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Chapter 1

Introduction

Nonparametric regression techniques have become a broad area of statistical re-
search in various fields. The roots of the methodology date back at least to
the middle of the last century (Rosenblatt, 1956; Parzen, 1962; Nadaraya, 1964;
Watson, 1964). Because of the computational cost the applicability was limited
until twenty years ago. The rapid development of computer technology and the

availability of large datasets have abolished this restriction.

In a classical regression framework it is the aim to estimate the functional
relation between a set of predictors and a response variable. In a parametric
regression the unknown function is parameterized with a certain (finite) number of
unknown parameters, which are then estimated based on a sample of observations.
Such a globally restricted model is often not flexible enough to analyze data
appropriately. In contrast, nonparametric techniques focus on the estimation of
the functional relation at a single point and use the information provided by the

data in a neighborhood.

Mathematically speaking, both methods try to minimize the distance between
the observed realizations of the response variable and values that are predicted
by a specific functional relation. If the class of functional relations is not re-
stricted at all, this distance is minimized by any function that passes through
all observed data points (if there are no multiple observations of the predictors).
Such an estimator may provide very poor predictions at points different from
the observed values. However, the quality of predictions is an important task
for estimation. Therefore, the possible solutions of the minimization problem
should be chosen from a smaller class of functions. This is done by imposing

certain restrictions (e. g. a parametric structure) on the functions, which leads to
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structured regression models.

In nonparametric regression the restrictions are imposed by assuming a regular
behavior of the unknown function in small neighborhoods. Using kernel smooth-
ing, which is probably the most popular nonparametric method in theoretical and
applied econometrics at the moment, the unknown function is assumed to be dif-
ferentiable of a certain degree. While smoothing techniques provide very flexible
estimators, their use is problematic when the dimension of the predictors in-
creases. To have enough observations in a local (multivariate) neighborhood, the
sample sizes have to increase drastically with the dimension. This phenomenon
is known as the curse of dimensionality of nonparametric regression.

The curse of dimensionality can be circumvented by further restricting the class
of functions — but keeping it still flexible enough. One popular way is to impose
an additive structure on the unknown function. Thereby the behavior of the
function is only restricted in one-dimensional neighborhoods. The quality of an
estimation technique is usually analyzed by its asymptotic behavior, if the sample
size increases. The curse of dimensionality is then displayed in slower rates of
convergence of such estimators to the unknown functional relation. In contrast
additive functions can be estimated with one-dimensional rates. In that sense
imposing additivity can be seen as a dimension reduction technique.

It is important to investigate if the choice of a certain structured model is
appropriate. A justification can arise from theoretical considerations about the
functional relation of the observed data. Secondly, the performance of such mod-
els can be judged in a statistical sense by implementing testing procedures. This
thesis contributes to the development of testing procedures for structured models
(Chapters 2, 3 and 5) as well as to the use of additive dimension reduction for
estimation and testing (Chapters 4 and 5). The four chapters are self-contained
and can be read separately. Each chapter ends with an appendix in which all
proofs are collected not to interrupt the outline of the presentation.

Chapter 2 is based on Haag and Hoderlein (2005). A kernel based test statistic
is proposed to test for the omission of variables from a nonparametric regression.
The applicability of the test is driven by the fact that under the null hypothesis
(of a lower-dimensional model) the estimator converges at a faster rate. Since this
also holds in (semi-)parametric models, the theoretical results can be extended
to this class of models. The advantage of the test statistic is reflected in better
bias properties than comparable tests proposed in the literature. A large number

of econometric applications involve systems of equations, therefore the results are



presented to allow for a multivariate dependent variable.

Because the asymptotic approximations are usually not valid in finite samples
a bootstrap procedure is proposed for the class of tests mentioned above. Boot-
strap versions of the test statistic do not require pre-estimation of complicated
nonparametric objects. It is formally established that the procedure is valid. A
simulation study is conducted to investigate the performance of the bootstrap in
finite samples. In addition, the tests are extended to include the popular local
polynomial estimators. Additionally, the case of dependent data is considered.

The test procedure is applied to testing homogeneity in consumer demand. In
a simple model, demand depends on prices and income of different goods. Under
the assumption of homogeneity the demand does only depend on relative prices
(relative to the income) and therefore the dimension of the predictor variable
decreases by one. Using British demand data, the hypothesis of homogeneity is
not rejected in a simple model with three aggregated goods.

In the third chapter a structural model is considered that is implied by eco-
nomic theory. An important rationality restriction in consumer demand is the
symmetry of the Slutsky matrix. Not assuming a parametric structure of the
demand function, this results in a nonlinear restriction involving the demand
function and its derivatives. A test statistic and a bootstrap implementation are
proposed and the asymptotic results are presented. This chapter consists of parts
of Haag, Hoderlein and Pendakur (2005), where additionally a constraint estima-
tor of the demand function, that imposes symmetry, is presented. An application
to Canadian household data can be found there as well.

Chapter 4 is concerned with the nonparametric estimation of diffusion pro-
cesses. Continuous-time models have been a basic tool in theoretical finance
since the 1970s — mainly because they can be analyzed with elegant proba-
bilistic techniques. In consequence the development of statistical methods for
continuous-time processes has attracted much attention. Recently, more flexible
nonparametric models and their estimation has been studied. Since nonparamet-
ric estimation in these models can be considered as a regression problem these
methods suffer from the curse of dimensionality.

As pointed out above, additive models provide a powerful technique to overcome
this problem and to maintain high flexibility. Estimation of such models requires
iterative procedures and the asymptotic analysis is much more complex than in
the classical setting. For the estimation of the additive components Mammen,

Linton and Nielsen (1999) have introduced smooth backfitting estimation, an it-
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erative procedure that uses a projection interpretation of usual kernel estimators.
For the classical nonparametric regression model it has been shown that smooth
backfitting based on local linear estimators is oracle efficient, i. e. it has the same
bias and variance as the infeasible estimator based on the knowledge of all other
components.

In Chapter 4 a multivariate diffusion process is considered and (some or all)
elements of the drift vector and the diffusion matrix are modelled as additive
functions. Smooth backfitting based on local linear and Nadaraya-Watson esti-
mators is used to estimate the components. Assuming stationarity, the asymp-
totic properties of all estimators are derived under high frequency sampling. The
efficiency results from the standard regression continue to hold. In particular,
Nadaraya-Watson based estimators achieve the same variance as the oracle esti-
mator, while the bias is not oracle. The local linear based estimators are shown
to be fully oracle efficient. In a simulation study, the finite sample performance
of the estimators is investigated. As an illustration, the estimators are applied to
interest yield data.

The last chapter returns to the problem of testing for parametric structure.
A standard approach is to measure the distance between a parametric and a
nonparametric fit with a squared deviation measure. These tests inherit the
curse of dimensionality from the nonparametric estimator. This results in a loss
of power in finite samples and against local alternatives.

A new test statistic is proposed to circumvent the curse of dimensionality by
projecting the residuals under the null hypothesis onto the space of additive
functions. To estimate this projection the smooth backfitting estimator is used.
The asymptotic behavior of the test statistic is derived under the null hypothesis
and local and fixed alternatives. The motivation for the projection approach is
to have a data analytic tool if the sample size is too small for a full-dimensional
test as in Chapter 2. In that case, the asymptotic approximations are usually not
valid and it is advisable to simulate the distributions with the bootstrap.

Therefore, a wild bootstrap procedure is proposed and its validity is established.
The finite sample properties of the bootstrap are investigated in a simulation
study. The test has good power in different settings and the circumvention of
the curse of dimensionality is demonstrated in a high-dimensional model. It is
very robust in particular against increasing correlation of the predictors. Finally
the test is applied to testing the parametric specification of a consumer demand

system.



Chapter 2

Bootstrap Specification Testing

in Systems of Equations

2.1 Introduction

Nonparametric specification testing in systems of equations appears throughout
Economics. For the proposed test statistics, there are two main areas of appli-
cation: The first is testing for parametric or semiparametric specification, the
second is testing for the significance of regressors. The main focus of this chapter
is to test for significance of certain regressors. The application to test (semi-)
parametric specifications will appear as a direct extension. Because there exist
already a large literature on nonparametric testing, the approach of this chapter
has to be integrated.

In the nonparametric testing literature, there are two main strands of work.
The first are the integrated conditional moment (ICM) tests. Key contributions
for parametric specifications are Bierens (1982, 1990) and Bierens and Ploberger
(1997), while Delgado and Gonzales-Manteiga (2001) consider omission of vari-
ables. These tests can be viewed as extensions to the conditional moment tests
proposed by Newey (1985) and Tauchen (1985).

The second strand of literature considers the Lo-distance between two functions,
usually using nonparametric (kernel) estimators at some point. Within this class
there are two subclasses that can be classified according to their treatment of
the degenerate U-statistic which is at the core of the test statistic. The first
subclass avoids dealing with the U-statistic explicitly by using ad hoc methods like

reweighting observations or splitting the sample. Contributions include Hidalgo
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(1992), Wooldridge (1992), Yatchew (1992) and Whang and Andrews (1993).

The second subclass of tests using nonparametric estimators deals directly
with this complication, by applying central limit theorems of Hall (1984) or de
Jong (1987). Individual tests include Hérdle and Mammen (1993), Hong (1993),
Horowitz and Hérdle (1994), Fan and Li (1996), Lavergne and Vuong (1996,
2000), Zheng (1996), Li and Wang (1998) and Ait-Sahalia, Bickel and Stoker
(2002). Related is also the work of Horowitz and Spokoiny (2001).

The ICM tests and the test that use nonparametric estimators are compared in
Fan and Li (2000), who use the notation n, h and d to denote sample size, band-
width and dimension of all regressors, respectively. The upshot of their discussion
is that ICM-tests can detect Pitman type local alternatives that approach the null
at order n~1/2, whereas the second class can only detect those that approach the
null at order n'/?h%*. In contrast, the second type of tests has better power
properties against high frequency alternatives. This suggests that the two types
of tests should be seen as complements rather than competitors. However, gener-
ally speaking, ICM tests have a nonnormal limiting distribution that depends on
nuisance parameters. Precisely this dependence makes their application rather
cumbersome.

Within the class of Lo-distance tests, the approach that avoids ad hoc modifi-
cations may be seen as more natural. Sample splitting for instance is associated
with an obvious loss of power (see Fan and Li ,1996, for further discussion on the
disadvantages of ad hoc modification). Considering the omission of variables the
procedure of this chapter is more closely related to Fan and Li (1996), Lavergne
and Voung (2000) and Ait-Sahalia, Bickel and Stoker (2002), while the other tests
mentioned above concentrate on the case of a parametric null hypothesis.

There are several extensions in comparison to Fan and Li (1996), Lavergne and
Voung (2000) and Ait-Sahalia, Bickel and Stoker (2002). Arguably the biggest is
the use of the bootstrap. This helps to avoid the pre-estimation of elements of the
limiting distribution. In addition, the bootstrap has the advantage of generating
better approximations to the unknown finite sample distribution. Specifically, we
adopt a ”wild bootstrap” procedure as proposed in Hérdle and Mammen (1993),
Gozalo (1997) and Li and Wang (1998) for testing parametric specifications. Be-
cause of an additional smoothing step in the construction of the test statistic,
our specific test statistic is shown to have better bias properties than Fan and Li
(1996), Lavergne and Voung (2000) and Ait-Sahalia, Bickel and Stoker (2002).

Among other things, this results in weaker assumptions on the bandwidths.
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In the next section we introduce the test formally and discuss the conventional
asymptotic theory as well as a bootstrap version of the test statistic. The third
section will focus on extensions to the basic test statistic of the second section:
The implementation of local polynomials, the extension to (semi-)parametric hy-
potheses, and the case of dependent (i.e. mixing) data. A simulation study will
occupy the fourth section. Finally, the method will be applied to testing homo-

geneity of degree zero in demand analysis, using British data.

2.2 The Test Statistic

2.2.1 Transforming the Hypothesis into a Test Statistic

Throughout this paper, we consider a model that captures the relationship be-
tween the random vectors Y, X and Z. Here Y € R% is a dy-dimensional depen-
dent variable, and X € R%, Z € R% are predictors. The hypothesis to be tested
is whether Z can be omitted from the regression of Y on (X, Z). For testing this

hypothesis, we define the following functions

ple,z) =EY | X =2,7Z = z)
m(z) =EY | X =x).

If it is possible to exclude Z from the regression, then these functions will coincide

almost surely. Hence, we will base the test statistic on the null hypothesis
Hy: P(u(X,Z2) =m(X)) =1,

while the alternative is that they differ on a subset of the support of Z of positive
measure. The null is equivalent to the condition that the Lo-distance of the two
functions is zero. Using a positive and bounded weighting function a(z, z) this

condition can be expressed as

dy

(2.1) T = E(Z(M(X, Z) —mi (X)) a(X, Z)) ~0.

j=1
Using the fact that m?(X) = E(m?(X) | X, Z), we base the test on

dy

(2.2) = E(Z(/ﬂ (X, Z) — B(m/(X) | X, 2)) a(X, Z)).

j=1
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As mentioned above, alternative test statistics for the single equation case (dy =
1) have been proposed in several publications. Ait-Sahalia, Bickel and Stoker
(2002) base their test statistic directly on equation (2.1), while Fan and Li (1996)

propose to base a test statistic on
E((Y — m(X)E(Y — m(X) | X, 2)f(X, Z)a(X. 2)).

To avoid technical problems, Fan and Li (1996) use a(X, Z) = f*(X, Z)d (X, Z)
and a leave-one-out estimator for the conditional expectation. Another possibility

would be to compare residual sums of squares, i.e. basing a test statistic on

which would be an adaptation of the tests by Dette (1999) and Fan, Zhang and
Zhang (2001) to the problem of omitting variables. To our knowledge such a test
has not yet been implemented. We expect that its local power properties are
worse than those of a test based on (2.1) or (2.2) (see Dette, 1999, who shows

these worse power properties for the case of a parametric null hypothesis).

2.2.2 Sample Counterpart

The sample counterpart of I' in (2.2) serves as test statistic. Given a sample
of n independent and identically distributed random vectors (Y1, Xy, Z1),...,
(Y, X, Z,,), we replace the unknown functions m(z) and u(z, z) by their Nadara-
ya-Watson estimators mz(x) and fip(x, 2). Formally, these are defined as vectors
with the one-dimensional estimators, m~( ) =30 K (o — X)) Y7 /S K (o —
X;) and i) (2, 2) = S0 Kn(x — Xi, 2 — Z)Y? ) S0 Ki(x — X;, 2 — Z;), where
Kn(u) = K(u/h)/h with a kernel K and bandwidths A and h. as individual

elements. As an estimator for E(m/(X) | X =z, Z = z) we propose

— " Kn(x— X,z — Z)ml(X;
Ko (2, 2) = Dic1 nh< ) ( ).
h Zi:l Kh(ZL’ — Xi7 Z — Zz)

Then, the statistic is given by
(2.3) ZZ 1 (X, Z;) — Kumi (X, Z:)) " A
] 1 =1

with A; = a(X;, Z;). The additional smoothing step associated with mg(ﬂﬂ, z)

produces an artificial bias that eliminates the bias coming from i, (z, z), thereby
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reducing the number of bias components in the asymptotic expression. This re-
duction in turn allows to employ less restrictive requirements on the bandwidths.
A similar modification was suggested by Héardle and Mammen (1993) for the
case of a parametric null hypothesis. The superiority of f,g over the tests of
Ait-Sahalia, Bickel and Stoker (2002) and Fan and Li (1996) can be stated in
terms of smoothness conditions and local power properties of the tests and will

be discussed after Theorem 2.2.

2.2.3 Asymptotic Distribution of the Test Statistic

In order to treat the asymptotic distribution of the test statistic, we introduce the
following assumptions. The first two assumptions are concerned with the data

generating process.

Assumption 2.1. The data (Y;, X;, Z;),i = 1,...,n are independent and iden-
tically distributed with density f(y,z, z).

Assumption 2.2. For the data generating process

1. The continuously differentiable weighting function a(x,z) is positive and
bounded with compact support A C R¥x+dz

2. fly,z,z) is r-times continuously differentiable (r > 2). f and its partial

derivatives are bounded and square-integrable on A.

3. w(x, z) and m(z) are r + 1-times continuously differentiable.

4. f(z,2) = [ f(y,x, 2) dy is bounded from below on A, i. e. inf (; syea f(2,2) =
b> 0.

5. The covariance matrix

S(x,2) = (09(z, 2))1<ij<ay =

is square-integrable (elementwise) on A.

6. B((Y7 — i (X, Z))2(Y* — pH(X, Z))2) < o0 for cvery 1 < j,k < dy.



10 2. SPECIFICATION TESTING

The first assumption may be relaxed to allow for dependent data. We will
discuss this extension in Section 2.3.3. Assumption 2.2 contains standard differ-
entiability and integrability assumptions that do not have to be discussed.

The following assumptions are concerned with the kernel and the bandwidth se-
quences. For simplicity, we assume product kernels in both regressions. Therefore
we formulate our assumptions for one-dimensional kernel functions. To further
simplify things, we assume that we have only one single bandwidth for each re-
gression (h and h) instead of bandwidth vectors h € R™*4z and h € R%x.

We shall make use of the following notation: Define kernel constants
K = /ukK(u) du and Ky = /ukK(u)2 du

o — /(/K(U)K(u _ ) du>2dv.

Then, our assumptions regarding kernels and bandwidths are as follows:

Assumption 2.3. The one-dimensional kernel is Lipschitz continuous, bounded,

has compact support, is symmetric around 0 and of order r (i.e. [ ub K (u) dzu =

0 for all k <r and [v K(u)du < o).
Assumption 2.4. For the bandwidths

1. For n — oo, the bandwidth sequence h = O(n~'/%) satisfies

(2.4) dx +dz < 6.

2. Forn — oo, the bandwidth sequence h = O(n_l/g) satisfies

dx ~
2.5 20— < 0.
( ) dx + dz
3. For the order r of the kernel holds
98 — dv —
(2.6) g -dx—ds

46

While the assumptions on the kernel are standard, the assumptions on the
bandwidths do merit some discussion. Observe first that the optimal rate for

estimating the full dimensional regression function u(z, z), given by

5opt = (dX + dz) + 2r.
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is not excluded from inequality (2.4). Under the null hypothesis, u(x,z) does
not depend on z. Then, the derivatives with respect to z are zero and the corre-
sponding bias terms disappear. It follows that under Hy the optimal bandwidth
in the z-directions is infinite. But under the alternative and in the x-directions
there exists an optimal bandwidth.

If we want to make use of this bandwidth, through employing data-driven
methods of bandwidth choice in the full dimensional regression (e.g. cross val-
idation), then the inequalities (2.5) and (2.6) impose restrictions on the band-
width & of the dimension-reduced regression function m(x). More specifically,
because of (2.5), it might be necessary to use a larger-than-optimal bandwidth,
and because of (2.6), to employ higher order kernels. As an example, take
dx = 1,dz = 1. It is not possible to use both 4, and gopt for any choice of
r, because inequality (2.5) yields the restriction ¢ < 5.

An alternative representation of (2.4)—(2.6) may be given in terms of n and
h. We obtain nhdx*4z — oo (necessary for consistency of the kernel density
estimator), héx+dzp=dx — (0 and nh(@x+d2)/2p2 0.1 The last two conditions
ensure that the estimation error of the dimension-reduced regression does not
dominate the test statistic.

The restrictions on the bandwidths are much weaker than those restrictions
assumed by Ait-Sahalia, Bickel and Stoker (2002). In their case the optimal rate
for estimation is excluded for all regressions and higher order kernels are always
needed, provided dx + dz > 3. In contrast, our assumptions allow to trade the
use of higher order kernel for a larger-than-optimal bandwidth.

In practise we propose to calculate data-driven bandwidths (by cross-validation)
for the dimension reduced regression. In case the optimal rate is excluded, we
suggest to adjust the bandwidth by n!/ domn—1/3, Although we do not formally
address the issue of data-driven bandwidths h we assume that our results will
hold if 7n/h -2 1.

For the first theorem, we introduce the following quantities

0? = // o(z, 2)%a(x, 2)* de dz = // o' (x, 2)a(x, z) dz dz.

The asymptotic normality of the test statistic is given by the following

INote that these restrictions imply nhidx — 00, which ensures the consistency of the dimen-

sion reduced regression.
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Theorem 2.1. Let Assumptions 2.1-2.4 hold. Then we have that under H
S (nh\ X2 RT - pxrdn2g oy P A0, 1)

where

dY dY
23 = 2w (Y off 423 of)  Be= () 30
i=1 i<j i=1
Simplifying the proofs in the appendix to one line, the test statistic can be
written as
T =T+, + U,

where I' = 0 under Hy, U, depends upon the uniform rate of convergence of
the restricted estimator, and I, is a degenerated U-statistic which dominates
asymptotically. This U-statistic converges at the rate nh(4x+42)/2 which is faster
than n'/2, under the admissible bandwidth sequence.

Next, we investigate the behavior of the test statistic under the alternative.
There are a number of efficiency measures (e.g. Bahadur efficiency or Hodges-
Lehman efficiency) to compare two test statistics. The most common one is the
asymptotic relative efficiency (Pitman efficiency) which compares the behavior of

the tests under local alternatives. To this end, define a sequence of alternatives
Hyy: p(z,2) = m(x) + ep(x, 2)

where ¢, (x, z) is a converging sequence of functions. Note that fixed alternatives

are included for ¢, (z, z) = e(z, z) # 0.

Theorem 2.2. Let Assumptions 2.1-2.4 hold. If there exists a constant B such
that

dy n k
1 en( X5 Z5)\? P
2 X (i gy ) e = o
k=1 j=1
for A\, = O(nh\4x+42)/2) " Then we have that under Hy,
Sl (bl a2y pxtdn2 gy 2B 2 (0, 1)),
For a fized alternative it holds that nh(dXerZ)/Qf;c — 00.

The test cannot detect alternatives that converge to zero at a rate faster than
n~Y2p~(dx+dz)/4 This means that the test suffers from the curse of dimensional-

ity because the rate decreases as the number of dimensions increase. Ait-Sahalia,



2.2 The Test Statistic 13

Bickel and Stoker (2002) and Fan and Li (1996) establish local power properties
of their tests and both obtain the same rate. Theorem 2.2 holds for the test of
Ait-Sahalia, Bickel and Stoker (2002) in an analogous fashion. A comparison with
the test of Fan and Li (1996) is only possible using a(z, 2) f(z, z) 72 as a weighting
function, since Fan and Li (1996) use density weighting. The asymptotic variance
differs through a kernel related constant. Because k., < kg for a density K, our

test is asymptotically relatively more efficient than the test of Fan and Li (1996).

2.2.4 Bootstrap-Implementation
The direct way to implement the test is to estimate the expected value By and
the variance X%. This requires the estimation of integrals like

(2.7) /ajj/(x, 2)*a(x, 2)* de dz k=1,2, 5,7 =1,...,dy.

Therefore estimators of the conditional (co)variances are needed. A Nadaraya-

Watson-type estimator may be defined as

S Knle— Xz — Z) (Y7 — 1 (Xa, ) (Y7 — 1, (X3, Z0)
Z?:l Kh(l' — XZ', Z — Zz)

ol (x,2) = :
This estimator has better properties than the difference between estimators of
the second and the squared first conditional moment of Y given X and Z (see
Fan and Yao, 1998). Now the integral in (2.7) can be calculated numerically. To
ensure consistency of the standardized test statistic the underlying (co)variance

estimators (as well as the density estimator) have to be chosen such that

sup |5{Lj/(x, z) — ajj/(ac, z)| = Op(h_(dX+dZ)/2>.

(z,2)€A
Estimating the components of the asymptotic distribution of f;c is cumbersome.
Moreover, it is also problematic: In the proof of the asymptotic normality of the
test statistic many terms of lower magnitude are omitted. Asymptotic approxi-
mations involving U-statistics work often very poorly in a finite sample, as was
pointed out by Hjellvik and Tjgstheim (1995). To avoid this problem we propose
a wild bootstrap procedure to derive critical values for the test statistic, as in
Hérdle and Mammen (1993). In our setting this is performed in the following

way

1. Calculate (multivariate) residuals & = Y; — m; (X;).
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2. For each i randomly draw F = (1", ..., ) from a distribution F, that

A )~

mimics the first three moments of g;.

3. Generate the bootstrap sample (Y;*, X, ZF),i = 1,...,n by ¥;* = m;(X;)+
efand X = X;, 2 = Z;.

4. Calculate f/*c from the bootstrap sample (Y;*, X, ZF),i=1,...,n.

5. Repeat steps 2 to 4 often enough to obtain critical values for f;c.

Assumption 2.5. For the bootstrap distribution

The bootstrap residuals €},1 = 1,...,n are drawn independently from distributions
F,, such that Epe; = 0,Eg gi(ef) = &8 and Eﬁi(af’*)‘L < oo for all k =
1,...,dy.

This set of admissible distributions is very general. Apart from the simple wild
bootstrap, a smooth conditional moment bootstrap as in Gozalo (1997) may also
be used. In the classical wild bootstrap, residuals are drawn from a two-point
distribution that takes the value &;(1 — v/5)/2 with probability (5 + v/5)/10 and
(1++/5)/2 else (see Hirdle and Mammen, 1993). Assumption 2.5 is fulfilled for
discrete distributions, distributions with compact support and — among others —
for the normal distribution. These are the most commonly used distributions in
practice.

The theoretical result concerning this bootstrap procedure is given in
Theorem 2.3. Let Assumptions 2.1-2.5 be true. Under Hy, it holds that
S (nhx 22T p=x+d2g oy P (0, 1),

conditional on the data (Y1, X1,21), ..., (Yo, Xn, Zn) with probability tending to

one.

To prove theorem 2.3 it is sufficient to assume that the bootstrap distribution
F, mimics the first two moments of . Using an Edgeworth expansion in the
proof, we conjecture that matching the first three moments yields a higher order
approximation. In our simulation study we find evidence that this improves the
finite sample properties. Therefore we recommend to mimic three moments in

applications.
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2.3 Extensions

In this section we discuss extensions to the test statistic along three lines. First,
we explore the use of local polynomial estimators to replace the Nadaraya-Watson
estimator. Second, we extend the test statistic to semi-parametric hypotheses.
Last, but not least, we investigate the behavior of the test in the case of dependent
data. In all cases, we focus on the respective modifications of Theorem 2.1.
Changes in the proofs of the bootstrap result and the local power properties are

straightforward.

2.3.1 Local Polynomials

In nonparametric regression analysis the superiority of local polynomial estima-
tors to Nadaraya-Watson estimators is well known (see Fan and Gijbels, 1996).
Therefore it is a natural extension to use local polynomial estimators for p(z, z)

and m(x) in the test statistic. Recall that they are defined via minimizing

n

(2.8) ST = Y bl 2)(X — 2, Zi - 2)) Kn(Xi — @, Zi - 2),

i=1 0<k|<p

with respect to all by. For vectors k = (ky,...,kay+ay) we have utilized the
notation [k| = Y. k; and z* = T[,(27)%. Then " (x, 2) is defined as the

solution for bg. Introducing the quantities

. Il ./ (X;—x Z — k
DR S (e Iy I A
=1

ﬁl,k(x7z) _ %i((Xz - fo,LZz - Z))k[(h()(z . ZZ B Z)’
=1

which are arranged in a vector fj(x,z) = (#](z,2))k and a matrix §(m,z) =
(ﬁl,kﬂ (7, 2))k; in a lexicographical order.? With this notation, the estimator can

be written explicitly as

ﬁg{LP(x’ Z) = Lgil(mu Z)T\j(xu Z)Jh

where |-]; extracts the first element of a vector. m%LP(l') is defined analogously.

The local polynomial version of E(m/(X) | X, Z) is defined as the solution to (2.8)

2Addition is in the Hadamard-sense, i.e. j+k = (j1 + k1, .-+, Jdx+dy + Kdx+dy)-
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where Y;j is replaced with ffL%’LP(Xi). Explicitly it can be written as

—~—j,LP

Komi  (x,2) =[S (&, 2)T (2, 2) |1,

where the elements of the vector T (z, z) are given by

~ 1 < X, —x, 7Z; — k

t(z,2) = = Zmyp()g)(( ”J"}’L Z)) Kn(X; —x,Z;i — 2).
n

=1

The new test statistic is then the analog to (2.3)

dy n )
R 1 " ———j,LP
TEr == > (@ (X 2) = Ky, (X0 Z0)" A

j=1 i=1
To define the kernel constants arising in the bias and variance parts of the
asymptotic distribution, we have to define the matrix M = (kj;x)jx With en-
tries fx = [u*K (u)du. In an abuse of notation we denote with ;' the elements
of the first row of M~!. This enables to define

Ky = /(/( Z (u— U)klﬁlj_lK(U - v)) ( Z uk/fj_lK(u - v)) du>2 dv,

1<k<r 1<k<r
2
Kp = /( Z uknj_lK(u)> du,
1<k<r
which we require for the derivation of the asymptotic distribution of fép in the

following theorem:

Theorem 2.4. Let Assumptions 2.1-2.3 hold. Let Assumption 2.4 hold for r =
p+1 forp odd and r = p+2 for p even, where p is the order of the local polynomial

estimator. Then we have that under Hy

S (nhx D PTLE _ p-dxtdn/2p ) P A0 1),

where
dy dY
3= 20en)™ (Yot 423 o) By = (kp)™ Y0
i=1 i<j i=1

Note, that if an even order of the local polynomial fulfills the requirements
of Assumption 2.4, then the subsequent odd order polynomial fulfills also these
requirements. The use of one additional order gives therefore no gain in flexibility
when choosing the bandwidth sequences. Therefore, in contrast to estimation
it is natural to use an even order local polynomial for testing. If we replace
the corresponding kernel constants with xy and kg the results of Theorems 2.2

and 2.3 continue to hold. This can be seen directly from the proof of Theorem 2.4.
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2.3.2 Semiparametric Modelling

The asymptotic distribution of the test is driven by the fact that the low-di-
mensional estimator mj(z) converges faster than the full-dimensional estimator

iy (z, z). This remains true for semiparametric hypotheses, i.e.
Hos: P(u(z, 2) =m(z) + G(z,60)) =

where G(z,0) = (G*(z,0) + - -- + G%(z,0)) is a known function depending on a
finite-dimensional parameter vector § € ©. Denote with 0 a parametric estimator
that allows us to construct estimators of the nonparametric regression part under
Hys, i.e.,

A 2 Kile — X) (Y - GH(Z,,0))

21:1 K, ( - Xi) '

Then we propose to use as test statistic

dy n
~ 1 N
Iy = - § § (1n (X, Z;) — lCnmh (X,,Z)) A,

j=1 i=1
with

_— S > iy Kn(r = Xi, 2 = Zi) (M5 (w, 0) + G*(Z;,0))
Koms (x,2) = ,
zz‘:l Kn(z = X2 = Z3)

To obtain an asymptotic result we require the following assumption on the speed

of convergence of the semiparametric estimator:

Assumption 2.6. G*(z,0)—G¥(z,0) = op(n~V2hE@x+2)/4) for all k= 1,...,dy
uniformly in Ay ={z |3z s.t. (z, )E.A}and9€®

This assumption is stated in a very general fashion. It has to be checked for a
specific model and estimation problem. As an example, consider the linear model
with dx = 0 and G(z,6) = 6'z. The least squares estimator is known to be root-n
consistent and Assumption 2.6 is fulfilled. Moreover, as a special case for dy = 1
we obtain the test introduced by Héardle and Mammen (1993).

The asymptotic distribution of the test is stated in the following

Theorem 2.5. Let Assumptions 2.1-2.4 and 2.6 hold. Then we have that under
Hos
Elzl(nh(dxﬂlz)/?r% _ h_(dX+dZ)/2B;¢) AN N(0,1),

where Y and By is given as in Theorem 2.1.
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2.3.3 Dependent Data

The assumption of independent and identically distributed data is very restric-
tive. In many data sets in practice time series effects are present. To deal with
this complication, we extend the results of the previous sections to the case of
mixing random variables. For a time series W; = (Y;, X;,Z;),i = 1,...,n we
define the sigma algebras F! = o(Wy, Wei1,...,W; with —co < s < t < oo and

the B-mixing coefficients

B(n) =sup E( sup [P(A|F.)—P(4))

t€Z  AeFR,

A process is called absolutely regular if 5(n) — 0 for n — oo. To derive the
asymptotic normality of the test statistic, we invoke the following additional

assumptions

Assumption 2.7. For dependent data

1. The data W; = (Y;, X;, Z;),i = 1,...,n are strictly stationary and absolutely
reqular with mizing coefficients 3(n). The stationary density is denoted by

f(w).

2. The density of the joint distribution of (W,, W,, Wy, W,) is bounded and

continuously differentiable for all q,r,s,t.
8. For some v > 1 it holds that E|Y7|* < co forall j =1,...,dy.

4. For the mizing coefficients we have the summability conditions
Z B <0 and Z i@ B(i) e,
i=1 i=1

with 2 < a < 4v and a’ > 1—2/a.

It holds that " 1(n) < co where

) = nL(n) < nT(n)? )1/45(r(n))7

r(n) \hix logn

with L(n) = (nT(n)2/(h%+2logn))™x/2, r(n) = (nh'* /logn)"2/T(n) and
T(n) = (nlogn(loglogn)'+<)l/*.
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For m = n'/%m with §,, > 45 and 1/6 +1/6,, < 3/2 it holds that
nGhQ(m26(m)1—1/y + nQﬁ(m)Q_Q/”) N 0,
asn — 0o.

These assumptions are not restrictive: Many well-known time series models were
shown to be absolutely regular, most of them with exponentially decaying mixing
coefficients. For mixing coefficients with geometric decay, the requirements of
Assumption 2.7 are directly fulfilled (for some v > 1).

The dependence structure of Y, X and Z is only modelled in terms of differen-
tiability assumptions on their joint density. This is general enough to cover the
cases where X and Z are lagged values of Y. Beside time series regression, the
test can be used to determine the order of a nonparametric AR-process as well
as to test for parametric AR-structure.

This assumption enables us to state the following extension to the previous

theorems.

Theorem 2.6. Theorems 2.1-2.4 remain valid, if we replace Assumption 2.1 by

Assumption 2.7.

Asymptotic results under mixing assumptions are obtained by a trade-off be-
tween the number of existing moments and the decaying rate of the mixing coef-
ficients. This is given in terms of the parameter v. The use of a larger bandwidth
may also reduce the requirements on the rate of decay (and the moment condi-

tions). Here, this is given in terms of the sequence ¥ (n).

2.4 Monte Carlo Simulation Study

In this section we examine the finite sample behavior of the test statistic f}( by

means of a simulation study. Under the null hypothesis, we simulate from the

model

Y;:’I’)’Z(XZ)—FO'(XZ)UZ, izl,...,n,
where U; N(0,1) and X; S U(—m,m) independent of U;. The additional
regressor Z; ~ U(—m,m),i=1,...,n is simulated independently from U; and X;.

We consider two different models for the regression function, given by m(z) =
(z/m)* and m(x) = cos(z). Moreover, we consider the case of homoscedastic
(o(x) = 0.5) and heteroscedastic (o(z) = 0.5 exp(—(x/m)?)) errors.
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Table 2.1: Simulation Results for n = 100

ho 1.00 1.50 2.00 250 3.00

Panel A: m(x) = cos(z)

o(x) =05

0.10  0.069 0.060 0.065 0.095 0.106
0.05  0.009 0.008 0.023 0.035 0.038

p-value 0.632 0.593 0.580 0.575 0.650

o(z) = 0.5exp(—(z/7)?)

0.10  0.036 0.039 0.060 0.081 0.105
0.05  0.006 0.011 0.013 0.020 0.047

p-value 0.701 0.623 0.602 0.594 0.612

Panel B: m(x) = (z/m)?

o(z) =0.5

0.10  0.039 0.071 0.070 0.085 0.099
0.05 0.006 0.018 0.023 0.031 0.041

p-value 0.689 0.632 0.592 0.577 0.572

o(z) = 0.5exp(—(x/m)?)

0.10 0.054 0.051 0.078 0.091 0.131
0.05 0.011 0.016 0.024 0.045 0.056

p-value 0.692 0.616 0.572 0.565 0.603

For the nonparametric regression we use the forth order kernel K (u) = %(79&4 —

10z? + 3)1(_1,1)(x). The bandwidth sequences are chosen by the simple plug-in
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Table 2.2: Simulation Results for n = 100,m(x) = cos(z),o(x) = 0.5

ho 1.00 1.50 2.00 250 3.00

0.10  0.031 0.032 0.048 0.057 0.081
0.05  0.001 0.005 0.006 0.017 0.030

p-value 0.714 0.644 0.603 0.588 0.584

ni ~N(0,1)

0.10  0.026 0.028 0.052 0.068 0.095
0.05 0.001 0.005 0.007 0.026 0.036

p-value 0.688 0.636 0.602 0.572 0.604

rules® hy = hon_l/‘ss/zi(X), hy = hon_l/‘ssAd(Z) and hy = hon_l/gsAd(X), where we
use different values for hq to investigate the performance of the test for different
bandwidths. For simplicity we use the same constant hq for all three bandwidths.
Unless otherwise stated we use § = 5 and § = 6 which clearly fulfill Assump-
tion 2.4 for a kernel of order r = 4.

The bootstrap is implemented with B = 199 iterations. The residuals are drawn
from the classical two-point distribution given in Section 2.2.4. All tables report
the proportion of rejection based on 1000 Monte-Carlo iterations.

The results for a sample size of n = 100 are displayed in Table 2.1. We find that
the test tends to be too conservative for small bandwidths. However we observe
no severe distortion of the level for the chosen bandwidth constants. Given that
n = 100 is a relative small sample size for a two-dimensional nonparametric
regression problem, the empirical level of the test is surprisingly accurate for a
wide range of bandwidths.

In Table 2.2 we investigate two deviations from the general setting. In the

upper panel we report the rejection rates, if we choose § = 4 and 5 = 6. This

3We denote the empirical standard deviation of a random variable X with sAd(X ) =
n Syoy1/2
(7 X (X = X)) 7
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choice is admissible by Assumption 2.4 and we observe that the test is even
more conservative for this choice of bandwidth. Overall we observe the need for
selecting a rather large bandwidth. The implementation of a forth order kernel
reduces the bias even for large values of h. This means that the residuals can be
estimated more accurately, which allows to approximate the expected value and
variance of the test statistic better than with small bandwidths.

In the lower panel of Table 2.2 we use a different distribution in the bootstrap
procedure. Here, the resampled residuals are ef = &;nF where 7 ~ N(0,1). In
contrast to the setting in Table 2.1 this bootstrap distribution only matches the
first two moments of the empirical residuals. While this is sufficient to prove the
asymptotic validity of the bootstrap, we find that using the normal distribution
produces more conservative results. This provides further evidence to our con-
jecture that mimicking more moments of the residuals leads to a higher order
approximation of the finite sample distribution of f;c by the bootstrap.

Next, we increase the sample size and simulate with n = 200. We return to
the general setting (6 = 5, § =6 and mimicking three moments in the bootstrap)
and give the results in Table 2.3. Obviously, the empirical level stabilizes to its
desired value for a wide range of bandwidths, but we still observe underrejection
for small values of hy.

In the second part of the Monte Carlo study we simulate the empirical power
of the test under H;. To this end, we use the model

Y; = cos(X;) + gx(Zi) + 0.5U;, i=1,...,n,

and retain the previous setup, i.e., X;, Z; S U(—7,m) and U; ~ N(0,1) indepen-

dent of (Xj, Z;). The parameter A measures the deviation from the null hypothesis
in the Lo-sense. For the nonparametric regression and the bootstrap procedure
we use the same setting as under the null hypothesis. We have restricted the
simulation study to homoscedastic errors and a sample size of n = 100.

As a first specification for the alternative, we choose g)(z) = Acos(z). In this
case the Lo-distance is E(u(X, Z) — m(X))? = A\?/2. In Figure 2.1 the empirical
power for this experiment is displayed for four different values of hg and for levels
of = 0.10 and a = 0.05. We see that for all bandwidths the test is consistent
against this alternative, but observe lower power for small bandwidths.

Next, we consider gy(z) = A(z/m)?, which leads to E(u(X,Z) — m(X))? =
4)\?/45. To obtain the same Lo-distance as in the cosine specification, a different

range of A is selected in Figure 2.2. A comparison of the two experiments shows
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Table 2.3: Simulation Results for n = 200

ho 1.00 1.50 2.00 250 3.00

Panel A: m(z) = cos(x)

o(x) =0.5

0.10 0.045 0.061 0.071 0.112 0.114
0.05 0.009 0.018 0.033 0.041 0.055

p-value 0.642 0.588 0.560 0.573 0.584

o(z) = 0.5exp(—(z/7)?)

0.10  0.035 0.061 0.083 0.102 0.127
0.05 0.003 0.021 0.025 0.044 0.066

p-value 0.635 0.588 0.574 0.568 0.601

Panel B: m(x) = (z/m)?

o(z) =0.5

0.10 0.038 0.061 0.079 0.107 0.112
0.05  0.007 0.025 0.026 0.040 0.058

p-value 0.648 0.595 0.575 0.572 0.586

o(z) = 0.5exp(—(x/m)?)

0.10 0.039 0.073 0.074 0.101 0.131
0.05  0.010 0.015 0.027 0.044 0.067

p-value 0.624 0.582 0.570 0.564 0.594

that the empirical power of the test is even better for the quadratic alternative

if we keep the Lo-distance constant.

In contrast, high frequency alternatives are difficult to detect. As an example
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Figure 2.1: Simulated power for ¢\(z) = Acos(z). The bandwidth constants are
ho = 1.50,2.00,2.50, 3.00 (upper left, upper right, lower left, lower right). Levels
are given by a = 0.10 (solid) and a = 0.05 (dashed)

we use ¢(z) = cos(A\z) where A € Z. The Lo-distance for such alternatives
is constant E(u(X,Z) — m(X))? = 1/2, but for higher values of \ estimation
becomes difficult. Since the two-dimensional regression iy (z, z) estimates high
frequencies poorly, the test breaks down in finite samples. In this case, small
bandwidths are favorable, because they enable a better approximation for high

frequencies. The simulated power in Figure 2.3 underscores this.

Finally we look at low frequency alternatives, given by gx(z) = cos(Az) with
A € [0,1]. The Lo-distance for these alternatives varies between 0 and 0.6, given
by E(u(X,Z) — m(X))? = (1 — sin(2\7)/(2A7))/2. In contrast to the high
frequency alternatives low bandwidths have lower power, which can be seen in
Figure 2.4. The test is consistent for all bandwidths, but this type of alternatives

is more difficult to detect than the specifications in Figures 2.1 or 2.2.

This simulation study underlines that the proposed test statistic produces re-
liable results for moderate sample sizes. the different alternatives under consid-
eration highlight the role of the bandwidth. While small bandwidths are ad-
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Figure 2.2: Simulated power for g\(z) = A(z/m)?. The bandwidth constants are
ho = 1.50,2.00,2.50,3.00 (upper left, upper right, lower left, lower right). Levels
are given by a = 0.10 (solid) and o = 0.05 (dashed)

vantageous to detect high frequency deviations from the null hypothesis, large
bandwidths have better power against low frequency alternatives. A data adap-
tive bandwidth selection procedure similarly to Horowitz and Spokoiny (2001)

could be preferable, but this extension is left for future research.

2.5 An Empirical Application: Homogeneity in

Consumer Demand

It is an implication of a linear budget set that individual demand is homogeneous
of degree zero. Formally, in the standard formulation involving budget shares
Y € [0,1]%, log income X € R as well as log prices P € R% | and the relationship
Y = u(P,X)+ U, with E(U | P,X) =0, we obtain that

:u(PvX) = M(P - X,O) = m(P)7
where P = P — X. Hence, a test of whether E(Y | P, X) = m(P) can be seen as

a test for homogeneity.
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Figure 2.3: Simulated power for g)(z) = cos(Az). The bandwidth constants are
ho = 1.50,2.00,2.50,3.00 (upper left, upper right, lower left, lower right). Levels
are given by a = 0.10 (solid) and o = 0.05 (dashed)

The testing procedure will be applied to this specific problem of testing the
significance of a regressor using British household data. Every year, the Fam-
ily Expenditure Survey (FES) reports the income, expenditures, demographic
composition and other characteristics of about 7000 households. The sample
surveyed represents about 0.05 % of all households in the United Kingdom. The
information is collected partly by interview and partly by records. Records are
kept by each household member, and include an itemized list of expenditures
during 14 consecutive days. The periods of data collection are evenly spread out
over the year. The information is then compiled and provides a repeated series

of yearly cross-sections.

All the goods are grouped into three categories, Group 1 to 3. The first cate-
gory is related to food consumption and consists of the subcategories food bought,
food out (catering) and tobacco, which are self-explanatory. The second category
contains expenditures which are related to the house, namely housing (a more
heterogeneous category; it consists of rent or mortgage payments), furniture as

well as household goods and services. Finally, the last group consists of motor-
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Figure 2.4: Simulated power for ¢(z) = cos(Az). The bandwidth constants are
ho = 1.50,2.00,2.50,3.00 (upper left, upper right, lower left, lower right). Levels
are given by a = 0.10 (solid) and o = 0.05 (dashed)

Table 2.4: Value of Test Statics for different Choice of Bandwidth Constant and

Time Interval
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Period
1974-1980 1981-1988 1989-1994
ho f,c f;c p-value f;c
1.5 1.4214 1.2263  (0.05) 1.2392
2.0 0.7830 0.7192  (0.12) 0.5663
2.5 0.5674 2.7167  (0.26) 0.3310
3.0 0.4093 2.9898 (0.21) 0.1979
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ing and fuel expenditures, categories that are often related to energy prices. For
brevity, we call these categories food, housing and energy. These broader cate-
gories are formed since more detailed accounts suffer from infrequent purchases
(recall that the recording period is 14 days) and are thus underreported. Together
they account for 50-60 % of expenditures. We removed outliers by excluding the
upper and lower 2.5% of the population in the three groups.

"Income” in demand analysis is total expenditure, under an additive separabil-
ity assumption of preferences over time and decisions. It is obtained by adding
up all expenditures, with a few exceptions which are known to have measurement
error like tobacco. This is done to define nominal income; real income is then
obtained by dividing through the retail price indices.

In this paper, we stratify the population to obtain more homogeneous subpop-
ulations. More specifically, like much of the demand literature we focus on one
subpopulation, namely two person households, sampled in a certain time inter-
val, both adults, at least one of which is working and the head of household is a
white-collar worker. This focus is also justified because other subpopulations are
much more prone to measurement problems. It is likely that there is remaining
preference heterogeneity. However, we abstract from this problem here, but see
Hoderlein (2005) on this issue.

To test whether X can be omitted from the regression of Y on P the following
specifications are used: In accordance with our assumptions, we set 6 = 4 and 5=
6, and determine h and h through h = hon~/95d(P), and h = hon~sd(P, X).
The same forth order kernel as in the simulation study was used. Table 2.4
shows the result of our test statistic for homogeneity of degree zero for various
values of the bandwidth constant hg and time periods. The p-values based on
199 bootstrap implementations are in brackets. We conjecture that homogeneity
is generally accepted, as there is only one test rejected at the level of 0.05. Of
course, if we perform such a high number of tests, one test is likely to reject.

Somehow, we would like to correct for the dependence between the tests.

2.6 Conclusion

The bootstrap simplifies relatively complicated nonparametric procedures and
makes them therefore accessible for applications. At the same time, the boot-
strap helps improving the small sample properties. This chapter, which considers

nonparametric specification testing, underscores these advantages in our specific
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setting. In particular, we show that our bootstrap-based tests are simple, easy
to implement and work well in quite small samples, where they outperform other
comparable tests in the literature.

In addition to these small sample advantages we also establish by asymptotic
arguments that our tests are at least as good as other existing tests proposed in
the literature. In particular it should be noted that Ait-Sahalia, Bickel and Stoker
(2001) use in their simulation study sample sizes of more than 500 observations.
Finally, we provide new extensions that are important for applications, like al-
lowing for local polynomial estimators, dependent data and systems of equations

under the same format.

Appendix

Proof of Theorem 2.1

For abbreviation we introduce V; = (X;, Z;) and W; = (Y, X}, Z;) and decompose

the statistic in the following way

V. -V; . 2
SN LA 1))
k=1 i=1 nj 1 fh( )
(2.9) = Tx1 + iz + Tkes + T,

where

fu= LSS (S w1 oy,

k=1 i=1 j=1 fh( )
S - pE(V;) — mM (X)) 2
[jep = — Kn(V; — V A;
PR AT

fm:—zznx ZKhV V) k(XjZ_m%(XﬁfAi

k=1 i=1 fh(‘/z)

and lqm contains all cross terms. Note that under Hy we have that f;gg = (0 almost
surely. We start by investigating fm, which yields the asymptotic distribution

and show that f[(g and f;@ are of lower order afterwards.



30 2. SPECIFICATION TESTING

First, we write
S A YE— b (VN2 F(V)) N2
o= (O
= (In + Axn) (1 + 0p (1)),

where we have defined
B dy 1 n | Y;k—/Lk(V}) 2
(2.10) I — /;(E;Kh(v - VJ)T) a(v) f(v) do
B dy 1 n Y;k—ﬂk(‘/;) 2
@) Ao [ ;(5 > Hulo- V)= ) (o) - ),

and f, = L3 6wy (v) denotes the empirical distribution of the sampled data
(where 0(y;) is the Dirac-measure at V;).

Starting with the leading term, we rearrange i, to obtain

dy k k(1) k_ k(1.
I, = %ZZ/K}L(U_%)K—WK}L(U_VJ)Y]—/Z(V])Q(U)JC(U) dv

7 [0
n dy E_ k(Y
+ % ZZ/(Kh(U - V;)YZT[;(V;)) a(v)f(v)dv
i=1 k=1
(2.12)
= Ikn1 + Ixn2-

Now it remains to show

(2.13) nh(@x a2 2L A0, 52)
(2'14) nh(dx+d2)/2[icn2 _ h*(dXerZ)/zBK N 0
(2.15) nhldxtd2n T

From this the statement of the theorem follows.

Proof of (2.13) Write

IICn,l = Z hn(vvi’ VVJ)

1<j
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as U-statistic with kernel

(Wi W) = e SV = i)V = (1)
) a(V; + uh)
/K K(u+ (Vi V)/h)mdu.

where a change of variables has been applied. Asymptotic normality is shown by
using a central limit theorem for generalized U-statistics (see Lemma 3.1 by de
Jong, 1987). Under the conditions

Elt,  p

maxi<i<n 5y Eha (Wi, Wj)  p ,
— 0 and —— — 3
var [, 1 (var I, 1)?

(2.16)

it follows that

Iicn
Vo—2Kml P af(0,1).
v/var I, 1

It is immediate to see that the kernel is degenerate, symmetric and centered.
Now, we introduce o2 = E h,,(W;, W;)?. As we have independent and identically

distributed data we can write
n
max Y Eh,(W;, W,)? = (n—1)02
1<i<n
j=1
JF#i

and

var [, = E var h,(W,;,, W,,)

11 <t2
+ Z Z cov (b, (Wi, , Wa,), hn (Wi, Wi, ))
11 <ig 13<t4
(43,44)7#(i1,92)
—1
L

because h,(-,-) is centered. From these two results the first condition in equa-
tion (2.16) is established. For the second calculate

(2.17)
ELG,, =Y BEh (W, W) +3) Y Eha(Wi,, Wy,)ha(Wiy, W;, )

11 <ig i1 <i2 13<iq

(i3,44)#(11,12)
+24% > Bl (Wi, Wi, ha (Wi, Wi Y (Wi, Wiy

i1 <dg 137141 ,52

+33 3 > > Eha (Wi, Wiy ha(Wiy, Wi h(Way, Wi b (Wi, , Wi, )

11 2701 13701 ,92 14F01,12,13
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where all vanishing terms (with E h, (W;,,W,,) = 0) are omitted. To show the
second condition, the remaining terms have to be calculated. Starting with the

denominator, we have to calculate
(2.18) 02 = E h, (Wi, W>)?.

Resolving the square and changing variables* to v = (v — v;)/h together with
expanding a(-) and f(-) yields

k
2 _ N (U1>
On = n4h2(dx+dz Z//K Ul

kK’ )
k k Uy B
X KT+ (01 — v)/h) 22 f(gl)( ) aor) f(0r) 5
S =M o) vy — i (va) e o
X /K(U)WK(U‘F(M v2)/h) Flor) (v1)f(v1)d

X f(yl, ’Ul)f(yg, UQ) dyl dU1 dyz d’UQ(l + O(h))

Now substitute o = (v; — v9)/h to obtain

Fox dx+dz , / , ,
- 4T(L4h21X+—;Z Z/(ylf - ﬂk@l))(yg - Mk(vl))(y’f — ,uk (Ul))(y’; — ,uk (v1))

CL(’Ul) 2
*(Frog) 000, 00) dyy dys dun (15 O(1)

_ A(k,) Nt ' ' f(y1,v1) 2 5
- n4hdx+dz / / ?J]f _ﬂk (v1)) F(or) dyl) a(vy)” duy

(1+0( )

2 Ye(1+ O(h)).

- nAhdx+dz

Similar calculations show that

E hn(Wl, W2>4 —

O( dX+dZ)>
E h,, (Wy, Wa)2h, (W, W3)2 = O(n~8h~20x+d2))

(

(n

n-

E ho (W, Wa) by, (W1, W) h(Wa, W3) = O(n~8p2(dx+dz2))
O *Sh dXerz))

E h,(Wy, Wa)hy, (Wo, W3)hy, (W5, Wy)hy, (W1, Wy)

4Here the notation is simplified. As v; is dx + dz-dimensional one has to apply dx + dz

substitutions.
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Using combinatorical arguments it can be established from equation (2.17) that
E I, | is asymptotically dominated by terms with E h, (W1, W5)?h,(Ws, W,)? =
(E h, (W7, W3)?)2. Therefore the second condition in equation 2.16 is fulfilled as

Elf,,  12p *h 20x+d2)5d (1 4 o(1)
(var[,,)2  (2n—2h-(x+d2)32(1 + 0(1)))2

and weak convergence of i, ; is established.

Proof of (2.14) The expected value of the test statistic is given by

E Ikcn2 = —Z// Kh (v —Ul €)< )>2a(v)f(v) dv f(y1,v1) dys doy.

Changing variables and expanding yields

= Z / ﬁigf (y1,01) dvn (1 + O(h)
=nth™ dx+dz (1 +O(hr>>

Convergence in probability follows from Markov’s inequality with second mo-

ments, which requires to calculate

% (/ g(Kh<U —v1)(yl — MWM))V?EZ% dv>2f(y1, 1) dy; doy.

Changing variables as before results in

n4h2(dx+dz Z/ ) (s — Mk/(vl))2;(<232 Sy, v1) dyr dvi (14 0o(1)),

which is bounded by Assumption 2.2. In total this yields
EIIQCn y = O( —3p—2 dx-l—dz)) (n—Qh—(dx+dz))

and convergence in probability of i, o follows.

Proof of (2.15) For this statement we will restrict to the case when dy = 1.

Then convergence in probability has to be shown for

1
A/Cn = ﬁ Z ’Vn(Wu Wj7 Wk)7

i7j7k
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where
%(Y/Vi,ﬂ/j, Wk‘) - ;\y/n(m’VVka) - /?’n(Ww W]7w)f(w> dwa

with

~ Y, — ' (Vi Y: — u(V;
VWi, Wi, W) = Ky (Vi — Vi)ﬁ Y~ (Vj)

First we show that the expectation tends to zero

1 —17 —(dx+dz)/2
EA,C,L=$ZE%(WZ~,WJ»,W,€)=0(TL p(dx+dz)/2)

i?ij:

where only the cases i = k # j,j = k # i and ¢ = j = k have to be considered, all
others have expectation zero. In the remaining cases, two (resp. one) substitution
can be applied and their total contribution is O(n~th*@x+dz) 4 p=2pdx+dz),

Then, Markov’s inequality is applied with the second moments and we have to

investigate

1
EA} = = > Eqn (Wi, Wy, W)
ijk

2
+ E Z Z E"}/n<WZ, Wj, Wk:)Vn(VV'L’y VV]’/; Wk’)

ijk i'5'k!

The covariance parts vanish, whenever k # k'. If k = k' the covariance terms
are zero by the conditional independence of the error terms, in all cases where
i # 1 or j # j'. For the remaining cases we have to distinguish if the number
of different indices is N = 2,3. Then, the overall contribution of these terms is
O(nN*Gh*‘l(dXerZ)hN(dXJFdZ)) — O(n—th(dXﬂiy))‘

Next, consider the variance terms. If there are three different indices, two changes
of variables can be applied and the overall contribution is O(n=3h=2(dx+d2)) =
o(n=2h~(dx+d2)) If there are two different indices, one change of variables can
be applied and we obtain terms of order O(h=3(@x+42)) with a total contribution
of O(n~*h=3dx+dz)) — o(n=2p~(dx+d2)) If 4 = j = k one change of variables is
still possible and the contribution is O(n~°h=3(x+d2)) = o(n=2p~(dx+d2))  This

completes the proof of equation (2.15).
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Convergence in Probability of T'x; For the third term in (2.9) it holds that

Pol < max sup m*(X;) = b (X, sup fa(0)

=1,...dy zeA . vEA
~ logn
= Op(h* + —
p( = )

= op(n~th (G Hd/2)

under Assumption 2.4.3.

Convergence in Probability of fm The non-zero parts are given by

5 _INAy(ly SR A \0))
Fm_n;;(”;mm WEw )
1< mF(Xj) — mE(Xy)
< (i)

= Z Vijj'-

,5,5"
Because
Eck(m"(Vy) = mz (Vi) |V, ... Vo) = n ' K5 (V; = Vo (V;)
we have that
Ely, = O(n™Y) = o(n~1h~(@x+d2)/2),
It follows from similar considerations as done to show (2.15) that

E f?@ = o(n_2h_(d"+d2)).

This completes the proof of the theorem Il

Proof of Theorem 2.2

Under Hj, the decomposition (2.9) remains valid and the asymptotic analysis of
f;a and f,cg is unchanged. However f}cg is not zero any longer. If it holds that
w(z, z) = m(z) + e,(z, 2), we have that

n

N dy n k(17 \\ 2
f o %Z Z(% > Kt - V)Z2) a1+ o)
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This follows from similar calculations as to show (2.15). Omitting the lower order
terms it holds that

dy "R (VN 2
pldx+dz) /2], . 24 l en(V5) :
o998 = [ (0t au Y 535G ) ot +orth
P

— hi(dX+dZ)/2BL + Op(l).

The last convergence holds by assumption if A,, = O(nh(4x+92)/2_ In particular for
any fixed alternative, the convergence does not apply and nhdx+dz)/ ijcg =0(n)

and diverges. This yields consistency of the test statistic. Il

Proof of Theorem 2.3

In the proof of this theorem we use the notation E* and var* to denote expectation

and variance conditional on the data. Decompose

n YV — bt (X)) 2

dy n
o1 1
== :(—E Kn(Xi — X, Z; — Zj) b
n k=1 i=1 n j=1 ’ ’ fh(Xj’ Zj)

n

1 dy 1 n
- EZZ<EZK;Z(X¢—X]»,Z¢—ZJ»)

k=1 i=1 j=1

box ME(X;) — M (Xi)\\ 2
(e T Ay
fn(X;, Z;) fn(X;5, Z;)
= (ikn + Akn) (L +0p(1)) 4 i + Ty,
where I, and Ag, are defined as in (2.10) and (2.11) by replacing Y}* — p*(Xj)
with 8?’*. I'%-3 can be bounded by showing that

~ logn\1/2
~k . AE,* — T
(2.19) sup |7 (z) — 7" ()] Or(i+ () )

Decomposing Iy, as in equation (2.12) into I§, ; and Ig, , it remains to show
that

(2.20) nh DR 2 N0, 53,

conditional on the data with probability tending to one and

(2.21) nh<dX+dZ)/2I,’en2 — plUxtdz)2 g P9
(2.22) nh{dxtazpe T

Then the statement of the theorem follows.
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Proof of (2.19) First note that

sup [k (2) — " (2)| = sup |(Fo(a ZK~ —X)(VE - V)
z€A z€EA
1 n
< sup |m*(z) — mk(z)| +sup |(fF ()= K (z — X;)eb
< supl(z) — k(o) + sup (P (2) nZ (o= X0k
+su K;(r—X
i1y o

The first term already has the desired rate. Because f% (x) is consistent and f(x)
is bounded from below on A further analysis can be restricted to the numerator.
Since the analysis of the second and the third term in analogous, we concentrate
on the second term. First, a truncation argument is applied. Define Ef * =

1 (5 <nhdx which allows to decompose

* 1n *
(2.23) ZK~ — f’zEZZ:;Kg(x—Xﬁgf’

1 _ k,x
+EZK]_L 6 l{k*>nth}

Starting with the second term, note that it holds that E|€f7*1{ak’*>nﬁdX}| =
O(n2h~%1x) | because the forth moment of £ is finite. Then, the second term
on the right side of (2.23) can be bounded with Markov’s inequality with first

moments

1 & k,* k,*
E[E > Kl — X)ep Lk pixy| < BIRG(z — X1)ey™1
i=1

{alf‘*>nfzdx}|

k,*x T
< Slip |K(u)| E |¢; 1{5?**>nﬁdx}|(1 + O(h))
= O(n~2h~%),

from which the desired rate follows.
Finally, we turn to the first term in (2.23). Covering the compact set 4 with N
cubes Ay = {z | ||z — x| <y}, l=1,..., N, gy = O(N~Vx) we write

1 n
- ;Kﬁ(ﬂfz

1 x
+max sup‘— Z(K%(x - X;) — K5(x — X;))Eb.

7
CCE.A[ i=1

2.24 K~ —
( iﬁﬁ‘nz (@
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Using the Lipschitz-continuity of the kernel, one directly obtains that the second
term on the right hand side is of Op(qyh=9/2n="Y2) = op(n~Y/2hx/2(log n)Y/2).
The first term on the is bounded using Bonferroni’s inequality first and then

Bernstein’s inequality

1 < ok logn\1/2¢;
]P(|EZIK,~Z(@—X¢)5¢ |>(nﬁdx) 5)

< 2exp(—

2(logn)/(4nhdx) )
AT E(LKG (- X)Eh )2 + Co(50-)3/?

h3dx

where ¢y is the constant arising from Cramer’s conditions on the distribution of

. Tt follows from standard arguments that > E(L(K;(z — X;)g" and so

(2 K3

we get that

Sk o <loign>1/2§> < 0.

nhdx

1 n
P(|= Y K
=1

Then, for N = o(n) the desired rate of convergence is obtained.

Proof of (2.20) To derive the asymptotic distribution of

I;En,l = Z hn(VVi*? W;)a

i<j

given the data with probability tending to one, again Lemma 3.1 will be applied.
This is done by showing that the conditions hold with probability tending to one,

i.e.

maXi<i<n 2?21 E* h, (W7, WJ'*)Q P E*([I*Cn,l)4 P
—0 and ——— — 3.
var* I} | (var* I¢,, 1)?

Here,

h(W*W*_ /Khv— Kh(v_ f(_z Z *k*
k=
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First we analyze

. o) 1)
E* h, (W7, W) /Kh Kh(v—V)mdv>
X(E]K-—mﬂ&DOf—ﬁ%XﬂDQ
(2.25)

4 a(v)

= </Kh(v—\/;)Kh(v—Vj)T>dv>2
dy 2 - og N\ 1/2
(0 - i - ) @ op (i + (B

d
k=1 nhdx

= B (W5, W)+ o (™20 44)

This holds because under Hy we have that m*(X;) = p*(X;, Z;) almost surely.
Starting with the numerator, we utilize the conditional independence of the boot-
strap residuals to see that
var® i, = ZE* (W, W).
1<j
To bound this in probability, apply Markov’s inequality with the first moment
E‘Z E b (W7, W) = S B (W7, W5)? = n 20 @x 42252 (1 4 o(1)),

1<J 1<J

from which it follows that
var” I, 1 L. var Iicn 1.

This is now used to show the first condition. Together with (2.16) and (2.25) we

obtain

max;—1,..n 2?217j¢1 E* h (W* W*)
var I, 1
MAXi—1,..0 i1 i (Wi, W))? + Op(n=3(h" + (log n/ (nhx))!/2))

var i, 1

maxi—i.n > oy b (Wi, W5)2 ~ ~
_ 0t Depm g I Y 1 (log (i) 172)

= OP(l).

For the second condition we again use the convergence of the denominator. Then
using the first moment to bound the probability leads to similar calculations as

done in the proof of equation (2.13).
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Proof of (2.21) The proof of equation (2.21) consists of using iterated expec-

tations and use there the same calculations as to proof equation (2.20).

Proof of (2.22) As E" 5?’* = 0 the same arguments as for A, remain to hold
for Ak, O

Proof of Theorem 2.4

From Masry (1996) it is known that

~ logn \1/2
JE— pr— 2 -
a0 11 =000+ (12"
therefore we can write
dy n
~ 1 _ _ T
L — EE D (V)T MNTHV) = THV)) 1) As(L + op(1))
k=1 i=1
d n n k L
1 & 1 . Vi — Vi Y = (Xa) 2
=220 2 “jlz< h >Kh(vl ") f(‘;) )
k=1 i=1 o<|j|<p =1 '

=Tk + Tk + T + T,
where we decompose according to Ylk—fﬁ%’L (X)) = Y= P (V) + (V) —m* (V) +
m*(X;) — ﬁzg’L(Xl) and/\transfer all cross terms to ['%,. Then Tk, = 0 almost
surely under Hy. And I'g; = Op(h®" + logn/(nh®)) by applying results from
Masry (1996) for the density estimator and the local linear estimator. Next, we
decompose
fél - [Ién,l + [iléng + AiLcna

where the quantities are given as in (2.10), (2.11) and (2.12) and the kernel is

Kp(u) = Z <%)jlij_lKh(u).

1<5<p

replaced by

Since this kernel satisfies the assumptions which are necessary to show (2.13)-
(2.15) (note that higher order properties of the kernel are not used there), the

statement of the theorem follows. O]

Proof of Theorem 2.5
In this case we can decompose the test statistic into

7S s 7S RS 7S s
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dy n n
n— n fh X“Z)

7))~ m(X;) ~ GH(Z,.0))) 4,

N i Ki( X X;, Zi — Zj) N 2
r,zgz—zz( Z e (m*(X;) = E(X,))) A
k=1 =1 I3
- K X X;,Z; — 7 ~\ 2
F’C4__ Z ! X Z;) )(Gk(zﬁe) Gk(%‘ﬁ)) A,
k 1 =1 ] 1 3

and F,%E) contains all cross terms. Under Hyg we have that f,% = 0 almost surely

and the other two terms are bounded by uniform convergence rates. Start with

sl < max  sup [m"(x) — k(@) sup a(z, )
----- dy zcAx (z,2)EA
< sup la(, 2)|(, max sup |m*(x) — ik (x)[?
(z,2)EA k=1,..dy geAx

+ max sup |G*(z,0) — Gk(27§)’2>

k=1,..., dY ZG.AZ
n*lh(dXerz)/Q) '

The quantity ﬁz% (X;) denotes a nonparametric regression of the unobserved vari-
able Y; — G(Z;,0) on X;. The standard uniform convergence rate holds for this
estimator and by our assumptions it converges faster than the test statistic. For
the parametric function G(z,6) the convergence rate was assumed. From this

assumption we also obtain

TRl = op(n~tptt 4207,

The asymptotic distribution of f,gl was derived in the proof of Theorem 2.1. [J

Proof of Theorem 2.6

For dependent data, decomposition (2.9) still applies and under Hy it holds that
f;@ = 0. Because -mixing implies a-mixing, the results in Masry (1996) hold
under Assumption 2.7. This means, we have that

~ logn \ 1/2
k -~ r
—msi =Op(h N
sup () = iy ()] = Op(" + (—22) )

and the same rate holds for the kernel density estimator. Therefore it remains to
analyze ey and to show (2.13)—(2.15) for the dependent case.
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Proof of (2.13) To derive the asymptotic distribution, we regard Iy, still
as U-Statistic, and apply Theorem 2.1 in Fan and Li (1999). To apply this

central limit theorem a large number of assumptions have to be checked. For

brevity we concentrate on those that influence the rates. Denote with (W;);=1.. »

a sequence of independent and identically distributed random variables with the

same marginal distribution as (W;);—=1,_»

m Ehn(Wl, W2)4 - ( m )
n3/2 (E hn(Wh W2>2)2 - n3/2h
o maxys1 E(f o (w, W1y (w, W) f (w) dw)?
(E Ly (W, Wa)?)?
1-1/v m? +n?3(m)' 1"

(E (W, W2)2)?

= O(m*h)

() = O(n°R3 (m?3(m) V" 4+ n3(m)? ")

Together with the assumptions on the number of existing moments of Y and the
kernel function (EY? < oo, k¢¥), this yields (2.13).

Proof of (2.14) It is easy to see that E I, o is unchanged. To show conver-
gence in probability using the second moment of Ik, 2, the covariances have to
be bounded. Writing

Icna = Y 1,(X)),
=1
with

dy
1 2a(X1 + uh, Z, + vh)
W)= — K YFE—mk(X ’ du dw.
n(W> nh_(dX"v‘dZ) ;/( (u,U)( 1 m ( 1))) f(Xl‘i_uh,Zl‘i_/Uh) u dv

We then use the covariance inequality for strongly dependent processes (v > 1)

cov (I, (W), W, (W;)) < e(B(h,, (W))*) " B(j — i)' 2"

As (E(h;(Wl))”)wy = O(n2h~2x+d2)) (if EY? < oo and k% < oo) the con-

vergence follows if >_°° B(i)1 2/ < occ.

Proof of (2.15) To show that the expected value converges we use
B (Wi, W, Wi)| < MY B(min{i — k, j — k})' 7",

where M = max{E75,(W;, W;, W)",E [7,(W;, W;,w)” f(w) dw}. (Lemma A.1
in Dette and Spreckelsen, 2004).
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Convergence in probability is shown by using the first absolute moment and
Lemma A.0 in Fan and Li (1999) to obtain

E |y, (W;, W;, Wy,)| < AMY"3(min{i — k, j — k})*~7,

with M as above. Some tedious calculations show that convergence in probability
is established if EY? < oo and Y 02, B(i)' V" < 0.
This establishes the asymptotic distribution. O]






Chapter 3

Testing Slutsky Symmetry in

Nonparametric Demand Systems

3.1 Introduction

This chapter extracts parts of an article by Haag, Hoderlein and Pendakur (2005)
which is devoted to testing and imposing rationality restrictions to consumer
demand systems. In particular a nonparametric test for Slutsky symmetry is
proposed. The restriction of symmetry is a set of nonlinear restrictions on the
functions and derivatives of the expenditure share vector function. Using kernel
regression techniques to estimate the unknown demand function, the test will
be dominated by the estimators of the derivatives. This is the case because the
estimated derivatives converge slower than the estimated functions themselves.
Based on this insight, we provide a new test of symmetry, its asymptotic dis-
tribution and guidance on bootstrap simulation of its sampling distribution. A
closely related test for symmetry in nonparametric demand systems was pro-
posed in Lewbel (1995). The test proposed in this chapter invokes much weaker
smoothness assumptions.

Beside the testing procedure, Haag Hoderlein and Pendakur (2005) propose a
nonparametric estimation method that imposes Symmetry on the demand func-
tion and derive its asymptotic properties. Furthermore, both methods are applied
to Canadian household data and their usage in empirical work is highlighted.

In this chapter the presentation is restricted to the test for symmetry. In Sec-
tion 3.2 the test statistic is motivated and the asymptotic results are stated. In

the third section a bootstrap implementation is provided and its validity is de-
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rived formally. To reduce technical details in the outline, all proofs and necessary

assumptions are deferred to the appendix.

3.2 The Test Statistic and the Asymptotic Dis-

tribution

Define the cost function C(p,u) to give the minimum cost to attain utility level
u facing the M-vector of log-prices p = (p*,...,pM). Similarly, define the Mar-
shallian demand function by m(p, x), where x denotes log total expenditure, and
let z = (p/,z)’. The Slutsky matrix S(z) = (s%(2))1<j<mr—1.1<k<m—1 is defined as
the Hessian of the cost function with respect to (unlogged) prices. The elements
may be expressed in terms of log-price and log-expenditure (rather than utility)
as
s7%(2) = Opm? (2) + mF(2)0,m? (2) + m? (2)mF(2) + & (k)mF(2)

where §7(k) denotes the Kronecker function to indicate a diagonal element and
0, = a% and 0, = a%’v are used for abbreviation (Mas-Colell, Whinston and
Green, 1995). If the Slutsky matrix is continuously symmetric over a region of
the z space, then Young’s Theorem guarantees the existence of a cost function
whose derivatives could produce the observed demand system over this region
(see, e.g., Mas-Colell, Whinston and Green, 1995). The aim is to test whether
the Slutsky matrix is symmetric.

In this setting, symmetry will be tested without testing homogeneity (which is
also required for rationality). Other articles test homogeneity, see especially Kim
and Tripathi (2003). For a test of homogeneity see also chapter 2.

Given homogeneity, symmetry is neccessary and sufficient for the existence of
a cost function which could rationalise demands. However, marshallian demands
could satisfy homogeneity without satisfying symmetry. In this case, although
consumers do not suffer from money illusion, their demands cannot be rationalised
by a cost function.

In the data, we are given observations on the 2M + 1-dimensional random
vector Y = (W, Z)" where W € RM is an M-vector of expenditure shares and
Z = (P',..., PM X) is the vector of log-prices P = (P',..., PM)" and household

log-expenditure X. We define the regression function

m(z) = (m(2),...,mM(2)) =E(W | Z = z).
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The fact that we have identified the mean regression function with an individual’s
demand function is not entirely innocuous. This problem is treated in detail
in Lewbel (2001) and Hoderlein (2004), who establish that for m(-) to inherit
symmetry certain (untestable) assumptions about the heterogeneity of individual
preferences have to be fulfilled. One trivial case where this identification is valid
is when, conditional on observables, there is no preference heterogeneity, and the
difference W — E(W | Z = z) stems for example from orthogonal measurement
error.

Under the assumption that m(-) indeed inherits rationality properties, we pro-
pose a test using the Lo-distance of those elements of the Slutsky matrix which
are the same under symmetry. That is, we integrate and add up the squared
distance between S(z) and S(z)’. Here, the null hypothesis is

Hy: P(s%(2)=sM(Z),Vj#k) =1

and the alternative is that there is at least one pair (j, k) with s7%(2) # s%(2)

over a significant range. We may express the alternative as
Hy: P(s™™(2) =sM(2),¥ j #k) < 1.

The null hypothesis is equivalent to the condition that the Lo-distance of these
functions is zero. Using a positive and bounded weighting function a(z) this can
be written as
Py = E(Z(sﬂ“(Z) - skj(Z))2a(Z)> ~ 0.
j<k

A test statistic may be constructed by the analogy principle. Observing a
sample of n independent and identically distributed random vectors (W7, Z3), ...,
(W,., Z,) we replace the unknown functions m/(z) by their Nadaraya-Watson
estimators M7 (2) = 3, Kn(2 — Z)Y? /.. Kun(z — Z;), where K(-) is a M + 1-
variate kernel function and Kj(u) = (det H)™'2K(H~'/2u) with a bandwidth
matrix H'/2. For simplicity of notation we assume that the bandwidth matrix
is diagonal with identical bandwidth A in each direction and that the kernel is
a product kernel with properties defined in detail in the appendix below. The
derivatives of the estimator 0y (z) are used as estimators for the derivatives
Oxmj(z). We then obtain

M2M1n

(3.1) Tg=-— Z 7 (0 (Z:) + g (Z:) 0uiiid,(Z:)

]lk]—i—lzl
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where A; = a(Z;). This test statistic is a nonlinear combination of the function
and its derivatives. However, since the estimator of the derivative converges slower
than the estimator of the function, the asymptotic distribution is dominated by
the derivative estimator and the function can assumed to be known.

To define the expected value and variance of the test statistic we have to in-
troduce the covariance matrix (07(2))1<; j<pm—1 = E(W — m(2))(W — m(2))’ |
Z = z) and need the following lengthy notation:

o =3 (—1)|{C’C/’D’D/}|/OCD(z)UC/D/(Z)G(Z)2KCC/DD/(Z) dz
C,C'e{j,k}
DDl k)

with
K () = [[ Ko o - o [ K ()R (- 0 duda

and
0K oK

J — J
Ki(z,0) = S5 (0) 4 mi () 5 ()
Similarly define

by = / o7 (2)a(z) / (K*(z,u))? dudz + / o** (2)a(z) / (K’ (z,u))? dudz
— 2/ij(2)a(z)/Kj(z,u)Kk(z,u) dudz.

The asymptotic distribution is given in the following

Theorem 3.1. Let the model be as defined above and let Assumptions 3.1-3./
hold. Under Hy,

U§1<nh(M+5)/2fS . h—(M+1)/zBS> __D_) N(O, 1)7

where

0% = 2(2 ngjk + 22 Z agkj/k/) Bg = begk

j<k j<k j'<k Jj<k
(k)< (k)

Simplifying the proofs in the appendix to one line, the test statistic can be

written as
fH = FS + Un + An

IThe ordering is in a lexicographic sense.
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where I'g is 0 under Hy, A,, depends upon the uniform rate of convergence of the
estimators and U, is a degenerated U-statistic. This U-statistic converges at the
rate nhM+9)/2 which might be faster than n'/? depending on the choice of the
bandwidth sequence. Under the alternative ['g is a positive constant and after

M+5

multiplying the test statistic with nh(™*5)/2 this term tends to infinity. Therefore

we obtain consistency of the test against alternatives with I'g > 0.

Another test for Slutsky symmetry based on kernel regression has been proposed
by Lewbel (1995). This test procedure is based on the integrated conditional
moment (ICM) test of Bierens (1982), which uses the fact that H; is equivalent
to

E(s*(2) - s(Z))w(Z'Z) | E =€) £ 0

for a set of £ with nonzero Lebesgue-measure, where the weighting function has
to be chosen appropriately (see Bierens and Ploberger, 1997). Lewbel (1995)
uses a Kolmogorov-Smirnov-type test-statistic and derives asymptotic normality
under stringent smoothness assumptions. Assuming that the unknown function
and the density are r + 1-times continuously differentiable (see assumption in
the appendix), Lewbel requires r > 2(M + 1) whereas our test requires only
r > %(M +1). Although the smoothness class of an unknown function is difficult
to establish in practice, this is a substantial relaxation of assumptions. Fan and
Li (2000) discuss in detail the question under which circumstances the ICM-test
or the kernel based test of our type has greater benefits. Their results should

carry over to our situation.

In nonparametric regression analysis the advantages of local polynomial esti-
mators over Nadaraya-Watson estimators are well known, especially in derivative
estimation (see Fan and Gijbels, 1996). If we use higher order local polynomial
estimators for m and its first partial derivatives, our results continue to hold
when K(-) is replaced by its equivalent kernel. The rate of convergence of the
test statistic remains the same, only some of the kernel constants arising in the
bias and variance expression will change. In our application the advantages of
the local polynomial based test is clear. For M = 4, we need r > 3.75. Using
Nadaraya-Watson estimators, a kernel of order 4 has to be implemented. Using
a local quadratic estimator, for example, the order only has to be 2. However,

the smoothness assumptions remain unchanged.
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3.3 Practical Implementation Using the Boot-
strap

The direct way to implement the test is to estimate the expected value Bg and

the variance o%. This requires the estimation of integrals like

/ o97(2)a() / (K" (2, 1)) du d>

or even more complex combinations in the variance parts. Therefore estimators of
the conditional variances and covariances are needed. A Nadaraya-Watson-type

estimator is given by

S Kz — Z) (Wi — mid (Z:)) (W — @, (Z))
zz‘:1 Kin(z — Z)

Given the large number of bias and variance components in Theorem 3.1, the

51 (=) =

asymptotic approach to the test is difficult to implement. Moreover, these asymp-
totic approximations can work very poorly in a finite sample.

To avoid the problems noted above, one might instead use a bootstrap procedure
to derive critical values. To bootstrap the test statistic, note that the estimator

of the derivative can be written as a weighted average

(3.2) Oimi) (z) = Z VE()W/

where VTZ, 1 =1,...,nis aset of weights giving the kth price derivative of the jth
expenditure share at z when applied to the data Wij . Using this in the definition
of fs we obtain
R 1 M-2 M-1 n n 9
Ts =~ (Do vihzow? = vizowt) a
IS S (S - vz,

j=1 k=j+1 i=1 I=1

with VA(Z,) = VE(Z) + ki (Z)V,

nl

(Z:).
Next we exploit the fact that the estimator of the function converges faster than
the estimator of the derivative. Plugging in I/Vlj =m!(Z)) + 5{ and noting that

for large n it holds under the assumption of symmetry that
Z Vi (Ziymd (22) = Vi (Zym*(21) =

Oem? (Z) + m*(Z)0,m? (Z;) — 0;m*(Z;) — m? (Z;)0.m* (Z;) = 0.
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Therefore the test statistic can under Hy be approximated by
| M2 Mol e

Pon Y 3 33wt v vie)a

=1 k=j+1 i=1 =

The bootstrap is based on this equation and is described as follows

1. Construct (multivariate) residuals &; = W; — mp(Z;).

2. For each i randomly draw & = (¢}* eM=1%) from a distribution F, that

RN

mimics the first three moments of ;.

3. Calculate f* from the bootstrap sample (¢}, 7;),i = 1,...,n by
M 2 M—1 n

53D Z(Z Vil — Vi) A

jlk]—l—lzl =

4. Repeat this often enough to obtain critical values.

To approximate the distribution by the bootstrap, usually the restriction of the
null hypothesis is imposed in the construction of the residuals. Because symmetry
implies a complicated restriction to the demand function and its derivatives, this
is not directly possible. Therefore the restriction is imposed in the construction
of the test statistic by using equation (3.3).

The theoretical result concerning the bootstrap procedure is given in the fol-

lowing

Theorem 3.2. Let the model be as defined above and let Assumptions 3.1-3.5
hold. Under Hy, conditional on the data (Wi, Z;),i = 1,...,n it hold that

o5t (nhMH2T — p=(MH9)/2B )y P A0, 1),
with probability tending to one.

The set of admissible distributions E is very general. One may use a wild
bootstrap (Hardle and Mammen, 1993) or smooth conditional moment bootstrap
(Gozalo, 1997) suitably modified to account for cross-equation correlations (see
Haag, Hoderlein and Pendakur, 2005) for details.

To prove the asymptotic result of Theorem 3.2 it is sufficient to assume that
the bootstrap distribution ﬁl mimics the first two moments of ;. Matching the
first three moments as suggested in the algorithm we propose could yield higher
order approximations of the Edgeworth expansion of the test statistic. Although
we do not consider such expansions, we believe that this should improve the finite

sample properties and use therefore three moments in the application.
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Appendix

General Assumptions

Assumption 3.1. The data Y; = (W;,Z;),i = 1,...,n are independent and
identically distributed with density f(y).

This assumption can be relaxed to dependent data. All proofs can be extended
to a-mixing processes in the case of estimation and [-mixing processes in the
case of testing. Changes in the proofs are briefly discussed below. The va-
lidity of the bootstrap is not affected by dependent data, if we assume that
E(e; | Yi—1,...,Y1) = 0. Then, the bootstrap works because the residuals are
mean independent and we only use the residuals for resampling (see also Kreif3,
Neumann and Yao, 2002).

Assumption 3.2. For the data generating process

1. f(y) is r+1-times continuously differentiable (r > 2). f and its first partial

derivatives are bounded and square-integrable.
2. m(z) is r + 1-times continuously differentiable.

5. f(z) = [ f(w,z)dw is bounded from below on the compact support A of
a(z), i.e. inf,eq f(2) =b>0.

4. The covariance matrix
£(2) = (07 (Dscsgear s = B(W —m(Z)(W = m(Z))' | Z = 2)
is square-integrable (elementwise) on A.
E(WJ —m/ (2))2(W* —mF(Z))?) < oo for every 1 < j, k < M — 1.

Assumption 3.3. For the kernel regression

The kernel is a M + 1-dimensional function K: [—1,1|M™1 — R, symmetric
around 0 with [ K(u)du =1, [|K(u)|du < oo and of order r (i.e. [u"K(u)du
=0 for allk <r and [v K(u)du < 00). Further ||z|M™ K (z) — 0 for ||z| —

Q.

Our results should continue to hold for arbitrary kernel functions. See Ruppert
and Wand (1994) for details about the implementation of general multivariate
kernels. Further assumptions have to be made on the rate of convergence of the

bandwidth sequence and the smoothness 7 of the unknown demand function m(-).
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Assumption 3.4. For the bandwidth sequence

1. For the order r of the kernel, we require

(3.4) rs %(M +1).

2. For n — oo, the bandwidth sequence h = O(n~'/%) satisfies

(3.5) AM+1) <8 < (M+1)/2+2r

The asymptotic distribution of the test statistic is derived under the above con-
ditions on the bandwidth sequence. It is important to note that the optimal rate
for estimation, given by

dopt = (M + 1) 4 2r

is excluded. Here, a smaller bandwidth is needed to obtain the asymptotic dis-
tribution. In practice we calculate a data-driven bandwidth (by cross-validation)
and adjust it by n'/%»=1/9  Although we do not formally address the issue of

data-driven bandwidths 7 we assume that our results will hold if h /h L.

Assumption 3.5. For the bootstrap distribution

The bootstrap residuals €f,1 =1, ... ,n are drawn independently from distributions
F,, such that Epe; = 0,Ep €i(ef) = &g and Eﬁi(Ef’*)4 < oo for all k =
1,...,dy.

Usually the bootstrap residuals are constructed by €f = ng;. Then, the assump-
tion is fulfilled for discrete distributions, distributions with compact support and
among others for the normal distribution, which are the most often used distri-

butions for n/ in practice.

Proof of Theorems 3.1 and 3.2

The proof uses a functional expansion method applied to fg similar to the method
in Ailt-Sahalia Bickel and Stoker (2001). This leads to a von Mises expansion
where the first order term is zero under Hy. The second order term is usually
an infinite weighted sum of chi-squared distributed random variables. Here, a
Feller-type condition is fulfilled which ensures the asymptotic negligibility of all
summands. This condition is stated in the central limit theorem for degenerate

U-statistics by de Jong (1987), which we use to derive the asymptotic normality
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for both theorems. The extension to #-mixing random variables follows by using
Theorem 2.1 in Fan and Li (1999). Apart from this, the difference consists in
tedious calculations of covariances where essentially a summability condition of

the f-mixing coefficients is necessary.

Preliminary Lemmata

For probability measures the following notation is used: P¥X is the measure of the
distribution of X, PW? is the measure of the conditional distribution of W given
Z. And E* denotes the conditional expectation of the bootstrap sample given
the data. Marginal densities are defined by the list of the arguments and with
a superscript indicating the element of w which is part of the argument. Kernel
density estimators are defined in the same way.

Next define the seminorms
/¥l = max{sup | f(2)], sup| [ w"f*(w*, z)dw"|}
z€A ze€A

k: @ a k ek,  k dk:
140 = ma{_maxe  sup [0, ()., _max supi, [ bt z) dut)

=1,..., —=1,...,

for density functions.

Lemma 3.1 (de Jong, 1987). Let Yi,...,Y, be a sequence of independent
and identically distributed random wvariables. Suppose that the U-statistic U, =
Zl§i<j§n hio(Y:,Y;) with a symmetric function h,, is centered (i. e. Eh,(Y1,Ys) =
0) and degenerate (i.e. E(h,(Y1,Ys) | Y1) = E(h,(Y1,Y2) | Ya) = 0, P-a.s.).
Then if

mMaxi<i<n Zj:l,j;éi E 1, (Y}, Y;)? EU;

— 0 and

var U, (var U,,)? —3

we have that
U,

v/var U,

Lemma 3.2. Under the assumptions we have that for any k=1,... . M — 1

2, N(0,1)

1FF = f¥lla = Op(K" =" + (log n/ (nh+%))1/2)
1FF = fElly = Op(h" + (log n/ (nhM+1))12).
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Proof. Noting that
(3.6) sup| [ wr(fF(wk,2) — fE(w", 2)) du”|

z€A
< IR @)ool (2) = m* (@)oo + [Im* () [l L (2) = £5(2) e

where || - ||« denotes the supremum-norm. Then the lemma follows from the
uniform rates of convergence for density estimates, their derivatives, regression
estimates and their derivatives. They can be found in Hérdle (1990) or Masry
(1996). O

Proof of Theorem 3.1

For simplification, denote dy;y1 = 0, and Kj(2) = Eﬁf{l 0, Kp(z) which is of
O(h~M*2)) because of the inner derivative. Start by expanding the statistic

M-2M-1 n

n %A%_IMZ_I : (Mk(Z:) = m*(Z:) i, (Z:)
J__(mg;(zz)_— m!(Z:)) 0.y, (Z:))? Ay
n %M_”H . (Oud (Z:) + mF(Z:)0, 700 (Z:) — Oy (Z) — m? (Z:)0uiik (Z:))
1_1«%%(21) —m(Z:))0ui,(Z:) — (i}, (Z:) — m? (Z:)) 0wty (Z:)) A
(3.7)

= fSl + fSQ + fsg

By Chebychev, gy = O,(h2" 4 n~th=M+D) = o (n~1h~(M+5)/2) and an appli-
cation of Cauchy-Schwarz shows that the third term is also of o,(n~th~(M+5)/2)
provided that fgl has the limiting distribution of the theorem. So it is left to
derive the asymptotic distribution of f51 has.
Start by looking at the theoretical version
[s1 = Z I

i<k

For the beginning it suffices to investigate the case j = 1,k = 2 and to note that

the other terms can be treated in the same way.
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Consider I'g as a functional of two M +2-dimensional density functions f;(w', z),
fa(w?, 2), two M + 1-dimensional functions c;(z) and c3(z) and a M + 1-dimen-
sional density f3(z):

Jw! fi(w?, z) dw! 205 Jw! fi(w?, z) dw!
e A

— MN2)On Ju't 2}:‘22’)2) W0 20 ) fu(2) e

F}921<f1,f27017027f3) = /(
1fw2f2(w2,z) dw?
f2(2)

Then the following functional expansion holds

-0

Lemma 3.3. Let |gi(w',2)|,|g2(w? 2)| < b/2 be bounded functions and G°
(RM+2 R) the set of all such functions. Then under Hy and Assumption 3.2

' has an extension on G° x G* around (f1, f?) given by
(38) Fg%(fl +g17 f2 + 927m1>m27 f3) = F}S'21(f17f27m17m27 f3)

- /(62 / o (w, 2)gi(w', ) dw + c2(2)Orr1 /ozl(w7 g (w?, ) dw!
=01 f o )0 v [ d“’2>2“(z>f3<z> "

+O(lgrllallgrlls + llgallallgall).
with
of(w, z) =

Let fe(ﬁ, z)=n"t>" 0 (Pep X =) (p, x) denote the empirical distribution of the
sampled data and extend the test statistic in the following way

T =T&(fn fiom',m? f.)
=TR(f + = L2+ = fAomh i f)
TR+ =1 P+ = fAmm? o~ f)
Applying Lemma 3.3 to g; = fi — f,i = 1,2 allows to write
(39) =14, + AL +O0,(IFs = LRI = £l + 157 = PIE = £211y)
using D& (f1, f2,m*,m?, f) = 0 under Hy and where

1;3;/(2)« (Wi, Z: z)2 (2)f(2) dz

st | (frs,xw Z; z>)2 (=) - £(2)) dz

=1
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with
(3.10)
TJ;Z(Wi, Zi 2) = Opd (Wi, 2)Kn(2 — Z;) + m"™(2)Opra0?d (Wi, 2) Ky (2 — Z;)
— 0;08 (Wi, 2) K (2 — Z;) — m? (2)Opr 10" (WF 2) K (2 — Zy).
Here it has also been used that for all & it holds that
(3.11)

/ Mw, 2) fF(w, z) dw” —/ fkw z) dw" _/m F(w, z) dw® = 0.

The lower order terms in the extension (3.9) are bounded by Lemma 3.2 and the

following
Lemma 3.4. Under the assumptions we have that
A}gi _ Op<n71h7(M+5)/2).

Using the results on ngl for 1 <j7 <k <M —1 allows to write the test statistic

as
(3.12) Tg = ng’i = Z 5 4 o, (n" R~ M+9)/2),
i<k <k
Defining the centered random variables
T (Wi, Zis 2) = vl (Wi, Zis 2) — Evl (Wi, Z; 2)
the following decomposition applies

Isp =Y Ify

Jj<k

—E:/( &W@&wﬂzaﬁ@mz

i<k

I3 / Wi s Y (Wa, Zii 2)a(2)f(2)

I<k 11<t2

+—ZZ/ (r% (Wi, Z2; 2)Pa(2) £(2) dz

i<k i=1

A E:E:/?%‘Vé?zSE@mﬂaza@M@f@wu

i<k i=1

MeZD S (@, zi2) )

i<k

(3.13) = Isn1 + Lsp2 + Lsns + Igna.
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These terms are analyzed by the following

Lemma 3.5. Under the assumptions we have that under Hy
nh(M+5)/2ISnl i) N(07 U%)
nh(M+5)/215n2 _ h—(M+1)/2BS P
nh(M+5)/215n3 i) 0

nhMA9)21g 0.

Together with equation (3.12) this states the asymptotic result of the theorem.
O
Proof of Theorem 3.2
Analogously to equation (3.7) we get
=Tg1 + gy + Igs
where the last two terms are of lower order (use Lemma 3.6). Again we decompose
T Rik*
g1 = Z F{S‘l
i<k

and investigate wlog the case j = 1,k = 2. Let now f,}* denote the kernel density
estimator of (e}*, Z;)i=1, n- Replacing W W? with €' &* in the definition of
I't2 and applying Lemma 3 3 with ¢' = ;L* — fi,i=1,2 we can decompose

f,lszl* = Flg( /;12*7m m fe)
(f f m m f) + 12* A12*
+Op(Ifa" = FHllalfa” = £l + 1A = FHal A = f2 )

As fi(e*, z) = f1(e*) f(2), we have that T (f!, f2 m!, m?, f) = 0. Note that this
property allows to construct the distribution of FS under Hy by the bootstrap.
Here

o /(Z  Zes ) a() () d

A= / (Z P2 (el Zi z>)2a<z><ﬁ<z> ~ J(2))dz

i=1
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and analogously to equation 3.10

rs. (€, Zisz) = 55*@% + ail*mQ(z)@Mﬂ%
oo Kn(z—=2) 5, Knlz — Z)
— &2 8]‘W — eXm (z)aMHTz)'

Next, lower order terms are bounded.

Lemma 3.6. Under the assumptions we have that for any k=1,..., M — 1

175" = fHlla = Op(h"" + (log n/(nh*?))!/2)
1fe* = f¥ll; = Op(h" + (log n/ (nh""*1))1/2).
The proof of
A = opla 0

is omitted because changes in the proof of Lemma 3.4 are essentially the same as
changes in the proof of in Lemma 3.5, which we will give in Lemma 3.7 below.

Together we have that

i-'\\*Sl ZI]]C* h (M+5)/2)

i<k

Next, the same decomposition as in (3.13) applies

* j Kok * * * *
Ig, = Z I8y = I + Lo + 133 + IS4,

i<k
where
Ton (€5, Zis2) = v, (e, Zi 2) — BOrk(e], Zis2)
and all expectations in the I, ; are replaced with expectations conditional on the
data.

Lemma 3.7. Under the assumptions we have that
nh MR N(0,08)
under Hy conditional on the data with probability tending to one and

nh(M+5)/QI§n2 . h*(M+1)/QBS i) 0
nhM/2p: L

phOE92E P

This concludes the proof. n
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Proof of the Lemmata

Proof of Lemma 3.3 Consider U(t) = T2 (f! + tgy, f2 + tge,m', m?, f3) as a

function of ¢ and write the Taylor expansion around t = 0

U(t) = U(0) + t¥'(0) + 20" (0)/2 + 3" (I(t)) /6.

Here
W) = [0 a ()
with
P(t) = @it 2) + m?(2)@p 4 (¢, 2) — @3(t, 2) — m' (2) P41,
and

Jw'(f{(w, z) + tg;(w, z)) dw’
fi(2) +tgi(2) '
Calculating the derivatives of W(t) requires the derivatives of ¢! (¢,z). Setting

0 (t, 2) = O

t = 1, they are given by

_ OWF(2) F(2)0:G(t, 2)

Bupi(t, 2) = L +2 i
0Pkt 2) = 1201(2) g k() + 8(0n(2)* g
 2(on(2) PG

where
FE) = £16) [ugto2)do =) [wofw,2)d
G(t,2) = f'(2) +tou(2)
are introduced for abbreviation. Starting with the first derivative
V() =2 [ 00,2960, 2)a:) fo(z) dz =0,

because 1(0, z) = 0 P-a.s. under Hy. The second derivative is given by

T (0) =2 / ((0, 2)326(0, =) — Bb(0, 2)%)a(z) fo =) d,
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where the first integrand is again zero under Hy almost surely. For the second

integrand, it has to be summed up over

b0, = on( [ 2T - 55 )

= ([ pipgotw 9@ fow.: dwm<(zz>>>
— 0, [ a(w,2)g(w. ) du,

from which the second term in equation (3.8) is obtained. Finally, the third

derivative has to be bounded

U(t) =2 /(w(t, 2)00(t, 2) + 3040 (t, 2) 024 (t, 2))a(2) f3(2) dz

Note that |G(t,2)7'| < |G(1,2)7'| < 2/b because f'(z) > b and |g1(2)] < b/2.
Therefore only the numerators of the derivatives of (¢, z) have to be bounded.
By noting that the derivatives of g;, F' and G are bounded by |/g1]|4 and g; and
F are bounded by ||g1]| we obtain

v((t)) = Olgllzllgnlly + llg21Ellg1l ).

which completes the proof of the lemma. O]

Proof of Lemma 3.4 Convergence in probability has to be shown for

A}S?n = Z’yzg/w

e
where
Yik = (& (Wi, Zo) Ki(Zi, Zi — Zi) — &2 (Ws, Zi) K3 (Zi, Zi — Z3)
x (o' (Wi, Z) Ky (Zk, Zi — Z;) — o (Wi, Zi) Ky (Zk, Zi — Z;))a( Zi)
- [@ R e~ 2) - 020 2K e,z — 20)

x (o' (W, 2) K (2, 2 = Z;) — o* (W, 2) Ky (2, 2 — Z5))a(2) f(2) dz.

Multiplying out gives

12 =11 =22 =12 =21
in]k f)/z]k + %Jk 7@]]6 /Vijka
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where

Yigh = & (Wi, Zy) K (Z, Zi — Zi)a™ (W, Zy) K12y, Zy, — Z5)a(Z,)
— /O/(I/Vj, KM (2,2 — Z;)a™(Wy, 2) KL (2,2 — Z;)a(2) f(2) dz.
This enables to write
A}qi = Ay + Aoy — Ay — Ay
All four terms have the same structure and so we restrict to

—17 —(M+5)/2
EAH n3 ZE’.}/’L]]C (n h )7

1,5,k

where only the cases i = k # j,j = k # ¢ and ¢ = j = k have to be considered, all
others have expectation zero. In these cases, two (resp. one) change of variables
can be applied and the statement follows.

To show the convergence in probability, Markov’s inequality is applied with the

second moments and it has to be investigated

Aqy =6 Z E(y ”k Z Z E _7,1jlk:}/7,1§/k:’
ijk ijk i §'k
The covariance parts vanish, if there are six different indices. In the case with
five different indices we have O(n®) terms where k = £’ (other combinations
vanish) and they give a total contribution of O(n=*h"™*) = o(n=th=(M+5)/2),
since the leading terms have expectation zero. If there are four different indices,
by change of variables they are in the worst case (when the leading terms do

not cancel, e.g. if i = i’ and j = j') of order of O(h™*). As there are O(n?)

such terms their overall contribution is O(n=3h™*) = o(n=th=(M*5/2) If the
number of different indices is N = 2, 3 the overall contribution of these terms is
O(h74(M+2)hN(M+1)nN76) ( -1p- M+5)

Next consider the variance terms. If there are three different indices, three

Changes of variables can be applied and the total contribution is O(h~4~2(M+1)y=3)
= o(n~th=M+5)/2) If there are two different indices, one change of variables can-

not be applied and we obtain terms of order O(h~4=3™M*1) with a contribution

of O(h=43M+Np=4) — o(n=th=(M+5)/2) If § = j = k one change of variables is

still possible and the contribution is O(h~4=3M+n=5) = o(n~1h~(M+5)/2),

This completes the proof that A = o,(n~th=(M+%)/2), O



Appendiz 63

Proof of Lemma 3.5 Before showing the statements of this lemma, we start

by investigating 7g,(-). Calculating the derivatives in this equation, one needs

(3.14) O (W;, 2)Kp (2 — Z;) = o (Wi, 2)0u K (2 — Z;)
0f(2) | Kz = Z)

e GG = 20T TG

O’ (2)

to obtain

(3.15) 7L (W;, Zi; 2) = of (W, 2)h= MDD KKk (2 (2 — Z,) /h)
oF(Wy, 2)h"MHDKI (2 (2 — Z;) /D)
f(z

+od (W, 2)Kn(z — Z) (a'}(i)) + mk('Z)'@M;(l,;f)(Z))
— oW o 9;f(2) i (s Om1f(2)
Wl = 20 C gy =m0y )

Because the sum over the third terms in (3.14) is zero under Hy. Here the last
two terms converge faster, as the chain rule applied to the kernel brings an extra
h to the first two terms.

Asymptotic Normality of Is,; [g,1 can be written as U-Statistic by

[Snlf g hSn 019 12

i1<iz
with
hn(Y,Ys,) = 3 Z/Tsn vy Lins )%i(mg,ZiQ;z)a(z)f(z) dz.
i<k
Asymptotic normality is shown by using Lemma 3.1. First note that as we have
independent and identically distributed data we can define o2 = Eh,(V;,Y;)?

and get for the first condition of the lemma

n

max Y Eh,(Y;, Yi)? =no?

1<i<n
k=1
ki
and
var [g,; = Z var h,(Y;,,Y:,) + Z Z
11 <i9 11 <19 13<i4
(i3,94)7(11,i2)
n(n—1) ,
—i—COV(h (Y;NY ) hy, <K37E4)) -5 O
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because hy,(-,-) is centered. This implies directly the first condition of Lemma

3.1. For the second we need

(3.16) Elénl = Z Ehic/;n Yi,) +3 Z Z E h,,(Yi,, iz)th(Yti;zx)Q
11 <12 11 <19 13<t4
(i3,14)7(i1,i2)
+243 > Bha(Y;,, Vi) ha(Yiy, Vi) ha(Viy, Vi)

11 <12 13711,i2

1335 S S En( Ya)ha(Ya, Vi) ha(Yay, Vi) ha(Yiy, Y, ).

11 o701 13701,02 14F01,02,13

To show the second condition, these terms have to be calculated. Starting with

the denominator, we have to calculate

(3.17) 02 =Eh,(Y1,Ys)%

n

Resolving the square and multiplying the %n() gives four terms, where the first

is given by

(3.18) %Z Z // L (wy, 21, 2)1r5 (ws, 22, 2)a(2) f(2) dz
<k <k’

! 1.0

X /Tg:/(wb 21, Z)Tﬁzk (wz, Z2, z)a(z)f(z) de(wh Zl)f(UJz, 22) dw,; dZ1) dwy dzy

changing variables® to z = (2 — 2;)/h in both integrals and expanding «a(-), a()

and f(-) gives (we only consider the leading terms from equation (3.15))

= m Z Z //(aj(whzﬁKk(zl,i) — of(wy, 21) K7 (21, 2))

j<k j'<k’

(Ozj(wg,zl)Kk(zl,2+(21—22)/h)—ak(wg,zl)Kj(zl,2+(21—ZQ)/h))a(zl)f(z1) dz
X /(aj/(wl,zl)Kk/(zl,z) — Ozk,(wl,zl)Kj/(zl,E))

(o/l (wa, 21)K* (21, 24 (21— 22) /)= (wg, 21) K7 (21, Z+(z1—22)/h))a(z1) f(z1) dz
f(wl, Zl)f(wg, Zg) dw1 dUJQ le ng(l + O(h))

2Here the notation is simplified. As z; is M + 1-dimensional one has to apply M + 1
substitutions.
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Now substitute z = (2] — 22)/h and expand f(-) to obtain

~ i o 2 [ @)K 2 - ot )R 1.9)

<k j'<k’

(o (wa, 21)K* (21,2 4 Z) — o*(wa, 21) K7 (21, 2 4 Z))a(z1) f(z1) dz
X /(aj/(wl,zl)Kk/(zl,Z) - Ozkl(wl,zl)Kj/(zl,Z))
(aj/(wQ, 2)K¥ (21,2 + ) — o¥ (wa, 20) K7 (2, 2 + Z))a(z1)f(z)dz
f(wy, z1) f(wa, z1) dwy dws dzy dZ(1 + O(h)).

Multiplying out the remaining brackets results in 16 terms of the kind (remember
the definition of K7¥'*(z)

//Oéj(wlaZl)&j/(wbzl)f(zl)f(wbZl)dw1

/Oék(UJQ,Zl)ak/(WQ,Zl)f(Zl>f<UJ2,Zl) dwaa(z )2 K7R* (21) dz
Now, by the definition of o/ one concludes

= /Ujj/(z)akkl(z)a(z)QKjkj/k/(z) dz
. Taking care of the summation we have in total that

4

In the other terms arising from equation (3.17) one has a product of two expec-
tations. This allows to change variables once more and these terms are of total
order of O(n~*h™1).
Similar calculations show that
Eh,(Y1,Ys)" = O(n

E 1, (Y1, Y2)*ha (Y1, ¥3)? = O(n=*h™"7%)

E (Y1, Y2) hi (Y, Y3) b (Y2, Y3) = O(n”"h™217)

E (Y1, Ya) (Y, Ya) (Y, Ya) (Y1, V) = O(n~Sh™77),

Sh—SM—7)

Using some combinatorics one sees from equation (3.16) that the total contribu-
tion of terms of these kinds to E I | is at most O(n~*h~M+1)). So E I?, is asymp-
totically dominated by terms with E h, (Y1, Y2)?h,(Y3,Y,)? = (Eh,(Y1,Y$))>%
Therefore the second condition from Lemma 3.1 is fulfilled because

Elf,,  12nh Mgl (1+ o(1))

(var Ign1)2  (2n~2h~(M+5)52,(1 + 0(1)))? —3
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and the asymptotic normality of I,; is established.

Convergence in Probability of [, For the rest of the proof the lower order
terms in equation (3.15) are omitted. The expected value of the test statistic is

given by

El,, = %Z//(aj(wl,z)h—(MH)Kk(z, (z—21)/h)

j<k
— ¥ (wy, )W MIIDKI (5 (2 — 21)/h))2a(z)f(z) dz f(wy, z1) dw;y dzy

Substitution of Z = (2 — z1)/h leads by a Taylor expansion to

1 . ,
= L RM3 Z//(Oé”(wl,m)l(k(zl,z) — o/“(wl,zl)KJ(zl,2))2
i<k
X a(z1)f(z1) dZf(wy, 21) dwy dzg + o(n_lh_(M+5)/2)
_ n_lh_(M+3)BS + O(N_lh_(M+5)/2),

where the brackets are resolved before integrating.
To establish convergence in probabilty, Markov’s inequality with second moments

is applied, which requires to calculate
1 ; _
EI% = E/(Z/(oﬂ(wl,z)h M) Kk (2, (2 — 21) /D)
j<k

— P (wy, 2)h MK (2, (2 — zl)/h))a(z)f(z) dz)2 df(wy, z1) dwy dz;

Changing variables as before results in

s | (35 ] (59

— of(wy, 2)K7(2,2)a(z1) f(21)) dz)Qf(wl, z1) dwy dz;.

This gives the second statement of the lemma.

Convergence in Probability of Ig,3 Because 77F(W;, Z;; z) are centered func-

tions, we have that E Ig,3 = 0. Substituting z = (2 — 21)/h for z; gives

(3.19)
Ergfl(Wl, Z4; 2)

— 1 /(Ozj(wl, 2K (2, 2) — af(wy, 2) K7 (2, 2)) f (wy, 2)dwidz + O(h™Y)

= O(h™™Y)
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for every z € A because of equation (3.11) and therefore

_ 1 4 2
Elf = A —1)° Z/Tsn (Wi, Zi; 2) Bl (Wh, Zy; 2)a(2) f(2) dz>

i<k

_ O(n—th(r—l )7
which is of o(n~th=(M+5)/2),
Convergence of Ig,, The convergence of the deterministic part follows from
(3.19) and the upper bound of the bandwidth sequence
Isna = O(h?™Y) = o(n™"h=HF99)72),
which completes the proof of the lemma. Il
Proof of Lemma 3.6 It follows from equation (3.6) that only the first part

has to be investigated, because the second part in equation (3.6), concerning the

density estimator, is unchanged in the bootstrap sample and has the desired rate.

Uniform convergence of the function estimator For the norm || - ||; we
have to show uniform convergence of

ok —1 K — 7. kx
/B\Z*(Z) — gh (Z) _ Zz 1 h( )51

fn(2) i Kz = Z)

to E(e | Z) = 0. Because ﬁ(z) is bounded from below on A almost surely for n
large enough, the rate of convergence follows from the numerator.
First a truncation has to be applied. Define E”f =1 {eb*<ppi+1y and then decom-

pose

(3.20) ZKhz— f*:%iKh(z—Z gk
=1

1 n
+ 5 Zl Kh(z - Zi)gi?*l{sf*>nhlw+l}'

The second term on the right hand side can be bounded using Markov’s inequality
with the first moment and E[ef* 1 wepariny| = O(n 2h72M+D) because the

forth moment of 5?’* is finite. Changing variables once it follows that

E|- ZKh DEF L ke iy | = O(n72R72AD),
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from which the desired rate for the second term in (3.20) follows.
To bound the first term in 3.20 the compact set A is covered with N cubes
={z||lz—al <nn}l=1,...,N. Then it holds that

(sup‘ ZK}L z— ) < P(sup!% ZKh(zl — ZZ)Ef*

zeA T
< * >‘
+ Slllp zsél}\)l‘ i=1 h ’ ' Zl

If N becomes large, the second terms becomes neghglble compared to the first.

Applying Bonferroni’s inequality the first can be bounded by

1 n
N su ]P(— Ki(z — Z)eM| > ¢ 2).
wP (|5 2o = Z0et] >

And this probability is bounded using Bernstein’s inequality

1 « logn \1/2c¢
|n 1221: e )< ‘ ~ nhM+1 2

< 2exp<—

*(logn)/(4nhM+1) )
43 B(EKy(z — Z,)E8)? + A 5B )2

3p3(M+1)
where ¢ is the constant arising from Cramer’s conditions on the distribution of

& It follows from standard arguments that
ZE<—Kh(Z - Zz)%”) = O(n~th= (M),
n
i=1
and so we get that
1 & — logn \1/2¢ 1
e 3 Kot 1> (7)) =00

Then, for N = o(n) the desired rate of convergence is obtained.

Uniform convergence of the derivative estimator Applying the quotient

rule we obtain

() BC) B 0,00

fn(2) fu(z) ful2)

The second term converges faster by Lemma 3.2 and the first part of this lemma.
For the first term, the proof of concerning the norm || - || has to be repeated with
an extra h~! from the inner derivative. Note that except for this only the kernel

changes. Then, the statement follows. [
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Proof of Lemma 3.7 Define Y = (¢}, Z;). To derive the convergence result
for
Lo = ) (Y, Y5),
i1<1s
again Lemma 3.1 has to be applied. This is done by showing that the conditions
hold with probability tending to one, i.e.

maxi<i<n Z?:l E” hn(Y;;*a }/;*)2 P

_>0

var* [g,
* (T 4
E(l5n)” p o
(var* [5,,)?
Note, that by construction E*h,(Y*,Yy) = 0 and E*(h, (YY) | Y) =
E*(h, (Y, Y5) | Y5') = 0 almost surely.

Calculating the derivatives in 74 (-) analogously to equation (3.15), one obtains

(3.21) |

M (e, 243 2) = -0 FLG (;(;Zi)/h) b p-(0+2) K](Z,(;(;)Zz‘)/h)
R

et B (IO B

Next E* h,, (Y], Y5")? has to be calculated. Using the definition of h,(-) and multi-
plying 7“’75];*() gives four terms where the first is given as in (3.18) by replacing the
distributions of Y7,Y; with the distributions of Y}*, Y5* conditional on the data.
Replacing (3.21) and omitting the last two terms as they are of lower order, the

leading term is given by

n4h2 (M+1) 1,2 Z Z // (z—2Z1)/h) — V' K (2, (2 — Z1) /)

i<k j'<k’

(e K"z, (2 = Zo)/h) — ey K (2, (2 — Za) /1)) a(2) f(z) ' dz
y /(5{’*.;(”(2, (= — Z0)/h) — K7 (=, (= — Z0) /1))

(63" K¥ (2, (2 = Zo) /1) — e§ "K' (2, (2 = Z5) /1)) a(2) f(2) " dz
dIPY1*|Y1 ,,,,, Yo (81*) dIPYQ*|Y1 ..... Yo (62*).

The bootstrap residuals are chosen such that they match the first moments of

the empirical residuals. Multiplying out, replacing the conditional expectation of
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eg * and rearranging inside the brackets it follows that

- 3 [ [ (i =z - zm)

i<k j'<k’

— (WY =Wy (Z1)) K (2, (2 = Z1) /1))

((WQJ - ﬁ’L?l(Zz))Kk(z, (z — Zg)/h) — (WQk — 7/7\12(22»[(]'(2’ (Z . Zg)/h)) ;((i; dz
< (V] = R Z)RY (oo = 20 /1) = W = (Z0) Kz (= = 20)/1)
a(®) 4.
(Z)

/\

(W =@l (Zo)K¥ (2, (2= Zo) /1) = (WE =@k (Z:)) K7 (2, (2= Z5) /1)) 5

—

and now using the uniform convergence of the regression estimator

n4h2 (M+1) 2 Z Z / YW, Z)E (2, (2 = Z1) /1)

j<k j'<k’

— (W1, Z1) K (2, (z — Z1)/h))
a(z)
f(2)
) / (o7 (W, Z0)K¥ (=, (= = Z0) /1) — ¥ (Wh, Z) KX (2, (= = Z0) /1)

a(z)
f(Z) (Zl)f(ZZ) dz

X (1+ Op(h" + (log n/(nh)MH)l/Q),

(af (Wa, Zo)K* (2, (2 — Zo) /h) — o (Wa, Zo) K7 (2, (2 — Z) /)

f(Z21)f(Z)dz

(o (Wa, Zo)K¥ (2, (2—Zs) [ h) =¥ (W, Zo) K7 (2, (2= Za) /1))

which has a similar structure as h,, (Y1, Y2)?. Therefore, taking expectations and
applying the appropriate changes of variables, the same leading term can be
derived (see the calculations of (3.17)). Next by the conditional independence of
the bootstrap residuals, we get

var* I;y = > E" R, (Y, Y]),

1? 7,2
11 <ig

because h, (Y;*,Y;*) is centered conditional on the data. To bound this in proba-

117 712
bility, use Markov’s inequality with the first moment
B> E 0V V) =Y Bha (YY) = n?hm M Hel(1 4 0(1)),
11 <12 11 <12

from which
P
var® Ig,, — var Ig,
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follows. This is now used to show the first condition. By the iid-assumption on

the data sample, for the maximum it holds that

b MaX;_ 1,0 Son g i B B (Vi Y7)? ) —op szQE*han*,Y;):c
var g1 var g, '

And for the right hand side we use the Markov inequality with second moments

and similar calculations as in Lemma 3.5 to obtain

n * * *\2
]P(ZjZQE ho (YY", YY) >C>

=0 *hY) =o(n™).
var To ( ) =o(n™)
For the second condition we again use the convergence of the denominator. Then
bounding the numerator with Markov’s inequality and the first moments leads
to similar calculations as done in Lemma 3.5. Stochastic convergence of I§,,
and [g,,, consists of using iterated expectations and repeating there the same

calculations as in this lemma. OJ






Chapter 4

Nonparametric Estimation of
Additive Multivariate Diffusion

Processes

4.1 Introduction

Motivated by the application of continuous-time stochastic processes in financial
econometrics, nonparametric estimation methods for diffusion processes have be-
come a broad area of statistical research. The review papers of Cai and Hong
(2003) and Fan (2005) provide an overview over recent results. Since the estima-
tion of the drift and diffusion function of a diffusion process can be regarded as
a regression problem, kernel smoothing techniques arise naturally.

Beginning with Florens-Zmirou (1993) a large number of articles has been con-
cerned with the application of nonparametric regression techniques to diffusion
processes. Various modifications have been considered, among them higher order
approximations (Stanton, 1997, Fan and Zhang, 2003), nonstationary processes
(Bandi and Philips, 2003) or jump diffusions (Bandi and Nguyen, 2003). Usu-
ally, high frequency sampling is considered, where both the total observation
time tends to infinity and the distance between consecutive observations shrinks
to zero. But other sampling schemes have been used as well. The monograph
by Kutoyants (2004) covers the case of continuous time observations. The issue
of fixed time intervals between consecutive observations, so called low frequency
sampling, has been addressed by Ait-Sahalia (1996a), Jiang and Knight (1997)
and Gobet, Hoffmann and Reiff (2005) among others.
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Most of the articles cited above only deal with the case of a scalar diffusion.
Brugiere (1993) and Bandi and Moloche (2001) investigate kernel estimators for
multivariate diffusion processes. Their results report the well-known curse of
dimensionality in nonparametric regression. This means that the rate of conver-
gence of the estimators becomes worse, if the number of dimensions increases and
therefore larger samples have to be available. Because of the dependence struc-
ture even in the scalar case relatively large samples are required to obtain reliable
estimators. This effect is thus enlarged for multivariate data and therefore the use
of nonparametric regression techniques is restricted (curse of dependence). How-
ever, the curse of dimensionality can be circumvented by imposing more structure
on the unknown functions.

A common approach is to use additive models, assuming that the unknown func-
tion is a sum of one-dimensional components. These models provide a powerful
technique to overcome the dimensionality problem and maintain high flexibility.
Estimation of such models requires iterative procedures and the asymptotic anal-
ysis is much more complex than in the classical setting. For the estimation of
the additive components Mammen, Linton and Nielsen (1999) have introduced
smooth backfitting, an iterative procedure that uses a projection interpretation
of usual kernel estimators. For the classical nonparametric regression model it
has been shown that smooth backfitting based on local linear estimators is oracle
efficient, i. e. the estimator of a single component has the same bias and variance
as an infeasible estimator based on the knowledge of all other components.

In this article a multivariate diffusion process is considered and (some or all)
elements of the drift vector and the diffusion matrix are modelled as additive
functions. Smooth backfitting based on local linear and Nadaraya-Watson esti-
mators is used to estimate the components. For all estimators the asymptotic
distributions under high frequency sampling are derived. The Nadaraya-Watson
based estimators achieve the same variance as the oracle estimator, while the
bias is not oracle. The local linear based estimators are shown to be fully oracle
efficient.

The remainder of this chapter is organized as follows. First, the additive diffu-
sion model is formally introduced. In section 3 the smooth backfitting estimators
are defined. The asymptotic properties are presented in Section 4 and results of
a finite sample study, investigating the performance of the estimators, are given
in Section 5. An illustrative data example, using interest rate data is presented

in Section 6. All proofs are deferred to the appendix.
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4.2 Additive Multivariate Diffusion Processes

Let (Xt)tZO = ((th, e ’Xtd)/)tZO
tered probability space (Q, F, F = (F);>0, P) which satisfies the time-homogenous

be a d-dimensional stochastic process on a fil-

stochastic differential equation

with some initial condition X, and a d-dimensional Brownian motion (Wi)eso =

(W, ..., Wtd)/)tZO
IF. The drift vector u(z) = (u'(x),...,u%(z)) and the dispersion matrix ¥(z) =
(07(2))1<ican <j<q are both Borel measurable. Since the dispersion matri')'c itself
is not identified, the diffusion matrix A(x) = X(x)¥(z)" with elements a”(z) =
S o™ (x)a* () is defined.

Standard assumptions that guarantee the existence of a strong solution of the

with independent components adapted to the same filtration

stochastic differential equation (4.1) are the so-called global Lipschitz and linear
growth conditions. These conditions ensure that the process does not explode
and is unique. To retain the length of the proofs, it will furthermore be assumed
that the solution is stationary and strongly mixing. Intuitively this can only be
the case if the drift pulls the process back to its mean whenever the Brownian
motion creates a large deviation. There are different sets of assumptions on the
drift and diffusion that ensure this. For instance Veretennikov (1997) provides

the following condition: There exist constants r > 0,C' > 0 such that

T

T
wer), — ) < ——— for ||z|| > C
(@) ) < o o Mol

and (r — (dA — A_)/2)/A;y > 3/2 where
r r
Ao =inf(A(x)—, — ), Ay =sup{A(x)—,—),
A ) A= SR )

A =suptrA(z)/d.

x

Of course the process can only be stationary if the initial random variable X
already follows the stationary distribution. The process is completely character-
ized by the drift and the diffusion functions and in particular for the stationary
density f(z) it holds

W) fl@)=5) ——i

1 9(a¥(z)f(x))
2 Z ox?

=1
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for all j = 1,...,d. Then it is no problem to assume that for given drift and
diffusion functions the initial random variable Xj is distributed with density
f(@).

The assumption of stationarity can be relaxed to assume that the process is
recurrent. This guarantees that (X;) returns to any state infinitely often, which
enables the local estimation using almost uncorrelated observations. Extending
the results of this chapter to this more general class of processes can be done by
using the proofing techniques of Bandi and Moloche (2001) and Schienle (2006).

Assume that the process is observed at n1T 4 1 equispaced time points in
the interval [0, 7. Defining the distance between subsequent observations with
A =n~! | the observations are denoted with Xya,k = 0,1,...,nT. This setting
allows to study different sampling schemes. High frequency sampling is consid-
ered if the sampling interval shrinks to zero, i.e. n — oo (or A — 0). Then,
the nonparametric estimation can be based on the property of the conditional

expectation operator

(4.2) lim E(A (X[ — Xia) | Xoa = 2) = i/ (2)
(43)  lim E(AT (Xna = Xia) Xfina = Xia) | Xoa = 2) = a¥(2).

Thus, estimators are given by regressing the increments of the process (resp. their
products) onto the state. For example a classical Nadaraya-Watson estimator of

the drift function is given by

nT—1 _ j j
(4.4) AW () = 7w 2o Kn(® Xea) AT (X0 — Xia)
. A = ——
= T K (T, Xia)

with a kernel weight Kj(z, Xxa) = Hle K (2%, X3a). For simplicity of nota-
tion it is assumed that the same bandwidth is used for all dimension and it will
be denoted with h. The corresponding estimators of the entries of the diffu-
sion matrix are obtained by replacing Afl(X(ij)A — X7 ,) with Afl(X("kH)A —

,iA)(X(JkH)A — Xj\). In the scalar case (d = 1) this estimator of the diffusion
was first considered by Florens-Zmirou (1993) for a fixed time horizon. A bivari-
ate extension was proposed by Brugiere (1993). In that case the diffusion function
can be estimated with mixed asymptotic (n — oo, T = T fixed) normality. If
the time horizon tends to infinity as well, asymptotic normality of the estimator
holds and the rate is given by W, which can be found in Bandi and Moloche
(2001).
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The drift functions, in contrast, are not estimable over a fixed time horizon. If
both n and T tend to infinity, the estimator is asymptotically normal and the
rate of convergence is given by VThd (see Bandi and Moloche, 2001).

In finite samples the estimation based on the conditional expectation operator
suffers from a bias of order A associated with the sampling frequency. Using the
infinitesimal generator of the process, Stanton (1997) and Fan and Zhang (2003)
introduce different approximation schemes, that result in a bias of order A*. As
they point out, the increasing precision has to be paid with a larger variance of
the resulting estimators.

Various articles have extended the basic framework to nonstationary but re-
current processes (Bandi and Philips, 1998), low frequency sampling (Gobet,
Hoffmann and Reif}; 2004), local polynomial estimators (Fan and Zhang, 2003,
Moloche, 2001) or jump diffusions (Bandi and Nguyen, 2003).

The results of Bandi and Moloche (2001) indicate the presence of the well known
curse of dimensionality, which means that for the estimation of higher dimensional
processes the rate of convergence becomes slower and the sample sizes have to be
larger. One possibility to circumvent this problem is to impose more structure
on the unknown functions but to keep them still more flexible than in parametric
specifications.

Additivity of the drift functions means that one or all elements of the drift

vector are assumed to be fully additive, i.e.
() = () + o ),

Analogously, additivity of the diffusion functions means that some or all elements
of the diffusion matrix are fully additive in its arguments. Using an appropriate
estimation technique, it can be possible to estimate the one-dimensional compo-

nents 7 (z7) with the one-dimensional rate of convergence.

4.3 The Smooth Backfitting Algorithm

For the nonparametric estimation of additive functions in a classical regression
setting, different estimators have been proposed. The most prominent smoothing
based techniques are the classical backfitting algorithm by Buja, Hastie and Tib-
shirani (1989), marginal integration by Linton and Nielsen (1995) and Tjgstheim
and Auestad (1994), smooth backfitting by Mammen, Linton and Nielsen (1999)
and local partitioned regression by Christopeit and Hoderlein (2006). Marginal
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integration and local partitioned regression use a full-dimensional estimator in a
first stage and therefore these methods suffer from the curse of dimensionality in
the sense that the sample size has to increase with d (but the rate of convergence
is one-dimensional). Opsomer and Ruppert (1997) have investigated the asymp-
totic properties of classical backfitting and found out that the algorithm is not
oracle-efficent. Furthermore, the correlation between the covariates is restricted
in their analysis, which is an important drawback in the present application of
diffusion processes. In contrast, smooth backfitting was shown to be fully oracle
efficient in a standard regression problem. Therefore this algorithm is chosen for
the estimation of diffusion processes in this chapter.

The algorithm will be presented for an estimator of u'(z). Other components of
the drift and the diffusion follow by appropriately changing the response variable
according to equations (4.2) and (4.3). The additive model for p!(z) is given by

(4.5) lim E(A™ (Xlina — Xia) | Xea = 2) = g0+ " (@) + - + p(2).

Without an additional constraint constants could be interchanged between the

additive components and they would not be identified. Therefore
(4.6) /,ul’j(a:j)f(xj)dszo, j=1....d

is imposed where f(27) = [ f(z)dx™7 denotes' the marginal density of X7. To
estimate an unknown regression function by kernel smoothing, local polynomials
of different order can be used. Usual considerations are local constant (Nadaraya-
Watson) or local linear estimators. In this section smooth backfitting estimators

of the additive model based on these popular estimators are described.

4.3.1 Smooth Backfitting Based on Local Constant Esti-

mation

The classical Nadaraya-Watson estimator as explicitly given in equation (4.4) can
be obtained as solution of the minimization problem

(4.7)
1 nT—1 9 d .
ﬁ;[NW = arg Imin /ﬁ Z (A_I(X(lk—i-l)A — Xga) — ' (2)) H Kn(a, Xia) da,
k=0

pltem 5
Jj=1

1Here the notation dz=7 = dz'... dz/~1dad ... da? is introduced.
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where the minimization runs over an appropriate function class M in the space of
square integrable functions. A natural way to obtain an estimator of the additive
model would be to restrict the minimization to the class of additive functions
M =Ll e Mz opt(x) = ' + pbi(at) + - + ph(z?)}. By a simple
projection argument it holds that

d

_ 2 ; i

| Z NXlerna — Xha) = () T] e, X1 4) o

j=1
2 d . .
- [ Z s — Xha) B ()" T Kne?, X1y do
j=1
1 nT ) d ‘ .
*/ = (@Y (@) = (@) [ [ e, X ) da
k=1 j=1

Obviously, minimizing the left hand side over ji' is equivalent to minimizing the

second term on the right hand side over ji'. This second term can be written as
2
@) m" =~ ally= [ (Aulo) - @0 - @) = oo = ) oo da

where fh(m) =2)H 11—[1 L Kn(2', X ,) is a kernel density estimator. Inter-
preting this equatlon, the smooth backfitting estimators can be regarded as the
projection of the full-dimensional Nadaraya-Watson estimator onto the space of
additive functions under the semi-norm induced by ]?h(:c) The projection inter-
pretation of the estimators is discussed in more detail in Mammen, Linton and
Nielsen (1999) and more generally in Mammen et al. (2001).

To ensure identifiability, the minimization is restricted to the empirical version

of equation (4.6)

(49) [ @ il e’ ~o,

for j = 1,...,d, using marginal density estimators ﬁl(xj) = nT YK (2, X,‘ZA)
Solving the minimization (4.8) with respect to (4.9) the minimum (p%HVW,
pbENW () o bW (24)) s not given explicitly but as solution of the set
of equations

(4.10)

) = [ ) L g 5 [ B g o

fh (29) - @)
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for j =1,...,d together with (4.9). The two integrals in equation (4.10) can be
simplified to

anw, o ful(@) dz
/ LW () o)

nT IZHT 1Hz L K (@, XGa) AT (X(1k+1) — Xja)dz™/
e

~1,75,NW j
_,th (ZE]),

which are subsequently called marginal Nadaraya-Watson estimators and

~1,i,NW fh( ) —j ~14,NW /i J?h@iaxj) i
2 d j: 2 1 A d ’L.
JRe gy = A e

Using these transformations the equations (4.10) can be rewritten to

) ) j A
(4.11) ﬁ}lLJvNW(x]) ,J,NW a:] Z/~11NW fh£«75 ﬂf)d i ﬁleNW.
i#j fh<xj)

Then, the Nadaraya-Watson smooth backfitting estimators as solutions to the
equations (4.11) together with the normalizations (4.9). These equations can
directly be motivated by noting that the marginal Nadaraya-Watson estimators

will converge to

B(u (X) | X0 = 2f) = p 4 g9 af) + 3 B(ub(X7) | X7 = 29),
i#j
To obtain the additive components, the conditional expectation operator has
to be inverted and equations (4.11) provide an empirical version of the integral
equation. In that sense smooth backfitting estimation is a (well-posed) statistical
inverse problem.

In the algorithm only marginal Nadaraya-Watson estimators i, e W(xj ) and
one- and two-dimensional kernel density estimators fh(xj) and fh(x ,27) are used.
Since no higher-dimensional kernel regression or density estimators are calculated,
the estimation procedure does not suffer from the curse of dimensionality.

To compute the estimators, marginal Nadaraya-Watson estimators and the one-
and two-dimensional kernel density estimators have to be calculated for a number
of grid points that allow to evaluate the integrals in equation (4.11) numerically.
Using as starting values the marginal Nadaraya-Watson estimators the smooth

backfitting estimators are derived as the iterative solution of (4.11) and (4.9).
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More practical details about the implementation can be found in Nielsen and
Sperlich (2005).
If it holds for the kernel density estimators that

(4.12) ; Fula, 29 dat = fo(a?),

for all combinations of ¢ and j and where G¢ is the bounded support of X°

then the normalizations (4.9) are automatically fulfilled by choosing ,ul ONW

fAl]NW ) fh(fj)dx] = (nT)7! ZZolA (X(1k+1) = Xpa) = T7H (X7 = Xo).
Thus, the normalization can be omitted from the algorithm if centered data is
used.

One possibility to ensure (4.12) is to use modified kernels

Kp(u—wv)
Jgi En(w —v) dw’

(4.13) Kp(u,v) =

where and K is a usual kernel function with support [—1,1], say. However,
restriction (4.12) is always violated if unmodified kernels are used or if one is
interested in estimating the function u!(x) over a compact set G that is not
rectangular. In that case it is still possible to use "YW = T-1( X1 — X!). But

now in each iteration step the centering condition (4.9) has to be updated. That

s W :
means in the r-th iteration cycle, the update ﬁhj v }(95] ) of equation (4.11) has
to be recentered to obtain
~1,5,NW,r]
~1iNW,r] _ SLINWI I (a9) f(a) CW
Fop, = Hn (27) —
Ik Ful (27) dwd

But for this more general algorithm, the asymptotic theory is still not completely
solved. While convergence of the algorithm can be shown, the bias behavior of
the estimator has not been fully understood. This chapter concentrates therefore
on the standard setting, where f(z) > 0 for x € G, which is the cross product
of compact sets G/, on which the marginal distribution of X7 is bounded from
below.

Mammen, Linton and Nielsen (1999) provide general conditions under which a
unique solution of the algorithm exists and show that it converges with geometric
rate with probability tending to one. These conditions are very general and in
particular neither assume the additive model to hold nor restrict the underlying
data generating process. The convergence of the algorithm will be established as

a by-product of the asymptotic normality of the estimators in Section 4.4.
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4.3.2 Smooth Backfitting Based on Local Linear Estima-
tion

The minimization problem (4.7) can be extended by approximating the unknown
function locally by a Taylor polynomial of higher order. This leads to the well
known definition of local polynomial estimators. The local linear estimators are
thus defined as

nT—1
1

4.14) gt =ar min /— ATHXE - X}
( ) Hy g(ﬂl,[u ..... myem | ;0( ( (k+1)A kA)

d .

_ _ X — 27\ 2
=) = Y (@) A=) [ Ka(e?, Xy de,
j=1 j=1

where M = M1 The quantity hu} () can be interpreted as the partial deriva-
tive of u'(z) with respect to 7. The vector fi,™"(2) then consists of an estimator
of the function and of estimators of all partial derivatives. Introducing the ma-

trices

1 (Xt —aY/h .. (XE—ah/h
1 (Xpa—2)/h ... (XId“A_ x?)/h

K(z) = NT d1ag<HKh X4, 2%),. HKh FNE. >)
Y = (AN (XA - X), ., AN (X — XT_A)),
the estimator can be written as
i, " (2) = 87N (@) T(w),

where S(z) = X”(2)K(z)X(z) and T(z) = X7 (2)K(2)Y. The matrix S(z)
contains kernel density estimators and for further reference their one- and two-

dimensional marginals are introduced
Fra(@®) = = 3 Kn(a?, X (X, — 7)) forl=1,2

~ S 1 ) . )
fra(z' 2?) = Z Kp(2', Xjp) Kn (27, XkA)(XkA ') (Xia — al)

k=0

for 1 = (ll, lg) S {(]., O), (07 1), (1, 1)}
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Following the same way as in the local constant case, the minimization prob-
lem (4.14) is restricted to the subset of additive functions M4 = {f!(z) € M|
€ M4 ;s R — R does only depend on 27} in order to obtain an estimator.
Obviously M?4 © M and note that the j-th partial derivative only depends on

27. By projection arguments it follows that this is equivalent to minimizing

(4.15) |, (x) — ﬁl(w)H§=/(ﬁﬁL(ﬂc)—u( )8 () (" (2) - ' (x)) da,

where fi'(z) = (p'(z), @l (z"),. .., gh(z¥))" is an element of M*. Again, the
estimator can be regarded as a projection of the full-dimensional local linear esti-
mator ﬁ,ll’LL onto the space of additive functions with respect to the inner product
induced by §(x) This is the analogous interpretation of the smooth backfitting
estimator as a projection, as in the local constant case of this last subsection but
this time with a different space and a different norm. To derive the solution of
the minimization problem (4.15) the argumentation becomes slightly more com-
plex than in the Nadaraya-Watson case. It is skipped here and the interested
reader is referred to Mammen, Linton and Nielsen (1999). Finally the local linear
smooth backfitting estimator (i """ (ab), iy ™ (2Y), ..., iy ™ (2), Byn "t (2))
is defined as the solution of the following set of equations

g [ (@) (me
7w en) T \Eeten) T\ o

. 1,Z,LL(xi) .
—VJ x!)” Z ij )y (T A dat,
i#£j 7,’h7 (ZL’ )

for j = 1,...,d together with the normalizations

win) [ a - [ fae =0

which ensure identification. Note that this is asymptotically also a consistent

version of the original restriction (4.6). The matrices in (4.16) are defined as

Ui (g fn(27) fzz,l(xj)
Vi) = (fhl(mj) fh,2($j))

0% (2, a7) = (Afh(xl,x]) fhv<170>(‘”i’xj>) :

fh,(o,l) ('Iia xj) fh,(1,1) (Iia fj)

and (7" (27), ﬁ;,{ LE(27)) are the marginal (one-dimensional) local linear esti-

mators of the regression of (X DA — X}A) on XJ,. As in the local constant
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case only one- and two-dimensional smoothers are used and therefore the es-
timator does not suffer from the curse of dimensionality. Using the marginal
local linear estimators as starting values the smooth backfitting estimators are
obtained as the iterative solution of (4.16). For computational purposes the rep-
resentation (4.16) is not very convenient. Nielsen and Sperlich (2005) describe
the implementation in detail if modified kernels are used (i.e. equation (4.12)
holds). In that case direct calculations show that the normalization is directly
achieved for """ = T-1 (XL — X}) for all j = 1,...,d. If (4.12) does not hold,

J
normalization is achieved by choosing

i = ([ B eRear + [t fueh ) ([ e

and implementing the normalization as in the local constant case. As pointed
out, the algorithm can be regarded as a projection method and Mammen, Linton
and Nielsen (1999) provide general conditions under which the iterative procedure
converges as well as properties of the limit. In the next section limit results for

the estimation of the components of a diffusion process will be derived.

4.4 Asymptotic Results

After the presentation of the basic algorithms the asymptotic behavior of the
estimators will be derived. First, estimation of the drift vector is considered and
the two backfitting methods (Nadaraya-Watson and local linear) are compared

via their oracle properties. First, the required assumptions are stated.

Assumption 4.1. 1. The elements of the drift vector u(x) and the diffusion

matriz A(x) are twice continuously differentiable.

2. There ezists a solution to the stochastic differential equation (4.1) and the
process (X,) is stationary, has compact support G = Gt x --- x G and is
strongly mizing with a-mizing coefficients satisfying Y oo, a(i)*/? < oo. The
stationary density f(x) is twice continuously differentiable and the marginal

densities f(x?) are bounded from below on G7.

It is not very natural to assume a process that lives on a compact support. But
this has to be done for technical reasons only. Consider an arbitrary station-
ary strongly mixing process ()? )i, it can be transformed into a process satisfy-
ing the assumption. For this purpose select sets G’/ that fulfil Assumption 4.1.
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Then, a new process can be defined by excluding all observations when ()~( )t
is outside G and taper the remaining parts together. Formally this is done
by defining the time-changed process X; = )?T—l(t) where 77! is the inverse of
T(t) = fg 1% cgy ds. Then, the new process satisfies Assumption 4.1.

Finally, standard assumptions on the kernel function have to be employed.

Assumption 4.2. For a bandwidth sequence h — 0 the kernel weights are given
by equation (4.13). The kernel function K(u) is a positive symmetric (around
0) and bounded function with compact support that integrates to one. u*K(u) is
Lipschitz continuous for k = 0,1,2. The kernel is of order 2, i.e. [ uw? K (u) du <

0.

Note that for the use of modified kernels, extra attention has to be paid to the
kernel moments. For simplicity assume G/ = [0, 1]. The numerator of Kj,(u,v) is
equal to one if v € [h,1 — h] and depends on v (but not on h) otherwise. Kernel

constants are defined as

= 1u—vl Knfu = v) v
KZ(U)_/O( )flKh(w—v)dwd'

0

Easy calculations show that three cases have to be distinguished

f_ll v K (v) dv for u € [2h, 1 — 2h)]
fi(u) = ¢ [ 0 K (v) do 4+ O(hH1) for u € [h,2h] U [L —2h,1 —h] .
[ (w = ) Ky (u —v) dv + O(h*1) for w € [0,h] U1 — I, 1]

The modified kernels only have an influence at boundary points v € [0,2h] U
[1 — 2h, 1], where they differ from usual kernel constants. Analogously, kernel

constants k7 = fol(u — v){(Kpy(u,v))? dv are defined.

4.4.1 Estimation of the Drift Function

Without loss of generality the exposition is restricted to the case of estimating
the first component of the drift vector u'(x). The Nadaraya-Watson smooth
backfitting estimators i,”(7),j = 1,...,d are defined as the iterative solution
of the set of equations (4.11) and the normalization (4.9). Their asymptotic

properties are given in the following

Theorem 4.1. Let Assumptions 4.1 and 4.2 be fulfilled and the additive model
(4.5) with centering (4.6) hold. For the bandwidth sequence it holds that h? =
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O((Th)~'%) and nh® — co. Then the algorithm (4.11) converges with geometric
rate and for the estimators ulj NW( 7,7 =1,...,d it holds that
LY (a9) — i (a9) — B9 — BLNW(a9)

\/—Nh
Vol (29)R?(27) /Ko (27)2

N(0,1),

where
byl = // ) Ky (27,07 f (u?) du? da?
0 1 K1 (z7) . .
— b VK (27 3\ dyd
i [ [ Gt S B ) )
LiNW ( 5\ _ 51($j>i Li(od 27315 (.7
BV (o) = WERES S o) + 1 )
and

vi(@?) = (F(27)) " E(a™(X) | X7 =a7).

Note that the first part of the bias 3,7 (27) is zero for 7 € [h,1 — h] and
therefore only present at the boundary. The second part is not given in explicit

form, it is only defined as

(BL0, B (21), ..., 3% (x%))

—arg min [(90) - 510~ B ) - - 9 o) do,
B’ By
with
Bula) = 2 ;(f(x))‘l%(ﬂl’j(wj))%(f(w)) + ).

Therefore the bias can be interpreted as the projection of §,(z) on the space of
additive functions with respect to the Lo(f)-norm.

The term b,ll’j converges to zero asymptotically since it holds that

/ / o) f(u?) K (27, u) du? da?

]g[hl h/ (9) 9 (29) (K (27, u) — Kn(a? — u?)) da? dd + O(h?)
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and the second term is of order O(h?) because r;(z7) is zero at interior points
2/, However, this term is constant over 27 and does therefore only affect the
normalization of ' (x7). Tt is generated by the difference between the empirical
normalization (4.9) used in the algorithm and the theoretical normalization (4.6)
and does not influence the shape of the estimator.

Convergence of the algorithm follows from consistency of the (one and two-
dimensional) kernel density estimators. In particular, the unknown function do
not have to be additive. If the additive model does not hold, the estimators
will converge to a projection of the high-dimensional function onto the space of
additive functions. In Chapter 5 this case is investigated for independent and
identically distributed data.

The limit distribution of the vector (77, (1), ..., 5y ™" (29)) is a multivari-
ate (d-dimensional) normal distribution where the covariances are zero asymp-
totically. Considering the joint estimation of the additive components of p'(x)
and p” (x) there are asymptotically non-vanishing covariances, given by
K*(27)
f (@)

To judge the efficiency of the Smooth backfitting estimator it has to be compared

cov(VIT" ™ (a7), VAT i "M (a7)) = E(a"(X) | X7/ =2).

to the oracle estimator, which is based on knowledge of all other pu(x%),i # j.

With this knowledge, the response variables could be modified to

ia = AT (X — Xia) — Zu“( i)

i#£j
(k+1)A d (k+1)A
- / ph (XD ds+ > / ol(X,) dW!
kA 1 JkA
(k+1)A 4 ' ' 4
S0 [ — i) ds

i#]
Then, the infeasible oracle estimator is given by
T-1 v
peo B2, Xja)Yin
T—1 R :
Z:O Kh(xijlZcA)

The knowledge of the other components allows to estimate p'/(z?) from discrete

1,j,NW
Nhj (z7) =

data only. The discretization errors are of order Op(n~%/2) and therefore do not
affect the estimation asymptotically. Therefore it holds that (even under weaker
assumptions than Theorem 4.1)
G BINW Gy L () — 3L (I
vt ) i) D) 2 g ),
V2 (@9)v! (29) /Ko (27)
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where
sy _ @) 9
ﬁ (':E ) - h/io(fl}j) 8563 (:u (iL’ ))
2 %2(371)%(#1’](35]))@2] (f(z7)) 1 0 Lj (o
(e ) * 3Pt )

This follows from Lemmata 4.2 and 4.4 in the appendix and therefore, the smooth
backfitting estimator ﬁ}ﬂ AW (g ) achieves the same variance as the oracle estima-
tor, but has a different bias. This is the same efficiency result as in the classical
regression setting, which was shown by Mammen, Linton and Nielsen (1999). To
understand the bias behavior recall that the smooth backfitting estimator can be
regarded as a projection of the full dimensional Nadaraya-Watson estimator onto
the space of additive functions. Theorem 4.1 shows that the bias of the smooth
backfitting estimator is the additive projection of the bias of the full-dimensional
estimator. But this is not additive because the stationary density of the process
f(x) is in general not additive. In contrast, the bias of a full-dimensional local
linear estimator is additive and consists of the sum of the second derivatives of
the additive components (times a constant). Smooth backfitting based on the lo-
cal linear estimator can again be regarded as a projection of the full-dimensional
local linear estimator. In the next theorem it will be shown that the bias of the
local linear smooth backfitting estimator is again the projection of the bias of the
full-dimensional estimator and therefore local linear backfitting is fully oracle ef-
ficient. The design independence of local linear estimation, which means that the
bias is independent of the density of the regressors, carries over to the projected

estimators and drives the efficiency result.

The next theorem states the asymptotic properties of the local linear smooth
backfitting estimators, defined in equations (4.16) and (4.17).

Theorem 4.2. Let Assumptions 4.1 and 4.2 be fulfilled and the additive model
(4.5) with centering (4.6) hold. For the bandwidth sequence it holds that h* =
O((Th)~'?) and nh® — co. Then the algorithm (4.16) converges with geometric
rate and for the estimators ﬁ,ll’j’LL(:z;j),j =1,...,d it holds that

T (@9) = i (ad) — by — B ()

\/T_h'uh R
vl (xd)R(z)

N(0,1),
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with by”? and v'(z7) as given in Theorem 4.1 and where

LL 1“2( ) 0 17§
B = W T (@)

Ko (a?)ka(27) — ki (27) K] (a7)
ro(#7)ka(27) — (K (27))?

K(z?) =

For interior points, the variance reduces to k(x?) = k3(z?) because all other
kernel constants are zero or one. In contrast to local constant smooth backfitting,
the bias is given in explicit form. To derive the oracle efficiency, consider the
unfeasible local linear estimator based on the data Y,’y. Applying Lemmata 4.2
and 4.4, the asymptotic properties of the oracle estimator (under Assumptions 4.1
and 4.2) are given by

i o B G el A CO N
V@)

From this it can be seen that both bias and variance are identical to the ex-

N(0,1).

pressions in Theorem 4.2. Therefore the local linear estimators are fully oracle
efficient.

4.4.2 Estimation of the Diffusion Function

Now, the estimation of the elements of the diffusion matrix A(z) is considered. To
avoid confusion with the increasing number of indices, the exposition is restricted

to the case to estimate a'?(x), which is assumed to be fully additive, i.e.
(418) CL12(ZL‘) — a12,0 —f—alQ’I(Il) 4. _'_a12,d(l,d)'

For identifiability it is imposed that [a'*/(27)f(2?)da? =0 for all j =1,....,d.
Based on equation (4.3) the marginal Nadaraya-Watson estimators are given by
nT 1 _
Kh(xj XI?A)A (X(1k+1) - XI%A)<X(21<;+1)A - Xl%A)
o Kn(ad, X]0)

B (29 =

The local constant smooth backfitting estimators are defined by plugging these es-
timators into equation (4.11). Explicitly, the backﬁttlng estimators @, """ (27),
j = 1,...,d of the additive components of a'?(x) are defined as the iterative

solutions to

(4.19) aiZ,J',NW(xj) _ al?,] JNW x] Z/~12,Z,NW i h/(\xia'xj) d _a;,O,NW
i#£j fh(l'])
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together with the norming falQ]NW(xj)ﬁ(xj) dz? = 0. Then, the asymptotic
behavior is given by the following

Theorem 4.3. Let Assumptions 4.1 and 4.2 be fulfilled and assume that the ad-
ditive model (4.18) with centering holds. For the bandwidth sequence it holds that
h? = O((Tnh)~'?), nh® — oo and (Th)~'/? = o(h?). Then the algorithm (4.19)

converges with geometric rate and for the estimators a}ZQ]NW( ), j=1,...,dit
holds that
~12,5,NW 5\ 12,5(..5) b12’j 3) — h23120NW (4.
(@) —a (@) — by (@) — hAG, (/) o N(0,1),
vt (27) R (27) [ ko (27)
where

b,lf’j:—// 0129 (29 Ko (29, ) f () ded? da?
—h// %an’j(az )mil(h(x” W) f(uf) da?

Ko(z7

5;2,j,NW(xj) _ h%(au(l’j))w + m@lj(ﬂ)

Ko(z7)

and
v(a?) = (f(27) T E((@(X))* | X7 =a).
Again the bias is given only in implicit form by

(5;2,07 @2’1(951), o ~;2,d(wd>>

=arg oIIlin12 d /(@:(m) — 120 120 (1) — 12.4(,0))2 £ ()
Bo" B —p
with
4 0 L |
J:1 31}7 CCd Oz’ (f()) 20(x)? a'?().

The rate of convergence is given by v/Tnh and is faster than in the drift case.
This is consistent with the general finding that the diffusion function of diffusion
processes can always be estimated with a faster rate.

The joint distribution of the vector of the @, 7 (27) is a multivariate (d-dimen-

sional) normal distribution and all covariances are asymptotically zero. In the
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joint distribution of components of different elements of the diffusion matrix, say

.. Y . . . :
a”(x) and a'7 (x), non-vanishing covariances are present. These are given by

cov(VhnTa MW (2%), vhnT’”” RANW (k)
k

(:(: ) . o A A
= B (X)a" (X) | X ="
ko (zF) f (%)
and zero otherwise.
For the estimators of the diffusion function, the efficiency results of the estima-
tors of the drift function carry over. To see this, consider the oracle estimator for

a'?J(z7), which is based on infeasible data

Yia = A_I(X(lkﬂrl) XkA)(X(kH) XlgA) - Z ami(X’iA)'
i#]

The Nadaraya-Watson oracle estimator &, """ (27)

is then obtained by regressing
Y,X on Xya. Using Lemmata 4.5 and 4.7 the asymptotic properties of the oracle

estimator can be derived as

VRt @) — (@) — FR) B g

vt (a?) K2 (27) [ Ko (27)

with
2509y = 1) O 12
3123 (39) hﬁ_o(xj)aﬂ( (7))
o (Ka(27) 3% (a7 (7)) 3% (f (7)) 1 o Q129 (i
+h(ﬁ0(l’j) f(l‘]) _'_28(1,’]) ( >>

As in the estimation of the drift vector, the local constant smooth backfitting
estimator is not fully oracle efficient. While the variance is the same, the two
estimators have different bias. A fully oracle efficient estimator is obtained using
local linear smooth backfitting.

First, define the marginal local linear estimators as

CeLL, i 2L,
(@, """ (@), a5 (o)

Y

= arg min /— (AT (X (Grnya = Xaa) (XGya — Xia)

(@!2.J —12J)

—a'®(2?) — a;Q’j(x] n (2 X,ﬁA ) dx

”:&



92 4. ESTIMATING ADDITIVE DIFFUSIONS

and then the local linear smooth backfitting estimators as the solution of

a/}llQ,j,LL (I]> B a]lf,j,LL (I’J) B 5;2,0
(42()) ~12,5,LL/ — \ ~12,5,LL, 5
it (e) ) =\t ) ) o

o PN el €0 .
_VJ(J’J)_ Z/Uij(xljx]) ~12,7j,LL(:L‘i) dxl

i# @i,

with normalization
[ At fw) ot [T ) fusle?) el =0,
The asymptotic behavior of these estimators is given in the following

Theorem 4.4. Let Assumptions 4.1 and 4.2 be fulfilled and assume that the ad-
ditive model (4.18) with centering holds. For the bandwidth sequence it holds that
h? = O((Tnh)~'?), nh® — oo and (Th)~'/? = o(h?). Then the algorithm (4.19)
converges with geometric rate and for the estimators a*?>L(x7), j = 1,...,d it

holds that

G2 @) — at2i(a) 4+ B2 o) - BRI ad)

o V(i)

N(0,1),

with by> and v*2(x7) as given in Theorem 4.3, ®(x7) as in Theorem 4.2 and where

: : 1 ko(2?) 02
12,5,LL¢ .5\ _ 3,222
ﬁa (l’ ) h (l’j)2

2 ol (@)

o5

This estimator has to be compared to the local linear oracle estimator, which
is the local linear estimator of the regression of ¥,’X on Xya. Then, the result is
analogous to the drift estimation. The smooth backfitting estimator @, /""" (27)

has the same bias and the same variance as the oracle estimator.

4.4.3 Bandwidth Choice

An important issue in the application of kernel regression techniques is the se-
lection of the smoothing parameters hq,...,hy. While the derivation of formal
results for data-driven bandwidths is beyond the scope of the present work, two
possibilities will briefly be described. There are two proposals to select the band-
width for smooth backfitting estimation. Nielsen and Sperlich (2005) introduce

a cross-validation procedure and give evidence by simulations that the method
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works. However, they do not provide theoretical results. Mammen and Park
(2006) investigate the use of penalizing functions and theoretically derive the
validity of their procedure.

Presumably the results by Mammen and Park (2006) for independent data
could be generalized to the present setting of diffusion processes. However for
finite samples, the correlation structure of the data can produce misleading re-
sults. Cross-validation can be adjusted to dependent data more easily. The cross

validated bandwidths are given as minimizers of the criterion

nT—1 d
CV(hi,... ha) = > (Xesna — Xpa — 30— ﬁifﬁ;ﬁfk)(Xia))?
k=0 j=1

The estimators at the point Xj;a should be independent from X1na — Xia
to obtain a reliable fit of the unknown function. For independent data this is
achieved by using a leave-one-out estimator. For time series data this can be
generalized by excluding more data points in the (time-) neighborhood J (k) of
XA from the prediction.

The estimator ﬁ,ll’j’NW(a:j ) does not depend asymptotically on the bandwidths
of all other components. Therefore, the cross-validation function can be mini-
mized by minimizing over hq, ..., hy subsequently. Usually the optimization is
performed via a grid search procedure. The subsequent minimization requires
only one-dimensional grid searches and reduces computation time. More time
can be saved by optimizing the bandwidth in each iteration step of the calcula-
tion of the smooth backfitting estimator. This is described in detail in Nielsen

and Sperlich (2005).

4.5 Simulation

In this section the finite sample performance of the smooth backfitting estimators
is investigated via a simulation study. Two three-dimensional data generating
processes of the form

dX; = p(Xy) dt + 3(X;) dW,

are considered. For the first process all entries of the drift vector and of the
diffusion matrix are not only additive but also linear. For the second process
some of these functions are nonlinear. The exact specification of the processes

will be given below.



94 4. ESTIMATING ADDITIVE DIFFUSIONS

The paths of the process are simulated using the Euler-scheme with N = 10
intermediate points to approximate the stochastic integrals. The simulation study
will concentrate on the estimation of the components of p*'(z!') and a'™!'(z').
The results for other functions are comparable. Two sample sizes are considered, a
small sample with n = 35,7 = 30 and a large sample with n = 50,7 = 100. In the
estimation, the Epanechnikov-kernel is implemented and the smooth backfitting
estimators are evaluated on a grid of 51 equidistant points in each direction.
Ten different combinations of bandwidth constants are considered and they will
be adjusted according to the relevant sample size. To judge the performance of
the estimators, they are compared via the mean integrated square error given
as MISE (11,") = E(f(7," (z!) — p*'(2'))?dz"). The ISE for one estimator is
approximated by evaluating the integral over the interior gridpoints 6-41, not to
be affected too severely by boundary problems. The MISE is then estimated as

mean or median over 201 simulation runs.

4.5.1 Linear Model

For the linear model an affine diffusion process is considered. The process is

specified as

0.75 — ' 4+ 0.522 + 23
pu(z) = 10.75 4+ 0.5z — 222 + 0.2523 |,
1.5+ 0.25z" + 2% — 3a°

Vv0.3zt 4 0.322 0 0
Y(x) = 0 Vv 0.322 0
0 0 Vv 0.323

The estimation is performed on the cube G = [0.95,4.25]x[0.50, 1.85] % [0.60, 1.65].
By simulations it was found that P(X; € G) = 0.86. This means that the
estimation was on average based on 900 observations for the small sample and
on 4300 observations for the large sample.
First, the results for the drift function are presented. The normalized function
is given by
ptt(zh) =2.32 — 2t

where the mean was calculated by simulations. The bandwidth is given by h =
(hg, h2, h3) x T~1/>. The results in Table 4.1 indicate that the bandwidths hy and

hs have an influence on the estimator of u'!(z!). As expected by the asymptotic
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Figure 4.1: Estimators of the drift part pu"!(x') for n = 35,7 = 30 (left column)
and n = 50,7 = 100 (right c.). Nadaraya Watson estimators are in first row,
local linear in second. In each panel there are given the true function (solid),
pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations (dashed-
dotted) and the MISE-median estimator over the simulations (dashed). The
bandwidth is given by h = (1.7,0.85,0.66) x T—/°

results, this effect is smaller for the large sample. However, the influence of
hy onto the MISE of i, (z') is stronger than the influence of hy and hs. This
finding gives evidence that the recommended bandwidth selection procedure leads
to reliable results even in small samples.

The values of the mean and the median differ considerably large, indicating a
number of outliers in the simulations. This results from the fact, that in some
simulations not the whole cube G is filled with observations. In that case the den-
sity estimators can be very close to zero?. This causes problems for the marginal
estimators and the integration over the estimated conditional densities in the al-
gorithm. Then, the backfitting estimators can be dominated by some extreme
values, based on too few observations in a local neighborhood. However this
simulation effect decreases with an increasing number of observations. In prac-
tice, the cube G would be selected such that there are enough observations to
avoid this problem. Thus, the result for the median is more reliable to judge the

performance of the estimator.

2The convention 0/0 = 0 is used in the implementation
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In all settings the Nadaraya-Watson estimator outperforms the local linear es-
timator. This effect can only partly be attributed to the increasing variance of
the local linear estimator at boundary points, because in the calculation of the
MISE some boundary points are excluded. In particular in the large sample, no
boundary points are used to estimate the MISE, but still the Nadaraya-Watson
estimator performs better.

Figure 4.1 underlines these findings. In the upper row, the Nadaraya-Watson
estimator is displayed and in the lower row the local linear estimator. The left
column shows the results from the small sample and the right column the results
from the large sample. The local linear estimators show a large variance near
the boundary, which is smaller for the large sample, but still their performance
is worse than the Nadaraya-Watson estimators.

The second important finding is that the Nadaraya-Watson estimator seems to
exhibit a larger bias, because the interquartile range of the estimators seems to
follow a different slope than the true function. Theoretically this can be explained
by the difference in the bias behavior of the two estimators. Recall from Theo-
rem 4.1 that the bias of the Nadaraya-Watson estimator is given only implicitly
as an additive projection of the first derivative of the component function and of
the density. In contrast the bias of the local linear estimator is zero for this data
generating process, because the second derivative of p'!(z!) is zero. This effect
is reduced for the large sample. Recall however that the MISE of the Nadaraya-
Watson estimator is always smaller. Therefore its variance must be much smaller
in finite samples.

The results for estimating the diffusion function a'''(27) = 0.3(2! — 2.32)
are given in Table 4.2 and Figure 4.2. The bandwidth is now given by h =
(hg, h2, h3) x (nT)~'/° because of the faster rate of convergence of the diffusion
estimator. The findings from Table 4.2 are similar to those for the drift estima-
tor. For all settings the Nadaraya-Watson estimator has a smaller MISE than
the local linear estimator, however the difference decreases with an increasing
sample size. The effect of the bandwidth constant on the MISE is much smaller
than for estimating the drift function, which should be due to the faster rate of
convergence.

Next, compare the results of Figure 4.2 to the estimation of the drift function.
One can see that the bias of the Nadarya-Watson estimator is still present, but the
effect is much smaller. The interquartile range of the Nadaraya-Watson estimator

is still smaller than that of the local linear estimator and the magnitude of this
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Figure 4.2: Estimators of the diffusion part a''!(z!) for n = 35,7 = 30 (left
column) and n = 50,7 = 100 (right c.). Nadaraya Watson estimators are in
first row, local linear in second. In each panel there are given the true function
(solid), pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations
(dashed-dotted) and the MISE-median estimator over the simulations (dashed).
The bandwidth is given by h = (1.7,0.70,0.66)’ x (nT)~'/°

distance is much smaller than for the drift estimation. All these findings highlight

the increased rate of convergence for the estimation of the diffusion function.

4.5.2 Nonlinear Model

In the second specification, a process with nonlinear elements of the drift and

diffusion is simulated. The concrete specification is given by

0.4zt — 1.1(z")? + .01/2" + 0.2522 + 23
p(x) = 0.75 + 0.5z — 222 + 0.252° :
1.5+ 0.252" + 22 — 323

V032 +03(2)° 0
S(z) = 0 V0322
0 0 0.32?

0
0

The specification of p'!(z!) was considered by Ait-Sahalia (1996b) for a scalar

diffusion to model interest rates. The estimation is restricted to the cube G =
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Figure 4.3: Estimators of the drift part u>!(z!) for n = 35,7 = 30 (left column)
and n = 50,7 = 100 (right c.). Nadaraya Watson estimators are in first row,
local linear in second. In each panel there are given the true function (solid),
pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations (dashed-
dotted) and the MISE-median estimator over the simulations (dashed). The
bandwidth is given by h = (0.74,0.60,0.57) x T~/>

[0.50,1.95] x [0.35,1.30] x [0.45,1.35] with P(X; € G) = .85. For estimation in
this model the bandwidth constants are changed by a factor corresponding to the
different range of the cube G.

The results for estimating the first component of the drift function
ptt(r') = 042t — L1(2")? + .01 /2" +1

are presented in Table 4.3 and Figure 4.3. Note that the MISE in Table 4.3 is
multiplied by 100. As in the linear case, the Nadaraya-Watson estimator outper-
forms the local linear estimator. Furthermore the local linear estimator suffers
from severe outlier problems. This is less evident for the large sample, but still
present. It is also observed that the magnitude of the MISE is mainly affected
by its own bandwidth, but some finite sample effects are present.

From Figure 4.3 it can be seen that the local linear estimator exhibits a larger
variance, especially at the right boundary. On the other hand, the bias of the
Nadaraya-Watson estimator is well visible for the small sample and in particular

the estimator seems not to capture the nonlinearity very well. For the large



4. ESTIMATING ADDITIVE DIFFUSIONS

102

0ST°0 8610 691°0 7020 106°0  L8L0 197°0 7290 (6970 ‘050 FL0)
LyT°0 89T1°0 €aro ¢LT0 0TS0 €290 16¥°0 680  (8¢°0 ‘19°0 ‘FL0)
evro 9020 16T°0 €1co ¢Lv'0 L2990 S97°0 6550 (850 ‘050 ¥2°0)
00c'0  8€T0 G0c'0 0¥¢ 0 6850 6040 L6670 799°0 (850 ‘0570 ‘28°0)
¥1c'0  89¢0 qral) 09¢°0 1860  8cL0 77a0 ¢L90  (LF'0 ‘0570 L6°0)
9610  ¢cc0 661°0 €¢c0 99¢'0  GELO eveo 9890  (85°0 ‘6£°0 2S°0)
00¢’0  ¥¢eco 661°0 [qaq 89¢°0 €040 Ggeeo L99°0  (L¥'0 ‘6€°0 L5°0)
68¢°0  19€°0 6.¢°0 Lyve0 ¢68°0 9201 €e’’0 796°0 (L0 ‘6£°0 ‘07°0)
1.0 67€0 LLT0 9¥E0 GL8°0  TIGT'T 9080 ¢90'T (970 ‘6£°0 ‘07°0)
gyc'0  ¢0€0 eveo 00€°0 098°0  9€0'T €¢80 7560 (9€°0 ‘82°0 ‘0F°0)
URIPOJN  UBIN URIPO[N  UBDIN URIPOJN  UBSIN URIPOJN  UBOIN (2y 9y Yy)

IROUIT (€20

UOSIRAN “RARIRDR N

IROUIT [BJ0T]

UOSIRAN “RARIRDR N

00T = L'05=u

0 =.L'GE=Uu

(0T x) wonyeoyads Ieouruou oY) Ul (), SUreWIse 10y HSIIN F'F O[q8L,



4.5 Simulation 103

all‘l(xl) all,l(xl)

-0.4
|
-0.4
|

T T T I
0.5 1.0 15 2.0 0.5 1.0 15 2.0

Figure 4.4: Estimators of the drift part a'™!(z!) for n = 35, T = 30 (left column)
and n = 50,7 = 100 (right c.). Nadaraya Watson estimators are in first row,
local linear in second. In each panel there are given the true function (solid),
pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations (dashed-
dotted) and the MISE-median estimator over the simulations (dashed). The
bandwidth is given by h = (0.74,0.60,0.57)" x (nT)~'/°

sample, the performance of the estimators seems to be comparable, but recall
from Table 4.3, that the Nadaraya-Watson estimator has a smaller MISE.
Finally, turn to the diffusion estimator in the nonlinear setting. Here, the

function under investigation is
a'"t(x') = 0.3((zh)? — 1.31).

The simulated MISE is presented in Table 4.4 and for the first time in the sim-
ulations the local linear estimator outperforms the Nadaraya-Watson estimator
in the large sample for some bandwidth settings. From Figure 4.4 it can be seen
that both estimators capture the shape of the unknown function well.

The simulation study performed in this section gives evidence that the theo-
retical properties of the smooth backfitting estimators hold in finite samples. In
comparable studies, Chapman and Pearson (2000) and Fan and Zhang (2003)
have investigated univariate Nadaraya-Watson and local linear estimators with
similar (or even larger) sample sizes. The results for the smooth backfitting es-

timators are comparable to the scalar estimators and underline the theoretical
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finding that the curse of dimensionality can be circumvented by the structured
model. In contrast to the general theory, the local constant estimators outper-
form the local linear estimator in almost all cases. Therefore it seems advisable to
use the Nadaraya-Watson estimator if the sample size is not very large (< 5000)
and not to rely on the asymptotic advantages of the local linear estimator in

applications.

4.6 Estimating Interest Yields

As an illustrative example, the estimators are applied to estimating the dynamics
of bond yields. Beginning with Ait-Sahalia (1996a,b) a large number of authors
have applied kernel regression techniques to estimate (univariate) short term in-
terest rates. As an extension the smooth backfitting estimators are applied to a
multivariate model of interest yields, using different maturities.

The data consist of daily interest rates for selected U.S. Treasury securities at
different fixed maturities. The series is constructed by the U.S. Federal Reserve
Board and can be downloaded from its homepage®. The three variables under
consideration are the three-month interest rate, the spread between the two-year
rate and the three-month rate and the spread between the ten-year rate and the
three-month rate. The sample consists of daily data from January 1, 1991 to
December 29, 2000, which results in a total of 2504 observations. The data is
displayed in Figure 4.5.

To apply the smooth backfitting estimators a rectangular subset of the original
data must be chosen, over which the estimation procedure has to be carried out.
The density of the process has to be bounded from below over this subset and
therefore G = [3,6.25] x [—0.25,1.75] x [—0.5,3.5] (short rate x spread 3m/2y X
spread 3m/10y) was selected. This resulted in a final sample of 2 147 observations.
The frequency was set to n = 20, leading to roughly one month between two time
units. Then, the entries of the drift vector p(z) and of the diffusion matrix
A(z) are estimated using Nadaraya-Watson smooth backfitting. The choice of
the local constant fitting is based on the simulation results of the last subsection.
The exposition of the estimation in this section will concentrate on u'(z), which

is the drift function of the short rate.

The bandwidth was selected via a cross-validation procedure as described in

3www.federalreserve.gov/Releases/H15/data.htm
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Figure 4.5: U.S. treasury data for 3-month yields (upper), spread between 2-year
and 3-month yields (middle), spread between 10-year and 3-month yields (lower)
from Jan. 1, 1991 to Dec. 29, 2000.

section 4.4.3. The leave-out estimator was constructed by omitting the 250 ob-
servations closest in time to X;a. Notationally, a subset J (i) = {X(-125)a,- - -,
Xin, -, X(iy125)a} is left out. To save computation time, the cross-validation
function was not evaluated at all data points, but only at a subset of 250 randomly
chosen observations away from the boundary. The cross-validated bandwidths are
given by Y = (0.26,0.26, 0.44)’.

Using the asymptotic theory, pointwise confidence bands can be obtained by

estimating the asymptotic variances, given by
(Th)~v! (27)K%/ (o).

Kernel density estimators J?;L(a:]) as defined above are used to estimate the mar-
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Figure 4.6: Additive components of the drift function of the short rate process.
Component function of the short rate (upper), of the 2-y/3-m spread (middle)
and of the 10y/3m spread (lower). Smooth backfitting estimators (solid line)
together with 90 % confidence bands (dashed).

ginal densities and E(a''(X) | X7 = 27) is estimated by

nT—1

1 o
(f7(2)) lﬁ > K@, XA (X(is1a — Xia)®.
=0

To construct the confidence bands a larger bandwidth R = 1.5h; was implemented
and the bands are only computed for interior points, where the kernel constants
do not depend on 7.

In Figure 4.6 the additive components of the drift function in the short rate
process are displayed. The first component clearly has a (large) positive influence
for small values of the interest rate and a (small) negative influence for large

values. This is in line with the mean reverting property of the short rate, i.e. the
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Figure 4.7: Nadarya-Watson estimator (solid) of the drift function of the short
rate together with 90 % confidence bands (dashed).

process is always pulled back to its long term mean. From the other two pictures
in Figure 4.6 it can be seen that the spreads seem to have a significant influence
on the changes in the short rate. The second component of the drift function
seems to be a linearly increasing function of the 2-year/3-month spread and the
third component is linearly decreasing in the 10-year/3-month spread.

Figure 4.7 shows the estimator of regressing the increments of the short rate on
the short rate. This corresponds to modeling the 3-month rate as a scalar diffusion
process. The drift function is nearly constant. For this range of estimation
this was also observed by Ait-Sahalia (1996b) and Stanton (1997) among others.
However the multivariate analysis changes this impression. The spreads seem to
have an influence on the evolution of the short rate. This phenomenon could be
investigated further by adapting the testing procedure of Chapter 5 to test affine

term structure models.

4.7 Conclusion

The theoretical results and the simulation study show evidence for the applica-
bility of smooth backfitting estimators to the estimation of diffusion models. In
these models the curse of dimensionality is augmented by the dependence struc-
ture of the data and multivariate kernel regression is therefore not applicable even
in relatively small dimensions. The simulation results show that the estimators
behave like one-dimensional estimators in similar data samples.

The estimators converge even if the additive model does not hold. In that case
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the additive projection of the unknown multivariate function will be estimated
(see Chapter 5 for the case of independent and identically distributed data).
Therefore smooth backfitting provides a powerful data analytic tool, even if the
additive model is not assumed to hold. For future research it is desirable to obtain
testing procedures for the diffusion model. To test the hypothesis that the model
is fully additive the procedure by Mammen and Sperlich (2006) can be extended.
Secondly, the additive estimators can be used to test for parametric form as in
Chapter 5.

Appendix I: Preliminary Lemmata

To establish the asymptotic properties of the smooth backfitting estimators one-
dimensional marginal estimators have to be investigated, since the smooth back-
fitting estimators inherits their behavior. In the proofs the dimension index
of the estimators will be suppressed, i.e. MW (x7) = 7" (27), VW (27) =
ﬁ,ll’j’NW(xj ) and for the local linear estimators analogously. Using the integral
form of the stochastic differential equaltion for X', the local constant and the

local linear estimator will be decomposed into a bias and a variance part. For
this define for [ = 0,1

Xl 1ya =@\ [k
ZK’L (k A )<%> /(_ (X)) ds

E—1)A
1ZK< X L) Xina =2 Z ) aw
= — nlZ’, B <—> / o s 8’
r k=1 (emna h i 7 (k—1)A

For abbreviation
(el X ' x Xlnya =21
KM(;L“J, X(k—l)A) = Ky (a7, X(kfl)A)< h )

is defined and for a more compact notation fyo(27) = fu(27) and ﬁL,(o,o) (2%, 27) =
fn(z',27) is introduced. This enables to write the marginal Nadaraya-Watson

estimator as

(4.21) AW (@7) = Fao(a?) T (a7) + Fro(2?) 1Y (27) = AN P (a7 + 1 ™Y (o)
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and the marginal local linear estimator

(ﬁ#(mﬂ‘)) _ (@,omﬂ') fh,mxn)‘l (%(w’))
ﬁfﬁ(ﬂfj) fh,l(xj) fh,z(fcj) %,1@”

(4.22) n (fAh,o(acj ) @,fﬂ

As building blocks for the asymptotic distribution for the smooth backfitting
estimator serve the uniform convergence rates of both parts and the asymptotic
distribution of the variance part. To establish this, the one-and two-dimensional
marginal density estimates, will be investigated first, beacuse they arise as well

in the algorithms of the smooth backfitting estimators.

Lemma 4.1. Under Assumptions 4.1 and 4.2 it holds that

. N log T\ 1/2
sup | nala?) = mila?) f(2)] = Op(h2+< T ) )

SUD | F(hy o) (27, 27) — kg, (29 iy () f (27, 27) | = Op(h? + (

(zt,29)€GIxGI

log T) 1/2
h?>T

for k=0,1,2 and 0 < k1, ky < 1 if the rates on the right hand side converge to

zero forT' — oo.

The result is here stated for arbitrary n. In general there are cases, where it
is possible to obtain the superoptimal rate T~'/2 for n — oo (see e.g. Bosq,
1998). However for multivariate diffusion processes (in contrast to the scalar case)
these conditions are not satisfied and more than the standard nonparametric rate

cannot be achieved.

Proof. Consider the one-dimensional case first and decompose the estimator into

bias and variance
Fok(@?) = k(@) f(27) = (@) = B fun(2?) + B fri(@?) — sp(a?) f(2).

Standard kernel calculations show that the bias is of order h? uniformly over the

interior of G7.



110 4. ESTIMATING ADDITIVE DIFFUSIONS

Let the variance part be denoted by Jy-(27). Cover the compact set G by N inter-
vals G/ = {x : |x—x]| < N~'},1=1,..., N and choose N = O((T/(h*1log T))"/?).
Then bound

sup |Jy(27)] <  max - sup [Ty (@7) = Jv (@) + max [y (a])].
2 €Gi =1,.., mjegg 1=1,..,.N

By the Lipschitz continuity of the kernel it holds for the first maximum that

max_sup |Jy(z7) — Jy(z])| = O(N*h72) = 0<<logT>1/2>‘

=1,., wieg! hT
Now regard Jv(x{ ) as a sum of a-mixing random variables
St xz Zth xn t+zA) E Kp (27, Xiin)-

Trivially E S;,,(2]) = 0 and furthermore

. 1 n - , 5
E(St,n(xg)y = 7o Z E(Kh,k(xf, Xt-l—z'A))
n—2 n—

1
2
nQTQ Z E th xl7Xt+zA)Kh k(xluXtJrl/A))

=1 ¢/=i+1
O(h™'T™?),

because of the Cauchy-Schwarz inequality and E[?hk(:vg ,XtHA))Z = O(h™1).
Cramer’s conditions are are easily verified with a constant (Th)~*

With these results a Hoeffding-type inequality (see Theorem 1.3 in Bosq, 1998)
can be applied to obtain

T
IP(‘Z Stn(:vfg)‘ > 6)\n> < const T2
=1

where \, = (logT?/(Th))"/2. Because NT~2 = o(1) the desired result follows.

For the two-dimensional case, it can be decomposed as above into bias and vari-
ance and proceeded as before. The only difference is that the variance of the
kernel is then of order h=2. O

Next, the uniform convergence of the estimators will be investigated, beginning

with the bias parts
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Lemma 4.2. Under Assumptions 4.1 and 4.2 it holds that

A . A logT
~NW,B( j\ 1 I 9| — 2, o
s ) B (X) | X0 = 20) = 0 (4 )
A . , log T
~LL,B(_j\ 1 J— 0| — 2, o
s [ ) — Bt (X) | X7 = a9)| = 0p (1 + (0 )
A A A log T
~LLB/ j\ _ 1A 1 J— 0| — 24 _°°
sup [ () — 0y B (X) | X0 = 9)| = 0n (4 (05

if the terms on the right hand side converge to zero as T — oo and n — oo.
Proof. Define m'(2?) = E(u'(X) | X7 = 27). Standard kernel calculations
show that E(f"" (27)) = m(27) + O(h?), B(u) " (27)) = m'(27) + O(h?)
and E(ﬁBhLL(xJ)) = hd;m*(27) + O(h?) uniformly in 2.

For the proof uniform bounds for ¢; l( 7) or more precisely for a centered version
have to be established

thi(a?) = Thy(@’) = Fua(a?) E(R (27))

1 nT N . ' 1 kA ) B ‘
o 2 R X (5 /( p'(X,) ds — B@E()))

k—1)A

ZKhl k 1)A)(A ( p(Xs)ds — p (X(k—l)A)>

E—1)A
+nLTkz:;Khl(£L' X(k 1)A)(M1(X(k: 1)A) E(:uh ($]>)($]))

where 7iP(z7) is the estimator under investigation. To apply a Hoeffding-type
inequality (as in the proof of Lemma 4.1) treat the two terms separately and
regard them as sums of 7' a-mixing random variables S;} (z7) and SP (27),t =
0,...,7 —1. Next it will be shown that E(S{ (7))*> = O(T?*n"'h™!) and
E(SP,(27))? = O(T*n~'h71).

Apply the mean value theorem to obtain (setting ¢t = 0 wlog)

E(Sén(xj ))?
n 1 kA 1 )
= n2T2 ZE(KM Xhna) X 1)A(XS = X(k-1)a) 01 (rs) dS)
=1 -
9 n—1 n 1 EA
t T E<Khl X 1)A)A A(XS — X(k-1)a) O (€ks) s

k=1 k'=k*1
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- 1 e
X Kh,l(JCJ,X(ka_m)Z/ (X5 = Xw-1)a)050" (&) dS)
(K'—1)A

where &5 € (Xg-1)a, Xs) (Wlog Xx-1)a < X,). Beginning with the variance
parts, it holds that

2
B (K X, / (X, — Xaena)Opp' (G.) ds )
< ilelglaju PB(Rua(@!, Xpna)(, max_ X = Xo-nal)?)
=O0(h™'n7h).

The last line follows by iterated expectations and an application of the Burkhol-
der-Davis-Grundy inequality. The covariance terms can be bounded by Cauchy-
Schwarz, and the verification of Cramer’s conditions goes along the same lines.
This yields the stated rate for E(Sg!, (27)?.

Secondly, turn to S, (7).

B(S50))* = 7 2 B(Rie!, X)) (8 (Xypa) ~ B 0)))°

k=1
j ~1,B/, j
nQTQZ Z E(‘K’” (k HA )(Ml(X(jkq)A)_E(Mh (93]))
k=1 k'=k+1

X Khl(l‘ X(kz’ DA )(Ml(ng/_l)A) - E(ﬁllz’B(xj))))
=0T *n ') +0(T?).

Because p! and the expected value of the estimator are bounded the differences
can be taken out of the expectations. Then the rates follow from standard kernel

calculations. This completes the proof of

log T’ )

sup (17| = Op (1 i)

xJ eg]

To show the lemma, consider the following decomposition
fin ™™ (27) = m(27) = Fuo(a?) TR (27) + E(y P (27) — m' (7).

For the investigation of the first term it suffices to concentrate on the numerator,
because the density is bounded from below on G7. Then the statement follows.
For the local linear case, use the analogous expansion and the same arguments
hold. O
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Lemma 4.3. Under Assumptions 4.1 and 4.2 it holds that

A log T
SVNW gy
sup, " (7)) Op(—( W) /2)
B A log T , log T
V.LL(j\| — 3| —
sw @) = 0r () s B ) =0 (i)

if the terms on the right hand side converge to zero as T — oo and n — oo.

Proof. Because the density is bounded from below, it suffices to consider the

numerator parts of the estimators. Defining random variables

+(k+1)A

Ry (27) ZKM 2, X7 A) Z X,)dwm

i+kA

it can be written (for [ = 0,1)

T

G(2?) =) Rig().

i=1
Obviously E R;(27) = 0 and by Itd’s lemma it holds that

n—1 i+(k+1)A

E(R;(27))? = ;QZE K2 XZ+kA))2/+k:A a'l(X,) ds

= h Tk (27) f(2) E(a' (Xo) | X7 = 27)(1+ o(1)).
Utilizing It6’s lemma, Cramer’s conditions can be proved with a constant (Th)~*

Then as in the proof of Lemmata 4.1 and 4.2 (using an exponential inequality

and covering arguments) it follow that

, logT
'
ty (2?)| =0
S 16l P((hT)W)
and both parts of the lemma follow. n

Beside the uniform convergence results, the asymptotic distribution of the vari-

ance parts of the two estimators have to be derived. This is given in the following

Lemma 4.4. Under Assumptions 4.1 and 4.2 and if Th — oo and nh® — oo for

T — oo and n — o0, it holds that

Thing ™" (/) == N(0,

where v (27) = (f(2?)) P E(a'Y(X) | X7 = 27).
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2

iy "MW (27) is a multivariate (d?

The joint distribution of the vector of the pu

dimensional) normal distribution with covariances given by

SV Aszj _ K*(27) i J— i
cov(VThi (a7), VThis " (z7)) ) @) E(a" (X) | X )

and zero otherwise. The same holds in the local linear case.

Proof. To derive asymptotic normality, the distribution of ?XJ has to be consid-

ered. To do so, decompose it into a discretization error and a stochastic error

nT d kA
j 1 1 j j m m
%(ﬁ) T Z K (27, X(Jk—l)A> Z / o'"™(X,) dW]
k=1 m=1" (k=1)A
= (Kh,l(xJan) Khl b o (X,) AW
T k=1 7 (k=1)A ( na m:l

d T
1 7% j AP m
+TZ /0 Kni(2, X])o"™(X,) dW]

= JD’l(l’j) -+ JTJ(LC]').
To bound the discretization error, calculate
2

A N g
E(Jp(29))” = nT " E(/O (Kna(a?, X7) = Rya(a?, X)) S o (X,) aw)

:nT—lE(/OA(f?M(g;J‘,XJ) Kp(27 Xﬂ))2 1 s)ds)

0<s<A

A

Sch_lh_4E<( max | X, — Xo|)? / all(Xs)ds)
0

< p1p—4 _ 2

<cT™'h itgqgﬂa ($)|E(0I£SE;)Z|XS Xol)

= O(T 'n~'h),

where it is used that all covariances vanish. The last bound follows from the

Burkholder-Davis-Grundy inequality. This yields in total
Jpi(a?) = Op(T 0~ Ph™2) = op(T~1?h71/7)

by assumption.
Next derive the asymptotic distribution of VAT Jr,(z7). Note that for every T

and 27 the functions Kj (27, X7)o'(X,) are progessively measurable and

T
e e / Kpy(27, X))o (X,) ds < oo
0
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with probability one. And for T"— oo it holds that

W (Jry(27), Jpy(a)) = BT / Kn(a?, X7)2a' (X,) ds
0
5 w7 (20) f(@7) B(a (X) | X7 = a7)

T
KT (Jr, (27), Jry, (27)) = hT_l/ K (27, X1) K, (27, X7)a' (X,) ds
0

P

= K1) 2(@7) f(27) B(a" (X)) | X7 = a7).

Applying Proposition 1.21 in Kutoyants (2004) the following asymptotic distri-

bution is obtained

VhT tho) o Y24 ( 30 K i
hT G — N(0,V f(2?)v(27)) where V = [ .

2
Rl K1 ki

Using the convergence results of Lemma 4.1, the statement of the Lemma follows

for both estimators, recalling their definition. O]

Next, some preliminary results for estimating the diffusion matrix are presented.
Again the dimension index of the estimators will be omitted. To decompose the

marginal kernel estimators, recall that by applying Ito’s lemma

kA
(Xjn — X(lk—l)AxXle - X(Zk—l)A) = /(k A a"?(X,) ds+

kA kA
/(k (0= Xhya)axt + /( L= XGa)axt
—1 —1

Based on this decompose for [ = 0,1

kA
Ty ZKhl )A)/( a'?(X,)ds

k—1)A
kA
Thl ZKhl (k DA )/('_1)A<X1 X )dX2

kA

+ / (2 = X yya) XL
(k—1)A

Replacing %\Z ((27) with 75 ;(27) in equations (4.21) and (4.22) gives the decompo-

sition of the marginal estimators of the diffusion matrix @iV (z7) and akf (7).

Next, convergence results for these estimators will be derived.
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Lemma 4.5. Under Assumptions 4.1 and 4.2 it holds that

sup [@¥WE (29) — E(a'2(X) | X! = )| = op(iﬂ + (bi)

s nTh)/?
, , A logn
~LLB(_jy _ 12 J— 0| — 24 __°
xszleng [a, " (2)) = E(a(X) | X? =27)[ = Op (h + (nTh)1/2>
‘ , . logn
~LL,B 12 _ — 24, "5
xsjleng |aj’h ({EJ) - haj E(a (X> | X7 = :BJ)| - OP <h + (nTh)1/2>’

if the terms on the right hand side converge to zero as n — oo and T — oo.

Proof. Replacing pi'(X,) by a'?(X,), the structure of 77, (27) and P ,(a7) are the
same. Therefore, the proof of this lemma is analogous to the proof of Lemma 4.2
and therefore omitted. O

Lemma 4.6. Under Assumptions 4.1 and 4.2 it holds that

- logT
FNWV 0V — O ( g )
:Jlélg)] ]a (z7)] P (nTh)1/2

. log T . logT
SLLV (j\| _ ( g ) SLLV (0 j\] ( g )
sup 18w = 0r () s 5 a1 = O (i)

if the terms on the right hand side converge to zero as n — oo and T — oo.

Proof. Write the numerator parts of the estimators as sum of a-mixing random

variables
Thl ZStn :
where
n—1
Stn l‘] ZKhl x? XHM)ZHM,
k=0
with
(4.23)
t+(k+1)A
1 12
Ziira = (X ina — Xioea) (XPy eina — Xiia) — /m a'?(X,)ds).
t+

Clearly E S;,,(27) = 0. For the second moment it will be shown below that

(4.24) E(Son(z7)* =0(n'h™).
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Cramer’s conditions with a constant (T'h)~! can then be verified by seeing that
supy | Zisxa| = Op(n™1). This allows to apply an exponential inequality as above.
Thus, it remains to show (4.24). First it holds that

n—1
(425) E(S()7n<xj))2 = ZEKh,l(xj7XIZA)QZ§,k
k=0

n—2 n-—1

+Z Z Ekh,l(xj,X]zA)ZO’k[?h’l(xj,X]Z/A)Zo’k/.
k=0 k'=k+1

Start with the first sum and resolve the square to obtain

E Kj(27, X]0)° 25, = E Kii(27, X]0)* (X pya — Xan)*(Xeina — Xia)?
_ o (k+1)A
—2E Kj (2, XIJcA)Q(X(lk+1)A - XliA)<X(2k+1)A - XEA) /]CA a12(Xs) ds

(k+1)A 9

+ Ef?hJ(CL’j, Xl]A>2(/

a'?(X,) ds)
kA

=51+ 52+ Ss.

These three quantities are investigated separately. First recall that

(k+1)A (log n)!/2
(Xierna — Xia)? = /m a''(X,)ds + Op( 1372 )

and then an application of the mean value theorem yields

~ L (k+1)A (k+1)A (log n)1/2
S = B Rpu(ad, X1,)? / o' (X,) ds / d2(X,)ds + O(LB1
‘ kA kA n®/2h
o ’42@]) 11 22 i g
=5 E(a" (X,)a™(X,) | XI =27)(1 + o(1)).

Because the drift is bounded, it holds that
SQ = O(?’L_Sh_l).

Finally, the last term satisfies

K (27)

n2h

93 = E((a"(X,))* | X] = 27)(1 + o(1)).

In total the first term in equation (4.25) satisfies the desired rate. Because
of the stationarity, the second term is bounded by nZZ;IIEI?h,Z(xj,Xg)ZO,k
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I?hvl(mj, Xg)Zo7k/. This will be decomposed into three parts

n—1
0 Y B Rie?, X)X — XX~ X3)
k'=1
X K (@, Xoa) (Xoiya = Xira) (Xforna — Xia)
n—1
1

= > EKp(a?, X3) Kna(a?, X, 0)

k=1
X pH (Xo)p* (Xo)p! (Xiwa) 1 (Xiwa) (1 + o(1))
=0(n™?),
because the density and the drift are bounded. For the second part, we get

n—1 (K'+1)A

w3 B Ragla, X0)(XE - X0 - xRl Xh) [ aB(X)ds
1 KA
n—1
1 ~ L~ o
= 5 S B R, X0 R, X )t (Xo 2 (Xo)a (X ) (1 + o(1)
k'=1
=0(n)
and finally
n—1 _ ' ' A " 4 ' (K'+1)A
n Y BK, (2, X)) / a*(X,) ds Ky (27, X1, A) / a?(X,)ds = O(n™Y).
k/:1 0 ]{?IA

Then, the covariances are of smaller order and in total equation (4.25) is estab-
lished. O

Finally, the asymptotic distribution of the variance parts is derived.

Lemma 4.7. Under Assumptions 4.1 and 4.2 and if nTh — oo and nh® — oo

for ' — oo and n — oo it holds that

V.
VaThay™V (27) 25 N (0, ro(!) v?(27))

. 2(pd
VaThat™ (27) 25 N (0, o (@

where v (27) = (f(27)) ' E(a'(X)a®(X)(a'?(X))? | X7 = 7).
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The joint distribution of the vector of the @V (z*) is a multivariate (d*-
dimensional) normal distribution with covariances given by

K2 (2")
(@)
and zero otherwise (if {i,j} # {¢',j'}). The same holds for the local linear

cov(VnTha" (z*),vVnTha,’ " (z*)) = E(a(X)a™ (X) | X* = 2*)

estimator.

Proof. The distribution of 7, ;(z?) has to be derived. Write

nT—1

vn hrhlxj ZMk’ (z7),

with

Mk($]) =V nTh[?h’l(a:j, XkA)Zlm
where Zj, is given in equation (4.23). Denote the o-Algebra generated by X, ...,
Xy with ]—',CT’" = o(X;,l = 0,A,...,kA) . From repeated application of the
Burkholder-Davis-Grundy inequality (as in Florens-Zmirou, 1993) it follows that

nT—1

3" E(M(a?) | FT) -5 0
k=0
nT—1 1

T
. n P B
> B0 | A7) L wd@) g [ a0y ds
k=0
nT—1

> B(My(a)) | F") = 0.

k=0
Applying Lemma 2 in Florens-Zmirou (1993) it follows that \/W?,{l(xj ) con-
verges for n — 0o against a continuous martingale with increasing process given
by KP(a)E [T al2(X,)1
mality for fixed T follows (analogously to Brugiére 1991). Because for all 27 € G7
the convergence = fo a'?(Xo)lix, oy ds £, E(a'(X,) | XI = 27)f(27) holds,
the asymptotic normahty for T" — oo follows by Knight’s theorem. n

(Xi—ai} ds. By Knight’s theorem mixed asymptotic nor-

Appendix II: Proof of the Theorems

Proof of Theorem 4.1

The verification of Assumptions (A1)-(A6), (A8), (A9) in Mammen, Linton and
Nielsen (1999) allows to apply their Theorems 1, 2 and 3, which will yield the
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statement of the theorem. These assumptions are shown using the lemmata of the
last section. Subsequently all integrals are taken over G (resp. the corresponding

projection).

(A1) It holds by Assumption 4.1.2 for all i # j

.7
/f z, @ dxdx3<oo

(A2) Consists of three parts, all of them following by applications of Lemma
4.1.

. fh,o(xj)_f(xj) 2 2 sup | o a(z) — £(29)|2 2N dg
0 (P faaw < sup Fuatel) = )P [ ()
(log T)?

= 0p (1t + =) = or(1)

because the density is bounded from below.

(ii) /(ﬁz,(o,o) (;Z(;f;;&].);(ﬂ’ ajj)>2f(xz)f($]) dzt da?

< s (Fuoo(el) - fat )P () et

(21,29)€GIxGI

_ Op<h4+ (l(;%fgy) _ Op(l).

And the third part of the assumption

/ <fh,<o,0) (¢!, 27)  fla' %)

f(xz)ﬁzo(xf) - f(a:ﬂf(y)) f(x") f(2?) da" da’

= [Gron e )P (ool = (7)) HE id o

1 / Focom (a2 (Fro(a?) ™ — (F(a@) )

(i)

&h

(27) i
@) dz dx

4 [Groofe' a?) = F(o,a)P(F() () d' d

—op(1) + Op(n" + a;igf) +0p(n*+ (13%;) ) = or(1)

X (ﬁz,(O,O)(Ii>xj) f(x 1’]))

by Lemma 4.1.
Note that at the boundary (of length &), the leading bias term is of order h and

then the same results hold.
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(A3) With probability tending to one it holds that

J@" @) e <c

~NW,B
(

This follows directly from (A5) below, since g (z7) = 1y, NWV (7).

?) + i,
(A4) By similar arguments as (A3) and the last part of (A2) one sees that
f, AN 7)
sup / (]if\z,(0,0) (x had )) dz’ < sup (f(2?)) / ks
zieGi (fhyo(l’])yf(ﬂfl) zieGI f

with probability tending to one, using Lemma 4.1. The right hand side is bounded
by Assumption 4.1 (see Al).

(A5) Applying Lemmata 4.2 and 4.3 together with the quadratic integrability

of the unknown function p(-). Starting with the variance part we have that

/ A (1)) £ () dad < (sup [V (9)])?

zieGI

which is bounded by an arbitrary positive constant with probability tending to
one.

For the bias part
/ (A (1)) f(27) de? < 2 / (i (X) | X7 = a9 f(a) da?
b2 @)~ B0 | X0 = o)) fla) d

This is bounded by the first part of the right hand side plus a constant with
probability tending to one.

(A6) First, decompose using the triangle inequality

~ x q:J ) .
/fh 0,0)( va( / *}x:o(xz>dxz
0 ZL’J mJEQJ f

/( fh,(o,o)(SC ) f(:l:’,xj) )%V

:~4~

(4.26) sup

xieGi

— hyo(xi) dzt|.

OB \T ) Fro(e) FE @)

I eGi
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The two terms are investigated separately. Linearizing in the usual way, it holds

for the second supremum that

ﬁ,(0,0)<xi7xj) . f(xi’xj> In% .Q?i .CEi
/<ﬁ7o(xi)ﬁho(xj) f(x")f(xj)>th’°( )d

< s |fueo(ata?) = f@ @) sup (B ()] sup |(f(27))7
(x%,27)€GIx Gt zteGt zieGi

x / (f(2) " de'(1 + 0p(1))

= OP <h2 + (jlv(;ng)j;ﬂ ) OP < (711;%51/2>

sup

zI€Gi

= OP(h2)7

by Lemma 4.2 and Lemma 4.1.

The first part in equation (4.26) can be rewritten as

/ 7 Fay o) 4] =
where

, F(X (G ya + hu,2) i i
Er(z?) = / f(X(ik(l); + hu) f(x7) K(X{—1ya + hu, X(p_ya) du

sup
zI€Gi

1 nT '
T Z &(x”)
k=1

zie€Gi

d
SO i
—~ A Jg-1)a

The first integral in & (27) is bounded, because the density is bounded from above
and below. Using the Ito-Isometry it follows that 72 E(fOT ol(X,)dWh)? =
O(T71). In total it holds that

nT

! ka(ﬁj)

—= = Op(T7Y?) = 0p(h?).

sup
zI€Gi

Combining the two results, it is obtained that

f, xt ad) L
fh,((/)i())( . )IuhNVV,V(xz) dr?
fno(29)

Because [ fro(2?) = Op(l) it follows directly that

fh ANWV N4 d T (3 3 v 2
(f([f oo fhoxj (@) de?) o) da?) " = 0, (n).
This completes (A6).

= op(h2).

sup
zi€Gi
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(A8) By linearization, it is immediately clear that

Fuo0) (@, 29) fat,a?) ) ot
xJGQJ/)th ZL" th 377) f<x> ( )f< )d
(

< sup o0y (@, 27) = f(a',2)] iugjl(f(xj))_ll(lJrOP(l))
log T
—Op(h* + (T(Zgw) = op(1),

by Lemma 4.1 and Assumption 4.1.2.

(A9) It has to be shown that

(4.27) sup i, 2 (27) = Un(27)| = op(h?),
I €GI
where
(4.28) I/nT](l')—CknT] (z7) —i—Z/anTl dei
i#j fh 0(
+ h? / Bu(z
and .
- hiy(27)

O‘n,T,j(Ij> = Mld(xj) + 8jlu17j(l‘]) /ﬁ]o(.Tj) :

Statement (4.27) is shown by decomposing ﬁgW’B («7) appropriately. An applica-

tion of the mean value theorem yields

T g — Y / §(XT) ds

d nT—1

(’““)A o . ,
+ / Dy (€)(XF — Xiy) ds)
k

(4.29) =y —

zln

nT—1

Tf (a9) ZKh Xia @ " (Xia) + Op(n1?).
hO

This holds by the Burkholder-Davis-Grundy inequality and because the derivative

is bounded. Next, lower order terms are omitted and the cases with ¢+ = j and
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i # j are treated separately. Starting with ¢ = 7 we obtain from standard kernel

calculations

nT—1

1
————— Y Ku(Xip 2 (X )
T fro(29) kzg

E (Kn(X{a, 2/ 07 (X)) = i (2)) B Ky(X]a, o)

IR L
=)+ E Kj(X{n, 2) Hlnay )
1/ K1 (T ) ky (27) 2"‘32(95j) 8jul’j(xj) ' —j
=1 (x)+h e ) <x)/£0(xj)+h/-io(xj) @) /@f(:n)da:

+ h ;:igi ; (CL’j) + Rn7T7j(fL'j) + Op(hQ)

(4.30)

_ ro(@!) [ 05f(2) Lo 1o f@) .
= ans(@) + W2 [ (B0t @) + 502 w)) £
+ Op(hg)

The last equation holds because of
sup | Ri7,(27))]
xI€GI

— sup 1 nil Kh(XIZAA,-TCj)Hl’j(XZA) _ E(Kh(XiA’xj‘)Ml’j'(Xle»
i €Gi nT 0 fh70(:(,’]) EKh(XIJCA,QS])

B log T

B OP((nTh)w)'

This is shown as in the proof in Lemma 4.2.

Next, turn to the cases with ¢ # j in equation (4.29). Here, a Taylor expansion
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of p*(Xja) around z' and [ Kj(XjA,2")da' =1 are used to obtain

nT—1

1 ) . o
— Kn(Xjn, 2 b (X]A)
T fr0(x7) ;0

SN Z /Kh(XZ;A,%J)Kh(Xm,x )t (Xpa) dz
nT fro(a?) 125

:/Ml,i(xi)fhv(go)(xi7$j) Ao

Tho(x)
+— Kn( XA, ) Kp(XE a2 (X0 n — 2))0;pt () da’
T ol > W(Xjar @) Kn(Xpa, ) (Xjp — 2°) (2*)
1 1 nT—1

s S [ K ) (X ) (X — 200 (0"
nT fro(2?) 15

+op(h?)
:/ul (a:)f”()(x ) g +h/a ”1$J)fh(00(x ™) 4ot

Jno(27) “ij) fh,o( 7)
2 K2 (27) 8f( D) Li (08} qgp— 21 Ra(a?) 2 L[ f(z) oI
2 | Sy o g [ £
+ Rurji(z?) + op(h?)

(4.31)
= | apri(a —ﬁl’(g\’o)@i’xj) da’
/n, ) fho(x)
g Ka(27) 0 f(x) 11 i 12 Lj (i f(z) =9 1 on(h2
e Cragiom )+ oo fs e s ot

By the same arguments as above it follows that sup,;cgi |Rn7i(27)] = op(h?).
The statement (4.27) follows from (4.29), (4.30) and (4.31) together.
From equation (4.29) it follows directly that

(4.32) J @) = By 1) de? = o).
Finally, it has to be shown that
[ anas ey ds’ = [ [ 9w u) ) e’ d
+ h// Ot (a7 hm )) Kn(a? u) f(u)da? du + Op(T~Y?)

(4.33) = b7 + op(h?).
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The convergence in probability follows from E( [ ay, 1;(27 )ﬁ(xj )da?)? = O(T™),
which is shown by an application of Davydov’s inequality.
Then (A9) is proofed by (4.27), (4.32) and (4.33).

Asymptotic distribution Now Theorems 1,2 and 3 of Mammen, Linton and
Nielsen (1999) can be applied and the convergence of the algorithm follows. For

the asymptotic distribution we write
" (@) = 1" (@) + vy (2)
~NW,V jy _ ~NW\V/ j ~NW,B, j ;
+ (@) =y (@) + (T (@) = vn (7).

where vy, 7;(27) = anr;(27) = Yury + P*F,(27). The two terms in brackets are
of lower stochastic order (op(h?)) uniformly in 27, which is shown by Theorem 2
and 3 in Mammen, Linton and Nielsen (1999). Then, the asymptotic result follows
immediately. O]

Proof of Theorem 4.3

As many calculation are analogous to the proof of theorem 4.1, only on the
changes will be highlighted. Obviously, (A1), (A2), (A4) and (A8) are unchanged.
(A5) is shown analogously, using Lemmata 4.5 and 4.6. (A3) follows from that.

(A6) From the the triangle inequality it follows that

/fh (0.0 (% ANWV( /f ANWV(Ii)dxi

zJ€Q7 x7€g]
fh(oo(f’” ) _ f(x‘,xf) SNW,V iy i
U?Jg’]/ <fho<:c@>fho<wﬂ> f(xi)f(xj))r’"‘ (@) d).
h

Usual linearization shows that the second supremum is of op(h?). The first part

can now be written as

Z§k xj

sup
zI€Gi

xiGI n

where

. F(X{ A + hu,2?) . .
o) = | ey s i) d

kA
X n((XliA - X(lk—l)A>(Xl§A - X(Zk:—l)A) - /(k A a'?(X,) ds).
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Using Burkholder-Davis-Grundy-inequality it follows that E((X]%A - X (11%1) A)

(X325 — X(Zk—1)A> - f(’icﬁl)A a'?(X,) d3)2 = O(n~?). Then it follows that

;1;.7 g]

nT
1 .
SuP}n_T § :£k(:vj)| = OP(n71/2T71/2)_
k=1

(A9) Analogously to the drift case define

. ) ) J
) = (o) djal (@) 2,
0

for j = 1,...,d while ag,r = 0. Quadratic integrability follows from the as-
sumptions. From this follows the choice of v, 7; = [ ay1;(27) f(2?) da?. Define
Un,rj(27) analogously to equation (4.28). To show that

sup [a, "7 (27) = Unrg(a?)| = 0p(h?)

zIeGi
the bias part @'>Z(27) has to be decomposed analogously to the drift case. Then
the desired rate follows.

This completes the proof. Il

Proof of Theorem 4.2

For the local linear case Theorems 1°, 2" and 3’ in Mammen, Linton and Nielsen
(1999) have to be used. Therefore the validity of their Assumptions (A1’)-(A6’),
(A8’) and (A9’)has to be shown. Define

Ul o) = </£0(:Uj)/£1(a:i) K2

as the limits of the matrices V(27) and U (27, z%). (A1’) is identical to (A1) in the
proof of Theorem 4.1 and fulfilled by Assumption 4.1.

(A2’) The parts (i) and (ii) are identical to (A2) (i) and (ii). Consider (iii):
~ i~ . o J o
/(V(x])_lU(xJ,mZ) - V(azﬂ)—lmxﬂ,xl))?% da' da? = op(1)
Adding and subtracting V (27)"'U (2%, ) this holds by the triangular inequality

and Lemma 4.1.
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(A3’) The statement is immediately implied by (A5’).
(A4’) With probability tending to one (for n — o)

sup /tr(ﬁ(xi,xj)\A/(xj)_2(A](xi,acj))f(xi)_l dz' < C,

I €Gi

for all j = 1,...,d, because all elements of the matrices are consistent estimators

of densities, for which the statement holds.

(A5’) is shown by applying Lemmata 4.2 and 4.3 and the boundedness of the

function p'(z7) that guarantees the quadratic integrability. In total we have that
J@E s ar and [ @Y ) )

are bounded with probability tending to. The same holds for
J@E @R and [ @Y )

(A6’) Denote the Ly-norm in R? with || - ||. Then, it is direct to show that

Y £\ GV U
/ V()10 (2, 29) 0 ()" G’;ng]i) da’

h1
1

/V(xi)lU(xi,xﬂ')wxj) (

(4.34) sup

TieG?

2

vV (a7) 2

h1

+ OP(]I2>,

= sup
rieG?

because sup,; [},(z7)] = Op(h™/?T~2log T) and all density estimators con-
verge uniformly as given by Lemma 4.1. Next note that
nT—1

i f($i$J)A x] -
[ ot 7 e = 3 6

where (2, 27) is a kernel constant independent of h and

A+ hu, 2?)
7 kA hE, (X + hu, XE3) du
Eka(2?) /iniA+hu V(@) hi( Pa+ hu, XiA)
d 1 (k}—i—l)A

ot(X,) dWl.

s

|
>
>
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From a simple application of the Ito-isometry together with the boundedness of

kernel and density it is obtained that sup,; | Y1y " &(27)] = Op(T~'/?) and

then the quantity in (4.34) is of order op(h?). Using this result it follows directly
that
~
o~ t J )
H/ 1U (z', 2V (27) 7 A";’O(x.) da’
th(2?)

(A8’) The convergence results of Lemma 4.1 immediately imply that

f

= h?).
V(z?) OP( )

sup /‘V () U (2", 27) — V(2a?) U (2", 27) ‘f )da' = op(1),

ziegI

where the supremum has to be taken elementwise in the matrix.

(A9’) Define
o (a7) = p'(27) + Who(a)) O (a7) /2 and o], p(a”) = hdju' (o),

for j =0,...,d. Clearly [ a1 (27)f(27)da? < oo and [ o p(27) f(a?) da? < oco.

First, consider the constant. This is given by
/ o rj(27) fro(a) da? + / o, 1 (a7) fra(27) da? = b7 + 0,(h?),

The limit of the first integral is as in (4.33) and the second integral is of O(h?),
because the kernel constant r;(x7) is only at the boundary different from zero.
The expression differs from that given in Mammen, Linton and Nielsen (1999),
because a different normalization is used in the local linear case. This does not
affect the statement of their Theorem 3’.

Define random variables

ni(@?)\ _ (onmo+ omm (@ +Z/ ()10, o) anza(r)) o
ﬁf%:r(xj) % T (27) aZ,T(fEi) ‘

i#j
Then is has to be shown that
(4.35) sup |,uLL B(xj) — Un10 — I//\n7T7j(:Bj)| = 0p(h2),
zI€Gi
(4.36) sup |fiyy " (a7) — U0 7 — U p(27)] = op ().

xiegi
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This is done by decomposing the numerator parts of the marginal estimator.
Analogous to (4.30) it holds that

d nT—1
1 4
thale’) = Zﬁ Y Kna(a?, Xia)w! (Xia) + Op(n~).
=0 k=0

Applying a Taylor expansion for p'(X7,) = p'(z?) + o;u'(2?)(Xi\ — 27) +
Ppt(a9)(X{n — 27)%/2 + Ry(27). Then, the cases i = j and i # j have to
be treated separately. For the first it holds that

1 ~ . . . . —~ . . -~ .

Tn Z (a7, XA (Xa) = ' (27) frosi (@) + hojut (27) frpaa(2?)

+ B22 (7 froai(27) + Rorj(a?).

If i # j we have to use that 1 = [ K (2, Xja) da' for all k to obtain

nT—1

1 .

Tn Z Khl(ﬂfjanA)M (Xia)
k=0

nT—1

Z /Khz o, X{a) Kn (@', X' (X)) da’
:/fhv(oﬁl)(xi,xj)ul(xi)dxi+h/fhy(lvl)(aci,xj)ai,ul(xi) da’
h? n i g\a2, 1/, i j
+ ) Trpn(a' o )8ju (x")da' + Ry ra(27).
Now, plug these results into the representation of the local linear estimator

ﬁLL,B(xj) P %}?O(xj)>
_—~—LLB . =V’ ) .
(@'u | <w]>> - (ffx )

1 2 1 fh2(17j)) fhl(wj)fhs(fj)
p () + 5 (o )fowfhzw) (Tt (@9))2
i)

Fro(@) Foos (@9)— Fs Fra(ad)
hojut (+7) + 0 (x );hoo(mj);Sz(W) &21’1; E

2 211
+ZV959 / (2", 27) ) + o 3 (z)/2 da’
haﬂﬂ

_ oyt [ (O ) (o0 (@)ra(a’) = frzo (@) .
2 V) /<h2a§ Y2 (fon (@)ra(@?) = oo (@ @>>/>d
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By the uniform convergence rates of the density estimators the asymptotic expres-
sion of the bias is obtained. Because [ ro(z') —1dz’ = O(h), the third term is of
op(h?) uniformly over z7. Showing that sup,; R, 7,(z?) = op(h?) as in the proof
of Theorem 4.1 the desired rate is obtained. The uniform convergence of (4.35)
and (4.36) imply convergence in the squared Ly(f(27))-norm. This completes the

proof of the assumption. O

Proof of Theorem 4.4

The Assumptions (Al%), (A2), (A4’) and (A8’) are identical to the proof of
theorem 4.2. (A5’) follows by lemmata 4.5 and 4.6. (A6’) and (A9’) can be

concluded by identical modifications as in the proof of Theorem 4.3. O]






Chapter 5

Nonparametric Regression Tests
Using Dimension Reduction

Techniques

5.1 Introduction

Testing for parametric structure is an important issue in nonparametric regression
analysis. A standard approach is to measure the distance between a parametric
and a nonparametric fit with a squared deviation measure. Based on the Lo-
distance, various test statistics have been proposed, e.g. Hardle and Mammen
(1993), Li (1994), Hjellvik and Tjgstheim (1995), Zheng (1996), Li and Wang
(1998), Dette (1999) or Fan et al. (2001). Due to the use of a kernel estimator
these tests suffer from the curse of dimensionality, i.e. the estimators become
worse as the dimension of the predictor increases. Formally, this results in a
slower rate of convergence for local alternatives. Beside this asymptotic result,
the procedures break down in small samples and have no power there.

A powerful technique to overcome the curse of dimensionality is to impose an
additive structure on the unknown regression function. Because additive mod-
els maintain high flexibility compared to parametric specifications they are now
widely used in nonparametric multivariate modelling. Furthermore, the additive
components can be estimated with the same rate as a one-dimensional nonpara-
metric regression and in that way the curse of dimensionality can be circum-
vented. To estimate additive models, different procedures have been proposed.

The most prominent smoothing based techniques are the classical backfitting
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algorithm by Buja, Hastie and Tibshirani (1989), the marginal integration by
Linton and Nielsen (1995) and Tjgstheim and Auestad (1994), smooth backfit-
ting by Mammen, Linton and Nielsen (1999) and local partitioned regression
by Christopeit and Hoderlein (2006). While marginal integration and local par-
titioned regression suffer from the curse of dimensionality, because they use a
full-dimensional estimator in a first stage, backfitting procedures are completely
free of that. The backfitting estimators require iterative procedures that make
the asymptotic analysis more complex.

Compared to classical backfitting, smooth backfitting has different advantages.
Opsomer and Rupert (1997) and Opsomer (2000) analyze the asymptotic proper-
ties of classical backfitting and show that the estimator is not fully oracle efficient.
This concept requires that each additive component can be estimated as well as
if all other components were known. Mammen, Linton and Nielsen (1999) have
shown that smooth backfitting is fully oracle efficient. If the design is correlated,
the implementation of classical backfitting estimators is problematic. Opsomer
and Rupert (1997) illustrate the theoretical restriction of the correlation for co-
variates that are bivariate normally distributed. The declined performance of
classical backfitting is also reported in simulation studies (see Sperlich, Linton
and Hardle, 1999), while smooth backfitting performs much better (see Nielsen
and Sperlich, 2005). Finally, the behavior of the smooth backfitting estimators
is well understood, even if the true model is not additive. This is of particular
importance for the analysis of a test statistic under the alternative hypothesis.

This article proposes to construct a test for parametric form by projecting the
residuals under the null hypothesis onto the space of additive functions. The
asymptotic results show that the test has the same rate of convergence for an
arbitrary dimension of the covariates, which coincides with the rate for one-
dimensional testing problems. Therefore this test circumvents the curse of di-
mensionality. The price for this is the incapacity to detect arbitrary alternatives.
If the additive projection of model-implied residuals is zero, the test can not re-
ject the null hypothesis. Since alternative test procedures fail to work at all in
small sample size, this test still provides a powerful data analytic tool.

A similar test problem is considered in Fan and Jiang (2005). They use a gener-
alized likelihood ratio test statistic to compare the parametric fit to the additive
fit, where the additive model is estimated by classical backfitting. Because the
fits are compared directly, this test can only be used to test for parametric specifi-

cations that are a subclass of the class of additive functions. The test proposed in
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this article uses the fact that the smooth backfitting estimator can be understood
as an estimator of the additive projection. Therefore it is applicable to a larger
class of hypotheses.

This chapter is organized as follows. In the second section the test statistic
is motivated and the asymptotic results are obtained. For a small sample size,
the asymptotic distribution does not approximate the null distribution very well.
Therefore a wild bootstrap procedure is proposed and analyzed. Some extensions
to the basic test statistic are discussed in Section 3. The finite sample performance
is examined by a Monte-Carlo study and illustrated by a small data example. This

is presented in Section 4. All proofs are deferred to the appendix.

5.2 The Test Statistic

5.2.1 Motivation of the Test Statistic

Let Y € Rand X = (X!,..., X9 € R? for some d > 1 denote random variables

and define the mean regression function
g(z) =EY | X =x).

To specify a certain model it has to be judged whether this function falls into a

parametric function class. So the null hypothesis to be tested is if
(5.1) Hy: P(g(X) =G(X,0)) =1 for some 0 € O,

where © C RY is a finite dimensional parameter space and G(x,0) is a known
function. The common approach to test this hypothesis using kernel regression

techniques is to use the equivalence of Hy to
(5.2) E(g(X) — G(X,0))*w(X) =0,

where w(z) is some positive weighting function. To construct a test statistic,
equation (5.2) is replaced by the sample counterpart, using a parametric estima-
tor for 6 and a kernel estimator of g(x) (e.g. the Nadaraya-Watson estimator).!
However, for high-dimensional regressors X the rate of convergence of the esti-

mator of g(z) becomes slower. Therefore the resulting test suffers from the curse

'Most authors do not use equation (5.2) directly, but transform it. For example, Hiirdle and
Mammen (1993) use E(m(X) — E(G(X,0) | X))?w(X). For other specifications see Li (1994),
Zheng (1996) or Dette (1999).
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of dimensionality as well. This is reflected in a rate of convergence of nh%? for
the test statistic, the incapacity to detect local alternatives that converge to the
null hypothesis faster than n~"/2h=%* and the need for larger sample sizes.

A common approach to circumvent the curse of dimensionality in nonparametric

regression is to impose an additive structure on the mean regression function, i. e.
g(z) = ¢° +g'(z") + - + g*(a7)

and for identifiability it is assumed that E¢/(X7) = 0 for all 7 = 1,...,d. Ad-
ditive models provide an important class of structured multivariate nonpara-
metric models, because they are more flexible than parametric families. De-
note with G = {g: RY — R | Eg(X)? < oo} the class of Lo-functions, with
G ={geG|glx)=g"+g"(z") + -+ g%(xz?)} its additive subclass and with
Geo={9€G|g(x)=G(z,0) for some § € ©} a parametric subclass. Denote
with P(Y | X = z) the Ly-projection of Y onto the space of additive functions
G defined as

(5.3) P(Y | X) = argmin E(Y — v(X))%
,yegad
where the minimization is under the constraint E~7(z7) = 0.
To motivate the test statistic of this chapter consider for the beginning the

testing problem
(5.4) Hy: g(z) = G(z,0) € Gao VS. H,: g(z) € G“N\Gao,

with Gge C G For example, Gge is the class of linear functions. In this
case, the conditional expectation and the additive projection are identical, i.e.

P(Y | X =) = g(z) and the null hypothesis is equivalent to
(5.5) E(P(Y | X) - G(X,0))*w(X) = 0.

The additive projection is a sum over d one-dimensional functions. Using kernel
regression techniques these components (and therefore the whole function) can be
estimated with the one-dimensional rate of convergence. Having such estimators
at hand a sample analogue to the left-hand side in (5.5) can be constructed. This
can be used as a test statistic that converges faster than the test statistics based
on (5.2). By this, the curse of dimensionality can be circumvented.

It is not advisable to compare the distance between the additive regression and

the parametric estimator directly. While under Hy they both converge to the same
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true function asymptotically, the nonparametric estimator has a bias that can
dominate the test statistic. Therefore it is preferable to smooth the parametric
estimator to imitate the bias of the kernel estimator. This is equivalent to basing
the test on

(5.6) E(P(Y — G(X,0) | X))*w(X) = 0.

But this equation holds under Hj also for parametric families that are not ad-
ditive, i.e. Goo ¢ G*. The object of interest is now the additive projection of
residuals of the parametric estimation. Therefore a test based on (5.6) is appli-
cable to more general hypotheses than (5.4).

The testing problem (5.4) has also been considered by Fan and Jiang (2005).
They adapt the generalized likelihood ratio-test by Fan, Zhang and Zhang (2001)
to this testing problem. The test statistic is obtained by constructing residual
sums of squares under Hy — fitting the model with a parametric estimator — and
under H; — estimating the additive model by classical backfitting. Then, the log-
arithm of the ratio of these sums of squares serves as test statistic. Shortcomings
of the classical backfitting estimator like restricted correlation structure, lack of
oracle efficiency and unknown behavior under non-additive models have already
been mentioned. Therefore the choice of this article is the smooth backfitting
estimator by Mammen, Linton and Nielsen (1999) as estimator of the additive
projection. Before the test statistic will be constructed, the next subsection re-

views smooth backfitting estimation.

5.2.2 Smooth Backfitting

Based on a sample of independent and identically distributed random variables
(X3, Y:),i=1,...,n it is desired to estimate

PY -G(X,0)| X =2) =m® +m'(z") +--- + m(z?),
under the constraint

(5.7) m? (29 f7(27) da? = 0, j=1,...,d.

Ai
Here f7/(2?) denotes the marginal density of X7 and A’ is a compact subset
of the support of X7. The smooth backfitting procedures are based on usual

kernel estimators. In this subsection the algorithm based on a Nadaraya-Watson
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estimator is presented. Alternatively, smooth backfitting could be based on local
linear estimators. For more detailed expositions of the estimators and algorithms
see Mammen, Linton and Nielsen (1999) or Nielsen and Sperlich (2005).

Having a parametric estimator 0 at hand, the residuals of the parametric re-
gression (71 =Y, — G(X;,, 5) can be constructed. The Nadaraya-Watson smooth
backfitting estimators are motivated by the solution of the smoothed empirical

version of the additive projection (5.3)

(68  min /A%Z(Ai_ﬂo_ﬂl(xl)_... H (29, X))

I s

where the minimization is subject to the empirical version of (5.7), given by
(5.9) / W) fi(x)da? =0, j=1,....d
A

Here, Kj,(u?,v7) is a kernel weight, fi(z7) = n=' 32" Kj,(a7, X7) is a kernel
density estimator? and A = A! x --- x A% Usually, for smooth backfitting

estimators, modified kernel weights are implemented. These are given by

Kt - )
S K(h= (v — wi) dw?

Kn(w,v') =

where K (-) integrates to one over its support. This ensures that [,; K(u/,v?) du?
= 1 for all v/ and is required to derive the asymptotic properties of the estimators.
Simulation results suggest that unmodified kernels can be implemented as well,
but by now no theoretical justification for doing so exists.

Solving the minimization problem (5.8) with respect to (5.9) the minimum
(m9,m}. ..., mé) is given as the implicit solution to the set of equations

Tk,j i

(5.10) ffzi(mj) = ﬁﬂl(x]) — Z/ ﬁzﬁ(mk)M da* — ffL?,

kzj A fi(a?)
together with [ m] :1:] fj (x7)dz? = 0 for j = 1,...,d. Here, the two-dimensional
kernel density estlmator of the joint density of X* and X7 is denoted with

FE(ak, al) = nt 0 Ky (2%, XF) Ky (27, X7) is and the marginal Nadaraya-
Watson estimator is given by ) (z7) = ﬁ{(:ﬂj)*lnfl oo Kp(ad, Xf)ﬁZ The set

2To reduce notation it is assumed that the same bandwidth is used for all dimensions.
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of equations (5.10) is then solved by an iterative procedure where the marginal es-
timators can be used as starting values. If modified kernels are used, the constant
is given by m{ =n"' 3" | U; and demeaned data can be used.

The smooth backfitting estimators (m9,m}, ..., ml) are defined as the solution
to (5.10). Mammen, Linton and Nielsen (1999) give general conditions under
which the algorithm converges and investigate asymptotic properties of the solu-
tions. If the additive model holds, then the estimators enjoy an oracle property
for the variance. This means that the backfitting estimator of one additive com-
ponent converges with rate v/nh and has the same variance as the infeasible oracle
estimator which is based on knowledge of all other components of the additive
function. Smooth backfitting based on local linear estimators is fully oracle ef-
ficient, which means that these estimators have the same asymptotic variance
and bias as the oracle estimator. But under H, there is no bias at all. There-
fore it is no disadvantage to base the test statistic on Nadaraya-Watson smooth
backfitting.

In contrast to classical backfitting, the behavior of the smooth backfitting es-
timators can be investigated even if the additive model does not hold. This

alleviates the analysis of the test statistic under the alternative hypothesis.

5.2.3 Asymptotic Results

Estimating the additive projection by smooth backfitting, the test statistic can be
constructed. Based on equation (5.6), the null hypothesis will now be formulated

more generally as

(5.11) Hy: P(P(Y —G(X,0) | X)=0)=1 for some § € O,
where © C R? is a finite dimensional parameter space and G(X,6) is a known
function.

Using the smooth backfitting estimators m} (z1),. .., md(z¢) the empirical ver-

sion of equation (5.6) can be constructed. For the parametric estimator 8 of 6
some assumptions beyond consistency will be specified below. The test statistic

is defined as
. b \2a
(5.12) 7= [ (X)) A
where f,(z) =n"? S Kn(z, X;) is a full dimensional kernel density estimator.

Note that by solving the square inside the integral of T and choosing the weight
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function such that? fﬁ(x)w(m) de™ = fﬁfbk( I P w(2d, %) da® = ]/CZ(ZL“J)U)(IJ)
the test statistic can be written as sum over one- and two-dimensional integrals
only. Therefore only one- and two-dimensional kernel density estimators are
required.

As an alternative the expectation in equation (5.6) could be replaced by a sum

over the data points. This would result in the test statistic

nd
T =3 (S w(x),

i=1 j=0
which shares the asymptotic properties of T but is computationally more cum-
bersome, because the backfitting estimators have to be evaluated at the data
points. From the algorithm the estimators are obtained at (ideally) equispaced
grid points, that allow to evaluate integrals quickly. A third implementation
would be given by omitting the kernel density estimator in the integration. This
corresponds to the choice of w(z) = w(z)/f(x) asymptotically.

The hypothesis (5.11) is more general than (5.4), but it is weaker than (5.1).
Of course it could be the case that the conditional expectation is not in the
parametric class, but the additive projection P(Y — G(X,0) | X) = P(m(X) —
G(X,0) | X) is still zero. As an example consider Y = 6; X! + 0, X% + X' X? + ¢
as true data generating process where X', X2 and ¢ are independent (truncated)
normal random variables (with expectation zero). As parametric class choose
G(z,0) = 612" + 622, Then obviously the conditional expectation of Y given
X is not in that class. However, if X! and X? are independent, it holds that
PY | X = z) = G(x,0). However, if X' and X? are correlated, the null
hypothesis is violated and the test will reject.

For the more general testing problem (5.1) this approach can still be useful as a
data analytic tool. If a full-dimensional test for (5.1) is not available because the
sample size is too small to estimate a full-dimensional nonparametric regression,
the class of alternatives is still larger than for usual parametric goodness-of-fit
tests.

To derive asymptotic results, the following assumptions have to be imposed
Assumption 5.1. For the nonparametric estimation

1. The data (Y;, X;),i = 1,...,n are independent and identically distributed
with density f(y,x).

3Denote dz—7 = dzt... ded " 1dadtt. .. da.
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2. f(z) = [ fly,x)dy is twice continuously differentiable on A C R* with
bounded derivatives.

3. The two-dimensional densities f(z?,2%) = [ f(x) dz=U"® are twice contin-

wously differentiable on A’ x A* with bounded derivatives.

4. The marginal densities f(27) = [ f(x)de™ are twice continuously differ-
entiable on A’ with bounded derivatives. f(x?) is bounded from below on

A7

5. The continuously differentiable weighting function w(x) is positive and boun-

ded on A.
6. The conditional variances
V(2)) =E((Y - G(X,0) | X! =a7)
are square-integrable on A’.
7. BE((Y — G(X,0))*) < co.

8. The kernel function K: [—1,1] — R is Lipschitz continuous, bounded and

symmetric around 0. The kernel and its convolution are square-integrable
1 1 1 9
K= [ K@rae 1K KIE= [ ([ K@@ )
-1 -1 M -1

9. The bandwidth sequence satisfies h = O(n=1/%).

The assumption of independent and identically distributed data could be re-
laxed to allow for -mixing random variables with mixing coefficients decaying
sufficiently fast. The moment conditions are minimal to obtain asymptotic nor-
mality of the test statistic and the required smoothness of the unknown functions
is standard in nonparametric regression.

If the implementation of a data-driven bandwidth is desired, there are two
proposals. Nielsen and Sperlich (2005) investigate the implementation of cross-
validation in a simulation study, but give no theoretical result. Mammen and
Park (2006) use penalizing functions and prove the validity of their method. For
an iterative estimator cross-validation is supposed to be more time-consuming and
therefore the penalizing function approach is favorable. In practice the bandwidth
for the test could be chosen by using the optimal bandwidth of the additive
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projection of Y on X. However, this proposal will not yield an optimal bandwidth
for the test. For optimal testing, a data adaptive method as in Horowitz and
Spokoiny (2001) could be implemented, but this is beyond the scope of the present

work.
Assumption 5.2. For the parametric estimation
1. Under the null hypothesis it holds that 6 — 6 = Op(n=/2) for all 6 € O.

2. Under the alternative hypothesis there exists a 0 € © such that 6 — 0 =
OP(R_I/Q).

3. For the link function it holds that V¢G(z,0) and ViG(x,0) are continuous
in x and 0. VoG(x,-) and ViG(z,-) are dominated by square integrable

functions on A.

For usual parametric estimators this assumption is no restriction. It is for-
mulated in a rather general way to cover many possible cases of different null
hypotheses. Considering again a linear model, § would be the usual (general)
least squares estimator, for which Assumption 5.2 is clearly fulfilled. The first

theorem states the asymptotic behavior of T under H,

Theorem 5.1. Let Assumptions 5.1 and 5.2 be fulfilled. Then it holds under H,
that
nVhT — h 2By 25 N(0,S7),

where
d
Yr =2||K * K||3 Z/vj(arj)Qw(a:j)Q da?
j=1

d
Br = ||K||§Z/vj(xj)w(xj)da:j.
j=1

As expected, the test statistic is asymptotically normal with a one-dimensional
rate of convergence of nv/h. The variance Yr is given as the sum over integrals
of the d marginal conditional variances v/(z7). Thus, the variance (and the bias
Br as well) increases with the dimension. As usual the power decreases with an
increasing variance of the test statistic under Hy. In finite samples this effect is

present and will be found in the simulation.
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To check the consistency of T , the behavior under the alternative has to be

examined. Formally, the alternative hypothesis is stated as
H :P(P(Y -G(X,0)| X)=0) <1 foranyfc©.

This treats the case of fixed alternatives, i.e. E(P(Y — G(X,0) | X))? = ¢ > 0,

where 6 is given in Assumption 5.2 and c is a fixed positive constant.

Theorem 5.2. Let Assumptions 5.1 and 5.2 be fulfilled. Then, under Hy it holds
that
T L E(PY - G(X,0) | X)) *w(X).

Hence, the standardized test statistic of T diverges to infinity in probability.
Therefore the test is consistent against any fixed alternative, where the additive
projection of the model-implied residuals is nonzero. Return to the restricted
testing problem (5.4) where the parametric class is a subclass of the additive
model. Then, T is consistent against all fixed alternatives in G,

Of additional interest is the behavior of the test against local alternatives, i.e.
alternatives that converge to Hy for n — oo. Consider the sequence of local
alternatives

Hy,: P(Y — G(X,0) | X) = gu(X),
where g,(r) € G* is a nonzero function.
Theorem 5.3. Let Assumptions 5.1 and 5.2 hold. If there exists a constant By,

such that
—ZZ il XJ (Xow(X:) — By

i=1 j=1

with A\, = O(nh'/?) then it holds under Hy, that

nVhT — b= (B + ||K|2BL) == N(0, )
with Br and Y1 as in Theorem 5.1.

Usually a kernel-based test for parametric structure can only detect local alter-
natives that converge to zero at rate n=/2h~%* where d is the dimension of the
covariates. The implementation of the additive estimator circumvents this curse
of dimensionality. However, the price that has to be paid for the circumvention
is reflected in the smaller class of alternatives against which the test has power.

While a kernel based test using a full-dimensional estimator has power against
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functions in G, the test proposed here has only power against alternatives with
P(Y — G(X,0)) # 0. However, for the considered situation, where d is large and
n is relatively small, the asymptotic results of the full-dimensional test are not
available.

Taking again the linear model as an example, the parametric structure could
be checked by testing against a higher dimensional model (or against a quadratic
term). Such tests have power against contiguous alternatives, i.e. alternatives
that converge to the null hypothesis at rate n='/2. But the class of alternatives
that can be detected is further restricted by the construction of these tests. For
example it may only be the class of quadratic deviations from the null model.

The price for enlarging this class by the additive test is the slower rate of

alternatives that can be considered. If h = O(n~'/%) is used, it is given by n=%/2

~1/2

against n . Therefore, analyzing the parametric specification with T provides a

data analyzing tool, that is clearly more flexible than parametric test procedures.

5.2.4 Bootstrap Implementation

The asymptotic distribution of T is driven by a U-statistic and a large number of
lower order terms that are omitted. However, it is well known in nonparametric
hypothesis testing, that the convergence of the test statistic to the underlying
U-statistic is rather slow (see Hjellvik and Tjgstheim, 1995, or Li and Wang,
1998). Therefore, it is not advisable to rely on the asymptotic normality ap-
proximation in small or moderate samples. Beside that, the quantities arising
in the expected value and variance of the test statistic have to be estimated,
since they involve the unknown conditional variances v7(27). This could in prin-
ciple be done by regressing the squared residuals (71-2 nonparametrically on all
dimensions of the predictors X7. Nadaraya-Watson-type estimators would be
given by o) (/) = ﬁ{(xj)*lnfl S Kp(ad, Xf)ﬁf Assuming smoothness of the
conditional variances, it is not difficult to show that the use of these estimators
leads to a consistent test statistic. Alternatively, other pre-estimators could be
considered.

However, for small samples the asymptotic approximation is usually not valid.
Therefore this subsection proposes the implementation of a wild bootstrap pro-

cedure. The bootstrap algorithm is performed in the following way

1. Construct parametric residuals [71 =Y, - G(X,, é\)
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2. Construct the residuals of the additive projection &; = U, — Z j=o M (X 7.

3. Generate independent and identically distributed random variables nj, ...,

7y, from a distribution Fforalli = 1,...,n.

4. Construct the bootstrap sample (Y;*, X7),i = 1,...,n by Y = G(X;,0) +
gt and X} = X.

5. Calculate T* from the bootstrap sample.

6. Repeat steps 3 to 5 B times to obtain critical values for T

The predictors X7, ..., X, remain unchanged in every bootstrap iteration. This
is computationally convenient, since all density estimators and kernel weights in
the smooth backfitting algorithm remain unchanged. Even though the iterative
backfitting procedure has to be calculated B times, the computation time of the
algorithm is not too high if a fast implementation is used.

Denote with E*(-) = E(- | (X1,Y1),...,(Xn,Y,)) the conditional expectation
of a random variable given the whole data sample. To derive the validity of the

bootstrap method the following assumption is required formally.
Assumption 5.3. For the bootstrap

1. For the bootstrap distribution F' it holds that E*nf = 0, E*(n7)2 = 1 and
E*(nf)* < oo foralli=1,...,n

2. Denote with 0* the parametric estimator calculated from the bootstrap sam-

ple. Then it holds that 8* — 6 = Op(n~Y/2).

3. The bandwidth sequence satisfies nh — oo.

It is not formally required that E* 5} = 1, since the proof of the bootstrap result
will not be based on a formal Edgeworth expansion. But simulations provide
evidence that mimicking three moments leads to higher order approximations of
the distribution of the test statistic, which improves the finite sample behavior
(see Li and Wang, 1998, for formal evidence of this finding in kernel based tests).
The second part of Assumption 5.3 is not restrictive. It is not difficult to establish

for usual parametric estimators 6.

Theorem 5.4. Let Assumptions 5.1-5.3 hold. Then under Hy it holds that
VT — b V2B 25 N(0, 1),

conditional on the data for n — oo with probability tending to one.
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Alternatively, the bootstrap observations could be constructed under the null
hypothesis, i.e. Y* = G(Xj, é\) + [71772* In that case, the same result as in The-
orem 5.4 could be proved. But, under the alternative, the residuals [71 do not
consistently estimate the true error Y — G(X, #). This means that the bootstrap
generates the distribution of the test under the closest parametric approximation
to the true model with different error terms than in the true model. Because
of the erratic behavior of the parametric residuals [/J\Z under the alternative, the
simulated marginal conditional variances v/(z7) can be too large. This can result
in a loss in power of the bootstrap.

In contrast, the corrected residuals &; are consistent under H; as well. Here the
problem is that they underestimate the true error term under the null hypothesis
if the bandwidth is too small. The result is a distortion of the level of the test.
This can be reduced by using a different (larger) bandwidth h to construct the

residuals &; than to calculate the test statistic.

5.3 Extensions

5.3.1 Post-hoc-type Tests

If the F-test-type statistic T leads to a rejection, the researcher will be interested
in finding out by which regressor X7 this is caused. This can be done by testing
which of the additive components m?(z7) are significantly different from zero.

The corresponding null hypothesis is given by
H]: P(m?’(X7) =0)=1 for some f € O
and as test statistic serves

Ti= | (@ (27))? fala?w(a) da.
Al

The asymptotic behavior of T7 under Hg is given by

Theorem 5.5. Let Assumptions 5.1 and 5.2 be fulfilled. Then it holds under Hg
that
nVhT?/ — k2Bl 25 N(0,53)),

where

Ejf = 2|| K % K]\%/Uj(xj)Qw(xj)Q dr? and B% = |]K|]§/Uj($j)w(xj) dx’ .
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Under Hy it holds that

T B s 0
wh| | =02 | 25 N, ).
Fd BY 0 s

Consider again the situation to test (5.4). If all other components of g(z) except
for g’(x) were known, an oracle test could be implemented using unobservable
data Y — D7, g*(2*). Denote with ﬁj(:vj,g) the parametric estimate of the

unknown component. Then, a test statistic is given by

/ (fj (27)~ ZKh (27, XJ Zg 7 (2 9))>2]/tz(l'j) dad .

k#j

The asymptotic distribution of this test is derived by an application of Proposi-
tion 1 of Hardle and Mammen (1993) and is given by

T’ :/.Al (m (7)) fr(@?)w(a’) da’.

Obviously, the first part of Theorem 5.5 shows that T7 has an oracle property
in the sense that this test statistic has the same asymptotic distribution as the
oracle test.

The second part of the theorem states that the d different test statistics fl, ceey
T are asymptotically independent. This can be used to test various additive
components simultaneously. For studentized versions of these statistics, theory
for multiple testing can be applied to obtain correct critical values. In finite
samples correlation might be present and can be approximated by wild bootstrap.
The joint distribution can be simulated in the same way as described in the last
section. The only difference is that in step 5 of the algorithm all test statistics
T, ... T4 have to be calculated.

5.3.2 Omission of Additive Components

Apart from the parametric specification it is also of interest to test whether one
component of the predictors has an influence on the conditional expectation at

all. For this, assume that g(x) € G* and consider the testing problem

(5.13) H  g/(zy=0 vs. H:g/(a!) £0.
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To test this, the smooth backfitting algorithm is applied directly to Y; instead
of (72 Denote the corresponding estimators of the additive components with

g',...,g% Then, a test statistic is given by

79— /AI (@) Fo@ yw(a?) da

From all theorems it is obvious that the parametric estimator does not influence
the asymptotic distribution. Therefore this test statistic is under Hg/ asymptot-
ically equivalent to T3 under Hg and the first part of Theorem 5.5 applies. Only
the marginal conditional variance has to be adjusted to v/ = E((Y —g(X))? | X7).
But it is important to note that testing problem (5.13) is restricted to the case
that g(z) is fully additive. If g(z) ¢ G it can be the case that the conditional
expectation is independent from X7, but the additive projection is not. Therefore
an application of T7 can produce misleading results.

The test statistic for this problem is again T7 but for the calculation of the
additive estimators Y; is used instead of (Z From the proofs it is obvious that ﬁz =
U; + Op(n_l/ 2) which means that the parametric estimation does not influence
the asymptotic distribution. Then, the first part of Theorem 5.5 holds for this

test statistic under H? with variance given by % = var(Y | X/ = 27).

5.4 Simulation and Application

5.4.1 Monte Carlo Study

The simulation study will examine the performance of the test in finite (rather
small) samples. Two data generating processes are used. First, a linear model
will be simulated. As second specification, the nonlinear model of Fan and Jiang
(2005) is simulated to compare the performance of the test derived in this chapter
to the results based on the classical backfitting estimator.
The first model is given by
d

(5.14) Y= 2(4X] —2) + A4X] -2’ + U,

j=1
with X ~ U(0,1) and U; ~ N(0,1). This specification was also used in Zhang
and Dette (2004) to compare univariate test statistics. The model under the null

hypothesis is given by A = 0 and samples for different values of A € [0,0.75] are
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generated to estimate the power of T. The sample size is n = 100 and for 16
different values of A 1000 simulation runs are used. Under H, the model is linear
and the parameters are estimated using ordinary least squares.

A lower dimensional model with d = 3 is considered first. To construct the
additive residuals &;, the bandwidth h = 1.5n"Y 5/ V12 is implemented. This
is motivated by the rule of thumb, var X = 1/12 and the need to use larger
bandwidths h to obtain consistent estimators of the residuals. The test statistic
T is calculated with a bandwidth h = hgn~1/% /v/12 and different values for hg
are used to check the sensibility of the power to the bandwidth. All additive
projections are calculated by approximating the integrals in (5.10) with 51 grid

points. The test statistic is calculated as

T /A(gmwﬂ‘)fdx.

Recall that this corresponds to the choice of w(z) = 1/f,(27) in equation (5.12).
The bootstrap samples are generated using ¥ = V;/v/2 — (V> — 1)/2 with V; S
N(0,1) (see Mammen, 1993).

In Figure 5.1 a quantile plot of the distribution of the test statistic for A = 0 and
ho = 1 against a normal random variable is presented. Obviously the test statistic
is not normally distributed. This provides gives evidence that the asymptotic
results for T’ do not hold in small samples and relying on the normal distribution
would lead to wrong critical values. Therefore it is advisable to approximate the
distribution by the bootstrap procedure described in Section 5.2.4.

To calculate the empirical power, three different bandwidth constants hy =
0.5,1,1.5 are used. The results are displayed in Figure 5.2. For all values of
the bandwidth the test has good power against the alternatives. For small band-
widths the test tends to be too conservative. It is a typical result in nonparametric
goodness-of-fit testing that small changes in the power are observed for different
bandwidths. In general, large bandwidths have more power against low frequency
alternatives, while small bandwidths allow to detect high frequency alternatives.
Since in this specification the deviation from the null hypothesis is of low fre-
quency (the function is only quadratic), the power should increase more rapidly
for larger bandwidths. However, the effect is not strong.

To examine the influence of the error distribution, model (5.14) is now con-
sidered with different distributions of ¢;. Additionally to the standard normal

distribution, it is now also simulated from a standardized t¢-distribution with 5
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Figure 5.1: Quantile plot of the distribution of T under H, for model (5.14). For

the simulation d = 3,n = 100 and hy = 1 are used.

degrees of freedom and a standardized y2-distribution with 5 degrees of freedom.
The asymptotic results of the second section have been established under the
assumption that the errors have finite forth moment, which is minimal for the
finiteness of the variance of 7. Therefore the t(5)-distribution seems to be close
to the boundary of the domain of attraction. Beside the leptokurtic errors, the
x2-distribution is skewed and asymmetric. All other settings are unchanged (in
particular d = 3,n = 100). Only four different values of \ are considered and the
results are given in Table 5.1. No severe differences are found between the three
different distributions for all bandwidths. The numerical results give evidence

that the test is robust against different error distributions.

The advantage of the test statistics is that the asymptotic convergence is in-

dependent of the dimension of the regressors, circumventing the curse of dimen-



5.4 Simulation and Application 151

1.0
1.0

0.8
|
0.8
|

Power
0.6

Power
0.6

0.4
0.4

0.2
0.2

0.0
|
0.0
|

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Power

0.0 0.2 0.4 0.6

Figure 5.2: Empirical power of the test statistic for model (5.14) with d = 3,n =
100 for different bandwidths hy = 0.5 (upper left picture), hy = 1 (upper right
picture) and hg = 1.5 (lower picture). The rejection rates are given for different
significance levels av = 0.10 (solid line) and « = 0.05 (dashed).

sionality. To illustrate this, it will be simulated from model (5.14) with d = 10
and n = 100. The variance of Zj:o ﬁ@%(XZJ ) increases with d and therefore
h = 2.5n-1/5 / V12 has to be enlarged to obtain consistent estimates of the resid-
uals. All other specifications are unchanged. The power of this high-dimensional
model is displayed in Figure 5.3. The test still has good power but compared to
the three-dimensional model, the increase in power with increasing A is slower.
This can be explained by the asymptotic results, because the variance ¥ of the

test is larger, if the number of dimensions increases (see Theorem 5.1).
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Table 5.1: Power of T under different error distributions

a=0.10 a = 0.05
A 0 025 0.5 075 0 025 05 075
ho = 0.5
N(0,1) 0.060 0.302 0.928 0.999 0.005 0.105 0.688 0.990
t(5) 0.049 0.283 0.895 0.998 0.003 0.088 0.613 0.961
x3(5) 0.056 0.298 0.911 0.998 0.013 0.079 0.655 0.955
ho = 0.5
N(0,1) 0.109 0.574 0.994 1.000 0.037 0.356 0.968 1.000
t(5) 0.103 0.558 0.987 1.000 0.026 0.313 0.938 1.000
X3(5) 0.115 0.582 0.981 1.000 0.028 0.327 0.930 0.999
ho = 0.5
N(0,1) 0.144 0.709 0.998 1.000 0.056 0.529 0.991 1.000
t(5) 0.123 0.711 0.996 1.000 0.038 0.508 0.985 1.000
x2(5)  0.130 0.720 0.995 1.000 0.047 0.493 0.981 1.000
A second data generating process is given by
(5.15) Y, = (X;})? +sin(37X7) + sin(37X7) (1 + AX?) + &;.

The covariates (X}, X2, X?)" are independently drawn from a multivariate normal

distribution with covariance matrix

Nej
O R =

O = e

The variables are truncated onto [—0.5,0.5]3, such that the actual correlation
between X! and X? is smaller than 1/4. The sample size is n = 200. Under



5.4 Simulation and Application 153

1.0

Power
Power

0
0.0

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Power

0.0 0.2 0.4 0.6 0.8

Figure 5.3: Empirical power of the test statistic for model (5.14) with d = 10,n =
100 for different bandwidths hg = 0.5 (upper left picture), hy = 1 (upper right
picture) and hy = 1.5 (lower picture). The rejection rates are given for different
significance levels av = 0.10 (solid line) and a = 0.05 (dashed).

the null hypothesis, the model is estimated using nonlinear least squares. The
bandwidths are given by h = hon~'/5/3 and h = n=/5/2 for all directions. The
power is estimated over a grid of A € [0,1] by 500 simulation runs for each
specification. This model is also used in Fan and Jiang (2005) and the power
functions in Figure 5.4 can directly be compared with Figure 3 in that article.
Both tests have very similar power functions and differences may vanish if the
number of simulation runs increases. Again, the test has very good power across

all bandwidths. For low values of A\ which correspond to small deviations from
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Figure 5.4: Empirical power of the test statistic for model (5.15) with n = 200
and covariance ¥ for different bandwidths hg = 0.5 (upper left picture), hy = 1
(upper right picture) and hg = 1.5 (lower picture). The rejection rates are given
for different significance levels o = 0.10 (solid line) and a = 0.05 (dashed).

the null hypothesis the rejection rate is very low. But under the alternative,
the limit of the parametric estimator § can be different from 6, and therefore
the functional relation between the power and A can be almost constant in that

region.

In the simulation above, X? is independent from (X!, X?)’ and the correlation is
limited to a rather small level of 1/4. Because the smooth backfitting estimators

are superior to classical backfitting in the case of correlated covariates it will now
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Figure 5.5: Empirical power of the test statistic for model (5.15) with n = 200
and covariance matrix ¥, with increasing correlation o for different alternatives
A = 0.6 (left picture) and A = 0.8 (right picture). The rejection rates are given
for different significance levels o = 0.10 (solid line) and « = 0.05 (dashed). The
bandwidth is given by hy = 1.0.

be simulated from model (5.15) using the covariance-matrix

%, =

1 0
9 Q
1

IS T ST
D =R

for increasing values of ¢ € [0,0.95]. The power is examined for two different
alternatives with A = 0.6 and A = 0.8. The results are presented in Figure 5.5.
Clearly the increasing correlation is associated with a loss of power, but this is
not dramatic. The rejection rates are decreasing very slowly up to correlations of
0.8. Only for very extreme correlations the test looses its power. The stability of
the power results from the smooth backfitting estimator. The theoretical results
of Opsomer and Ruppert (1997) for classical backfitting restrict the correlation
in the present setting to values |o| < 0.4.

The Monte Carlo study provides evidence that some of the asymptotic prop-
erties of T still hold in finite samples. In particular, the results for a high-
dimensional model are very convincing. The results are also very stable against
changes in the error distribution, different bandwidths and correlation structure

of the covariates.
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5.4.2 Application to Consumer Demand Data

To demonstrate the test statistic in practice, it will be applied to test a parametric
specification of a demand system. A demand system with G goods is given by
budget shares W = (W1, ..., W& corresponding prices P = (P!, ..., P%) and
total expenditure X. The parametric model under investigation is the Almost
Ideal Demand System (AIDS), specified as

G
Wj = Q; + Z’Y]kpk + ﬁjaOgX - CL(P, 8)) + ¢,
k=1

for j =1,...,G with
< 1
P.0)=> a;P' + =) ;PP

The test procedure is applied to household budget data from the Italian Central
Statistical Office (ISTAT). This dataset was used by Bollino, Perali and Rossi
(2000) and is distributed with the R-extension package micEcdat?. The sample
consists of a demand system with three goods, namely food, housing and fuel
and a miscellaneous good, where all other shares are aggregated. The sample size
is 1729. The parametric model is estimated by the iterative linear least squares
estimator with Stone price index (see Blundell and Robin, 1999, for details). The
parametric specification is tested for each good separately. The bandwidth is
given by h; = hofs\jn_l/ ® where §; denotes the empirical standard deviation of
predictor j. To construct the additive residuals the bandwidth ftj = 1.5h; is
implemented. The bootstrap distribution was given by 7/ as in the simulation
study and the bootstrap shares are normalized to add up to one.

Using the full sample the estimated p-values based on 999 bootstrap iterations
was zero for all three goods. This result is not surprising, because the p-value
depends on the sample size. Therefore a subsample of size 500 was selected ran-
domly and critical values were calculated based on 399 bootstrap iterations. The
results for different bandwidth constants are presented in Table 5.2. The model is
rejected for the miscellaneous good group for all bandwidth choices. This is not
surprising since the basis of aggregation is very large. For the other two goods
the model is not rejected for larger bandwidths. This provides evidence that the

AIDS model is an appropriate approximation if the goods are not aggregated in

4Downloadable from www.cran.r-project.org
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Table 5.2: p-values for testing the AIDS

ho Food Housing/Fuel Miscellaneous

1.0 0.00 0.00 0.00
1.5 0.01 0.00 0.00
2.0 0.01 0.01 0.01
2.5 0.09 0.11 0.01
3.0 0.11 0.09 0.01
3.5 0.17 0.18 0.01
4.0 0.21 0.24 0.02

too large classes. A more sophisticated model including household characteristics
(as in Bollino, Perali and Rossi, 2000) should be able to improve the fit.

Appendix
For abbreviation the random variables W; = (V;, X;) and U; = Y; — G(X;,0) are

introduced.

Proof of Theorem 5.1

The proof will use an expansion of the smooth backfitting estimator
O, (e . -
(5.16) i, () = mi () + = > 1y () Ui + op(n~/?),
n
i=1

uniformly in 27 with r;;(-) absolutely uniformly bounded functions. This expan-
sion is stated in Theorem 6.1 Mammen und Park (2005) under the assumption
that the residuals ((7@ in this case) are independent and identically distributed and

have conditional mean zero given X;. Going through the proof of that theorem,
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this assumption is used to show that

1 < ﬁ($j7xk) k yk k7Y
— K X da"U;
w2 T fan A

J X ~
——Z/f 95 Ky(a*, XF) 2T,
1 ¢ j 73 -1/2
:EZAM(IJ,h)Ui:oP(n )
=1

holds uniformly in 27 (see equation (6.22) in Mammen and Park, 2005). To

extend this, consider the decomposition

1 & . —~ 1 <& ‘
n ;Ak,j<xj7 h)U; = - ;Ak,j($], h)U,
1< . ~
+ Zl Ay j(27, h)(G(X;,0) — G(X.,0)).

Because E(U; | X;) = 0 for the first term on the right equation (6.22) in Mammen
and Park (2005) applies. For the second part the mean value theorem is applied
for the parametric function G(X;,0) — G(X;,8) = (6 — 0)TV,G(X;,8), where 6,
depending on X;, lies between # and 6. Note that A j(2?, h) = Op(h) uniformly
in 27 and h. Using the rate of convergence of the parametric estimator it can be
deduced that

% > Ayl W) (G(Xi,60) = G(X;,0))| = Op(hn/2)= Z 17VyG (X, 0)
— i=1

_ Op(n_l/Q),

where 1 = (1,...,1)”. This completes the proof of (5.16).

Now, turn to the test statistic. First, the full-dimensional density estimator will
be replaced with the true density, since fu(z) = f(z) + op(1) uniformly in z.
Without loss of generality it can be assumed that mo =n"'>"" | 171 = (0. Then,

expansion (5.16) is used to decompose the test statistic as follows
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(5.17)
=T1+ T+ op(n V) (T3 + Ta) + T5 + op(n1).

The theorem follows from showing the following convergence results for the com-

ponents

(5.18) nVhTy — h™ 2By 25 N(0,S7)  Thy = op(n'h™/?)
fg = 0p(n’1/2h’1/4) ﬂ = 0p(n’1/2h71/4)f5 = 0p(n’1h’1/2)

Convergence in probability of @, e ,ﬁ, The terms of lower order are con-
sidered first. Replacing the numerator with its limit and expanding (A]Z it holds
that

ZZ/Kh («7, X]) (@) w() f(x) da

i=1 j=1

x (Ui + (0 — H)TVHG(Xi, é))
Z K(X;)U; + Op(n~Y?) = Z K(X;)1TV,G(X;,0)

_ OP(n—l/Qh 1/4)7

with K(X;) = Z?ZlfKh(xj,Xf)f(xj)_lw(I)f(I) dx which is bounded by a
constant. The last line follows from direct calculations, using E K(X;)U; =
0,E(K(X;)U;)* = O(1) and similarly for the second term. T; = op(n~Y/2h=1/4)
is shown analogously.

Next, consider

Z/ ZKh (a7, X7) f(a?) )(ZTH ) ) f () daT,Uy

0,4’

nQZK (X2 + 0p(1) 2y S (Ri(X) + Rl X)) 0.0

i<i/

= OP(l)(T5,1 + T5,2)-
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Obviously Ky (X;) = >0 ] Kn(a? Xj)r” (27" )f(a:j)*lw( )f(z) dz is bounded.
It follows from similar arguments as for 75 that T51 = op(n~'2n~1/*). Concern-

ing, T5,2 the expansion
U;Ur = UUy + (0 — 0)" (VoG (X3, 0)Us + VoG (Xir, 0)U;)
(0 —8)"VeG(X,,0)(0 — 0)TVG(Xy, 0)
is used. Calculating mean and variance it is obtained that 7: 52 = op(n~Y2h4),

Therefore it holds that
Ty = op(n~ V2R,

The convergence of Ty is shown in the same way.

Asymptotic distribution of T 1 Replacing the numerator of the Nadraya-
Watson estimator with the density and solving the square, ﬁ can be written
as

T\l = (fl,l + T\l,z + T\l,:s)(l +op(1)) + f1,4,

where

TH—ZZh (Wi W) Tip=s5 Zh (Wi W5,

=1 k=i+1
with a kernel given by

2 ~

where

(5.19) ff(Xka)—Z/Kh(xj,xf)Kh(xﬂ",Xg’) Fad,27)

Ww(xj, 27"y dz? da?’
and

T13——ZU (Xi, 0) — G(X4, 0)) K (X, X3)

Tiy= /(Z Z Ky(a?, X7) (G(X;,0) — G(X,, 5))ﬁ(xj)—1)2f(x)w(x) da.

j=1 i=1
Now it has to be shown that

(5.20) nVhTi, = N(0, Sr)
(5.21) nVhTis —h™?Br 250
(5.22) nVhTis -0
(5.23) nVhT, 250
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to proof the asymptotic distribution of ﬁ.

Asymptotic distribution of 1/;171 A change of variables is applied to obtain

w(X! + vh)

f(X] +vh)

B (Wi, Wy) = UUkZ/Kh (vh+ X7, X)) Ky (vh + X7, X7)
U Ue Y / Kn(vh+ X XD K, ('h+ X3, XT)
J#i
F(XI 4+ vh, XI +v'h)
FXT +oh) f(X] +v'h)

w(X? 4+ vh, X3 +v'h) dodv’.

This shows that the terms with j # j" are of lower order. Note that the unmodified
kernel differs from the modified kernel only at the boundary and the distance is
of order O(h). Therefore, asymptotically the modification has no influence on

integrated statistics.

To derive the asymptotic distribution a central limit theorem for degenerated U-
Statistics is used (see Lemma 3.1 by de Jong, 1987). According to this theorem
it has to be shown that

maxy<icn S v . B by (Wy: Wi)? ET!
(5.24) 1sisn 2k B D7 0 and Fha g
var 77 4 (var T} ;)?

and n?h var ﬁjl — 237 to deduce (5.20).

To show these three statements, first var h,(-, -) is considered. Omitting the lower

order terms in h,(-,-), it is derived that

varh,,(Wi; W) = E h,(W;; W,)?

- n4h22/ G(24,0))*(ye — G(ax, 0 /K K(u+ (2] — x])/h) du

w(x])

)

F Wi i) f (Y, zx) dy; da; dyg dag + o(n™*)
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- WHK*KHQZ [ G0 - Gy ol 0)?
. %f(yiaxi)f(ykaxk ,x]) dy; dz; dyy, dz, (14 O(h)) + o(n ™)

= 1 * 2 - R . 2f<y17 ) _]
= ol KIS [ =GPl g an

o f (Yr, 7,7 75’3})
f(a)

X (yp — Gz, 27, 0)) dyy, dz, w(2?)? da? + o(n~*h™1)

(5.25)

d

4 , . .

= K13 [ ot Pl el + ofnthY),
=1

First, variables are changed to v = (] — 27)/h. For abbreviation the nota-
tion 7 = (wf,..., 2, ol 2l .. af) is introduced. Then, the final result is
obtained from rearrangements of the terms.

Using (5.25) and the independence of the data it is easy to obtain

n

max Y Eh,(W;W,)?=0mn"?>h"),

1<i<n
k=1
kti
as well as
(5.26)
~ —1 2
varT); = Zvar hn(Wi; Wi) = % var h, (Wy; Wy) = —hET(l + 0(1)).

i<k
Because h,(+;) is centered the covariances cancel out. From this, he first condi-
tion in (5.24) follows.

Finally, the forth moment of T 1,1 has to be considered

(5.27)
ET! =Y Eh(Wii W) +3> 0 > Ehy(Wi; Wi,)2hy (Wiy; Wi, )

11 <i2 i1 <i2 13<iq

(i3,44)#(i1,42)
+24 ) 0 > Ehn (Wi Wiy )b (Wi, Wiy ) (Wiy; Wiy)

i1 <ig i3#£i1,i2

3 > D D Eha(Wi Wi hn(Wigs Wil (Wigs Wiy V(Wi W, ).

11 o741 13701 ,02 14701,02,i3
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Here, all vanishing terms are already omitted. Similar calculations as done for

E h,,(Wy; Wy)? show that

E h,, (Wy; W)* (n"8h™?)
E hy, (W1 W )2 hy, (W W3)? (n"®h~?)

E hy, (Wy; Wo) 2y, (W W)y (Wa; Wa) = O(n8h™2)

E hy (W15 Wo) hyy(Wa; W) by (Wa; W) by (Wi W) = O(n78h7h).

O
O

By combinatorial arguments it follows that the forth moment of fl,l is asymptot-
ically dominated by terms with E h,,(Wy; Wa)?h,, (Ws; W,)? = (E h,(Wy; Wy)?)2.
In total it holds that

ET}, 12n~4h254(1 + o(1))
= - 27 -1y2 ; 3
(var Ty 1)? (2n72h71¥7(1 4+ o(1)))

which is the second condition in (5.24) and asymptotic normality of T, 1.1 1s estab-
lished.

Convergence in probability of T 12 Starting with the expected value it holds
that

ET 5 = 27'nEh,(W;, W)

1 2 d 2'&U($) —17—1
- IIEY [ =G0 ) e+ o)

d
1 2 PN (rd\ i —1p-1
- nh||KH2jEI/v(x Jw(x?)dz? +o(n™"h™").

First, the lower order parts of h,(-;-) are omitted and then a Taylor expansion is

applied.

Convergence in probability is shown using Chebychev’s inequality and calculating

var 1/?2 = nvar(h,(Wi,W1)) = O(n ™) = o(n"2h71).
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Convergence in probability of f1,3 Expand G(X;,0) — G(X;, 5) to obtain

~ ] M~ _
_ T T
Tis=(0-60"— z; K(X;, X)Uil"V,G(X;,0)
+(0—06)" ZK X, Xi) (Uil"VoG(Xy, 0) — Up1"V,G (X5, 0))
i<k
+(6-0)T ZK X, X)) UlTV2G (X, 0) (0 — 0)
1#£k
= O0p(n™?)5, + Op(n~?)8 + Op(n™")Ss.

Note that the intermediate point 8 depends on 0. Direct calculations yield E §1 =
O(n 1), E|S;| = O(n!) and E S5 = O(1),E |Ss| = O(1). S is a U-statistic with

non-degenerated kernel
(Wi, W) = K (X;, X3) (UATV4G( Xy, 0) — Up1TVG(X,, 0)).

By similar calculations as in the analysis of h,,(-; ) it is shown that E?Ln(WZ, W) =
0 and E h,(W;, W;,)? = O(h™') = o(n). This allows to apply Lemma 3.1 of Powell,
Stock and Stoker (1989) to obtain

§2 — §2 = OP(Tflﬂ),

where §2 is the projection of the U-statistic, given by

Sy = E h, (Wy, W) + ZE (W, W,) | Wi) = E Dy (Wy, Ws).

Here, W is distributed as W; independently of W;. Since E(En(VV, Wi) | I/VZ) is a
sequence of iid random variables with mean zero and finite second moment (note
that two change of variables can be applied for K,(X,X;)) it is obvious that
Sy = Op(n~/2). This completes the proof of (5.22).

Convergence in probability of ﬁA This follows directly from

Tl < (up |G, 0) - G(X, D))’ / w(z)f(x) dz = Op(n™),

because the kernel is assumed to be positive and then the kernel density estimator
cancels.

This completes the proof of the theorem. n
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Proof of Theorem 5.2

Under the alternative, the residuals can be decomposed into a bias and a variance
part U, = (ZV + (ZB where

This defines a decomposition of the marginal Nadraya-Watson estimator fﬁ{l(x])
= " (27) + P (a7), where md®(27) = fu(a?) 't 00, Kn(2?, X))US for
S = B,V. Recall that the smooth backfitting estimator is defined via the
marginal Nadraya-Watson estimator in equation (5.10). Replacing ), with the

~j,B

~ 4V . . ~ B .
two components my” and mj" respectively, a bias part m;" and a variance part

mh of the smooth backfitting estimator is defined as the solution to the respec—
tive version of equation (5.10) and it holds that ) (27) = md" (x7) + mi " (x7).
Since E(U — P(U | X) | X7) =0 for all j =1,...,d,’ representation (5.16) ap-
plies for 7" (27). For the bias part of the Nadaraya-Watson estimator it holds
that

k:
i (a7) = U|x]+2/ (U | 2*) A>dxk

k#£j (
+h2/ﬁ d:p_] + op(h?),

uniformly in 27 with

d 2
80) = [PR@a Y SoPO ] 00) o ) + 2L PW |2,

Because P(U | z) is an additive function, this is proofed in the same way as

equation (112) in Mammen, Linton and Nielsen (1999). This representation of

5Consider the definition of the marginal conditional expectation, given as minimizer over

pu(a®) of

/(u P | 2) — p()2f (u, ) dude = /(u —PW | )2 f (u, 7) duda
+2 [ (=P | o)ula) fu ) duda + [ a2 e da

The first term on the right cannot be minimized over pu(z*). Because the additive projection is
defined as minimization of (5.3) u — P(U | x) is orthogonal to the space of additive functions

in 2. As p(z*) is an additive function, the second term is zero and the third term is minimized
by p(z*) = 0.
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the bias part allows to apply Theorem 3 in Mammen, Linton and Nielsen (1999)
and it is obtained that

(5.28) i, " (27) = P(U | @) + WP*P(B(X) | 27) = h*yn + 0p(h?)

uniformly in 27 with

. / du/ aif(x)+%f(xj>a(ij)z7>((/ | 29 da.

For this see equation 6.6 in Mammen and Park (2005) and note the wrong proof
of equation (114) in Mammen, Linton and Nielsen (1999).

Decomposing into bias and variance part, the test statistic can be written as

d

T / (> mg;(xﬂ‘))z Fz)w(z) do

= /(i m‘]]lv(x])>2f(m)w<m) dx + /(ﬁ: m%B(xj)Yf(x)w(x) dz
(S 100) (St
=T+ Ty + Ts.

Since representation (5.16) applies, ﬁ can be treated as in Theorem 5.1 and it
holds that
Ty, — h™ 2By = Op(n~'h™"/?).

Using representation (5.28), we have that

-/ (Z PU | #)) fla)u(z)ds + Op(H?).

For the cross term it holds that

f3:2/(2”‘/x9> (U | 2) f(2)w(z) de

—l—Op(nl/Z)/P(U | ) f(x)w(z) dx

+OP /ZAJV :L'] ( )dl’—i-Op( 71/2h2)
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= %Z Ui Z / Ku(X7, 29 f(a)) ' P(U | ) f(z)w(z) dzOp(1) + Op(n~1/?)
= Op(n~'/?).

In total T is dominated by T » which converges to a constant under Hj. O

Proof of Theorem 5.3

Under the local alternative, the residuals are decomposed according to (71 =
U + g,(X;). Analogously to the proof of (5.16) it can be shown that under Hy,
the following extension of the estimator holds
o A N

=T (I — 3 (e il (U, A—1/2y

i) = )+ Do)
With this extension the test statistic is decomposed as in (5.17) and the lower
order terms are bounded as in the proof of Theorem 5.1. In total it is obtained
that

—_

= fl + 1/—\’2 + j—\‘g + 0p<n_1h_1/2).

Under Hy, it holds that U; = U; + G(X;, ) — G(X;,8) and E(U; | X9) = 0 for all
j=1,....d where U; = Y; — G(X;,60) — g.(X;). Therefore the first term T} can
be treated in the same way as the test statistic under the null hypothesis and it
follows from (5.18) that

(5.29) nVhTy — h™2By 25 N(0,Sr).
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Next, turn to

= Op(1 ZK (X, X1)gn(X:) Uy

+0p(1 ZK X, Xi)gn(Xi) (G(X,0) — G(X,,0))

ik
= OP(1>(7/—\13,1 + fsg)

Decomposing both parts into the terms with ¢ = k and i # k it is direct to
show that 7/-\'371 = Op(n_l/z)\ﬁlﬂ) and fgg = Op(n_l/z)\ﬁl/z). This follows by
calculating the mean and the variance for the parts with ¢ = k and applying
Lemma 3.1 in Powell, Stock and Stoker (1989) for the parts with i # k. Then it
follows that

Ty = op(n~th=1/%),

Finally, consider

Zgn Z XMX +OP Zgn gn Xk (Xzan)

i<k

=0Op(1 )(T2,1 + T2,2)'
As in the proof of (5.21) it follows that
(5.30) nVhTy, —h™ 2| K|2B, -2 0.
For @72 again Lemma 3.1 in Powell, Stock and Stoker (1989) is applied to obtain
(5.31) Tys = 0o(A2) 4 0p(A2) = op(n~"h~1/?).

Putting together (5.29)—(5.31), the statement of the theorem follows. O

Proof of Theorem 5.4
Introduce (71* =Y - G(X,, @\*) and decompose
U; = &t + G(X,0) — G(X,,07).

By Assumption 5.3 the bootstrap version of the parametric estimator G(x, 5*) can
be expanded as G(x,0). Analogously to equation (5.16), the bootstrap versions

of the backfitting estimators can be expanded to

i T s _
iy (27) = iy (@) + = > (@) UF + op(n”!1?),

=1
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Here M (27) are the marginal Nadraya-Watson estimators based on the boot-

strap data. Using this extension and similar arguments as to show (5.18) yield

/(Z g ( ) z)w(z) dz + op(n~th™1/?)
— (Til + T1*72 + T1,3)<1 —+ Op(l)) -+ j—\’iﬁl + Op(nflhfl/Q).
Here,

fl*,l = Z Z ho (W5 W) fl*2 = %Zhn(Wf’ w7)
i=1

ilk i+1

Tiy=— Zezm (Xi, 0) — G(X, 0%)) K (X, X;,)

Tr, = / (Z Z Ku(?, X7)(G(X,0) — G(X,, 5*))ﬁ(xf)1)2 F@)w(z) de.

j=1 i=1
with K (X;, X;) as in (5.19) and the kernel is given by
ha(Wi W) = %@né‘gkn;’;f?(Xi,Xk)-
By expanding the parametric bootstrap estimator and using that E&;n = 0 and
E(En;)? = E(E)? = O(n™!) it is shown as in the proof of Theorem 5.1 that
fl*,S = op(n~'h™Y?)  and fl*A = op(n~th7Y?).
Then, the statement of the theorem follows from
(5.32) nVIT; 2= N(0,%7)
(5.33) nVhTy, —h 2By 250,
where the convergence in distribution is conditional on the data with probability

tending to one.

Asymptotic distribution of T\l . By construction, E* h,,(W}; W) = 0 and
E* h, (W7 Wi)? = &3 22K (X;, Xi)2 To further analyze the second term, recall
that

d
& =Ui+G(X;,0) — G(X,,0) - Y ]

= U; + Op(n=?) + Op(n~"21h~1/?).
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This follows from an application of expansion (5.16) to fﬁ%(mj ) and the assump-
tions on the parametric estimator. As seen above, it holds that [?h(Xi, Xp)? =
Op(h™') if i # k. This yields in total that

E* hn(W,L*, W]:j)2 — hn(Wz, Wk)2 + OP(nig/thlﬁil/Q)_

The asymptotic normality follows by showing that the conditions of Lemma 3.1
hold with probability tending to one, i.e.

(5.34)
maxj<i<n ZZ:l,k:;éi E* h, (W W) p

— 0 and

E"(T7,)* p

= — 3
(var* Tl*,1)2

s
var* 17,

=, P
and n?hvar* T}, — 2%7.

Consider the variance first

n2h var* ﬁ*l =n’h Z hn (W3, Wk)2+0p(n’1/2ﬁ’1/2) = n2hﬁ71 +op(1) 2, 257
i<k

The limit follows from (5.25) and convergence in probability from (5.26).

Recall from the calculations in (5.27) that fﬁl is dominated by terms with

by (Wi, Wi )2 Ry (Wi, Wi )? (remember that all cross terms converge to zero). Then

it is obtained that

n'h2EX(Tr) = n'h* T + Op(n™'h™Y)
=3n'h? > ) (Wi Wiy 2R (Wiys W) + 0p(1)
11 <12 13<14
(i3,44)#(11,12)

L1052,

Convergence in probability follows from Chebychev’s inequality and the fact that
var h,, (W, Ws)? = O(n=8h3). From this, the second condition in (5.34) is ob-
tained.

Finally, an application of Markov’s inequality with the first moment shows that
n’h > by (Wi, Wi)* = Op(n")
k=1

for all . This shows the first condition in (5.34) and therefore statement (5.32)

follows.
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Convergence in probability of ffz Expand the residual to obtain

n

* 1 0
Tl 2= 5 ZUnz X”X) n2 Z<G(Xi’9) - G(Xi’e)

=1

— Zm x] T}l Xz, X )
Z Unl leX ) + Op(TL_?’/Qh_l/Qﬁ—l/Q)7

because Z?:o ffz%(xj) = Op(n™2h7Y/2) and K(X;, X;) = Op(h™'). Using iter-
ated expectations, the first term is analyzed as in the proof of (5.21).

This completes the proof of Theorem 5.4. m

Proof of Theorem 5.5

The asymptotic normality follows by the same calculations as in the proof of
Theorem 5.1. [
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