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Chapter 1

Introduction

Even though this thesis is mainly concerned with digital (discrete) signal processing,
analog (continuous) signal processing is the overall goal. What links them together
is a sampling theorem. The principal impact of a sampling theorem is that it allows
the replacement of a continuous (�ltered) signal by a discrete sequence of its samples
without loss of any information. Also it speci�es a minimum sampling rate that is
necessary in order to be able to reconstruct the original continuous signal. The main
reason why one is using a digital circuit to process analog (continuous) signals is: In
some frequency range, digital circuits are less subject to distortion and interference
than are analog circuits.

If a discrete sequence is convolved with a digital �lter then the �lter structure (possible
choices are, e.g., direct-, parallel-, cascade-, lattice-, ladder-structures) for the desired
application was choosen beforehand. A very good choice for an application that re-
quires good coe�cient accuracy, dynamic range and stability under �nite arithmetic
conditions are the lattice or ladder wave digital �lter (WDF) structures. Recursive
WDFs, e.g. Butterworth and Cauer (elliptic) �lters, can be designed by using explicit
formulas. Nonrecursive WDFs are designed with optimization methods and numerical
problems can occur for high �lter degrees. In order to meet the same �lter speci�-
cation, nonrecursive digital �lters need a higher �lter degree than recursive digital
�lters. Linear phase �lters and multiplierless structures are possible to be realized for
both types.

Digital �lters that are arranged in a �lter bank and full�l additional requirements
can be used to generate wavelets. Biorthogonal �lters are such �lters. Orthogonal
�lters are a special case of biorthogonal �lters that have the lowest complexity. De-
sign methods of orthogonal �lters have been found for the one dimensional case
[Gas85, Fli94, Vai93, Vet95]. The design of orthogonal �lters in higher dimensions
for nonseparable sampling, except for one trivial �lter (Haar �lter), have not been
found. Unlike separable sampling (diagonal matrix), which is build with tensor prod-
ucts of their one-dimensional counterparts and results in one scaling function and
three di�erent basic (mother) wavelets for a two-channel, two-dimensional �lter bank,
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nonseparable sampling results in one scaling function and one basic wavelet. A similar
statement on the number of basic wavelets is true for more than two channels and
higher dimensional �lter banks.

Possible candidates for a sampling theorem are the wavelet sampling theorem and
the Nyquist sampling theorem. The �lter with which an analog signal gets convolved
before sampling takes place is called scaling function (father wavelet). Possible candi-
dates for a nonseparable sampling matrix in two dimensions are a quincunx matrix for
a two channel and a hexagonal matrix for a four channel �lter bank. A face centered
cubic sampling (FCCS) matrix can be used for two channels and a body centered
cubic sampling (BCCS) matrix can be used for four channels in three dimensions.

The strength of wavelet methods lies in their ability to describe local phenomena
more accurately than a traditional expansion in sines and cosines can. Hence, wavelets
are ideal in applications where an approach to transient behaviour is needed; such
as in seismic signals or in image processing. Operators associated with wavelets, i.e.,
Calderon-Zygmund operators seem to enable to solve outstanding classical problems
in complex analysis and partial di�erential equations. Thus, wavelets are very much
needed in multidimensional problems and e�cient orthogonal �lters designed as wave
digital �lters for nonseparable sampling matrices are desirable. In fact, they are needed
by engineers that deal with subband coding, physicists in quantum physics that deal
with coherent states and mathematicians that deal with Calderon-Zygmund opera-
tors but they are not restricted to them. Various industrial standards have already
incooperated the wavelet transform, as an example see [Rao96].

The main target of this thesis is the design of orthogonal multidimensional wave
digital �lters for nonseparable sampling matrices. In order to be able to �nd an easy
access to �lter design, some basic background knowledge of electrical circuits and
�lters of analog as well as digital type are reviewed in chapter 2. To indicate an appli-
cation, an electrical circuit that represents a three-dimensional Navier-Stokes equation
is presented. And it can be used when calculating numerical values of this equation.
Important ingredients that link a digital �lter to a wavelet transform are summarised
and it is refered to other literature for a more detailed discussion. Furthermore impor-
tant sampling theorems are discussed and a comparison on the minimum sampling
rate is given that shows interesting aspects.

Chapter 3 recapitulates relationships of WDFs to their analog reference �lters and
how a perfect reconstruction system can be build without the need of a spectral fac-
torization method. Feldkeller's equation plays an important role during the design of
ladder or lattice WDFs. It is exemplarly shown how to build a perfect reconstruction
system with recursive orthogonal lattice WDFs. How in�nite length signals are pro-
cessed and how non-causal �lters are implemented is also discussed.

Known wavelet bases such as Meyer wavelets, Sinc-wavelets (Littlewood-Paley wavelets),
Haar wavelets, Daubechies wavelets and Butterworth wavelets are listed in chapter
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4 and known �lters are presented that, under some restrictions, can be used to gen-
erate new orthonormal wavelet bases such as raised-cosine wavelets and Chebyshev
wavelets. Also presented are two properties of the wavelet transform, i.e., convolution
and shift. Using known �lter design tools the known shift property is extended to a
shift � 2 R.

The novelties of chapter 5, 6 and 7 are: Two channel nonseparable orthogonal wave
digital �lters for quincunx sampling are designed in chapter 5. The design method
is based on one-dimensional �lters as well as well-behaved sampling matrices. A
polyphase decomposition is applied and results in a very e�cient realization of the
�lters. Four-channel nonseparable orthogonal wave digital �lters for hexagonal sam-
pling as well as for BCCS matrices are designed in Chapter 6. As in chapter 5, well
behaved sampling matrices are found and used during the design process which again
can be brought back to one-dimensional �lters. As an example, Butterworth �lters
are used. However, the design process is not restricted to that type of �lters.

The chapters 5 and 6 use lattice WDFs since they can be implemented very e�-
ciently. However, it can be seen in chapter 7 that for hexagonal sampling a ladder
WDF implementation is more e�cient than a lattice WDF implementation. A new
proposed design method that uses explicit formulas for four-channel systems is given.

Finally the thesis is concluded in chapter 8.
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Chapter 2

Circuits and Filters

This chapter is devided into three sections. It provides some background knowledge
for later chapters on analog and digital �lters. Furthermore, tools for circuit design,
that can increase the e�ciency with which signals can be processed, are given, i.e.,
multirate system, �lter bank, Malats multiresolution analysis and wavelet transform.
In addition, sampling theorems that link digital circuits to analog circuits are pre-
sented.

2.1 Circuits and �lters

The theory of analog and digital �lters is huge. Here, only some parts of it are pre-
sented that are necessary to follow the main idea of the new presented material in
this thesis. It is refered to [Fet86, Fli94, Vet95, Vai93] and reference therein for more
details.

2.1.1 Analog �lters

Convolution was used by Oliver Heaviside in the late nineteenth century to calculate
electrical circuit output current when the input voltage waveform was more compli-
cated than a simple battery source. The use of the methods of Heaviside predates
the use of the analytical methods developed by Fourier and Laplace [Skl88]. Analog
�lters are electrical circuits. The theory of analog �lters also owes its origin to Wag-
ner and Campbell, who in 1915 advanced the concept of passive electrical wave �lters
[The73]. Fig. A.2 shows a block diagram of an electrical �lter. In what follows1, t 2 R.
In Fig. A.2, the output variable2 y(t) is related to the input variable x(t) through a

1Very often t represents time. For such cases t has the unit seconds.
2A function as well as a function value is denoted in the same way, e.g. y(t). However, for notational
convenience, the dependency on the independent variable is sometimes neglected.
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convolution integral as

y(t) =

Z 1

�=�1
h(t; �)x(�)d�; (2.1)

or, when the analog �lter is a time-invariant network, as

y(t) =

Z 1

�=�1
h(t� �)x(�)d�: (2.2)

A passive electrical �lter may be composed for example of some electrical resistances

Filter
ResponseExcitation

x(t) y(t)

Figure 2.1: Electrical Filter. (Two port.)

R, capacitances C, inductances L, gyrators r and ideal transformers �. The voltage
u(t) and the current i(t) are related as

R L

u(t) u(t)u(t)

u (t) u (t)u (t) u (t)
1 12 2

1 12 2i (t) i (t)i (t) i (t)1/r

a) b) c)

d) e)

i(t) i(t)i(t)

1/λ

C

Figure 2.2: Symbol for a) Resistance, b) capacitance, c) inductance, d) ideal transformer,
e) gyrator.

u(t) = R � i(t);

i(t) = C
du(t)

dt
;

u(t) = L
di(t)

dt
;�

u1(t)
u2(t)

�
=

�
0 �r
r 0

��
i1(t)
i2(t)

�



6 2. CIRCUITS AND FILTERS

�
u2(t)
i1(t)

�
=

�
� 0
0 ��

��
u1(t)
i2(t)

�

The associated circuit elements3 are illustrated in Fig. 2.2.
A one dimensional circuit as well as multidimensional circuits may be determined by
�nding di�erential equations that result from the application of Kirchho�'s voltage
rule and Kirchho�'s current rule. These rules are shown e.g. in [Hem95] for mul-
tidimensional circuits. It is interesting to note at this point that entirely di�erent
physical systems may correspond to the same mathematical description. For exam-
ple, an analogy between mechanical and electrical systems exists. Hence, it is possible
to describe mechanical problems with electrical circuits. Also note that discretised
versions of these electrical circuits can be used for methods that solve numerically
multidimensional partial di�erential equations of any type. Such methods require ad-
ditional �lter circuits. They are designed with the help of approximations for which
the Laplace transform is suitable. Using the Laplace transform,

A(s) =

Z 1

s=�1
a(t)e�stds;

(2.2) can be written as

Y (s) = H(s)X(s):

An ideal noncausal �lter e.g.

hsinc(t) =
sin(�t)

�t
= sinc(t);

hraised�cosine(t) = sinc(t)
cos(��t)

1� 2�t2
;

0 � � � 1, or

hcosine(t) = sinc(t)
sin(�t� 1)

�(t� 1)
;

may be approximated with the causal �lter transfer function H(s) as:

j H(s) j2s=j
= [H(s)H(�s)]s=j
 =
1

1 +K2(s)
=
a0 + a1


2 + :::+ aM
2M

b0 + b1
2 + ::: + bN
2N
; (2.3)

where N;M 2 Z and4 
 2 R. K(s) denotes the so-called characteristic function.
Common approximations are Bessel, Butterworth, Chebyshev type I, Chebyshev type
II and Cauer (elliptic) approximation. For a Butterworth approximation (maximally

at)

K2(s) = (�s)2N ; (2.4)

and for a Cauer approximation (Chebyshev pass- and stop-band)

K2(s) = �2R2
N (s); (2.5)

3It is refered to [Hem95] for the de�nition of multidimensional versions of these circuit elements.
4Very often 
 = 2�f represents circular frequency. For such cases 
 has the unit radians per second.



2.1. CIRCUITS AND FILTERS 7

here � 2 R is a small number. The Chebyshev rational function RN (
) is de�ned by
[Dav95, p.2182][Tan95, p.2616]

RN (
) =

8>>><
>>>:

(��2�1)1=4
�1=2



Q(N�1)=2

i=1


2�
rsn2[ 2iK(
r)
N

;
r]


2
rsn2[
2iK(
r)

N
;
r]�1

N=odd;

(��2�1)1=4
�1=2



QN=2

i=1


2�
rsn2[ (2i�1)K(
r)
N

;
r]


2
rsn2[
(2i�1)K(
r)

N
;
r]�1

N=even

Here, (
p is the so-called passband edge, 
s is the so-called stopband edge) 
r =

p=
s, K(t) is the complete elliptic integral of the �rst kind given by

K(t) =

Z �=2

�=0

d�

[1� t2sin2�]1=2
=

Z 1

x=0

dx

[(1� x2)(1� t2x2)]1=2

The Jacobian elliptic sine function sn[u,t] is de�ned as

sn[u; t] = sin' if u =

Z '

�=0

d�

[1� t2sin2�]1=2

The integral

F ('; t) =

Z '

�=0

d�

[1� t2sin2�]1=2
=

Z sin'

x=0

dx

[(1� x2)(1� t2x2)]1=2

is called the elliptic integral of the �rst kind. Note that K(t) = F (�=2; t). Bessel-,
Chebyshev type I- and Chebyshev type II �lters are not used in this thesis. Thus, see
e.g. [Dav95, Tan95] for the de�nition of their characteristic function. The choice of
the �lter degree N depends on how good the ideal �lter should be approximated and
can be speci�ed by the parameters

as speci�ed minimum attenuation in the stopband in decibels

ap maximum allowable attenuation spread in the passband in decibels


s stopband edge


p passband edge.

One can also use instead of as and ap the the ripple factors

�s =
p
10as=10 � 1

�p =
p
10ap=10 � 1,

respectively. Figure 2.3 shows the speci�cations for an analog lowpass �lter. The
�lter order for a normalized �lter with speci�cation

(1 + �2p)
�1 �j H(s) j2� 1 for the passband (2.6)

0 �j H(s) j2��2s for the stopband (2.7)
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1

2

2

2

s

p

p s

H(  )Ω

1/(1+   )

ΩΩ Ω

ε

ε

0

passband stopband

I I

Figure 2.3: Speci�cation for an analog low-pass �lter.

can be estimated from

N � log[�p=(�
�2
s � 1)1=2]

log[
p=
s]
(Butterworth case) (2.8)

N � 1

log[�]
log[

�2p
16(��2s � 1)

] (Cauer case) (2.9)

with

� = e��K[(1�
2
r)
1=2]=K[
r]:

Having obtained an explicit approximation formula for (2.3) by using say (2.4), it is

1/r 1/r 1/r 1/r

L L L

C

C C C C

CC CCC

1
2 3

1

2 4 7

3 421

9

106 853

Figure 2.4: Example for an analog low-pass �lter. Note, there are many possible �lter
circuits that correspond to (2.10)

necessary, because of passivity yielding stability, to calculate the values of the elements
(R;L; C; :::) of a passive5 analog �lter. This can be done with a method shown for
example in [The73, Sch90, Unb93].
As an example Fig. 2.4 shows a one dimensional low-pass �lter with the transfer

5Active �lters can be split up into a passive and active part [Hem95].
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function (see also (7.7) of chapter 7)

H(s) = 2
(s� 2)(s3 + 6s2 � 8)

(s+ 1)(s+ 2)(s2 + s+ 1)(s3 � 6s2 + 8)(s6 + s3 + 1)
(2.10)

and Fig. 2.5 indicates a three dimensional circuit that models a lossless 
uid dynamic
system. A detailed description of the electrical circuit (Network) in Fig. 2.5 is given
in [Fet92]. Also [Hem95, Nit93, Fri96] describe similar circuits.

u

u

u

L ,D’

L ,D’

L ,D’

L ,D’

L ,D’

L ,D’

L  ,D’

L  ,D’

1

1

1

1

2

3

1

1

1

5

5

5

01

04

5

5

5

1

4

3

2

5

1

4

3

6

1,D"

1,D"

1,D"

1,D"

1,D"

1,D"

-1:1

-1:1

-1:1

viscosity

viscosity

viscosity

Figure 2.5: Electrical circuit representing the general three-dimensional 
uid dynamic
equations. u1, u2 and u3 represent ideal voltage sources. It is refered to [Hem95, Fet92] for
the de�nition of the multidimensional elements, where L must not be a constant and D

represents a di�erential operator. The complex resistant (viscosity) is nonlinear.

2.1.2 Digital �lters

There exist many methods to design digital �lters. One method that relates a digital
�lter to an analog (reference) �lter is called wave digital �lter (WDF) and it owes its
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origin to Alfred Fettweis, who in 1970 [Fet70] made it possible to design systematically
passive digital �lters (WDF) (yielding low-sensitivity �lters) by making full use of
analog �lter design techniques. Although this method is more complicated than other
existing digital �lter design methods, it always guaranties (when properly used) a
stable passive digital �lter [Fet86]. Discussions of standard WDF design (IIR or FIR),
including the bireciprocal case which leads to �lters that when used in an iterated
perfect reconstruction �lter bank yield orthonormal wavelets, can be found in [Fet86,
Gas85]. Two main WDF structures are the lattice WDF6 and the ladder WDF. In a
two channel �lter bank lattice WDF yield more computationally e�cient realizations
than ladder WDF. This is not true for four channel �lter banks, see chapter 7. Since
the next Chapter is devoted to WDF, this section presents only general digital �lter
relationships.
In what follows7 n;m 2 Z. Discrete versions of (2.1) and (2.2) are

y(m0T2) =
X
n

h(m0T2; nT1)x(nT1);

and

y(m0T2) =
X
n

h(m0T2 � nT1)x(nT1);

T1 = LT and T2 = MT denote sampling instants, M represents a positive integer
downsampling factor, L represents a positive integer upsampling factor, m0 = m�1+
�, 0 � � � 1, 1=T critical sampling rate to be de�ned later,M=L � 1 and assuming
the �lter h to be a low-pass �lter, the cuto� frequency is the lesser of �=L and �=M .
(Throughout this thesis, it is always assumed that the �lters are time-invariant.)
Assuming T1 = T2 = T , � = 1 and using the z-transform

A(z) =
1X

n=�1
a(nT )z�n; (2.11)

a IIR-�lter may be represented as

H(z) =

PM
m=0 bmz

�m

1 +
PN

n=1 anz
�n

and a FIR-�lter may be represented as

H(z) =
N�1X
n=0

bnz
�n:

Note, instead of (2.11), also for � 6= 1, a modi�ed z-transform [Kov95]

A(z;�) =
1X

n=�1
a([n� 1 + �]T )z�n;

can be used. Without going into details it should be noticed that adaptive FIR and
IIR �lters exist, see e.g. [Nar94, Hay95].

6Note, lattice digital �lters [Lim95] and lattice WDFs [Fet86] are di�erent. Whereas analytical
formulas exist for lattice WDF, they do not exist for lattice digital �lters. Their �lter structure is
also di�erent. The �lter structure for lattice WDF is always robust.

7Note, the time instances n;m are related to t.
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Digital �lters are composed of adders, multipliers and delay elements. Unlike pas-
sive analog �lters, passive digital �lters can be designed to have exactly linear phase.
Whereas the design of linear phase FIR �lters is well known, the design of linear
phase IIR �lters is under current research. Recent publications on this topic are
[Vet95, Sel97]. Noncausal digital �lters can also be realized. This is true for FIR and
IIR �lters. Linear phase IIR �lters have a causal and noncausal part. A realizable
passive �lter cannot have negative element values in the analog case but in the digital
case it is possible. Note, analog reference �lters from which a digital �lter is derived
may have negative element values.

As an example, a linear phase IIR low-pass �lter H0(z), that can be used for a
two-channel orthogonal perfect reconstruction �lter bank from which wavelet bases
can be generated, is shown next.

H0(z) = A(z2) + z�1A(z�2)

A(z) =
1 + 6z�1 + (15=7)z�2

(15=7) + 6z�1 + z�2
:

The �lter coe�cients in the FIR case are usually obtained from the application of op-
timization techniques that use a weighted Chebyshev method. Closed-form formulas
exist (e.g. Lagrange polynomial), but they often lead to �lters that are not optimal
in some respect. Nevertheless, useful exceptions exist, see chapter 4. A well known
computer program using the weighted Chebyshev method is due to [Cle79]. The �lter
coe�cients in the IIR case can be obtained in two ways: a) from explicit formulas,
b) from algorithms executed by computer programs [Iee79]. Both ways give good re-
sults in some respect. However, unlike FIR �lters, IIR �lters can be unstable. Since
WDF have very good properties concerning coe�cient accuracy requirements, dy-
namic range and especially all aspects of stability under �nite-arithmetic conditions,
this thesis makes use of them also because they are very much suited for multirate
systems.

2.2 Tools for circuit design

Since there is no general tool which can be used to design a �lter for any purpose in
a most e�cient way, many tools are necessary and some of them which are used in
connection with the wavelet transform are presented below.

2.2.1 Multirate techniques

Multirate techniques can often be used to improve the computational e�ciency of dig-
ital �lters su�ering from a certain redundancy. A system contains redundancy if the
bandwidth or transition bandwidth is less than half the sampling rate [Fli94]. A pow-
erful tool of multirate systems is the polyphase decomposition (polyphase transform).
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It can be de�ned as:

H(z) =
M�1X
k=0

z�kEk(z
M) (2.12)

where

Ek(z) =
1X

n=�1
h(Mn + k)z�n:

Equation (2.12) is called type 1 polyphase decomposition. Note, that Ek for k =
0 is called 0th-type 1 polyphase component and, as will be seen later, is of some
importance. Periodically time-varying systems with period N and a time-scale change
are e.g. down/up-samplers [Vet95]. Such systems can be analyzed with polyphase
transforms. For a downsampler, depicted in Fig. 2.6 a), Y (z) is related to X(z) as

Y (z) =
1

M

M�1X
k=0

X(z
1
M e�j2�k=M):

And for a upsampler, depicted in Fig. 2.6 b), Z(z) is related to Y (z) as

Z(z) = Y (zM ):

Cascading arbitrarily units of �lters and down/up-samplers, can result in arbitrar-

M
X(z) Y(z)

a)

M
Y(z) Z(z)

b)

Figure 2.6: Block diagram representation of a (a) downsampler (b) upsampler.

ily tree-structured �lter banks. Wavelet packets are obtained from arbitrarily tree-
structured �lter banks [Wic92]. To give an example for an application, they are very
suitable for the goal of computing the evolution of turbulent 
ows [Far92]. And a four-
channel unit o�ers more possible combinations than a two-channel unit. Thus one has
more choice in the detection of the characteristic scaling of the di�erent regions of
the 
ow. In other words, e�cient compression of datas is possible when using multi-
rate systems. Other applications which take advantage of multirate techniques are in
speech and image compression as well as statistical and adaptive signal processing.

2.2.2 Filter bank

The counter part of an analog �lter bank is a digital �lter bank. There is a similarity
between a modulator/demodulator in continuous systems and a decimator/interpolator
in a discrete system, see [Cro83] and references therein. However, modulation is also
used in discrete systems, e.g., modulated digital �lter banks, see [Fli94, Kar97]. Among
digital �lter banks (in the following called FB), there are some which have a perfect
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reconstruction (PR) property. A PR FB can be viewed as a transformation. Depen-
dent on how the �lters are designed, di�erent transformations are applied to an input
signal. Examples of transformations are: Fourier transform, Cosine transform and
Wavelet transform [Fli94, Vet95, Vai93]. Figure 2.7, for example, shows a four chan-
nel FB. The related equations in case of a PRFB are:

G

x(n)

H
LP

H
BP1

M M

M M
x  (n)

H
BP2

H
HP

M

M

M G
BP2

M G
HP
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r
m
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n
g LP

G
BP1 ^

Figure 2.7: FB having M=4 channels, where x(n) = x̂(n) for a PRFB without any pro-
cessing of signals in the transform domain.M represents the down/up-sampling matrix. Hi

and Gi, i = LP;BP1; BP2;HP are �lters.
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This expands to
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X̂(z) = 1
4
[[GLP (z)HLP (z) +GBP1(z)HBP1(z) +GBP2(z)HBP2(z) +GHP (z)HHP (z)]X(z)

+[GLP (z)HLP (�jz) +GBP1(z)HBP1(�jz) +GBP2(z)HBP2(�jz) +GHP (z)HHP (�jz)]X(�jz)
+[GLP (z)HLP (�z) +GBP1(z)HBP1(�z) +GBP2(z)HBP2(�z) +GHP (z)HHP (�z)]X(�z)

+[GLP (z)HLP (jz) +GBP1(z)HBP1(jz) +GBP2(z)HBP2(jz) +GHP (z)HHP (jz)]X(jz)] (2.13)

The last three terms of (2.13) have to be zero for a PR system. And the inner part
of the �rst term must be equal to 4.

2.2.3 Mallats multiresolution analysis

One can �nd the content of this subsection for example in [Fli94, Vet95, Tch96,
Mey92, Mal89, Jaw94, Dau92]. The concept of multiresolution analysis consists of a

H
LP

H
BP1

4

4

H
BP2

H
HP

4

4

H0

H1

2

2

H0

H1

2

2

H0

H1

2

2

=̂

Figure 2.8: Two equivalent 4-channel PRFBs (analysis part). HLP (z) = H0(z)H0(z
2),

HBP1(z) = H0(z)H1(z
2), HBP2(z) = H1(z)H1(z

2), HHP (z) = H1(z)H0(z
2).

sequence of nested signal subspaces Vi of L2 2 (R) (Note, that the notation of the
nesting order varies in the literature)

V2 � V1 � V0 � V�1 � V�2::: (2.14)
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such that [
i2Z
Vi = L2(R);

\
i2Z

Vi = f0g

x(t) 2 Vi () x(2it) 2 V0 (2.15)

x(t) 2 V0 =) x(t� n) 2 V0; for all n 2 Z (2.16)

There exists a scaling function '(t) 2 V0 which together with its translations
'n = '(t� n); (n 2 Z) (2.17)

constitutes an orthonormal basis8 of the space V0, written in the Fourier domain
1X

k=�1
j �(! + 2k�) j2= 1: (2.18)

It is shown in [Fli94, Mey92] how to obtain from the continuous signal x(t) the discrete
signal x(n) or �0(n) as well as the other expansion coe�cients (wavelet coe�cients).
And it will be repeated below. Furthermore, in [Dau92] it is shown that:

Theorem 2.1

Let 'i;n(t) = 2�
i
2'(2�it� n) (i; n 2 Z). If '(t) 2 L2(R) satis�es

0 < � �
X
k2Z

j �(! + 2�k) j2� � <1 (2.19)

and if the subspace Vi 2 L2 is spanned by functions f'i;n : n 2 Zg, i.e.,

Vi = spanf'i;n : n 2 Zg
then \

i2Z
Vi = f0g:

See [Dau92] for a proof.

Theorem 2.2

For '(t) 2 L2(R) satisfying (2.19) and Vi de�ned as above, if �(
) is bounded for all

 and continuous near 
 = 0, with �(0) 6= 0, then

[
i2Z
Vi = L2(R):

See [Dau92] for a proof.

8Since the vectors '(t � n) form an orthonormal basis for V0, �(n) =
R
'(t)'�(t + n)dt holds,

where �(n) =

(
1 for n=0;

0 elsewhere
Furthermore, the above autocorrelation function with its spectral factor

'(t) can be written (applying Parseval's formula and the shift property of the Fourier transform)
as �(n) = 1

2�

R
j �(!) j2 ejn!d!. Here, as n 2 Z results in sampling of �(
), i.e., ~�(ej!) =

1

T

P
1

n=�1�(
+2�n
T

) and assuming T = 1, it follows that �(n) = 1

2�

R 2�
!=0

ejn!
P
1

k=�1 j �(! +

2�k) j2 d!. Hence, because 1

2�

R 2�
!=0

ejn!d! = �(n), the in�nite summation must be equal to 1.
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2.2.4 Scaling function and wavelet relations

As described above a multiresolution is composed of a scaling function '(t) 2 V0
satisfying (2.14-2.18). It follows that the subspace V0 can be constructed from the
functions in (2.17) and from there all the other subspaces Vi can be generated.

The above presented multiresolution analysis (MA) corresponds to a two-channel
PR FB but is not restricted to it. See e.g. Fig. 2.8 for M=4. The extension to M > 4
is straightforward.

Let  i;n(t) = 2�
i
2 (2�it�n) (i; n 2 Z) and let in Vi�1 the spaces Vi = span(f'i;n : n 2 Zg)

and Wi = span(f i;n : n 2 Zg) form an orthogonal complement, such that Vi�1 =
Vi �Wi: One can show [Fli94, Vet95, Vai93] that if a normalized regular9 low-pass
�lter H0(e

j!) satis�es j H0(e
j0) j= p

2;
P

n j h0(n) j2= 1 and j H0(e
j�) j= 0; then the

scaling function can be expressed in the frequency domain as

�(!) =
1p
2
H0(e

j!
2 )�(

!

2
); (2.20)

in the time domain as
'(t) =

p
2
X
n2Z

h0(n)'(2t� n): (2.21)

The mother wavelet in the frequency domain can be expressed as

	(!) =
1p
2
H1(e

j!
2 )�(

!

2
);

and in the time domain as
 (t) =

p
2
X
n2Z

h1(n) (2t� n):

It is shown, e.g. in [Vet95, Dau92], that one can relate the two �lters H0(e
j!) and

H1(e
j!) (in the orthonormal case) as H1(e

j!) = �e�j!H0(�e�j!). Hence, in the or-
thonormal case, a wavelet can also be constructed by10

	(!) = � 1p
2
e�

j!
2 H0(�e�j !2 )�(!

2
):

The number of wavelets C is determined by the number of cosets [Vet95], i.e.,
C =M � 1;

where M represents the downsampling factor of the associated FB. The integral
wavelet transform is de�ned as [Dau92] (general de�nition)

WTfx(t); a; bg = 1pj a j
Z 1

t=�1
x(t) �(

t� b

a
)dt

where b (time shift) and a > 0 (scaling factor) are real valued continuous variables.
(See [Dau92] for the conditions on  that the transformation exists). The discrete

9For a scaling function �(
) = �1i=1H0(e
j2�i!) needs to be satis�ed. Regularity is used for smooth-

ness of a scaling function and also to count zeros of H0(e
j!) at ! = �. In other words, a regular

�lter H0(e
j!) leads to a scaling function with some degree of smoothness. It is refered to [Vet95,

p.256] for more details.
10Note, this is only one possible choice out of many.
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choice, e.g. see [Fli94, Vet95, Vai93], a = 2�i, b = 2�ik, i; k 2 Z and ("*" denotes
complex conjugation)  (t) = h�(�t) leads to

WTfx(t); i; kg = 2
i
2

Z 1

t=�1
x(t)h(k � 2it)dt

Considering the two-channel discrete-time case (M = 2, V0 = V1
L

W1, ), the expan-
sion coe�cients (also called wavelet coe�cients), xq(n), can be expressed as

xq(n) =
1X

m=�1
x(m)hq(2n�m);

q = 0; 1. For the two-channel discrete-time case, the inverse wavelet transform follows
as

x(m) =
1X

q=0

1X
n=�1

xq(n)gq(m� 2n):

A wavelet can be interpreted as an analog bandpass �lter. The number of vanishing
moments, de�ned in [Dau92], of a wavelet corresponds to the number of zeros at
the aliasing frequencies of the associated digital �lter. They determine the so-called

atness of the digital �lter. High frequency selectivity means that the transition band-
width is small. For equiripple �lters, a low stop-band attenuation means low pass-band
ripple. Frequency selectivity as well as 
atness of a �lter improves as the �lter degree
increases. For some �lter types, frequency selectivity and 
atness can be controlled
independently. This is true for IIR and FIR �lters.

2.3 Sampling

In this section three sampling theorems are presented, i.e., sampling of polynomials,
Shannon sampling and wavelet sampling. They can be used to link digital signal pro-
cessing to analog signal processing.

2.3.1 Polynominal sampling theorem

For n+ 1 arbitrary distinct points 0 � t0 < t1 < ::: < tn � 1 and n+ 1 real values
v0; v1; :::; vn, there exists a unique polynomial pn(t) of degree n, which satis�es
[Che95]

pn(tk) = vk k = 0; 1; :::; n:

This polynomial is given by

pn(t) =
nX

k=0

vkLk(t)

with the Lagrange basis polynomials

Lk(t) =
(t� t0):::(t� tk�1)(t� tk+1):::(t� tn)

(tk � t0):::(tk � tk�1)(tk � tk+1):::(tk � tn)
k = 0; :::; n:
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If not only functional values, but also derivative values, are available and required to
be interpolated by the polynomial

pikn (tk) = vk;ik ; ik = 0; :::; mk k = 0; 1; :::; n

then, we have a Hermite interpolation problem [Che95]. An algebraic polynomial of
degree d = n +

Pn
k=0mk always exists as a Hermite interpolant. An explicit closed-

form formula for the Hermite interpolant also can be constructed. For example, if
only the functional values fvkgnk=0 and the �rst derivative values fwkgnk=0 are given
and required to be interpolated, then the Hermite interpolant is given by

p2n(t) =
nX

k=0

fvkAk(t) + wkBk(t)g

where, with the notation L
0

k(tk) = (d=dt)Lk(t)jt=tk ,
Ak(t) = [1� 2(t� tk)L

0

k(tk)]L
2
k(t) and Bk(t) = (t� tk)L

2
k(t):

However, if the derivative values are not consecutively given, we have a Hermite-
Birkho� interpolation problem, which is not always uniquely solvable [Lor83].

2.3.2 Shannon sampling theorem

A bandlimited signal x(t) having no spectral components at and above 2�fm = 
m,
can be uniquely determined by values sampled at uniform intervals of Ts = 1=fs
seconds, where [Skl88, Jer77, Fli91]

Ts � 1

2fm
:

The sampling rate fs = 2fm is also called the Nyquist (or critical sampling) rate. The
Nyquist rate is a su�cient condition to allow an analog signal to be reconstructed
uniquely from a set of uniformly spaced discrete-time samples.
In other words, if the Fourier transform of a signal x(t) is de�ned as

X(
) =

Z 1

t=�1
x(t)e�j
tdt;

and

X(
) =

(
X(
) for j 
 j< 
m;

0 elsewhere

then [Skl88, Jer77, Fli91], with '(t) = sinc(t),

x(t) =
1X

n=�1
x(nTs)'(

t� nTs
Ts

): (2.22)

For notational convenience, the normalized expression x(n) is often used instead of
x(nTs).

Let the inverse Fourier transform be de�ned as

x(t) =
1

2�

Z 1

t=�1
X(
)ej
td
;
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then, due to the symmetry of the Fourier transform pairs, the Shannon sampling
theorem is also valid for time-limited functions, i.e. for the Fourier transform X(!)
of a function x(t), which is zero for jtj � Tm=2 [Jer77, Fli91], it holds that (using
�(
) = sinc(
=�))

X(
) =
1X

n=�1
X(n
s)�(

Ts
2�

[
� n
s]):

Sampling with the value of the function and its derivatives increases the sampling
spacing required, or in other words, it allows the reconstruction of the bandlimited
signal with a sampling rate less than the Nyquist rate [Jer77].

2.3.3 Wavelet sampling theorem

Using orthonormal wavelet bases, introduced above, a signal x(t) 2 Vi can be repre-
sented as [Fli94, Mey92]

x(t) =
1X

n=�1
�0(n)'0(t� n) 2 V0; (2.23)

with the expansion coe�cients (uniformly spaced discrete-time samples)

�0(n) =

Z 1

t=�1
x(t)'�0(t� n)dt: (2.24)

Equation (2.23) looks similar to equation (2.22). Unlike the Shannon case, for wavelet
sampling, '(t) or �(
) do neither have to be time limited nor band limited, respec-
tively. If '(t) (�(
)) is time limited (band limited), then '(t) (�(
)) is of compact
support.

A closed form analytic formula for

�(
) =
1Y
i=1

H0(e
j2�i!)

exists for example for the Haar scaling function, splines, Shannon scaling function,
raised cosine scaling functions and for Meyer scaling functions. However, a `graph-
ical' scaling function exists, for example, for Daubechies scaling functions, Butter-
worth scaling functions and for Chebyshev scaling functions. Figure 2.9 illustrates
the wavelet signal processing arrangement (sampling and reconstruction).

ϕ(   )-t Multirate

system
ϕ(  )tα ( )0

n δ(     )t-n x(t)^x(t)

n

Figure 2.9: Wavelet signal processing arrangement [Fli94].
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2.3.4 Sampling in multiresolution subspaces

The wavelet transformation (WT) is de�ned for square integrable signals (L2(R)).
Furthermore, wavelets can be used to process some signals in L1([0,1]) [Mey92, Dau92].
If these signals are processed with realizable electrical �lters (analog and digital �l-
ters), then one can only realize scaling functions that have in�nite support in time as
well as in frequency domain (causality). Hence, in the realizable ideal case digital IIR
�lters, with a �nite number of �lter coe�cients, are of interest and causal, exactly
linear phase �lters are then impossible. Noncausal digital IIR linear phase �lters are
possible to be implemented, see [Vet95]. Linear phase wavelets are possible with IIR
�lters, see e.g. [Ans96]. Examples of wavelets based on IIR-�lters are the Butterworth
wavelets [Her93] or Chebyshev wavelets [Got98]. However, one can approximate lin-
ear phase with causal digital IIR �lters. The wave digital �lter (WDF) method is
especially suited for designing digital �lters since the well known bene�ts (such as
low-sensitivity, low roundo� noise and all aspects of stability under �nite word length
conditions) can be obtained in one as in multiple dimensions [Fet86, Gas85]. And
there is no need for a spectral factorization method11 when designing the digital �l-
ters, neither in one nor in multiple dimensions [Fet86, Got97].

The validity of the wavelet transform requires, that a discrete signal is obtained
from the related continuous signal x(t) as in (2.24). Nevertheless, in reality, this ideal
sampling process is approximated; independent of whether '(t) has compact support
or not. The question of how good the discrete-to-continuous signal representation is
approximated depends on the realization of the scaling function '(t) in (2.24).

In conventional signal processing, there are many di�erent continuous signals x(t)
having the same discrete sample values, unless the signal x(t) is bandlimited before
it undergoes the sampling process (Shannons sampling theorem).
For the wavelet transform, there exists the wavelet sampling theorem (see also [Wal92,
Xia93, Djo94, Mey92]) where '(t) does not need to have compact support and the
�0(n)'s are obtained from x(t) with a normalized maximal sampling spacing of Ts = 1
[Fli94, Mey92]. Alternatively, Shannons sampling theorem can be applied to cases,
where '(t) has compact support either in frequency domain or in time domain, see
[Jer77]. In particular, the minimum sampling rate fs = 1=Ts for the sinc case fol-
lows as !m = �=2 ) fm = 1=4 ) Ts � 1

2fm
= 2 and for the Meyer case

!m = 2�=3 ) fm = 1=3 ) Ts = 3=2, where the bandlimited signal has
no spectral components at and above !m. Comparing both sampling theorems on
the sinc-wavelet, Shannon's sampling theorem allows much less samples to uniquely
represent the associated continuous time signal, compared to the wavelet sampling
theorem. This can be particularly seen in the case of partial di�erential equations
(PDE), where a bandlimited signal x(t) can be uniquely recovered from samples of

11Very often a digital half band �lter (every second �lter coe�cient is 0) is used as a prototype
�lter (which can be interpreted as an autocorrelation of two �lters) from which the �lters (spectral
factors) that are used in a PRFB are obtained. This is done with the help of a spectral factorization
method. Such a method is only known in one dimension.
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x(t) and its derivative at half the sampling rate [Jer77, Djo94].
Increasing the order of e.g. Daubechies �lters, splines, Butterworth �lters or Cheby-
shev �lters, results in higher regularity which is desired in many applications when
using the WT. By doing so, a wanted side e�ect occurs, i.e., the associated scaling
function then has approximately compact support in frequency domain. And hence,
Shannon's sampling theorem can be applied. As an example, in the Butterworth case
a �lter order of 9 is used in [Gas85, Got97], where in the one dimensional case 4 co-
e�cients only are necessary. Note, B-splines can be viewed as Butterworth wavelets
[Her93]. Thus, according to conventional digital signal processing, and because of eco-
nomical reasons, one may classify scaling functions into two groups; some examples
are listed in Table 2.1. This classi�cation is meant to stress the fact that the Shannon
sampling theorem provides a more economic discrete representation of an associated
continuous signal than the wavelet sampling theorem. Of course all the scaling func-
tions in Table 2.1 are valid ones when using the wavelet sampling theorem.

In practice, one designs an \approximating" scaling function such that the alias-
ing error (well known from conventional signal processing, compare [Skl88, Jer77]),
when compared to a \valid" scaling function, is minimized (discretization problem).
Alternatively, one can use

h0(n) =
p
2

Z 1

t=�1
'�(2t� n)'(t)dt (2.25)

=
1

2
p
2�

Z 1

!=�1
e�j!n��(

!

2
)�(!)d! (2.26)

in order to approximate a \valid" scaling function directly. (Eqation (2.26) is obtained
from (2.25) by using the shift property, scaling property, modulation theorem and
Parsevals formula.) And since a valid scaling function has compact support in the
frequency domain, the integral in (2.26) becomes zero outside ! = �4�

3
. However,

ha0(n) will in general not form a perfect reconstruction �lter bank, since in practice,
one uses only a �nite set out of fha0(n)g, which contains an in�nite number of non-zero
�lter coe�cients.
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"Valid"
scaling functions

"Approximating"
scaling functions

infinite number of
filter coefficients

finite number of
filter coefficients

sinc scaling function
(IIR-filter)

Meyer scaling functions
(IIR-filter)

raised-cosine
scaling functions

(IIR-filter)

Daubechies scaling functions
(FIR-filter)

Haar scaling function
(FIR-filter)

Butterworth scaling functions
(IIR-filter)

----------related to a digital filter having----------

Chebyshev scaling functions
(IIR-filter)

(for Shannon sampling) (for Shannon sampling)

Table 2:1 Scaling functions.
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Chapter 3

Wave Digital Filter

Among di�erent digital �lters, wave digital �lters are best suited for multirate systems
that are used to compute a wavelet transform. Their low circuit complexity and
robustness outperform other known digital �lters. However, the theory of wave digital
�lters is very complex. In what follows, only main parts of the wave digital �lter theory
is presented. It is refered to [Fet86] for more details. Another part of this chapter shows
how one can implement noncausal recursive �lters that process in�nite length signals.

3.1 Wave Digital Filter

Wave digital �lters are derived from analog (reference) �lters. This derivation is shown
in the �rst subsection. How perfect reconstruction can be achieved is also shown for
the analog case. A bilinear transform connects a reference �lter to a wave digital
�lter. Finally, two main wave digital �lter structures are presented, ladder structure
and lattice structure. Exemplarly, perfect reconstruction relations are shown for the
latter one.

3.1.1 Analog relationships

Figure 3.1 shows a doubly terminated analog �lter (reference �lter). Assuming R1 =
R2 = R, the wave quantities A1, A2, B1 and B2 can be de�ned as (i = 1; 2):

Ai = Ui +RIi

Bi = Ui � RIi (voltage wave)
(3.1)

or

Ai =
Ui +RIi

2
p
R

Bi =
Ui �RIip

R
(power wave):
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Figure 3.1: Doubly terminated analog �lter. (Two port.)

In what follows, the �rst case is used. The scattering matrix S is de�ned as�
B1

B2

�
= S

�
A1

A2

�

S =

�
S11 S12
S21 S22

�
with

S11 =
Z1 � R

Z1 +R

S22 =
Z2 � R

Z2 +R

S21 =
2U2
E1

jE2=0

S12 =
2U1
E2

jE1=0:

The elements of S can be interpreted as �lters. See e.g. [Unb93, p.126] for the de�ni-
tion of Z1 and Z2.
A PRFB can be build when the analysis and the synthesis �lters form a paraunitary
system, i.e. [Fet85, Lei94], written in matrix form1 S�S = E, where E denotes the
identity matrix. If in addition each �lter of S is stable, the scattering matrix S is said
to be lossless. In the case of IIR WDFs, the �lters of S� are unstable if the �lters of
S are stable [Fet85, Lei94]. Nevertheles, it will be shown below how to implement the
unstable �lters of S� in a stable way.

It follows from S�S = E, that (possible forms of the Feldtkeller equation [Bel68])

jS11j2 + jS21j2 = 1

jS12j2 + jS22j2 = 1

1h(n)! h(�n) ) H(!)! H�(!), where for a real rational function F = F (!) the paraconjugate
F� = F�(!) is de�ned by F�(!) = F (�!). For a matrix, paraconjugation implies not only para-
conjugation of each entry, but also transposition. Note, H� = H�T where T means transpose and
H�(z) = H�(z�1). Note, as de�ned before H� is the complex conjugate of H .
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S11S
�
12 + S21S

�
22 = 0:

The characteristic function, K(s), is de�ned as

A

N
N

A

ANALYSIS PART SYNTHESIS PART

A

A

AB

B

B
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12

22

21
11
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21

22
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v(
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=
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u(
n)

=
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5(
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e 
  )π

jn

u(n)

*

Figure 3.2: WDF arrangement for a 2-channel PRFB. The wave quantities A1, A2, B1,
and B2 are de�ned in (3.1)

K(s) =
S11(s)

S21(s)
:

For symmetric �lters [Bel68]

K�(s) = �K(s):

For antimetric �lters [Bel68]

K�(s) = K(s):

The characteristic function for symmetric/antimetric �lters is bireciprocal (selfrecip-
rocal) [Fet86], i.e.,

K(
1

s
) = 1=K(s):
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WDFs in a 2-channel system form a PRFB if they ful�ll [Lei94]
jH0(s)j2 + jH1(s)j2 = 1

and

jH0(s)j = jH1(
1

s
)j:

3.1.2 Digital relationships

Let

s = j
 = tanh

�
pT

2

�
=
z � 1

z + 1
z = epT (3.2)

be a bilinear transform of the z-variable, where p = j! is the complex frequency of a

digital �lter, F =
1

T
the sampling frequency and


 = tan

�
!T

2

�
:

Assume then an arrangement depicted in Fig. 3.2. PR can be shown for ladder WDFs
(see Fig . 3.6) as well as for lattice WDFs (see Fig. 3.3). However, it will be shown
using a lattice WDF arrangement.

3.1.3 Lattice Wave Digital Filter

Lattice WDF are related to an analog �lter, illustrated in Fig. 3.3. Using

2S =

�
Sa + Sb Sb � Sa
Sb � Sa Sa + Sb

�
with

Si =
Zi �R

Zi +R
; i = a; b

then Fig. 3.2 can be redrawn as illustrated in Fig. 3.4. Real WDF coe�cients are
obtained if Sa and Sb are composed of second order all-pass sections. In addition,
either Sa or Sb needs to be cascaded with a �rst order all-pass section. Thus the
resulting �lter degree is odd. In what follows, it is assumed that Sa contains one �rst
order all-pass section. With the knowledge that the general transfer function of stable
all-pass �lters can be expressed as (for i 2 Z, Refs1ig < 0 and s0i = �s�1i)

Hall�pass(s) = cn

Qn
i=1(s+ s1i)Qn
i=1(s� s1i)

= (�1)ncnN(�s)
N(s)

;

and with2

Sa(s) =
g1(�s)
g1(s)

Sb(s) =
g2(�s)
g2(s)

2The minus sign of Sa(s) is already incooperated in the structure.
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Figure 3.3: Lattice reference �lter. Za and Zb are LC-Networks.
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Figure 3.4: Lattice WDF arrangement for a 2-channel PRFB. (s-domain).

where g1(s) and g2(s) are Hurwitz polynomials (all the zeros of the polynomials are
on the left half s-plane) [Bel68] it can be shown that:

S11(s) =
h(s)

g(s)
=
g1(s)g2(�s) + g1(�s)g2(s)

2g1(s)g2(s)
Reflectance

S21(s) =
f(s)

g(s)
=
g1(s)g2(�s)� g1(�s)g2(s)

2g1(s)g2(s)
Transmittance:

Thus, because of losslessness,

S =
1

g(s)

�
h(s) �f�(s)
f(s) ��h�(s)

�
with

g(s)g�(s) = h(s)h�(s) + f(s)f�(s) (Feldtkeller equation)

where � is a unimodular constant, g(s) is again a Hurwitz polynomial and here
�f�(s) = f(s), �h�(s) = h(s). Using (3.2) and assuming a bireciprocal character-
istic function,

Sa(s)js= z�1
z+1

= z�1E1(z
2)

and
Sb(s)js= z�1

z+1
= E0(z

2);
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Figure 3.5: Bireciprocal lattice WDF arrangement for a 2-channel PRFB. (z-domain).

where E0(z
2) and E1(z

2) are the polyphase components of a 2-channel FB [Lei94,
Nos83].

3.1.4 IIR Wave Digital Filter and Perfect Reconstruction

For the bireciprocal case, Fig. 3.4 can be redrawn as shown in Fig. 3.5. It follows that

H0(z) =
1

2
(E0(z

2) + z�1E1(z
2)) (3.3)

H1(z) = H0(�z) = 1

2
(E0(z

2)� z�1E1(z
2)) (3.4)

G0(z) = 2H0(z
�1) = E0(z

�2) + z1E1(z
�2) =

1

E0(z2)
+

1

z�1E1(z2)
(3.5)

G1(z) = 2H1(z
�1) = E0(z

�2)� z1E1(z
�2) =

1

E0(z2)
� 1

z�1E1(z2)
(3.6)

Note, the factor 1
2
in (3.3) and (3.4) causes

H0(e
j!)j!=0 = H1(e

j!)j!=� = 1:

PR with sampling rate changes in a 2-channel FB may be expressed as

X̂(z) =
1

2
[G0(z)H0(z) +G1(z)H1(z)]X(z) (3.7)

+
1

2
[G0(z)H0(�z) +G1(z)H1(�z)]X(�z)

Substituting (3.3 -3.6) into the �rst term of (3.7), results in
1

2
[(

1

E0(z2)
+

1

z�1E1(z2)
)
1

2
(E0(z

2) + z�1E1(z
2)) (3.8)

+(
1

E0(z2)
� 1

z�1E1(z2)
)
1

2
(E0(z

2)� z�1E1(z
2))]X(z) =

1

2

2(E0(z
2)z�1E1(z

2)

E0(z2)z�1E1(z2)
X(z) = X(z)
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and for the second term of (3.7) follows after using (3.3 - 3.6)
1

2
[(

1

E0(z2)
+

1

z�1E1(z2)
)
1

2
(E0(z

2)� z�1E1(z
2)) (3.9)

+(
1

E0(z2)
� 1

z�1E1(z2)
)
1

2
(E0(z

2) + z�1E1(z
2))]X(�z) =

1

2
[
(E0(z

2)z�1E1(z
2))1

2
(E0(z

2)� z�1E1(z
2))

E0(z2)z�1E1(z2)

�(E0(z
2)z�1E1(z

2))1
2
(E0(z

2)� z�1E1(z
2)

E0(z2)z�1E1(z2)
]X(�z) = 0

3.1.5 Ladder Wave Digital Filter

Ill-conditioning is equivalent to high sensitivity. Lattice WDFs have low passband
sensitivity. Ladder WDFs have low pass- and stop-band sensitivity. One possible
structure of a Ladder-reference �lter is depicted in Fig.3.6.

Compared to lattice WDFs, ladder WDFs need a smaller word-length to meet the
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Figure 3.6: Example of a LC-ladder reference �lter. Yi, i = 1; :::; N , are LC-Networks.

same accuracy speci�cations. However, in 1-dimensional 2-channel systems, birecipro-
cal lattice WDFs need much less �lter coe�cients than ladder WDFs. In some cases,
Bartlett's Bisection Theorem can be used to derive an equivalent LC-lattice WDF
from a LC ladder WDF [Law90]. In 2-dimensional 4-channel hexagonally sampled
systems, ladder WDFs need much less �lter coe�cients than lattice WDFs. Using
so-called unit elements in a ladder WDF structure, the number of �lter coe�cients
can be reduced compared to a LC realization [Owe92, Thi77].

The next step, once a reference �lter has been found, is to �nd a WDF. In general
there are many possibilities to choose a WDF-structure. This is due to the fact that
not only the analog elements need to be transformed into digital elements, but also
the so-called adaptors must be used in the digital circuit. The book [Law90] shows
a di�erent approach. The components can be performend directly without the use
of adaptors. The main point of the two methods is to full�l a digital representation
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of Kirchho�'s rule at a junction. Furthermore, the latter method is less 
exible and
hence the choice of a desired WDF-structure may not be possible.

3.2 Implementation of non-causal �lters (for in�-

nite length signals)

It is shown in [Lei94, Mit92] how to implement non-causal �lters with which one can
process in�nite length signals. This will be summerized next for bireciprocal lattice
WDF. A detailed description for all WDF can be found in [Lei94]. A stable realiza-
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Figure 3.7: Block diagram of the analysis �lters of a two-channel LWDF FB (bireciprocal
case) for N = 5; 9; 13; ::: or N = 7; 11; 15; ::: in polyphase representation.
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Figure 3.8: All-pass section Fi: a) analysis, b) synthesis side.

tion of the �lters of S� is achieved in three steps. Step 1 requires to properly initialize
the synthesis �lters before �ltering takes place.
Considering the analysis �lters of a two-channel LWDF bank, polyphase representa-
tion in Fig. 3.7, the all-pass sections Fi(z) have the special form (bireciprocal case)

Fi(z) =
z�1 � �i
1� �iz�1

:

Since the same all-pass �lters are used in the analysis and synthesis FB, a state-
variable representation of each single all-pass section, compare Fig. 3.8, is useful. For
the analysis side: Ta(n + 1) = aTa(n) + bxin(n), xout(n) = cTa(n) + dxin(n), and
in case for the synthesis side, Ta; xin and xout are replaced with Ts; yin and yout,
respectively. Ta, Ts denote the state-variable vectors of the analysis and synthesis
side, which are related as Ts(0) = GTa(P ) by the matrix

G =

�
0 1
1 0

�
; (3.10)
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Figure 3.9: System for perfect reconstruction, FIR or IIR, for in�nite length signals.

where yout(n) = xin(P � n � 1) for n = 0; 1; :::; P � 1, P the number of samples in
the time interval. Step 2 is indicated in Fig. 3.9, where an in�nite length signal is
divided in time intervals which are then fed into the �lters of the synthesis �lter bank
in a time reversed manner. Step 3, also shown in Fig. 3.9, requires the time intervals
to be time reversed after the �ltering process and to be joined together to form the
output signal x̂(n). Note, the time reversal of the time intervals is done in blocks.
The block length is a multiple of the sampling interval T , and time reversal is simply
implemented by a reversal of the relevant pointers to the samples in the blocks.
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Chapter 4

Wavelets

Two properties, i.e., convolution and shift are presented in this chapter. And for the
shift property a new, computational e�cient circuit realization is given. Furthermore,
two new wavelet bases are presented in this chapter, i.e., the raised cosine wavelets
and the Chebyshev wavelets. Known wavelet bases are also presented in order to be
able to see advantages of the new introduced bases.

4.1 Some Properties

Two main properties, convolution and shift, will be discussed next for the wavelet
transform. The considered shift operation on the expansion coe�cients must not be
an integer, i.e., it can be shifted by an amount of � 2 R.

4.1.1 Convolution

It is shown in [Vai93] how to convolve two sequences x(n) and g(n) by means of FBs,
compare Fig. 4.1. This can be done by directly convolving the expansion coe�cients
of a paraunitary FB and adding the results. The advantage using a FB for convolu-
tion of two sequences is that one can quantize and obtain a coding gain over direct
convolution (increased accuracy for a given bit rate). Thus

x(n) � g�(�n) () X(z)G�(z) =
M�1X
k=0

Xk(z
M )

M�1X
m=0

z�mG(k)
�m(z

M )

where G
(k)
m (z) is the subband signal obtained by replacing g(n) with g(n�m).

4.1.2 Fractional Shift

In [Bey92] the nonstandard form of the shift operator for the wavelet decomposition
of all circulant shifts of a vector is reported, and [Can94] shows an algorithm to ap-
proximate the shift operator for real shifts in the �nest scale, where in both cases the
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shift operator is related to the analysis �lters and is a recursive algorithm, respec-
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Figure 4.1: A maximally decimated FB (analysis part): a) with input x(n) and b) with
input g(n).

tively. However, the shift operation presented below is neither related to the analysis
�lters nor to the synthesis �lters of the �lter bank. In particular the shift operation
in this realization is done directly on the expansion coe�cients.

A practical tool to perform a translation � , � 2 R, more suitable for �lter bank
implementations of the wavelet transform is provided below. The shift problem, here
shown for the two-channel case, may be described as follows: For �lter banks with
perfect reconstruction one can write by using the z-transform representation with the
output signal X̂(z) and the input signal X(z) [Fli94]

X̂(z) =
1

2
[G0(z)H0(z) +G1(z)H1(z)]X(z) +

1

2
[G0(z)H0(�z) +G1(z)H1(�z)]X(�z)

= F0(z)X(z) + F1(z)X(�z) (4.1)
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where for FIR �lters1 F0(z) = z�k (for IIR �lters F0(z) = 1) and F1(z) = 0.
This can be written in matrix form as

X̂(z) =
1

2

�
G0(z) G1(z)

� � H0(z) H0(�z)
H1(z) H1(�z)

� �
X(z)
X(�z)

�
:

The intermediate process where the input signal X(z) is split up in two channels,

x(m)
H0

H1

2
x (n)0 shift

x (n)0
τ

2 G0

2
x (n)1 shift

x (n)1
τ

2 G1

x  (m)τ

Figure 4.2: Shift Operation in orthonormal compactly supported wavelet bases, M=2.

�ltered by the analysis �lters H0(z) and H1(z) and down sampled by the factor M =
2, follows for the subsignals X0(z) and X1(z) in matrix form as�

X0(z)
X1(z)

�
=

1

2

�
H0(z

1
2 ) H0(�z 1

2 )

H1(z
1
2 ) H1(�z 1

2 )

� �
X(z

1
2 )

X(�z 1
2 )

�
:

The output signal X̂(z) of the synthesis �lters results from this intermediate process
after upsampling by the factor L = 2 and �ltering with G0(z) and G1(z) in

X̂(z) =
�
G0(z) G1(z)

� � X0(z
2)

X1(z
2)

�

Having the expansion coe�cients (subsignals) x0(n) and x1(n), the task is in �nding
the new coe�cients (shifted subsignals) x�0(n) and x

�
1(n) such, that x

� (m) is a shifted
version of x(m), where x� (m) is the � shifted output signal and x(m) the input signal.
Fig. 4.2 illustrates this in a pictorial way.

4.1.3 Shift operation on the expansion coe�cients

The overall �lter bank with perfect reconstruction has a constant group delay. And
it is possible to realize �lter banks where the output signal is exactly the same as
the input signal (theortically). However, our aim is to have an output signal which
is a shifted version of the input signal. And we aim to perform it on the expansion
coe�cients.

Since a rotation in the expansion coe�cients leads to an integer shift, the shift
0 � � � 1 only needs to be considered. See also [Vet95, p.261].

1In the case of FIR �lters either the analysis �lters or the synthesis �lters are made causal by
multipying them with z�k. In the case of IIR �lters it is refered to section 3.2.
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A signal x(n) passed through an L-fold expander followed by the joined interpo-
lator and decimator �lter H(z) and a M-fold decimator where L = M, shown in Fig.
4.3, results in y(n) = x(n+ k), k 2 N.

Observing the fact that two sampling rate conversions (�rst upsampling by a factor

L H(z) M
x(n) x(n)

Figure 4.3: L-fold expander followed by the interpolator �lterH(z) and a M-fold decimator
(fractional sampling rate alteration), L =M and H(z)has a cuto� frequency of �=M .

L and second downsampling by the same factor M = L) on the expansion coe�cients
x0(n) and x1(n), but discarding by the downsampling process also the original values
and therefore keeping other values (coset), results in a set of shifted expansion coe�-
cients x�0(n) and x

�
1(n), we can imediately draw the conclusion that this yields �nally

to a shift of the sequence x(m). Theoretically one can perform any desired shift by
using this technique. In practice for some fractional shifts a dramatic increase of the
sampling rate conversion circuit complexity follows. The solution to this problem is
a continuously variable delay element (FIR-�lter, � 2 R) described below, which has
a reasonable complexity.

Let fx(nTs)g designate the sequence of the signal samples uniformly sampled with a
sampling rate 1=Ts and n the sampling index of the signal samples. Also let fy(kTi)g
designate the sequence of interpolated samples with a intermediate sampling rate 1=Ti
where k denotes the interpolator output index. The interpolator equation, for the kth

interpolator output sample, may then be expressed as

y(kTi) =
M2X

n=M1

x(nTs)hI(kTi � nTs): (4.2)

M1 andM2 are limits determined by the �nite response duration of a time-continuous,
time-invariant, linear phase FIR �lter hI(t). Since it is assumed also to have shifts
� 2 R, the ratio Ti=Ts becomes irrational. Unlike conventional digital interpola-
tion/decimation methods this method enables one to obtain an interpolated value
y(kTi) which must not be related to a rational factor L/M of the sampling rate,
where L and M are integer values. In order to synthesize a controllable delay � , in
equation (4.2) a change of the indexing is required. The �rst control parameter nk,
the index for the kth interpolant, is de�ned as

nk = largest integer less or equal to the real number
kTi
Ts

The second control parameter � (delay), length of a fractional interval for the kth

interpolant (0 � � < 1), is de�ned as

� =
kTi
Ts

� nk:
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The �lter index i, index on �lter coe�cients, is de�ned as

i = nk � n:

Equation (4.2) may be rewritten as

y(kTi) =
I2X
i=I1

x[(nk � i)Ts]hI [(i + �)Ts]:

The new limits I1 and I2 are large enough to include all nonzero coe�cients of the
�nite impulse response of the �lter; these modi�ed limits are �xed numbers and do
not depend upon n. The basepoint set length I = I2 � I1 + 1 and ranging from t1 to
t2, indicates the required number of coe�cients hI [(i+ �)Ts] (taps) in the FIR �lter.
Interpolants y(kTi) are computed for times corresponding to

t = kTi = (� + nk)Ts:

For t < t2 or t � t1 (t2 > t1) follows hI(t) = 0. Thus the duration of the impulse
response, T0, is de�ned as

T0 = t2 � t1:

It is straightforward that the inequality ITs � T0 must be imposed for any method of
implementing the interpolator in order that all non-zero portions of the continuous-
time function are sampled correctly. A conventional interpolating polynomial, such
as the Lagrange polynomial IN(t), leads to piecewise polynomials Li(t) (=Lagrange
functions).

hI(t) =

8>>>>>>>><
>>>>>>>>:

L1(t)

L2(t)

L3(t)

:

:

:

The N th degree polynomial IN(t), with the Lagrange functions Li(t), both given
below, is �tted to the interpolant y(kTi) in such a way that the Lagrange functions
Li(t) become identi�ed with the coe�cients of the interpolating �lter hI(t) [Sch73].

IN(t) =
NX
i=0

Li(t)xi

and

Li(t) =
NY

j=0;j 6=i

t� tj
ti � tj

: (4.3)

Equation (4.4) is obtained from equation (4.3) by substituting t = (� + nk)Ts

Li(kTi) =
I2Y

j=I1;j 6=i

� + j

j � i
: (4.4)

Replacing xi with x[(nk � i)Ts] and IN(t) with y(kTi) yields to the interpolation
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Figure 4.4: FIR �lter for shift operation on the expansion coe�cients.

function

y(kTi) =
I2X
i=I1

x[(nk � i)Ts]Li(kTi)

0 1 2

−2

−1

0

1

ji

0

0

1

0 −α α

−α

−α

α−α

α−1

α+1

Table4:1 Filter coe�cients bj(i) for the continuously controllable delay element, N =
2, I1 = �2, and I2 = 1.
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where each Lagrange function Li(kTi) = Li((nk+ �)Ts) of degree N is also de�ned as

Li(�) =
NX
j=0

bj(i)�
j

and describes hI(t) in the ith Ts interval. Only odd degree Lagrange functions [Sch73]
(N odd) should be employed in order to have a linear phase FIR interpolation �lter
with impulse response hI(t). Using this technique to realize a continuously variable
delay element, [Far88, Eur93] show examples with an odd degree Lagrange function,
which one of them we adopt here for demonstrating a shift in orthonormal wavelet
bases.
The coe�cients bj(i) for the �lter structure realizing a controllable delay, shown in
Fig. 4.4, are given in Table 4.1 with � = 0.5, N = 2, I1 = �2 and I2 = 1. Note,
that having � 6= 0:5 results in a dramatic increase of the delay element complexity.
Using higher odd-degree order Lagrange functions [Ram84] yield to higer accuracy.
Performance simulations are given in the next section.

10 20 30 40 50 60
m

-1

-0.5

0.5

1

cos(m)

10 20 30 40 50 60
m

-1

-0.5

0.5

1

cos(m)

Figure 4.5: Translations on the function x(m) = cos(m) for the shifts � = 0 and � = 0.379.
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4.1.4 Performance Simulations

Using the above given method this section presents some simulation results of the
shift operation in orthonormal wavelet bases. Simulations were done by using the
Daubechies wavelets with 12 coe�cients and on complex valued wavelets reported

-20 -10 0 10 20 30
m

0.2

0.4

0.6

0.8

1

exp(-300m^2)

-20 -10 0 10 20 30
m

0.2

0.4

0.6

0.8

1

exp(-300m^2)

Figure 4.6: Translations on the function x(m) = exp(�300m2) for the shifts � = 0 and �
= 0.379.

in [Law93], in order to test translations on the periodic function x(m) = cos(m) and
the nonperiodic function x(m) = exp(�300m2).
As both functions are real valued a method similar to the Fourier transform approach
for the complex valued wavelets where 2N real samples are transformed with an N -
sample complex transform is used. In other words, the imaginary part of the discrete
transform is used to compute also real values which can be done by breaking the 2N -
point function x(m), m = 0, 1, 2, ..., 2N -1, into two N -sample functions. Function
x(m) can be devided in half as follows:

a(m) = x(2m)

b(m) = x(2m + 1)

with m = 0, 1, 2, ..., N -1.
Function a(m) is equal to the even-numbered samples of x(m), and b(m) is equal
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Figure 4.7: Maximal absolute error, x(m) = cos(m).
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10*tau
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Figure 4.8: Maximal absolute error, x(m) = exp(�300m2).

to the odd-numbered samples of x(m). Now, in order to use e�ciently the wavelet
transform, a(m) and b(m) are used to form the complex function e(m).

e(m) = a(m) + jb(m)

with m = 0, 1, 2, ..., N -1.

The Figs. 4.5 and 4.6 show shifts for � = 0 and � = 0.379 for both test func-
tions x(m) = cos(m) and x(m) = exp(�300m2) on the expansion coe�cients (using
Daubechies �lters), respectively. We do not show here the plots for the expansion
coe�cients (using complex �lters) as there can not be seen any di�erence within this
graphical resolution to that for the Daubechies case.
Having used one particular delay element out of many possible ones, the accuracy of
the delay element itself was tested by using the periodic function x(m) = cos(m) and
the non-periodic function x(m) = exp(�300m2). The maximal absolute error e(�),
where e(�) = x(m) � x(m + �), is shown in Fig. 4.7 for the periodic input function
(error-cos) with respect to 10� and for the non-periodic input function (error-exp)
with respect to 10� in Fig. 4.8. For example, the maximal absolute error e(�) in Fig.
4.7 for � = 0:2 is 0.0066.
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4.2 Wavelet bases

Next, seven wavelet bases are presented, two of them are new. The wavelets are seper-
ated into two groups. "Valid" wavelets (assuming Shannon sampling) and "approxi-
mating" wavelets, see also Table 2.1 in chapter 2. First, three "valid" wavelets are pre-
sented, sinc-wavelet, Meyer wavelet and the newly introduced raised-cosine wavelet.
Then, four "approximating" wavelets are presented, Haar wavelet, Daubechies wavelet,
Butterworth wavelet and the newly introduced Chebyshev wavelet (based on IIR el-
liptic �lters). The new wavelets are obtained from already known �lters that, under
some restrictions, yield wavelet bases. Hence, the selection criteria for the choice of a
�lter, known from �lter theory, can be used. Since the choice of a �lter depends on
the application, it is up to the user what is best in some respect.

4.2.1 Sinc Wavelet

The sinc wavelet (also refered to as Littlewood-Paley wavelet or Shannon wavelet) is
described in detail in [Vet95]. Main time and frequency domain relations are summa-
rized below.

The scaling function (interpretable as an analog low pass �lter) in time domain can
be written as

'(t) = sinc(t)

and in frequency domain as

�(
) =

(
1 for �� � 
 � �

0 elsewhere

The 2�-periodic digital low-pass �lter for �� � ! � � follows in frequency domain
as

H0(e
j!) =

p
2
X
k2Z

�[2(! + 2k�)] =

(p
2 for ��

2
� ! � �

2

0 elsewhere

and in time domain as

h0(n) =
1p
2
sinc(n=2)

The wavelet (interpretable as an analog band-pass �lter) may be written in time do-
main as [Vai93]

 (t) =
p
2

1X
n=�1

(�1)�n+1h0(n)'(2t+ n� 1) = sinc(t=2)cos(3�t=2)
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and in frequency domain as

	(
) =

(
1 for �2� � 
 � �� and � � 
 � 2�

0 elsewhere

The 2�-periodic digital high-pass �lter for �� � ! � � follows in frequency domain as

H1(e
j!) =

(
�p2e�j! for �� � ! � ��

2
and �

2
� ! � �

0 elsewhere

and in time domain as
h1(n) = (�1)nh0(�n + 1):

4.2.2 Meyer Wavelets

The Meyer wavelet can be found in [Vet95, Dau92]. Some important relations are
listed below.

The scaling function in frequency domain is de�ned as

�(
) =

8<
:
q
�(2 + 3


2�
) for 
 � 0q

�(2� 3

2�
) for 0 � 


where

�(x) =

(
0 for x � 0

1 for 1 � x

and �(x) + �(1� x) = 1 for 0 � x � 1, �(x) di�erentiable.

For example, one choice for �(x) is

�(x) =

8><
>:
0 for x � 0

3x2 � 2x3 for 0 � x � 1

1 for 1 � x

The 2�-periodic digital low-pass �lter for �� � ! � � can be obtained from

H0(e
j!) =

p
2
X
k2Z

�[2! + 4k�]

The wavelet written in frequency domain may be expressed as

	(
) =

8>>>><
>>>>:

0 for 0 � 
 � 2�=3

� 1p
2
e�j
=2�(
� 2�) for 2�=3 � 
 � 4�=3

� 1p
2
e�j
=2�(
=2) for 4�=3 � 
 � 8�=3

0 for 8�=3 � 
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4.2.3 Raised Cosine Wavelets

Φ (ω) Φ (ω/2) H (     )ω/2
e

j

2π/3 4π/3 6π/30

1

ω

r r 0

Figure 4.9: H0(e
j!=2), �r(!) and �r(!=2) for � = 1=3.
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0.8
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Phi

Figure 4.10: Raised-cosine scaling function j �r(
) j for � = 0:25.

In the following, orthonormal wavelet bases are derived from the raised cosine �lter
(compact support in frequency domain) where the roll-o� factor � ranges between

0 � � � 1

3
:

As a special case, the sinc-scaling function follows for � = 0 and for � = 1=3 a Meyer
scaling function is almost full�led. (only one point is not continuous.)

Let W be the absolute bandwidth, W0 =
1

2T
, � =

(W �W0)

W0

the roll-o� factor,

T the sampling period, then the raised-cosine �lter can be de�ned as

hraised�cosine(t) = 2W0sinc(2W0t)
cos[2�(W �W0)t]

1� 4(W �W0)t2
:
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Figure 4.11: Raised-cosine scaling function 'r(t) for � = 0:25.
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Figure 4.12: Raised-cosine wavelet  r(t) for � = 0:25.
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Figure 4.13: Raised-cosine wavelet j 	r(!) j for � = 0:25.
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Theorem 4:1
A "valid" scaling function is obtained from the raised-cosine �lter if T=1 (W0 =

1
2
)

and � ranges between

0 � � � 1

3
:

Thus,

'r(t) � 'r(t) = sinc(t)
cos[��t]

1� 2�t2
:

(� stands for convolution) or in frequency domain

�r(
) =

8><
>:
1 for j 
 j< �(1� �)

cos( j
j+(��1)�
4�

) for �(1� �) <j 
 j< �(1 + �).

0 for j 
 j> �(1 + �)

�r(
) is the Fourier transform of the raised cosine scaling function and di�erent �
result in di�erent wavelets.

Proof :
To prove that �r(
) satis�es a multiresolution analysis (2.14-2.18), it is enough to
check (2.18) in the interval 
 2 [0; 2�], since �r(
) is symmetric and has compact
support. It follows that

j �r(
) j2 + j �r(
� 2�) j2= 1

for 
 2 [0; (1 � �)=2] and for 
 2 [(1 � �)=2; (1 + �)=2]. And thus, orthonormality
is given. Next, de�ne V0 to be the closed subspace spanned by this orthonormal set.
Vi is similarly de�ned which satis�es (2.14) if H0(e

j!) is 2�-periodic and if H0(e
j!)

is square integrable on [0; 2�] such that (2.20) is valid. Then a 2�-periodic �lter ex-
ists if 0 � � � 1

3
(Compare Fig. 4.9, (2.20) and (4.5)). By de�nition, �r(
) is zero

outside W and the integral over �2
r(
) is bounded by a �nite number. It follows that

a 2�-periodic, square integrable low-pass �lter H0(e
j!) on [0; 2�] exists. As (2.14) is

satis�ed, then the rest of the multiresolution analysis follows from theorem 2.1 and
theorem 2.2 as well as from the de�nitions (2.15) and (2.16) themselves. �

The wavelet can be obtained as follows:
Sampling a bandlimited analog signal Xa(
) in frequency domain results in [Vai93]

X(ej!) =
1

T

1X
k=�1

Xa(
 +
2�k

T
) j
=!

T

where the Fourier transform of x(n) and xa(t) are X(ej!) and Xa(
), respectively. In
this case one can therefore write

H0(e
j!) =

p
2
X
k2Z

�r(2
 + 4k�) (4.5)

for the digital low-pass �lter.
The wavelet follows as

	r(
) = � 1p
2
e�j

!
2

X
k2Z

�r(
 + 2�(2k + 1))�r(



2
)



46 4. WAVELETS

and because as only for k = 0 and k = �1 the support of �r(


2
) and �r(
+2�(2k+1))

overlaps (resulting from compact support of the scaling function in frequency domain)

	r(
) = � 1p
2
e�j

!
2 [�r(
 + 2�) + �r(
� 2�)]�r(




2
):

As an example, Figs. 4.11-4.13 show plots of a Raised cosine scaling function and a
raised cosine wavelet for � = 0:25.

4.2.4 Haar Wavelet

The Haar wavelet is described in detail in [Vet95, Dau92]. And the main relations are
summarized below.

The scaling function in time domain is de�ned as

'(t) =

(
1 for 0 � t < 1

0 elsewhere

and in frequency domain as

�(
) = e�j
=2sinc(
=(2�)):

The 2�-periodic digital low-pass �lter follows in frequency domain as

H0(e
j!) =

p
2e�j!=2cos(!=2)

or in z-domain as

H0(z) =
1p
2
+

1p
2
z�1

The 2�-periodic digital high-pass �lter follows in frequency domain as

H1(e
j!) = j

p
2e�j!=2sin(!=2)

and in z-domain as

H1(z) =
1p
2
� 1p

2
z�1

The wavelet in time domain can be written as

 (t) = '(2t)� '(2t� 1) =

8><
>:
1 for 0 � t < 1=2

�1 for 1=2 � t < 1

0 elsewhere

and in frequency domain as

	(
) = je�j
=2
sin2(
=4)

(
=4)
:
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4.2.5 Daubechies Wavelets

The digital �lters used for the Daubechies wavelets can be designed in di�erent ways.
There are two design procedures for deriving the digital low-pass �lter H0(z). The
�rst is based on spectral factorization and the second is based on FIR lattice struc-
tures (or FIR WDF). Factorization becomes numerically ill-coditioned as the �lter
size grows. There exists no such a problen for FIR lattice (or FIR WDF) structures.

Spectral factorization

Let, for orthogonal FBs, P (z) be a half-band �lter, such that

P (z) + P (�z) = H0(z)G0(z) +H1(z)G1(z) = 2:

The spectral factor H0(z) can be obtained from [Str96]

P (z) = 2

�
1 + z

2

�p�
1 + z�1

2

�p p�1X
k=0

�
p+ k � 1

k

�p�
1� z

2

�k �
1� z�1

2

�k

:

Complete factorisations used douring the design process are not unique (freedom of
choice) [Vet95]. The other �lters of a 2-channel system follow as

H1(z) = z�(N�1)H0(�z�1) (4.6)

G0(z) = z�(N�1)H0(z
�1) (4.7)

G1(z) = z�(N�1)H1(z
�1): (4.8)

A low sensitivity procedure starts from a paraunitary matrix.

FIR lattice structures (FIR WDF)
Starting with

Hp =

�
H00(z) H10(z)
H01(z) H11(z)

�
= U0[

N
2
�1Y

i=1

�
1 0
0 z�1

�
Ui]

where

Ui =

�
cos(�i) �sin(�i)
sin(�i) cos(�i)

�
;

the FIR low-pass �lter of a 2-channel system is given as

H0(z) = H00(z
2) + z�1H01(z

2);

and the other �lters are obtained as in (4.6 - 4.8).
The same �lters in the FIR lattice structure are obtained when one starts with
an analog reference �lter. Then the obtained digital �lter is also called FIR WDF
[Fet86, Oko71].
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WDF are related to an analog reference �lter by a bilinear transform. This is true in
the FIR and IIR case. Since HLP (e

j!) can be factored as [Vet95, Dau92]

HLP (e
j!) =

�
1 + ej!

2

�N

�R(!);

N 2 N n f0g, the following theorem holds [Vet95, Dau92]:

Theorem 4:2
If

sup!2[0;2�]jR(!)j < 2N�1

then (2.21) exists.

See [Vet95] for a proof.

In [Fet86, Oko71] this is shown in a more general sense for FIR WDFs, and will
be reviewed next.
Making use of (3.2) ,i.e., z = s+1

1�s ; the transfer function of any nonrecursive �lter
follows as

HLP (s) =
f(s)

g(s)

g(s) = (s+ 1)N =

�
2epT

epT + 1

�N

N is equal to the degree of HLP (s) in z and f(s) is also a polynomial in s.

Since jHLP (s)j � 1 for all 
; it follows for the special case when the equal sign
is reached, that the associated WDFs, when itterated in a paraunitary �lter bank
[Vet95, Lei94], are related to a wavelet transform, compare [Fet86]. The structure for
FIRWDFs [Fet86, Oko71] is depicted in Fig. 4.14, and the necessary equations related
to the �lter coe�cients �1; ::: ; �N�1; � as well as the wave quantities a1; a2; b1; b2
can be found in [Fet86, Oko71] and references therein, see also Chapter 3.
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Figure 4.14: FIR WDF structure [Fet86, Oko71].
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Graphical Limit Functions

The graphical limit functions can be obtained using [Fli94]

�i(
) =
iY

m=1

1p
2
H0(e

j2�m!)

	i(
) =
1p
2
H1(e

j!
2 )

iY
m=2

1p
2
H0(e

j2�m!)

h0k(n) =

(
h0(n) =

p
2h0(m) if n = 2km

0 elsewhere

hi0(n) =
iY

k=1

�h0k(n)

'i(t) = 2
i
2hi0(n); n2�i � t � (n+ 1)2�i

h1i(n) =

(
h1(n) =

p
2h1(m) if n = 2im

0 elsewhere

hi1(n) = h1i(n) �
i�1Y
k=1

�h0k(n)

 i(t) = hi1(n); n2�i � t � (n + 1)2�i

which approximate the scaling function and wavelet as i� >1.

4.2.6 Butterworth Wavelets

There exist, similar to the Daubechies wavelets, also two ways of �lter designs. One
using a spectral factorization and the other not, see [Smi91, Ans96]. However, the
�lters are related di�erently to each other. In the case that a spectral factorization
method is used, the �lters are related to H0(z) as:

H1(z) = z�(N�1)H0(�z�1)
G0(z) = z�(N�1)H0(z

�1)

G1(z) = z�(N�1)H1(z
�1):

In the WDF case the �lters are related as:
H1(z) = H0(�z)
G0(z) = 2H0(z

�1)

G1(z) = 2H1(z
�1):
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Noting that for K(s) of (2.4)

K(
1

s
) =

1

K(s)

and using the results of subsection 3.1.4, one can obtain graphical limit functions
similar to the Daubechies case. Note, B-splines can be viewed as Butterworth wavelets
[Her93].

4.2.7 Chebyshev Wavelets

For the Chebyshev rational function RN(s) in (2.5), it is assumed that

K(
1

s
) =

1

K(s)
(4.9)

holds, compare [Tan95, p.2182].
Butterworth �lters have the property that, for a low pass �lter, all the zeros are at
the aliasing frequency. Elliptic �lters (having a Chebyshev pass- and stop-band) can
also be of the bireciprocal WDF type, see (4.9). Odd order elliptic bireciprocal WDFs
have a zero at the aliasing frequency. Even order ones do not2. Thus wavelet bases
can be generated from odd order bireciprocal WDFs. The Chebyshev response for a
7th order bireciprocal WDF (elliptic function) is shown in Fig. 4.15. And the �lter
coe�cients as well as the transfer function are [Fet85]:


1 = (1=2)


2 = (1=8) + (1=32)


3 = (1=8) + (1=32) + (1=128)

HLP (e
j!) = 0:5(ej!

ej2! + 
1
1 + 
1ej2!

+
ej2! + 
2
1 + 
2ej2!

ej2! � 
3 + 1

1 + (1� 
3)ej2!
)

A design method for bireciprocal WDF is shown in [Gas85]. The �lter coe�cients
can be calculated in a straight forward manner. The main advantage of Chebyshev
wavelets compared to Butterworth wavelets is that, for a given �lter degree, they
have a better frequency selectivity. See Fig. 4.16 for a Butterworth response (9th

order bireciprocal WDF.) The above elliptic �lter is a low-sensitivity �lter.

4.3 Conclusion

New presented material in this chapter is:
a) a very e�cient way to obtain fractional shifts of the expansion coe�cients (wavelet
coe�cients) by an amount of � 2 R.
b) the raised cosine wavelet that has compact support in frequency domain and is
attractive for Shannon sampling.

2Even order IIR �lters yield complex coe�cients.
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Figure 4.15: Chebyshev response for a 7th order bireciprocal WDF (elliptic function)
having only 3 �lter coe�cients. Chebyshev wavelets can be generated from this �lter in the
usual way [Vet95, Str96].
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Figure 4.16: Butterworth response for a 9th order bireciprocal WDF having 4 �lter coef-
�cients.

and c) the Chebyshev wavelet that needs, for a given frequency selectivity, less �lter
coe�cients than a Butterworth wavelet.



52

Chapter 5

Two-Channel Multidimensional

Systems

Sofar no design method for orthonormal �lters was reported that can be used for
nonseparable sampling in dimension two or higher. Only one single trivial �lter, the
Haar �lter, was known. In this chapter a novel design method for two-channel mul-
tidimensional nonseparable orthonormal �lters is presented. In the next chapter it is
extended to four-channel multidimensional systems. The presented �lters can be used
to generate multidimensional orthonormal nonseparable wavelets.

5.1 Two-Dimensional Nonseparable Orthonormal

Wavelets

Motivated by the fact that for a given �lter speci�cation IIR-�lters have much less
complexity compared to FIR-�lters, the following is concerned with the design of non-
separable 2-dimensional IIR-�lters by means of wave digital �lters (WDFs). They are
suitable for multirate systems to generate nonseparable orthonormal wavelet bases.
An implementation of perfect reconstruction �lter banks using IIR �lters for in�nite
length signals was �rst shown in [Mit92]. This method was modi�ed in [Lei94] for 1-
dimensional WDFs. It is summarized in section 3.2 and will be used for non-separable
2-dimensional lattice WDFs using quincunx sampling.

In the 1-dimensional case wavelet bases can be constructed from Butterworth �lters
[Her93], or elliptic �lters leading, when used in an itterated perfect reconstruction �l-
ter bank, to Butterworth or Chebyshev wavelets, respectively. The implementation as
lattice wave digital �lters of those �lters is very e�cient [Gas85] and will be used when
constructing a nonseparable perfect reconstruction �lter bank for quincunx sampling.



5.1. TWO-DIMENSIONAL NONSEPARABLE ORTHONORMAL WAVELETS 53

5.1.1 Paraunitary Filter Bank

In the 1-dimensional case, a bandlimited (by means of an analog �lter '(t)) signal
xa(t) having no spectral components at and above 2�fm, can be determined uniquely
by values sampled at uniform intervals of T seconds where T � 1

2fm
. In the D-

dimensional case, the minimum sampling density �min (number of lattice points per
unit hypervolume) is de�ned as [Vai93]

�min =
1

j detV j (5.1)

where V is the sampling matrix used when sampling bandlimited signals. The min-
imum sampling density �min depends on V and on the support of the bandlimited
signal. The support of the bandlimited signal is determined by the shape of '(t).

In a 1-dimensional multirate system, a signal x(n), bandlimited to the region j ! j< �
C

(by means of a digital �lter h0(n), C = number of channels), can be alias-free down-
sampled. In the D-dimensional case, alias-free downsampling is directly related to the
matrixM. The decimation ratio r is de�ned as r =j detM j. In case that an orthonor-
mal wavelet transform is performed by means of a multirate system, the analog �lter
'(t) and the digital �lter h0(n) are related in frequency domain as [Fli94, Vet95]
�(!) =

Q1
k=1M0(2

�k!), where M0(!) = H0(e
j!)=H0(1). The ideal �lter H0(e

j!) in
a D-dimensional multirate �lter design has the form

H0(e
j!) =

8<
:

1 if ! = �M�Tx + 2�m;
for some x 2 [�1; 1)D;m 2 N

0 elsewhere

where ! = [!0 !1 ::: !D�1]T , M is a D � D nonsingular matrix, M�T stands for
(M�1)T and 2�m represents the periodicity.
The analog and digital low-pass �lters are then related as [Vet95, Kov92, Coh93]

�(!) =
1Y
k=1

M0(M
�k
!) (5.2)

where M0(!) = H0(e
j!)=H0(1). As M in (5.2) determines the shape of '(t), it fol-

lows that V in (5.1) is related to M.
Note, that for Shannon sampling '(t) must be an analog �lter having compact sup-
port in frequency domain in order to be able to uniquely reconstruct, by means of
an interpolation formula, an analog signal from its discretely represented signal. This
means that the associated digital low-pass �lter h0(n) has in general an in�nite num-
ber of nonzero �lter coe�cients and can therefore not excactly be realized. However,
assuming wavelet sampling, in the following an exact realizable h0(n) (2-dimensional
case) will be designed for a perfect reconstruction system having a �nite number of
non-zero �lter coe�cients, that yield an '(t) which has in�nite support in frequency
domain.

Considering the 2-dimensional non-separable case, one choice ofM for quincunx sam-
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=

Figure 5.1: 0th type 1 polyphase component of Q0(e
j!).

pling is (symmetry dilation matrix)

Mq =

�
1 1
1 �1

�
:

Mq is said to be well behaved [Kov92]. Based on Mq, 2-dimensional nonseparable
wavelets will be derived.
Figure 5.1 shows the 0th type 1 polyphase component [Mer83, Lin84, Che91, Fet90]
of Q0(e

j!). Assuming
Q0(e

j!) = HL(e
j!0)HL(e

j!1) +HH(e
j!0)HH(e

j!1)

and using the transforms
Y1(!) = X(MT

!) (5.3)

and

Z(!) =
1

j detM j
X

k2N(MT )

Y2(M
�T (! � 2�k)); (5.4)

representing upsampling and downsampling respectively, k the set of integer vectors
inside the fundamental parallelepiped, it turns out that E0(!) equals the ideal low-
pass �lter H0(e

j!) associated to the quincunx sampling matrixMq. Compare Fig. 5.2
for a proper choice of Q0(e

j!). This way of realizingH0(e
j!) is very attractive as will

be seen later. A pictorial proof that E0(!) indeed represents H0(e
j!) is illustrated in

ω

ω1

0

π

π

ω

ω1

0

π

π

a)

b)

π
2

π
2

−

−

Figure 5.2: a) Ideal digital low-pass �lter shape E0(!) = H0(e
j!) for quincunx sampling

withMq, b) Q0(e
j!). The dotted areas indicate the pass-band of the �lters in �� � !0 � �;

�� � !1 � �.

Fig. 5.3. See also appendix A. In general, when upsampling/downsampling with M,
the lattice is squeezed/streched by j detM j and after downsamplingM also renumbers
the lattice points. Concrete, the input lattice V, written in frequency domain as

U = 2�V�T = 2�

�
1 0
0 1

�
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and shown in Fig. 5.3 a), undergoes an interpolation with Mq by (5.3 ). This results
in the lattice which is illustrated in Fig. 5.3 b). Figure 5.3 b) also shows one period of
Q0(e

j!). Downsampling according to (5.4) �nally gives back the desired input lattice
�ltered by the ideal low-pass �lter H0(e

j!), where only one period of H0(e
j!) is

depicted. If HL(e
j!0) = 0 and HL(e

j!1) = 0 at !0 = � and !1 = �, respectively, then
H0(e

j!) = 0 at ! = (�; �). Similarly one can design a high-pass �lter
Q1(e

j!) = HH(e
j!0)HL(e

j!1) +HL(e
j!0)HH(e

j!1);

see Fig. 5.4. Since MqMq =Mrec,

Mrec =

�
2 0
0 2

�
the 2-dimensional nonseparable PR �lter bank, using Mq, can be implemented with
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Figure 5.3: Lattice reprensentations in frequency domain, a) input lattice, b) after upsam-
pling with MT

q ; Q0(e
j!) is indicated, and c) after downsampling with M�T

q .

separable �lters. And when realized with LWDF this structure becomes very sim-
ple. The designed perfect reconstruction �lter bank can be used to perform a non-
separable 2-dimensional wavelet transform. Clearly, the �nal structure representing
a 2-dimensional nonseparable perfect reconstruction �lter bank with quincunx sam-
pling is shown in Fig. 5.5. This structure can be applied for FIR and IIR �lters. It
can be very e�ciently implemented, especially in the bireciprocal LWDF case. Figure
5.6 shows an example for a Butterworth implementation of a LWDF, N=9, maximum
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number of zeros at ! = (�; �). This structure uses 12 �lter coe�cients (only 4 of
them beeing di�erent) and they can be calculated with a pocket calculator by using
the method shown in [Gas85]. Filter coe�cients used in Fig. 5.6:

ω

ω1

0

π

π
ω

ω1

0

π

π

a) b)

π 2/

0 0

Figure 5.4: a) Ideal digital high-pass �lter shape H1(e
j!) for quincunx sampling withMq,

b) Q1(e
j!).

�1 = �0:132 47
��2 = 0:295 91

�3 = �0:031 09
�4 = �0:333 33

With �2 = �(1� ��2), the 1-dimensional frequency response of HL(e
j!0) follows as

HL(e
j!0) = 0:5(ej!0

ej2!0 � �1
1� �1ej2!0

ej2!0 � �2
1� �2ej2!0

+
ej2!0 � �3
1� �3ej2!0

ej2!0 � �4
1� �4ej2!0

) (5.5)
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Figure 5.5: E�cient structure for a 2-dimensional nonseparable perfect reconstruction
�lter bank with quincunx sampling (analysis part).
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5.1.2 Constructing 2-D Wavelet Bases from LWDFs

In general the number of wavelets is determined by
j det(M) j �1 = r � 1:

Unlike the 2-D separable case, Mrec, in which three mother wavelets  1;  2;  3 and
one scaling function ' exist, in the quincunx case, Mq, there exist only one mother
wavelet  and one scaling function ' [Vet95, Coh93]. The corresponding itterated �l-
ter bank for quincunx Mq, representing the scaling function and wavelet, is indicated
in Fig. 5.7.

Figure 5.8 shows various dilated versions of the ideal basic �lters for Mq, which
take part in the in�nite products of (5.2) and

	(!) =M1(M
�1
!)�1

k=2M0(M
�k
!)

where M1(!) = H1(e
j!)=H1(0). For Mq and the ideal basic �lters, the scaling func-

tion ' is separable in the sense that it can be expressed directly in terms of one
dimensional functions, i.e.,

�q(!) = �(!0)�(!1)

or in time domain as
'q(t) = '(t0)'(t1):

For Shannon sampling, the ideal �lter �q(!) needs to be approximated with e.g. But-
terworth �lters. The wavelet follows as (only one wavelet!):

	q(!) = �q(M
�1
!)M1(jM

�1
!):

For the separable case
�rec(!1; !2) = �(!1)�(!2)

	1;rec(!1; !2) = �(!1)	(!2)

	2;rec(!1; !2) = 	(!1)�(!2)

	3;rec(!1; !2) = 	(!1)	(!2);

three wavelet occure. They are depicted with the scaling function for the raised cosine
case in the Figs. (5.9 - 5.12).
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Figure 5.6: 2-dimensional, 2-channel nonseparable LWDF bank (analysis part) for quin-
cunx downsampling, expressed in an internal separable way.

5.2 Discussions

5.2.1 Minimum sampling density for V related to Mq

Since the shape of '(t) determines indirectly �min, the (analog/digital) sampling
matrix V for (5.1) is derived from the (digital/digital) sampling matrix Mq. For
x(n) = xa(Vn) and with 
 = VT

! it follows

X(VT
) =
1

j det(V) j
X
k2N

Xa(j(
�Uk)):

It is clear from Fig. 5.13 , that V has for �min (tightest packed X(VT
)) the form

V =

�
v0 0
0 v1

�
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Figure 5.7: Computation of the 2-dimensional discrete wavelet transform using a �lter
bank with quincunx sampling.

or in frequency domain

U = 2�V�T = 2�

�
v�10 0
0 v�11

�
And aliasing can be avoided for the values

v0 = 1

v1 = 1:

Thus �min = 1. It can be easily shown that the arrangement in Fig. 5.13 c) yields also
�min = 1.

5.3 Conclusion

Quincunx sampling is used for two-channel two-dimensional nonseparable sampling.

Novel IIR �lters for the well-behaved quincunx sampling matrix Mq =

�
1 1
1 �1

�
,

that leads, when itterated, to orthonormal two-dimensional nonseparable wavelets,
are presented. The novel two-dimensional �lters are composed of one-dimensional
�lters and their complexity is surprisingly small. The known Haar �lter (FIR) turns
out to be the smallest size �lter of this design method.
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Figure 5.9: Two-dimensional Raised-cosine scaling function for digital/digital rectangular
sampling for � = 0:25
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Figure 5.10: Two-dimensional Raised-cosine wavelet for digital/digital rectangular sam-
pling, j 	1;rec(!1; !2) j, for � = 0:25.
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Figure 5.11: Two-dimensional Raised-cosine wavelet for digital/digital rectangular sam-
pling, j 	2;rec(!1; !2) j, for � = 0:25.
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Chapter 6

Four-Channel Multidimensional

Systems

This chapter presents a novel �lter design method that can be used for four-channel
two- and three-dimensional perfect reconstructing �lter banks that, when itterated,
generate orthonormal wavelets for nonseparable sampling. A new three-dimensional
well-behaved sampling matrix is also presented.

6.1 Preliminaries

In the one dimensional case, type 1 (analysis �lters) and type 2 (synthesis �lters)
polyphase decomposition of a WDF (two-channel, bireciprocal case) may be expressed
as shown in (3.3-3.6). And the �lter coe�cients of the PR FB (dependent on the appli-
cation) can be obtained with the method shown in [Gas85]. A stable implementation
of G0(z) and G1(z) is shown for in�nite length signals in chapter 3. In the bireciprocal
case, real coe�cient WDFs ful�ll on the unit circle

j Hi(e
j!) j2 + j Hi(e

j(!+�)) j2= 1 i = 0; 1

[Nos83] and cascading them in a PR WDF system preserves PR and losslessness
[Vai93]. In particular, this is shown in [Som93] for M-band tree structures. See also
Fig. 2.8 in chapter 2.
In one dimension, for a maximally decimated two-channel (four-channel) perfect re-
construction �lter bank, downsampling by 2 (4) is used. In two dimensions, for a
maximally decimated two-channel (four-channel) PR FB, a quincunx sampling ma-
trix (hexagonal sampling matrix) having j det(Mq) j= 2 (j det(Mhex) j= 4) is used.
And in three dimensions, for a maximally decimated two-channel (four-channel) PR
FB, a face centered cubic sampling matrix (body centered cubic sampling matrix)
having j det(MFCCS) j= 2 (j det(MBCCS) j= 4) is used, see Table 6.1. A decimation
ratio, r, of r = 2 results in a dyadic sampling grid where as r = 4 results in a quartic
sampling grid.
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2-channel 4-channel

Matrix Eigenvalues Matrix Eigenvalues

2-D Mq =

�
1 1
1 �1

� �p2p
2

Mhex =

�
2 1
0 �2

� �2
2

3-D MFCCS =

2
4 1 0 1
�1 �1 1
0 �1 0

3
5 2

1
3

�((�1) 13 2 1
3 )

(�1) 23 2 1
3

MBCCS =

2
4 1 0 1
�1 0 1
1 �2 �1

3
5 2

2
3

�((�1) 13 2 2
3 )

(�1) 23 2 2
3

2-D M2
q =

�
2 0
0 2

�
M2

hex =

�
4 0
0 4

�

3-D M3
FCCS =

2
4 2 0 0

0 2 0
0 0 2

3
5 M3

BCCS =

2
4 4 0 0

0 4 0
0 0 4

3
5

Table 6:1 Well behaved two- and three-dimensional sampling matices used in a PR
FB. Compare [Pet62] for four-dimensional, ..., eight-dimensional sampling matrices
(not well-behaved).

6.2 Three-Dimensional Nonseparable Orthogonal

Perfect Reconstruction Filter Bank usingWave

Digital Filters

The aim of this section is the design and implementation of an orthonormal 4-channel
PR FB that processes three-dimensional in�nite length signals with WDFs. The pro-
cedure is similar to the two-channel case presented in the previous chapter.

The block diagram representation of a 4-channel analysis FB can be de�ned as shown
in Fig. 6.1 and will be explained next for PR. (Note that this structure can be used
for the FIR and IIR �lter design. However, in what follows bireciprocal WDFs will
be used since they yield a computationally e�cient implementation [Fet86].)
Considering one possible shape of the �rst Brillouin zone in frequency domain for the
BCCS scheme, that is related to the lowpass �lter and depicted in Fig. 6.2. One can
also illustrate it with three two-dimensional graphs, shown in Fig. 6.3, that, when mul-
tiplied with each other, result in the same shape. Since the �rst Brillouin zone equals
to the pass-band of the associated periodic low-pass �lter in the Nyquist region, the
design of the necessary three-dimensional �lter may be carried out by cascading three
two-dimensional �lters. When properly designed, these �lters yield an orthonormal
PR FB. The associated blockdiagram, realizing a three-dimensional low-pass �lter for
an orthonormal 4-channel PR FB, is shown in Fig.6.4, and the associated sampling
matrices are

M1 =

2
4 1 1 0
1 �1 0
0 0 1

3
5
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H12L H23L H13H

H12H H23H H13L

H12H H23H H13H

H12L H23L H13L MBCCSHLP

HBP1

HBP2

HHP

MBCCS

MBCCS

MBCCS

stage
   1

stage
   2

stage
   3

Α

Β

D

Ε

C

Figure 6.1: 4-channel analysis FB that can process three-dimensional in�nite length sig-
nals. The lowpass-, bandpass- and highpass-�lters as well as the nonseparable BCCS down-
sampling matrices are shown. Each 3-D �lter is split up in three stages. The �lters of each
stage are 2-D �lters. Each 2-D �lter can be realized with four 1-D �lters and appropriate
sampling matrices.

M2 =

2
4 1 0 0
0 1 1
0 1 �1

3
5

ω3

ω2

ω1

π

ππ

Figure 6.2: First Brillouin zone for the BCCS scheme.

M3 =

2
4 1 0 1
0 1 0
1 0 �1

3
5 :

Table 6.2 shows the aliasing frequencies [Coo95], where the frequency response of the
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π
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H12L H23L H13L

Figure 6.3: Nyquist region of the three �lters a) H12L, b) H23L, c) H13L, which, when
cascaded, result in a three-dimensional low-pass �lter (dotted areas show the passband of
the �lters).

Aliasing frequencies of the low-pass �lter

2-channel 4-channel
1-D � �

2
; �; 3�

2

2-D

quincunx
sampling

�
�
�

�
hexagonal sampling

�
�
�
2

�
,

�
0
�

�
,

�
�
3�
2

�

3-D

FCCS

2
4 �
�
�

3
5

BCCS

2
4 �
�
0

3
5,
2
4 �

0
�

3
5,
2
4 0
�
�

3
5

Table 6:2 Aliasing frequencies of the low-pass �lter of a 2-channel and 4-channel
�lter bank.

lowpass �lter has to be zero. The BCCS matrix can be factored as

MBCCS =M3Mrest =

2
4 1 0 1
0 1 0
1 0 �1

3
5
2
4 1 �1 0
�1 0 1
0 1 1

3
5 :

Since

M2
3 =

2
4 2 0 0
0 1 0
0 0 2

3
5 ;

H13L and H13H can be operated at lower sampling rate. The �lters H00;1,H00;2, H00;3,
are obtained from one-dimensional �lters [Got97, Fet90], e.g.

H00;1(e
j(!1;!2)) = HL(e

j!1)HL(e
j!2) +HH(e

j!1)HH(e
j!2):
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Figure 6.4: Realization of a three-dimensional lowpass �lter used in a PR FB for BCCS.
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Figure 6.5: Nyquist region of the three �lters a) H12H , b) H23H , c) H13H , which, when
cascaded, result in a three-dimensional high-pass �lter (dotted areas show the passband of
the �lters).

The highpass �lters H12H , H23H and H13H in Fig. 6.5 can be derived in a similar way
from the �lters H01;1, H01;2 and H01;3. They are also obtained from one-dimensional
�lters [Got97, Fet90], e.g.

H01;1(e
j(!1;!2)) = HL(e

j!1)HH(e
j!2) +HH(e

j!1)HL(e
j!2):

As an example, aiming towards the goal to generate Butterworth wavelets, a low-
pass/highpass Butterworth realization, having a maximal number of zeros at ! =
�=! = 0, is depicted in Fig. 6.6, see [Gas85]. And using this building block in connec-
tion with the blockdiagram of Fig. 6.1, the �nal blockdiagram of a 4-channel PR FB,
using a nonseparable BCCS scheme (analysis part), is illustrated in Fig. 6.7, where
it is clear that one needs to form one sequence from the two input sequences of the
downsampler by adding them together. Additional computational time is not required
for the modi�cation of the 3-D sequence into 1-D sequences of the appropriate fre-
quency variables, shown in Fig. 6.7, since one can assign the pointers that take the
samples to the appropriate registers, see also [Vet95] and references therein.
As an example, the transfer function of the bireciprocal highpass �lter in Fig. 6.6 is
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given, by using �2 = �(1� ��2), as

HH(e
j!) = 0:5(ej!

ej2! � �1
1� �1ej2!

ej2! � �2
1� �2ej2!

� ej2! � �3
1� �3ej2!

ej2! � �4
1� �4ej2!

)

T

2T

2T 2T

2T

α2
α1

α3 α4

-1

-1

-1

-1

-1

-1

0.5

0.5

*

WDF
LP

HP

LP

HP

Figure 6.6: Butterworth type WDF using four multipiers. 1/T = sampling rate.
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Figure 6.7: Analysis FB of a 4-channel PR system using a nonseparable BCCS scheme.
The WDFs of stage 3 operate on a lower sampling rate due to the factorization ofMBCCS =
M3Mrest, that allows, because ofM

2
3 , to implement this stage similar to a separable system,

see also Ref. [Vet95, p.178] or [Got97].

and the �lter coe�cients are [Gas85] as in chapter 5 for (5.5).
To conclude this section, all the �lters to be designed in Fig. 6.1 can be represented
with cascades of 1-D �lters and sampling matrices. 1-D bireciprocal Butterworth �lters
were used. Since cascades of those �lters preserves PR and losslessness [Vai93, Fet90],
the signal A of Fig. 6.1 can be perfectly reconstructed if the associated analysis �lters
are designed in the required way shown e.g in [Fet85, Lei94, Mit92]. In other words,
the task of reconstructing the signal as well as the design of the �lters of the 3-D
system is brought back to the 1-D case. And since 1-D bireciprocal �lters in a FB
yield a PR system, the above method yield a 3-D PR FB.
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ω

ω2

1

π

π

Figure 6.8: Frequency response of a digital lowpass �lter which is used in a 4-channel
multirate system using hexagonal digital/digital sampling.

6.3 Four-channel two-dimensional nonseparble or-

thogonal perfect reconstruction �lter bank

The aim of this section is the design of an orthonormal four-channel PR FB that can
process two-dimensional in�nite length signals with WDF. The procedure is similar
to the one in chapter 5 and section 6.2. However, in the previous cases halfband �l-
ters were needed exclusively, whereas in this section quarterband �lters need to be
designed. Two-dimensional hexagonal up/downsampling requires a periodic digital
lowpass �lter whose frequency response (Nyquist region) is depicted in Fig. 6.8.

The design of the necessary four �lters for hexagonally sampled systems is depicted
in Fig. 6.9. And the 2-D �lters H00; H01; H10; H11 are composed of 1-D quarter band
�lters, which can be implemented in an internal separable way. The Figs. 6.10-6.13
show the frequency response of the four �lters HLP ; HBP1; HBP2; HHP in the region
�3� < !1 < 3�, �3� < !2 < 3�, respectively. As an example, the �lter degree of the
quarter band �lters in the Figs. 6.10-6.13 were chosen such, that each associated 1-D
�lter has a �lter degree of 9, and the arangement in Fig. 6.14 helps to determine the
quarter band �lters

H00(e
j(!1;!2)) = HL(e

j!1)HL(e
j!2) +HL(e

j!1)HH(e
j!2) (6.1)

+HH(e
j!1)HH(e

j!2) +HH(e
j!1)HL(e

j!2);

H01(e
j(!1;!2)) = HBP1(e

j!1)HL(e
j!2) +HBP1(e

j!1)HH(e
j!2) (6.2)

+HBP2(e
j!1)HH(e

j!2) +HBP2(e
j!1)HL(e

j!2);
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H10(e
j(!1;!2)) = HL(e

j!1)HBP1(e
j!2) +HL(e

j!1)HBP1(e
j!2) (6.3)

+HH(e
j!1)HBP2(e

j!2) +HH(e
j!1)HBP2(e

j!2);

H11(e
j(!1;!2)) = HBP1(e

j!1)HBP1(e
j!2) +HBP1(e

j!1)HBP2(e
j!2) (6.4)

+HBP2(e
j!1)HBP1(e

j!2) +HBP2(e
j!1)HBP2(e

j!2):

Note, a cascade of the two half-band (bireciprocal) �lters H0(e
j!1)H0(e

j2!1) realizes
a quarter band �lter HL(e

j!1). Alternatively one can directly design a quarter band
�lter, e.g. see chapter 7. All the �lters in (6.1-6.4) are quarter band �lters.

6.4 In�nite recursive tree structure (4-channel)

In general, M-band wavelets can be obtained by using an M-channel PR FB system
[Som93, Ste93] that ful�lls the regularity [Fli94, Str96] criterion. This is indicated in
Fig. 6.15 for the N-dimensional 4-channel nonseparable case. The associated formulas,
using the normalizations
Mi(!) = Hi(e

j!)=Hi(0); i = LP;BP1; BP2; HP; are
�(!) = �1

k=1MLP (jM
�k
!) (6.5)

	BP1(!) =MBP1(jM
�1
!)�1

k=2MLP (jM
�k
!) (6.6)

	BP2(!) =MBP2(jM
�1
!)�1

k=2MLP (jM
�k
!) (6.7)

	HP (!) =MHP (jM
�1
!)�1

k=2MLP (jM
�k
!): (6.8)

In the two-dimensional case, for hexagonal up/downsampling, (6.5) and (6.7) are
separable for the ideal �lters in the sense that they can be expressed directly in terms
of one dimensional functions, i.e.

�hex(!) = �(!1)�(!2)

	hex;BP2(!) = 	(!1)�(!2)

or in time domain as
'hex(t) = '(t1)'(t2)

 hex;BP2(t) =  (t1)'(t2);

compare the Figs. 6.16-6.19.
Note that a tensor product-realization for the four-channel case would result in a
system with 15 wavelets and one scaling function.

6.5 Conclusion

Novel four-channel two- and three-dimensional �lters are presented. They are very
much suitable in �lter bank applications that use a multidimensional, nonseparable,
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Figure 6.9: a) Design of the four two-dimensional �lters used in a PR FB for hexagonal
digital/digital sampling shown in b). After upsampling with Mhex in c), the right part
constitutes a separable �lter bank, see [Vet95].

orthonormal wavelet transform. In the three-dimensional case, halfband �lters need
to be designed, whereas in the two-dimensional case quarterband �lters are used.
Both four-channel �lter designs (two- and three-dimensional) can be treated with
one-dimensional �lter design techniques.
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Figure 6.10: Frequency response of HLP (e
j!) in the region �3� < !1 < 3�, �3� < !2 <
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Figure 6.12: Frequency response of HBP2(e
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Figure 6.14: Arangement that helps to determine the four quarter band �lters.
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Figure 6.16: Various dilated versions of the ideal basic lowpass �lter, indicated with 1, 2,
3, and 4, which take part in the in�nite product. The separable scaling function, �hex(!),
for hexagonal digital/digital sampling is indicated with number 5.
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Figure 6.17: Various dilated versions of the ideal basic lowpass �lter, indicated with 1, 2, 3,
and 4, which take part in the in�nite product. 2 represents a dilated version of the bandpass
�lter. The wavelet, 	hex;BP1(!), for hexagonal digital/digital sampling is indicated with
number 5.
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Figure 6.18: Various dilated versions of the ideal basic lowpass �lter, indicated with 1, 3,
and 4, which take part in the in�nite product. 2 represents a dilated version of the highpass
�lter. The separable wavelet, 	hex;BP2(!), for hexagonal up/downsampling is indicated
with number 5.
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Figure 6.19: Various dilated versions of the ideal basic lowpass �lter, indicated with 1, 3,
and 4, which take part in the in�nite product. 2 represents a dilated version of the bandpass
�lter. The wavelet, 	hex;HP (!), for hexagonal digital/digital sampling is indicated with
number 5.
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Chapter 7

Ladder Wave Digital Filter

In this chapter a novel design method for ladder wave digital �lters for four-channel
two-dimensional perfect reconstruction �lter banks is presented. The presented design
method, compared to bireciprocal lattice wave digital �lter realizations, gives a bet-
ter performance, e.g. for a Butterworth �lter realization about half �lter coe�cients
are necessary. The �lters can readily be used in a hexagonally sampled �lter bank,
discussed in the previous chapter.

7.1 Explicit formulas for IIR �lters

Provided that the number of channels is equal to the up/downsampling factor M , a
�lter bank has the PR property if and only if the corresponding transmultiplexer has
the PR property [Ste93]. For real �lter coe�cients, this means that the four �lters in
an analysis 4-channel PR FB have to satisfy

j HLP (e
j!) j2 + j HBP1(e

j!) j2 + j HBP2(e
j!) j2 + j HHP (e

j!) j2= 1;

and if the itterated FB is required to generate wavelet bases, then HLP (e
j
) has to

|H  |LP
2

|H  |BP1
2 |H  |BP2

2

|H  |HP
2

ω3π/2ππ/2−π/2

1/2

1

Figure 7.1: Magnitude of the �lters of a 4-channel PR FB. Aliasing frequency locations of
HLP are indicated with a cross.

have zeros at the aliasing frequencies. They are depicted in Table 7.1. If the associated
wavelets are required to have equal di�erentiability, then the zeros have to be equally
distributed. Hence, only odd-order �lters having 3(2i � 1) zeros , i 2 N=0, are of
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interest. Figure 7.1 illustrates the �ltering scheme.
The aim in this chapter is to design a 2-D quarter band �lter for a PR system. In

M MH  
X Z

=
ZX

E 000

^

H
LP

Figure 7.2: 0th Type 1 polyphase component of H00(e
j!0;!1). E0(!0; !1 = HLP (!0; !1) is

used as the proper �lter for hexagonal downsampling, see [Got97].

general these �lters are nonseparable for hexagonal sampling (4-channel case). How-
ever, the proposed method starts with separable �lters, see also [Got97]. The 0th type
1 polyphase component of the separable two-dimensional low pass �lter H00 is used
as the proper low pass �lter HLP for hexagonal sampling, see Fig. 7.2. The necessary
other three �lters, HBP1, HBP2 and HHP for the �lter bank, can be realized similarly.
Since the obtained �lters are also separable, one can use 1-D tools to show the PR
property, namely, cascading of 1-D PR FB preserves the PR propery [Vai93, Got97].

Bireciprocal (half band) WDF are very e�cient because they can be realized as lat-
tice WDF. Quarter band WDF in a PR system can be e�ciently realized with ladder
WDF. Such an arrangement is illustrated in Fig. 7.3.
In the 1-D case, cascades of lattice bireciprocal WDF require less �lter coe�cients
compared to quarter band ladder WDF, since the number of multipliers is canonic to
the �lter degree for a ladder realization and the number of multipliers for the same
�lter in lattice realization is half! However, this is not true in the considered 2-D case.
As will be shown below, a ladder realization results in a structure using less multipli-
ers compared to a lattice realization. This is due to a possible polyphase realization.
The 0th polyphase component of H00(e

j(!0;!1)) is realized in a polyphase structure.

One advantage of the WDF method over other digital �lter design methods is that
one has explicit formulas. In what follows, we use Butterworth polynomials. (Rational
Chebyshev polynomials could also be used instead.)

The frequency response of a 1-D reference �lter of an associated bireciprocal WDF is
de�ned as (low pass):

j Href(s) j2= Href(s)Href(�s) = 1

1� s2N

where N is the �lter degree; e.g. for N = 9

H0(s) =
1

(1 + s)(1 + s+ s2)(1 + s3 + s6)

H0(z) =
(1 + z9)

2z(1 + 3z2)(1 + 33z2 + 27z4 + 3z6)
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Aliasing frequencies of the lowpass �lter
analog reference

�lter (T=1) WDF


1 = 1 !1 =
�
2 z1 = j


2 !1 !2 = � z2 = �1

3 = �1 !3 =

3�
2 z3 = �j

Table 7:1 Aliasing frequencies of the lowpass �lter.

The frequency response of a 1-D reference �lter of an associated quarter band WDF
is de�ned as (using a Butterworth polynomial K(s) = (�1)Ns2N , for real �lter coef-
�cients is N odd):

j Href;LP (s) j2= 1

1 +K(s)

1

1 +K( 2s
1+s2

)
(7.1)

j Href;HP (s) j2= 1

1 +K(1=s)

1

1 +K( 2s
1+s2

)

j Href;BP1(s) j2= 1

1 +K(s)

1

1 +K( s
2+1
2s

)

j Href;BP2(s) j2= 1

1 +K(1=s)

1

1 +K( s
2+1
2s

)
(7.2)

e.g. for N = 9
HLP (s) = (1 + s2)9=((1 + s)3(1 + s+ s2)(1 + 2s+ 6s2

+2s3 + s4)(1 + s3 + s6)(1 + 6s2 + 8s3 + 15s4 + 24s5

+84s6 + 24s7 + 15s8 + 8s9 + 6s10 + s12))

HLP (z) = ((1 + z)9(1 + z2)9)=(4z3(1 + 3z2)(1 + 3z4) (7.3)

(1 + 33z2 + 27z4 + 3z6)(1 + 33z4 + 27z8 + 3z12))

Note, that the low-pass quarter band �lter HLP (z) is a digital �lter, but not a WDF!

7.2 Four channel polyphase arrangements

Fig. 7.4 illustrates the deriviation of the four polyphase components generated by

M =

�
2 1
0 �2

�
;

k0 = [0 0]T , k1 = [1 0]T , k2 = [1 � 1]T , k3 = [2 � 1]T and hence we can draw the
type 1 polyphase implementation of a �lter with M as in Fig. 7.5.
To show the e�ectiveness of this design method, an FIR and IIR example will be
presented. As an FIR example we consider a �lter with N=5. In 1-D we can decompose

HLP (z) = A+Bz�1 + Cz�2 +Dz�3 + Ez�4 + Fz�5 (7.4)
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Figure 7.3: Possible �lter arrangements to realize the 2-D quarter band �lters. a) Birecip-
rocal (half band) WDF arrangement, b) quarter band WDF arrangement. Note, the �lters
in a) are directly implemented where as the �lters in b) are the starting point of the three
step design of the polyphase �lters in Fig. 7.5.

(M=4) as shown in Fig. 7.6. And the high pass �lter follows as
HHP (z) = F � Ez�1 +Dz�2 � Cz�3 +Bz�4 � Az�5: (7.5)

In 2-D we can decompose (valid for FIR and IIR �lters), see also (6.10),
H00(z0; z1) = HLP (z0)HLP (z1) +HHP (z0)HHP (z1) +

HHP (z0)HLP (z1) +HLP (z0)HHP (z1)

as indicated in Fig. 7.7. It is now obvious from Fig. 7.7 that the coe�cients surrounded
by a circle represent the 0th type 1 polyphase component of H00 from Fig. 7.2. Hence
we can write

HLP (z0; z1) = (A+ Cz�10 + Ez�20 )(A+ Cz�11 + Ez�21 ) (7.6)

+(A+ Cz�10 + Ez�20 )(F +Dz�11 +Bz�21 )

+(F +Dz�10 +Bz�20 )(F +Dz�11 +Bz�21 )

+(F +Dz�10 +Bz�20 )(A + Cz�11 + Ez�21 )

It clearly shows, that we can implement HLP with 1-D �lters. And they have only
half the coe�cients than the ones we started o� with. The same can be done with IIR
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Figure 7.4: Demonstrating the four polyphse components generated by M .
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Figure 7.5: Type 1 polyphase implementation of a �lter with M .

H(z)= Σ h(nM)z
n

-nM

Σ h(nM+1)z-nMz-1+

Σ h(nM+2)z-nMz-2+

Σ h(nM+3)z-nMz-3+

H(z)= A + Bz + Cz + Dz + Ez + Fz-1 -2 -3 -4 -5

LP

LP

Figure 7.6: Four polyphase components of the 1-D low pass �lter.
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�lters. As we have experienced with our previous FIR example, the coe�cients of the
odd powers of zi, i=0,1, are set to zero and the even powers of zi are renumbered. In
the IIR case this is done in the numerator as well as in the denominator, e.g. (using
(7.3),

HLP (z0; z1) =

(1 + z0)
9(3 + z0)(3 + 27z0 + 33z20 + z30)

z0(1 + 3z0)(1 + 3z20)(1 + 33z0 + 27z20 + 3z30)(1 + 33z20 + 27z40 + 3z60)
�

(1 + z1)
9(3 + z1)(3 + 27z1 + 33z21 + z31)

z1(1 + 3z1)(1 + 3z21)(1 + 33z1 + 27z21 + 3z31)(1 + 33z21 + 27z41 + 3z61)

(7.7)

The other three �lters follow as

HHP (z0; z1) =

(�1 + z0)
9(3 + z0)(3 + 27z0 + 33z20 + z30)

z0(1 + 3z0)(1 + 3z20)(1 + 33z0 + 27z20 + 3z30)(1 + 33z20 + 27z40 + 3z60)
�

(1 + z1)
9(3 + z1)(3 + 27z1 + 33z21 + z31)

z1(1 + 3z1)(1 + 3z21)(1 + 33z1 + 27z21 + 3z31)(1 + 33z21 + 27z41 + 3z61)

HBP1(z0; z1) =

(�1 + z0)
9(3 + z0)(3 + 27z0 + 33z20 + z30)

z0(1 + 3z0)(1 + 3z20)(1 + 33z0 + 27z20 + 3z30)(1 + 33z20 + 27z40 + 3z60)
�

(�1 + z1)
9(3 + z1)(3 + 27z1 + 33z21 + z31)

z1(1 + 3z1)(1 + 3z21)(1 + 33z1 + 27z21 + 3z31)(1 + 33z21 + 27z41 + 3z61)

HBP2(z0; z1) =

(1 + z0)
9(3 + z0)(3 + 27z0 + 33z20 + z30)

z0(1 + 3z0)(1 + 3z20)(1 + 33z0 + 27z20 + 3z30)(1 + 33z20 + 27z40 + 3z60)
�

(�1 + z1)
9(3 + z1)(3 + 27z1 + 33z21 + z31)

z1(1 + 3z1)(1 + 3z21)(1 + 33z1 + 27z21 + 3z31)(1 + 33z21 + 27z41 + 3z61)

Having obtained the two 1-D �lters from the 0th type 1 polyphase component of Q0

from Fig. 7.2, one simply goes back to the s-domain by using (3.2) and applies the
standard method to design a WDF, see also (2.25) and Fig. 2.4. Note, the four 2-D
�lters can be realized with three 1-D WDF.
Fig. 7.3a) needs 80 and, again assuming a canonical ladder realization with respect
to multipliers. The proposed design method requires 39 operations per output sample.

So far we have realized the 0th type 1 polyphase component from Fig. 7.2. How-
ever, we can still improve the �lter bank. For the quarter band case this is due to the
fact that one can apply again a polyphase decomposition. Both realizations reduce
the number of required operations again.
The four polyphase components of the ladder WDF realization are again composed
of separable 1-D �lters. E

0

0(z0; z1) (starting from HLP (z0; z1)) is composed of the even



7.3. CONCLUSION 87

coe�cients of the 1-D �lter in z0 and of the even coe�cients of the 1-D �lter in z1.
Continuing the previous FIR example

E
0

0(z0; z1) = (A + Ez�10 )(A+ Ez�11 ) + (A+ Ez�10 )(F +Bz�11 ) (7.8)

+ (F +Bz�10 )(F +Bz�11 ) + (F +Bz�10 )(A + Ez�11 ):

E
0

1(z0; z1), E
0

2(z0; z1) and E
0

3(z0; z1) are also separable 2-D �lters and it is now straight
forward to derive them with the help of Fig. 7.7.

E
0

1(z0; z1) = (odd of z0)(even of z1)

E
0

2(z0; z1) = (odd of z0)(odd of z1) (7.9)

E
0

3(z0; z1) = (even of z0)(odd of z1) (7.10)

Note, if one combines analog reference �lters in (7.1-7.2), e.g. elliptic �lters and But-
terworth �lters, then one can reduce the regularity and increase the frequency selec-
tivity of the wavelet.

7.3 Conclusion

This chapter presents a new �lter design method to design FIR and IIR �lters for
hexagonally sampled signals. The resulting �lters in ladder structure have much less
complexity compared to �lters in lattice structure. A similar statement is true for
FIR �lters.
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Figure 7.7: Four polyphase components of the 2-D low pass �lter. The circles mark the
�lter coe�cients that belong to E0(z

2
0 ; z0z

�2
1 ). The triangles mark the �lter coe�cients that

belong to E1(z
2
0 ; z0z

�2
1 ). The squares mark the �lter coe�cients that belong to E2(z

2
0 ; z0z

�2
1 ).

The diamonds mark the �lter coe�cients that belong to E3(z
2
0 ; z0z

�2
1 ). The periodicity of

the �lter is indicated in one direction. The shifted delay chain is also indicated (shaded
elements).
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Chapter 8

Conclusion

This thesis shows new �lters of analog as well as of digital type. Their design pur-
pose lies in the wavelet transform for one-, two- and three-dimensions. Application
examples of the wavelet transform were not discussed. However they can be found
e.g. in [Fli94, Vet95, Ans96, Rao96]. Especially wave digital �lters (WDF) were used.
They turn out to be best suited �lters for the wavelet transform. This is due to
their low-sensitivity property as well as due to the e�ciency with which they can be
implemented (big hardware savings compared to other exising structures, e.g. direct
structure, are possible). The novel multidimensional wave digital �lters are used in an
orthonormal �lter bank for nonseparable sampling. Furthermore, new wavelets, such
as the raised cosine wavelet and the Chebyshev wavelet, are presented. In addition
a �lter of very low comlexity that performs a shift � 2 R on the expansion coe�-
cients (wavelet coe�cients) is given. Scaling functions are classi�ed into "valid" and
"approximating" scaling functions in respect to Shannon sampling, since Shannon
sampling o�ers a lower minimum sampling rate than wavelet sampling.
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Appendix A

Sampling lattice

First, 2-D sampling lattices will be brie
y shown in this section. For more details
it is refered to, e.g., [Pet62, Vai93, Vet95]. Finally a proof for the design of the two
dimensional, orthonormal, nonseparable �lters in chapter 5 is presented.

Sampling lattices

Let sampling of an analog 2-D signal x(t0; t1) result in x(n0; n1), where the set of all
sample points is the set

t =

�
t0
t1

�
= V

�
n0
n1

�
:

V is called sampling matrix and is a real, nonsingular matrix. The lattice (marked
with cross points) generated by V (using U = 2�V �T , T0 = T1 = �=�, 
0 = !0=T0,

1 = !1=T1) for

V =

�
T0 0
0 T1

�
(A.1)

is depicted in �gure A.1 b), the lattice generated by (using T0 =
p
3T1 = �=�)

V =

�
T0 �T0
T1 T1

�
(A.2)

is depicted in �gure A.1 c). The sampling density, (see (5.1)), for (A.1) is �2

�2
, for (A.2)

is
p
3�2

�2
. For the above, rectangular sampling under circular support and hexagonal

sampling under circular support was assumed, respectiveley. It is shown in [Pet62] that
for 2-D systems there is no more e�cent sampling scheme for circularly bandlimited
signals than hexagonal sampling. The sampling e�ciency under circular support for
rectangular sampling is 78.5%; for hexagonal sampling 90.8%. Intermediate solutions
exist. Figure A.1 depicts the e�ect of rectangular and hexagonal sampling under cir-
cular support. It can be seen that the circles are more tightly packed for hexagonal
sampling.
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Figure A.1: E�ect of sampling under circular support: a) support of a 2-D lowpass signal,
b) e�ect of rectangular sampling and c) e�ect of hexagonal sampling.

One can show that there exist in�nite number of sampling matrices resulting in the
same lattice, see [Vai93]. The same is true for (digital/digital) downsampling matri-
ces. However, whereas sampling matrices can have real valued entries, downsampling
matrices can only have integer entries.

Coding gain in subband coding is maximized by opting nonseparable systems [Vet95].
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Thus, in a two dimensional system, quincunx downsampling is often used for a two
channel subband coding system, and hexagonal downsampling is often used for a four
channel subband coding system.

One can �t hexagonal patterns into lattices generated by rectangular, hexagonal or
quincunx matrices, see �gure A.2. Hence, one needs to be careful with the term hexag-
onal [Vai93].

In �gure A.2, sampling density is reduced by a factor of four for the separable down-
sampling, four for the hexagonal downsampling and by a factor of two for quincunx
downsampling, see also chapter 5 and 6. If images have circularly symmetric power
spectrums that decrease with higher frequencies, then the quincunx lowpass �lter will
retain more of the original signal's energy than a separable lowpass �lter [Vet95].
Using the same argument, the hexagonal lowpass �lter is then better than the cor-
responding lowpass �lter in a separable system with downsampling by two in each
dimension [Vet95]. Such preprocessing (using nonseparable downsampling) has been
used in socalled intraframe coding of high de�niton television (HDTV) [Rao96].
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Figure A.2: Decimation matrices: a) for (digital/digital) rectangular downsampling, b) for
(digital/digital) hexagonal downsampling, c) for (digital/digital) quincunx downsampling.
The circles mark the sample values that are discarded after downsampling took place, the
cross mark the ones that are still preserved.
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Proof for quincunx grid

Proof for the design of the two-dimesional, orthonormal, nonseparable �lters in chap-
ter 5.

Proof :
Let H0(e

j!) be a one-dimensional low-pass �lter satisfying (3.3 - 3.6), hence
j H0(e

j!) j2 + j H0(�ej!) j2= 1;

j H0(e
j!)�H0(�ej!) j= 1

and

Mq =

�
1 1
1 �1

�
:

De�ne
Q0(e

j!) = H0(e
j!0)H0(e

j!1) +H1(e
j!0)H1(e

j!1)

and
Q1(e

j!) = H0(e
j!0)H1(e

j!1) +H1(e
j!0)H0(e

j!1):

Then, using upsampling
Y1(!) = X(MT

q !)

and downsampling

Z(!) =
1

j detMq j
X

k2N(MT )

Y2(M
�T (! � 2�k))

one can write
Y2 = Q0(e

j!)Y1(!):

With

2�M�T
q

�
1
0

�
=

�
�
�

�
follows

Z(!) =
1

2
[Y2(M

�T
q !) + Y2(M

�T
q (! +

�
�
�

�
)]X(! + 2�

�
1
0

�
):

Since periodicity implies

! + 2�

�
1
0

�
= !

it follows that

Z(!) =
1

2
[Q0(e

jM�T
q !) +Q0(e

j(M�T
q !+(�;�))]X(!)

Z(!) = Q0(e
jM�T

q !)X(!):

Next, it will be shown that
j H0(e

j(!0;!1)) j2 + j H0(e
j[(!0;!1)+(�;�)]) j2= 1

is satis�ed. For convenience, let
!0 + !1

2
= v0
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and
!0 � !1

2
= v1:

Then, with

(!0; !1) =Mq

�
v0
v1

�
follows

j Q0(e
j(v0;v1)) j2 + j Q0(e

j[(v0;v1)+(�;�)]) j2= 1:

The latter equation can be written as
[H0(e

jv0)H0(e
jv1) +H0(�ejv0)H0(�ejv1)] �

[H0(e
�jv0)H0(e

�jv1) +H0(�e�jv0)H0(�e�jv1)] +
[H0(�ejv0)H0(e

jv1) +H0(e
jv0)H0(�ejv1)] �

[H0(�e�jv0)H0(e
�jv1) +H0(e

�jv0)H0(�e�jv1)] =
j H0(e

jv0)H0(e
jv1) j2 + j H0(�ejv0)H0(�ejv1) j2 +

j H0(�ejv0)H0(e
jv1) j2 + j H0(e

jv0)H0(�ejv1) j2 +
H0(e

jv0)H0(e
jv1)H0(�e�jv0)H0(�e�jv1) +

H0(�ejv0)H0(�ejv1)H0(e
�jv0)H0(e

�jv1) +

H0(�ejv0)H0(e
jv1)H0(e

�jv0)H0(�e�jv1) +
H0(e

jv0)H0(�ejv1)H0(�e�jv0)H0(e
�jv1) =

1 +H0(e
jv0)H0(e

jv1)H0(�e�jv0)H0(�e�jv1) +
H0(�ejv0)H0(�ejv1)H0(e

�jv0)H0(e
�jv1) +

H0(�ejv0)H0(e
jv1)H0(e

�jv0)H0(�e�jv1) +
H0(e

jv0)H0(�ejv1)H0(�e�jv0)H0(e
�jv1) = 1�

Note that
j H0(e

jv0)H0(e
jv1) j2 + j H0(�ejv0)H0(�ejv1) j2 +

j H0(�ejv0)H0(e
jv1) j2 + j H0(e

jv0)H0(�ejv1) j2=
(j H0(e

jv0) j2 + j H0(�ejv0) j2)(j H0(e
jv1) j2 + j H0(�ejv1) j2) = 1

and
j H0(e

jv0) j=j H0(e
�jv0) j

for symmetric �lters.
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Appendix B

Zusammenfassung

Obwohl diese Dissertation sich überwiegend mit digitaler (diskreter) Signalverarbeitung
befaßt, ist es das Ziel, analoge (zeitkontinuierliche) Signalverarbeitung durchzuführen.
Die Verbindung zwischen beiden ist ein Abtastsatz. Der Sinn eines Abtastsatzes liegt
darin, eine Vorschrift anzugeben, welche eine Repräsentation eines analogen Signals
durch ein diskretes Signal erlaubt; in einer Weise, daß keine Information verloren geht.
Weiterhin gibt er an, welche Mindestabstände zwischen zwei Abtastwerten notwendig
sind, um eine fehlerfreie Rückgewinnung des ursprünglichen kontinuierlichen Signals aus
dessen diskreter Version zu erreichen. Der Hauptgrund, warum man einen digitalen
Schaltkreis anstelle eines analogen Schaltkreises verwendet ist der, daß für bestimmte
Frequenzbereiche digitale Schaltkreise weniger störanfällig sind als analoge Schaltkreise.

Wenn eine diskrete Folge mit einem digitalen Filter gefaltet wird, dann wurde schon
zuvor die gewünschte Filterstruktur  (Mögliche Strukturen sind z.B. Direkt-, Parallel-,
Kaskaden-, Abzweig- und Kreuzgliedstruktur) ausgewählt. Eine sehr gute Wahl der
Filterstruktur für eine Anwendung, welche gute Koeffizientengenauigkeit, guten
dynamischen Bereich und Stabilität unter der Bedingung endlicher Arithmetik erfordert,
sind Abzweig- und Kreuzglied-Wellendigitalfilter-Strukturen (WDF). Rekursive WDF,
z.B. Butterworth- und Cauer-Filter, können unter Zuhilfenahme von expliziten Formeln
entworfen werden. Nichtrekursive WDF werden durch Optimierungsmethoden entworfen.
Für sie können, bei einem hohen Filtergrad, numerische Probleme auftreten.  Um die
gleichen Filterspezifikationen zu erreichen, braucht man für nichtrekursive digitale Filter
einen höheren Filtergrad als bei rekursiven digitalen Filtern. Linearphasige Filter und
multipliziererfreie Strukturen können für beide Filtertypen angegeben werden.

Digitale Filter, welche in einer Filterbank angeordnet sind und zusätzlichen Bedingungen
genügen, können benutzt werden, um Wavelets zu generieren. Biorthogonale Filter sind
solche Filter. Orthogonale Filter sind eine Untermenge von biorthogonalen Filtern,
welche die geringste Komplexität aufweisen. Entwurfsverfahren für orthogonale Filter
sind für den eindimensionalen Fall bekannt [Gas85,Flie94,Vai93,Vet95]. Eine
Entwurfsmethode der orthogonalen Filter für die mehrdimensionale, nichtseparierbare
Abtastung, außer für ein triviales Filter (Haar Filter), wurde noch nicht gefunden. Im
Gegensatz zur separablen Abtastung (Diagonal-Matrix), welche aus einem Skalarprodukt
des eindimensionalen Falls hervorgeht und in einer Skalierungsfunktion und drei
verschiedenen Wavelets resultiert, existiert für nichtseparierbare Abtastung eine



97

Skalierungsfunktion und nur ein Wavelet für den zweidimensionalen Fall mit zwei
Kanälen. Eine ähnliche Aussage über die Anzahl der Wavelets gilt für mehr als zwei
Kanäle und für mehr als zwei Dimensionen.

Mögliche Kandidaten für einen Abtastsatz sind der Nyquist-Abtastsatz oder der Wavelet-
Abtastsatz. Das Filter mit welchem ein analoges Signal vor der Abtastung gefaltet wird ist
die Skalierungsfunktion. Ein möglicher Kandidat für eine nichtseparierbare Abtastmatrix
in zwei Dimensionen ist eine Quincunx-Matrix für die Zweikanal-Filterbank und eine
Hexagonal-Matrix für die Vierkanal-Filterbank. In drei Dimensionen ist das eine FCCS-
Matrix für die Zweikanal-Filterbank und eine BCCS-Matrix für die Vierkanal-Filterbank.

Die Stärke der Wavelet-Methoden liegt in der Fähigkeit, lokale Ereignisse genauer
beschreiben zu können, als es mit der traditionellen Fourieranalyse der Fall ist. Deshalb
sind Wavelets ideal für Anwendungen, in welchen ein Ansatz für das Beschreiben von
Übergangsverhalten benötigt wird, wie z.B. bei seismologischen Signalen oder bei der
Bildverarbeitung. Operatoren, die mit Wavelets assoziiert sind, wie z.B. die Calderon-
Zygmund-Operatoren, scheinen dafür prädestiniert zu sein, noch nicht gelöste Probleme
in der komplexen Analyse und bei partiellen Differentialgleichungen zu lösen. Deshalb
sind Wavelets und der Entwurf orthogonaler Filter, realisiert als Wellendigitalfilter, für
die nichtseparierbare Abtastung bei mehrdimensionalen Problemen sehr gefragt. Sie
werden von Ingenieuren, die sich mit Teilbandkodierung befassen, Physikern, die sich mit
den sogenannten "coherent states" in der Quantenphysik befassen, und Mathematikern,
die sich mit den Calderon-Zygmund-Operatoren befassen, hauptsächlich benötigt.
Verschiedene Industrienormen haben inzwischen die Wavelet-Transformation mit
einbezogen, siehe z.B. [Rao96].

Das Kernziel dieser Dissertation ist der Entwurf von orthogonalen, mehrdimensionalen
Wellendigitalfiltern für nichtseparierbare Abtastmatritzen.  Damit der Leser einen
einfacheren Einstieg in den Filterentwurf hat, sind einige Grundlagen elektrischer
Netzwerke und Filter vom analogen als auch vom digitalen Typ in Kapitel 2 angegeben.
Als motivierendes Beispiel einer Anwendung ist ein elektrisches Netzwerk angegeben,
welches eine dreidimensionale Navier-Stokes-Gleichung repräsentiert. Dieses Netzwerk
kann herangezogen werden, wenn numerische Lösungswerte der Gleichung berechnet
werden sollen. Wichtiges Beiwerk, welches digitale Filter mit der Wavelet-
Transformation verknüpfen, ist zusammengefaßt, und es wird weiterführende Literatur
angegeben, die diesen Stoff ausführlicher behandelt. Weiterhin werden wichtige
Abtastsätze präsentiert. Ein angegebener Vergleich über die minimale Abtastrate zeigt
einen interessanten Aspekt bezüglich der Mindestabstände zwischen zwei Abtastwerten.

Kapitel 3 zeigt Verbindungen von Wellendigitalfiltern zu ihren analogen Referenzfiltern
auf. Weiterhin wird gezeigt wie man eine perfekte Rekonstruktion mit Fiterbänken
erreicht ohne eine spektrale Faktorisierung durchführen zu müssen. Diesbezüglich ist
Feldkellers Gleichung während des Entwurfs von Abzweig- und Kreuzglied-
Wellendigitalfiltern wichtig. Es ist exemplarisch gezeigt, wie man ein perfektes
Rekonstruktionssystem mit rekursiven, orthogonalen Kreuzglied-Wellendigitalfiltern
entwerfen kann. Es ist auch gezeigt, wie man nichtkausale Filter implementieren und wie
man Signale unendlicher Länge verarbeiten kann.
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Bekannte Wavelets, wie z.B. Meyer Wavelets, Sinc Wavelet (Littlewood-Paley Wavelet),
Haar Wavelet, Daubechies Wavelet und Butterworth Wavelet, sind in Kapitel 4
präsentiert. Ebenfalls sind bekannte Filter präsentiert, die (sofern einige Einschränkungen
eingehalten werden) benutzt werden können, um neue orthonormale Wavelets, nämlich
Cosinus-Rolloff-Wavelet und Chebyshev-Wavelet, zu generieren. Ferner sind in Kapitel 4
zwei Eigenschaften der Wavelet-Transformation, die Verschiebung und die Faltung
aufgeführt. Unter Zuhilfenahme bekannter Filterentwurfsverfahren ist die
Verschiebeoperation für Verschiebungen um τ ∈ R erweitert.

Die Neuheiten der Kapitel 5, 6, und 7 sind:

• Eine Entwurfsmethode für quincunx-abgetastete, nichtseparierbare, orthogonale
Wellendigitalfilter (zweikanalig) ist in Kapitel 5 angegeben. Die Entwurfsmethode
basiert auf eindimensionalen Filtern sowie aus sogenannten gutartigen
Abtastmatritzen. Eine Polyphasenzerlegung ist angewendet und resultiert in einer sehr
effizienten Filterstruktur.

• Eine zweite Entwurfsmethode für hexagonal-abgetastete sowie BCCS-abgetastete,
nichtseparierbare, orthogonale Wellendigitalfilter (vierkanalig) ist in Kapitel 6
angegeben. Es wurden, wie in Kapitel 5, gutartige Abtastmatritzen gefunden, die
während des Filterentwurfs, der ebenfalls mit eindimensionalen Filtern durchgeführt
wird, verwendet werden. Ein Beispiel (Butterworth-Filter) ist aufgeführt. Jedoch ist
die Methode nicht nur auf Butterworth-Filter beschränkt.

• In den Kapiteln 5 und 6 werden Kreuzglied-Wellendigitalfilter bevorzugt, da sie sehr
effizient realisiert werden können. Jedoch, wie im Kapitel 7 gezeigt wird, führt eine
Abzweigstruktur der Wellendigitalfilter für hexagonal abgetastete Signale auf
effizientere Implementierungen. Eine neue Filterentwurfsmethode ist für diesen Fall
aufgezeigt, und baut auf expliziten Formeln auf.

Die Dissertation ist im Kapitel 8 zusammengefaßt.
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