individual is assigned the lowest possible fitness value.

The mapping is deterministic, as the same genotype always results in the same
phenotype. However, the interpretation of 27" can be different if the genotype
is wrapped and a different type of rule is selected. A more detailed description
of the mapping process including illustrative examples can be found in [1, 3.

4 Test Problems

We investigate the locality and performance of GE for the Santa Fe Ant trail
and symbolic regression problem. Both problems are standard for GP and GE.

4.1 Santa Fe Ant Trail

In the Santa Fe Ant trail problem, 89 Pieces of food are located on a discontinu-
ous trail which is embedded in a 32 by 32 toroidal grid. The goal is to determine
rules that guide the movements of an artificial ant and allows the ant to collect
a maximum number of pieces of food in t,,,, search steps. In each search step,
exactly one action can be performed. The ant can turn left (1eft()), turn right
(right (), move one square forward (move()), or look ahead one square in the
direction it is facing (food-ahead()). The BNF grammar for the Santa Fe ant
trail problem is shown in Fig. 1(a).

4.2 Symbolic Regression

In this example [2], a mathematical expression in symbolic form must be found
that approximates a given set of 20 data points (x;,y;). The function that
should be approximated is

fl@)=a"+2°+ 2% + 2, (2)

where x € [—1;1]. The used BNF grammar is shown in Fig. 1(b).

5 Locality of Grammatical Evolution

To measure the locality of a representation, we have to define a metric for
®, and ®,. For binary genotypes, usually the Hamming distance is used. It

N={expr, op, pre.op}
T={sin,cos,exp,log,+,-,/,*,x,1,(,)}
S= <expr>

Production rules P:

N={code,line,expr,if-stat,op},
T={left(), right(),
move(), food_ahead(),

else, if, {, }, (,), <expr> ::=<expr><op><expr>
i) | (<expr><op><expr>)
S=code. | <pre-op>(<expr>)
Production rules P: | <var>
<code> ::=<1line>
. <op> 1=+
| <code><line> .
<line> 1= <expr> |/
<expr> = <if-stat> | *
| <op> <pre- =l
pre-op> ::=sin

<if-stat> ::=1if (food_ahead())

{<expr>} else : :;S
{<expr>} | 102
<op> ii=left(); o
| rightO; <op> I=EX
| move(); 1

(a) Santa Fe Ant trail (b) symbolic regression

Figure 1: BNF grammars for test problems

measures the number of different alleles in two genotypes z9 and yY and is
calculated as dj, .o = >; [#] — y/|. A mutation (bit-flipping) of an individual
x results in a neighboring solution y with distance d , = 1.

5.1 Tree Edit Distance

It is more difficult to define appropriate metrics for phenotypes that are pro-
grams or expressions. In GE and GP, phenotypes are usually described as trees.
Therefore, edit distances can be used for measuring differences/similarities be-
tween different phenotypes. In general, the edit distance between two trees
(phenotypes) is defined as the minimum cost sequence of elemental edit oper-
ations that transform one tree into the other. There are the following three
elemental operations:

1. deletion: A node is removed from the tree. The children of this node
become children of their parent.

2. insertion: A single node is added.
3. replacement: The label of a node is changed.

To every operation a cost is assigned (usually the same for the different op-
erations). [16] presented an algorithm to calculate an edit distance where the
operations insertion and deletion may only be applied to the leaves. [17] intro-
duced an unrestricted edit distance and [18] developed a dynamic programming
algorithm to compute tree edit distances.

In the context of GP, tree edit distances have been used as a measurement
for the similarity of trees [19, 20, 21]. [22, 23] used tree edit distances for
analyzing the causality of GP approaches.

5.2 Results

For investigating the locality of the genotype-phenotype mapping used in GE,
we created 1,000 random genotypes. For the genotypes, we used standard
parameter settings. The length of an individual is 160 bits, the codon size is
8, the wrapping operator is used, the upper bound for wrapping events is 10,
and the maximum number of elements in the phenotype is 1,000. For each
individual z, we created all 160 neighbors y, where d%, = 1. The neighbors
differ in exactly one bit from the original solution. The locality of the genotype-
phenotype mapping can be determined by measuring the distance d% , between
the phenotypes that correspond to the neighboring genotypes z and y. The
phenotypic distance d% , is measured as the edit distance between xP and yP.

For the GE genotype-phenotype mapping, we use the version 1.01 written by
Michael O’Neill. The GE representation also contains the BNF Parser Gramma,
version 0.63 implemented by Miguel Nicolau. For calculating the tree edit
distance, we used a dynamic programming approach implemented by [18].

As the representation used in GE is redundant, some changes of the geno-
types may not affect the corresponding phenotypes. We performed experiments
for the Santa Fe Ant trail problem and the symbolic regression problem and
found that either 81.98% (Santa Fe) or 94.01% of all genotypic neighbors are
phenotypically identical (d%, = 0). Therefore, in about 90 % of cases a muta-
tion of a genotype (resulting in a neighboring genotype) does not change the
corresponding phenotype.

What is important for the locality of GE are the remaining neighbors that
result in different phenotypes. The locality is high if the corresponding pheno-
types are similar to each other. Figure 2 shows the frequency and cumulative
frequency over the distance db , for the two different test problems. We only
consider the case where db, > 0. The results show that for the Santa Fe Ant
trail problem, many genotypic neighbors are also phenotypic neighbors (about
78%). However, there are also a significant amount of genotypic neighbors
where the corresponding phenotypes are completely different. For example,
more than 8% of all genotypic neighbors have a tree edit distance db, > 5.
The situation is worse for symbolic regression. Only about 45% of all genotypic
neighbors correspond to phenotypic neighbors and about 14% of all genotypic
neighbors correspond to phenotypes where db , > 5.

We see that the locality of the genotype-phenotype mapping used in GE is
not perfect. For the two test problems, a substantial percentage of neighboring
genotypes do not correspond to neighboring phenotypes. Therefore, we expect
some problems with the performance of mutation-based GE search approaches
in comparison to other approaches that use a high-locality encoding.

>
(8]
g 0.95
3 g
S - g 0.9
1 2 o8
= < os
B S I N 1 g 075 1 1 1 1 1 1 1
2 4 6 8 10 12 14 © 2 4 6 8 10 12 14
distance d” distance d”

(a) Santa Fe Ant trail

05 T T T T
0.4 ‘ ‘ . e
3
g 03 e e S g
S s
5 o02f 1 ¢
E 0L N g
0 — 1 I §
5 10 15 20 ©

distance d” distance d”

(b) symbolic regression

Figure 2: Distribution of tree edit distances d% , for neighboring genotypes x
and y, where df , = 1. We show the frequency (left) and cumulative frequency
(right) over d% , for the Santa Fe Ant trail problem and the symbolic regression
problem.

6 Influence of Locality on GE Performance

The previous results indicate some problems of GE with low locality. Therefore,
we investigate how strong the low locality of the genotype-phenotype mapping
influences the performance of GE. We focus the study on mutation only. How-
ever, we assume that the results for mutation are also relevant for crossover
operators (compare [8, 6, 11]).

6.1 Experimental Setting

For the experiments, we want to make sure that we only examine the impact of
locality on GE performance and that no other factors blur the results. There-
fore, we implemented a simple local (14-1)-EA using only mutation as a search
operator. The search strategy starts with a randomly created genotype and
iteratively applies bit-flipping mutations to the genotypes. If the offspring has
a higher fitness than the parent it replaces it. Otherwise the parent remains
the actual solution. The (14+1)-EA behaves like a simple local search.

We perform experiments for both test problems and compare an encoding
with high locality with the representation used in GE. In the runs, we randomly
generate a GE-encoded initial solution and use this solution as the initial solu-
tion for both types of representations. For GE, a search step is the mutation

of one bit of the genotype, and the phenotype is created from the genotype
using the GE genotype-phenotype mapping process. Due to the low locality
of the representation, we expect problems when focusing the search on areas
of the search space where solutions with high fitness can be found. However,
the low locality increases the evolvability of GE and makes it easier to escape
local optima. Furthermore, we should bear in mind that many genotypic search
steps do not result in a different phenotype.

We compare the representation used in GE with a standard representation
used in GP. We define the search operators in such a way that a mutation
always results in a neighboring phenotype (d%, = 1). Therefore, the mutation
operators are directly applied to the trees 2P. In our implementation, we use
the following mutation operators:

e Santa Fe Ant trail

— Deletion: A leaf node from the set of terminals T is deleted.
— Insertion: A new leaf node from T is inserted.

— Replacement: A leaf node (from 7') is replaced by another leaf node.
e symbolic regression

— Insertion: sin, cos, exp, or log are inserted at a leaf that contains .

— Replacement: +, -, * and / are replaced by each other; sin, cos, exp,
and log are replaced by each other.

A mutation step (in the EA, the type of mutation operator is chosen randomly)
always results in a neighboring phenotype and we do not need an additional
genotype-phenotype mapping like in GE as we apply the search operators di-
rectly to the phenotypes.

Comparing these two different approaches, in GE, a mutation of a genotype
results in most cases in the same phenotype, sometimes in a neighboring pheno-
type, but also sometimes in phenotypes that are completely different (compare
the plots presented in Fig. 2). The standard GP representation is a high-locality
representation as a mutation always results in a neighboring phenotype. There-
fore, the search can be focused on promising areas of the search space but the
search can never escape the local optima.

6.2 Performance Results

For the GE approach, we use the same parameter setting as described in
Sect. 5.2. For both problems, we perform 1,000 runs of the (1+1)-EA using
randomly created initial solutions. Each EA run is stopped after 1,000 search
steps. Figure 3 compares the performance for the Santa Fe Ant trail (Fig. 3(a))
and the symbolic regression problem (Fig. 3(b)) over the number of search steps.
Figure 3(a) shows the mean fitness of the found solution and Fig. 3(b) shows
the mean error 1/203°; | f;(x:) — f(x:)]), where f is defined in (2) and f;
(€{0,...,1000}) denotes the function found by the search in search step j.
The results are averaged over all 1,000 runs.

10

T T T 2 T T T
20 [B e 18 GE-encoding i
/ ; ; ; : high-locality encoding -------
B e e T e R e
1 / — |
3 10 s l4r
£ | | 5 12) .
5 GE-encoding -]
high-locality encoding ------- [S S
0 1 1 1 0.8 1 1 1
0 250 500 750 1000 0 250 500 750 1000
search steps search steps
(a) Santa Fe Ant trail (b) symbolic regression

Figure 3: Performance of a mutation-based (1+1)-EA using either the GE
encoding or a high-locality encoding for the Santa Fe Ant trail problem and the
symbolic regression problem

The results show that the (141)-EA using a high-locality representation out-
performs a (1+1)-EA using the GE representation. Therefore, the low-locality
of the encoding illustrated in Sect. 5 has a negative effect on the performance
of evolutionary search. Although the low locality of the GE encodings allows a
local search strategy to escape local optima, EAs using the GE encoding show
lower performance than a high-locality encoding.

Comparing the results for the two types of encodings reveals that using the
GE encoding prolongs search. More search steps are necessary to converge.
This increase is expected as for the GE encoding a search step often does not
change the corresponding phenotypes. However, the plots show that allowing
the (14-1)-EA using the GE encoding to run for a higher number of search steps
does not increase its performance.

7 Conclusions

Previous work has shown that the locality of the genotype-phenotype mapping
(representation) is important for the success of EAs. This study analyzes the
locality of the representation used in grammatical evolution (GE). GE differs
from other GP approaches by using binary genotypes and constructing pheno-
types by choosing construction rules in Backus-Naur form grammar.

The results show that the GE representation has some problems with locality
as neighboring genotypes often do not correspond to neighboring phenotypes.
Therefore, a guided search around high-quality solutions can be difficult. How-
ever, due to the lower locality of the representation, it is easier to escape from
local optima. Comparing a simple (14+1)-EA using either the GE representation
with a standard GP encoding with high-locality reveals that the low locality of
the GE representation reduces the performance of local search.

The results of this study allow a better understanding of the functionality
of GE and can deliver some explanations for problems of GE that have been
observed in literature. We want to encourage GE researchers to consider lo-
cality issues for further developments of the genotype-phenotype mapping. We

11

believe that increasing the locality of the GE representation can also increase
the performance and effectiveness of GE.

References

1]

2]

O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on
Evolutionary Computation 5 (2001) 349-358

Koza, J.R.: Genetic programming: On the programming of computers by
natural selection. MIT Press, Cambridge, Mass. (1992)

O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language. Volume 4 of Genetic Programming.
Kluwer Academic Publishers (2003)

Ryan, C., O'Neill, M.: Grammatical evolution: A steady state approach.
In: Late Breaking Papers, Genetic Programming 1998. (1998) 180-185

Rothlauf, F., Goldberg, D.E.: Tree network design with genetic algorithms
- an investigation in the locality of the priifernumber encoding. In Brave,
S., Wu, A.S., eds.: Late Breaking Papers at the Genetic and Evolutionary
Computation Conference 1999, Orlando, Florida, USA, Omni Press (1999)
238244

Gottlieb, J., Raidl, G.: Characterizing locality in decoder-based eas for the
multidimensional knapsack problem. In Fonlupt, C., Hao, J.K., Lutton,
E., Ronald, E., Schoenauer, M., eds.: Proceedings of Artificial Evolution.
Volume 1829 of Lecture Notes in Computer Science., Springer (1999) 38-52

Gottlieb, J., Raidl, G.R.: The effects of locality on the dynamics of
decoder-based evolutionary search. In Whitley, D., Goldberg, D.E., Cantt-
Paz, E., Spector, L., Parmee, L., Beyer, H.G., eds.: Proceedings of the
Genetic and Evolutionary Computation Conference 2000, San Francisco,
CA, Morgan Kaufmann Publishers (2000) 283-290

Gottlieb, J., Julstrom, B.A., Raidl, G.R., Rothlauf, F.: Prifer numbers:
A poor representation of spanning trees for evolutionary search. IliGAL
Report No. 2001001, University of Illinois at Urbana-Champaign, Urbana
(2001)

Rothlauf, F., Goldberg, D.E.: Priifernumbers and genetic algorithms: A
lesson on how the low locality of an encoding can harm the performance
of GAs. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E.,
Merelo, J.J., Schwefel, H.P., eds.: Parallel Problem Solving from Nature,
PPSN VI, Berlin, Springer-Verlag (2000) 395-404

Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization.
Journal of Experimental and Theoretical Artificial Intelligence 2 (1990)
101-115

12

[11]

[12]

[13]

[14]

[20]

[21]

Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. 1
edn. Number 104 in Studies on Fuzziness and Soft Computing. Springer,
Heidelberg (2002)

Bagley, J.D.: The Behavior of Adaptive Systems Which Employ Genetic
and Correlation Algorithms. PhD thesis, University of Michigan (1967)
(University Microfilms No. 68-7556).

Vose, M.D.: Modeling simple genetic algorithms. In Whitley, L.D., ed.:
Foundations of Genetic Algorithms 2, San Mateo, CA, Morgan Kaufmann
(1993) 63-73

Miller, J.F.; Thomson, P.: Cartesian genetic programming. In Poli, R.,
Banzhaf, W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C., eds.:
Third European Conference on Genetic Programming. Volume 1802 of
LNCS., Springer (2000) 121-132

Doran, J., Michie, D.: Experiments with the graph traverser program.
Proceedings of the Royal Society of London (A) 294 (1966) 235-259

Selkow, S.M.: The tree-to-tree editing problem. Information Processing
Letters 6 (1977) 184-186

Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM 26
(1979) 422-433

Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance
between trees and related problems. SIAM Journal on Computing 18
(1989) 1245-1262

Keller, Banzhaf: Genetic programming using genotype-phenotype map-
ping from linear genomes into linear phenotypes. In Koza, J.e.a., ed.:
Proceedings of First Annual Conference on Genetic Programming, MIT
Press (1996) 116-122

O’Reilly, U.M.: Using a distance metric on genetic programs to under-
stand genetic operators. In: Late breaking papers at the 1997 Genetic
Programming Conference, Stanford University, CA (1997) 199-206

Brameier, Banzhaf: Explicit control of diversity and effective variation
distance in linear genetic programming. In Tettamanzi, A.e.a., ed.: Genetic
Programming, Proceedings of the 5th European Conference. Volume 2278
of LNCS., Springer (2002) 162-171

Igel, C.: Causality of hierarchical variable length representations. Proceed-
ings of 1998 IEEE International Conference on Evolutionary Computation
(1998) 324-329

Igel, C., Chellapilla, K.: Investigating the influence of depth and degree
of genotypic change on fitness in genetic programming. In Banzhaf, W.,
Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith,

13

R.E., eds.: Proceedings of the Genetic and Evolutionary Computation
Conference. Volume 2., Orlando, Florida, USA, Morgan Kaufmann (1999)
1061-1068

14

