Reihe Informatik. TR-2006-017
Revised Version: January 12th, 2007

Deciding Liveness in Component-Based
Systems is NP-hard

Mila Majster-Cederbaum, Moritz Martens*, Christoph Minnameier

Institut fir Informatik
Universitdt Mannheim, Germany

Abstract. Interaction systems are a formal model for component-based
systems. Combining components via connectors to form more complex
systems may give rise to deadlock situations. In a system that has been
shown to be deadlock-free one can ask if a set of components is live. We
present here a polynomial time reduction from 3-SAT to the question
whether a set of components is live in a deadlock-free system.

1 Introduction

We consider a setting where components are combined via connectors to form
more complex systems [GS03,Sif04,Sif05,GGMCS06,BBS06]. Each single compo-
nent i offers ports a;,b;,... € A; for cooperation with other components. Each
port in A; represents an action of component 7. The behavior of a component can
be represented via a labeled transition system with starting state, where in each
state there is at least one action available. Components are glued together via
connectors, where each connector connects certain ports. In the global system
obtained by gluing components (local) deadlocks may arise where a group of
components is engaged in a cyclic waiting and will thus no longer participate
in the progress of the global system (cf. [Tan01]). In a deadlock-free system at
least one interaction is enabled in every reachable state. Then one can ask the
question whether a subset of components K’ is live, i.e. in every infinite sequence
of connectors there are infinitely many interactions that let a component from
K’ participate. We show that deciding whether a set of components is live in
a deadlock-free system is NP-hard by encoding the classic 3-SAT problem in
interaction systems in such a way that a formula is not satisfiable if and only
if a certain component is live in the system corresponding to the formula. The
system will be constructed such that the component in question can participate
in every connector except one. Then it will be shown that a state where this
connector can be perfomed repeatedly is reachable if and only if the formula is
satisfiable.
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The paper is organized as follows. Section 2 contains the basic definitions.
Section 3 gives the polynomial time reduction from 3-SAT to interaction systems
and the proofs. There will be a short example as well. Section 4 contains the
conclusion and a discussion of related work.

2 Components, Connectors and Interaction Systems

We consider interaction systems, a model for component-based systems that
was proposed and discussed in detail in [GS03,Sif05,GS05,BBS06]. An interac-
tion system is a tuple Sys = (K, {A;}icx,C,{Ti}ick ), where K is the set of
components. Without loss of generality we assume K = {1,...,n}. Each compo-
nent i € K offers a finite set of ports A; for cooperation with other components.
The port sets A; are pairwise disjoint. Cooperation is described by connectors.
A connector is a set of actions ¢ C |, j Ai, where for each component i at most
one action a; € A; is in ¢. A connector set C is a set of connectors, such that
every action of every component occurs in at least one connector of C' and no
connector contains any other connector.

The local behavior of each component i is described by T; = (Q:, Ai, —4,qY),
where @); is the finite set of local states, —;C Q; X A; X @Q; the local transition
relation and ¢? € Q; is the local starting state. Given a connector ¢ € C and a
component i € K we denote by i(c) := A; N ¢ the participation of 7 in c.

For g; € Q; we define the set of enabled actions ea(q;) := {a; € A; | 3¢, € Q,
sit. g 25 ¢/}, We assume that the Tj’s are non-terminating, i.e. Vi € K Vg; €
Qi ea(q;) # 0.

The global behavior Tsys = (Q,C,—,q°) of Sys (henceforth called global
transition system) is obtained from the behaviors of the individual components,
given by the transition systems T}, and the connectors C in a straightforward
manner:

— Q = [l;ex Qs the Cartesian product of the @;, which we consider to be
order independent. We denote states by tuples (¢i,...,¢,) and call them
global states.

— the relation —C @Q x C x @, defined by
Ve € C’Vq,qf €Q q=(q1,--qn) > ¢ =(¢,,...,q,) iff
Vie K (g; ifz qi if i(c) # ) and ¢} = q; otherwise).

— ¢ =(q},...,4q°) is the starting state for Sys.

! The model in [GS03] is more general. It introduces a notion of complete interaction,
which is a subset of a connector and distinguishes between connectors and complete
interactions. We are able to show NP-hardness for liveness-check of a set of com-
ponents in interaction systems without the use of complete interactions, so we omit
them for ease of notation. Note that this yields a stronger not weaker result than
using complete interactions. Readers who are familiar with interaction systems may
simply assume Comp = () for Sys(F') in Section 3.



In the global transition system a transition labeled with ¢ may take place when
each component participating in ¢ is ready to perform i(c).
For an example of an interaction system see Example 1 at the end of section 3.

Let ¢ = (g1,-..,qn) € Q be a global state. We say that some non-empty set
D = {j1,j2,---,7p|} € K of components is in deadlock in q if Vi € D Vc € C,
such that cNea(g;) # 0 3j € D, where j(c) € ea(g;j). Then we say that ¢ waits
for j. A system has a local deadlock in some global state ¢ if there is D C K,
that is in deadlock in ¢. If D = K, the system is globally deadlocked. Hence a
global deadlock is a special case of a local deadlock. A system is deadlock-free,
if there is no reachable state ¢ and D C K, such that D is in deadlock in q. A
system is globally deadlock-free, if there is no reachable state ¢ such that K is in
deadlock in q.

In a globally deadlock-free system it is always possible to proceed from a
reachable state. We define a run of a system to be an infinite sequence

such that a,, is in C for all n. In a globally deadlock-free system we define a
subset K’ C K to be live if in every run there are infinitely many interactions
ay, such that there is some k € K’ with k («,) # 0. If K/ = {k} only contains
one element we simply speak of liveness of k.

We denote by IS the set of all interaction systems and by DLFIS the set of
interaction systems that are globally deadlock-free:

DLFIS :={Sys € IS | Sys is globally deadlock-free}

We consider the well-studied NP-complete 3-SAT problem [GJ79] where the
formula is a conjunction of clauses k;, each of which is a disjunction of 3 literals,
(i.e. possibly negated variables) and reduce the question whether a formula is
not satisfiable to the question of deciding whether a set of components is live in
a globally deadlock-free system.

3 The Reduction

Let F' = ki A ... ANk, with k; = (I1) V2 V l(i73)) be a propositional for-
mula in 3-KNF, where I(; 1), 2,13 are positive literals (i.e. variables) or
negative literals (i.e. negated variables). We agree upon the following notations.
For a literal [ let var (I) denote the variable occuring in that literal. For F' let
var (F) := {var (Z(i,j)) 1<i<n1<j< 3} denote the set of variables occur-
ing in F.

In the following, we construct an interaction system Sys(F') € DLFIS with
component-set K U {x;}, such that (F ¢ 3 — SAT) < (k; is live in Sys(F)).
Besides the component x; we represent each clause k; by a component (i, 0) and
each literal [(; ;y by a component (i, 7). We denote by K the set K\ {x;}.

Sys (F) := (K, {A(i,j)}(@j)ef( U{A.}.C, {Tl}j}(i,j)ef( U{Tx.}),



where:
K:={(,7)|1<i<n,0<j<3}U{k}
Aoy = {true;, SAT;} for 1 <i<n
Agig) = {setl(m),setO(m),true(i7j),a(i,j)} for1<i<n,j#0
Ay, = {an}
We define the following connectors. First we have:

sat .= {SAT,...,SAT,}

Next there are two sorts of connectors representing the assignment of 1 or 0 to
a variable z € var (F):

setl, := {a,ﬂ,setl(ihjl), ce setl(im,jm)}

where © = var (I;, j,)) = - .. = var (l(,, j,.)) and there is no other literal | with
x = var (1). Analogously we define

setQ, = {a,ﬂ,seto(il’jl), ey setO(,»ij)}

where © = var (I;, j,)) = - .. =var (l(,, j,.)) and there is no other literal | with
x = wvar (1). Another group of connectors is defined by:
L) = {am,true(i,j),truei}
Finally:
ca ' ={antU{au 1 <i<n,j#0}
Then we set
Ci={sat}u |J (setla}Ufseto,})U ) {tus}U{c
x€var(F) 1<i<n,j#0

The local transition system for x; is given in Figure 1. The local transition
system T; o) for 1 <i < n is given in Figure 2 (a). The local transition system
T, ) for 1 <i <n, j# 0 and [, ;) is a positive (resp. negative) literal is given
in Figure 2 (b) (resp. (¢)).

aK/l

Fig. 1. The transition system for x;

We call components (4,0) clause-components and components (4,j) where
j # 0 literal-components. For a component (4, j) we call the state qfi i) its true-

state and if it exists q{i i) its false-state. For a global state ¢ we assume that



the components are ordered as follows

qO = (Q?Lo)a Q(O1}1)7 Q(O1,2)7 C1(01,3)7 Q?z,o)a ) CI?n,g)y Q).

SAT; true ;)

Fig. 2. The transition systems for clause-components (a) and literal-components (b)
and (c)

Remark 1: Note that there is no blow-up in notation when we go from F' to
Sys(F). The four transition systems we introduce for each clause are of constant
size as is the transition system for ;. The setl,- and set0,-connectors have an
overall size which is linear in the number of literals in F' and their number is
linear in the number of different variables in F. The sat-connector is linear in
the number of clauses in F'. Other than that there are 3n connectors of constant
length and one of length 3n + 1.

Lemma 1 In Sys(F) a state where sat can be performed is reachable from the
initial state if and only if F' is satisfiable.

Proof. We show both implications.
= Let

Qs—1

ps=q" S

be an initial fragment of a run such that sat is enabled in ¢*. This means that
all clause-components have to be in their true-state in ¢° which is only possible
if for every 7 there exists exactly one j; such that on ps the connector (; ;,y was
performed. This means that for every i the component (Z,¢;) must have moved
to its true-state somewhere along p, before the execution of ¢(; ;,). We define an
assignment o, : var (F') — {1,0} as follows.

1 if P4 such that z = var (l(im))
0, (x) := ¢ 1if Ji such that z =, j,)
0 if Ji such that ~z =1, ;,)

o, is well-defined. It is clear that the first case and one of the two other
cases exclude each other. Assume there is a variable z such that the condi-
tion of the two last cases is satisfied. Then there exist ¢; and 49 such that



T = var (l(l N ) = var (l o ) where [,. .\ is positive and [,. . \ is neg-
1,J11) (lz ,ng) (Zl7j11) (12,%2)

ative. The components (i1, j;,) and (i2,j;,) occur in the connectors setl, and

set0, together. Both components have moved to their true-state along ps which

means that (i1, j;, ) must have performed setl(ihjil) and (42, J;,) must have per-

formed setO(i%m). Therefore both setl, and setO, must have been performed

somewhere along ps which is not possible.

Now it remains so show that o, (F') = 1. Let k; be a clause of F. If (4, j;)
represents a positive literal o, (var (I; j,))) = 1 and therefore o, (k;) = 1. Oth-
erwise o, (var (I(; ;,))) = 0 and again o, (k;) = 1. We conclude o, (F) =1 and
F is satisfiable.

«<: If F is satisfiable let ¢ be an assignment such that o (F') = 1. We construct
an initial fragment ps of a run that ends in a state where SAT is enabled.

Every variable in var (F') is assigned a value by o. In the order of appearance
of variables in F' we perform the following connectors. If o () = 1 we perform
setl,. Otherwise we perform set0,. This is possible because no literal-component
(i,7) can leave its initial state without the other literal-components (5,3) with

var (l(”)) = var (l(i,j)). At this point of the run every literal-component is

either in its false-state or in its true-state. All other components are in their
respective initial state.

Because o (F) = 1 we know that for every clause k; there is a literal-
component (4,75) such that o (l(i)j)) = 1. The corresponding literal-component
must be in its true-state because of the definition of the transition systems for
these components. This means that for all 1 < i < n we can perform the con-
nector (; jy.

Thus we reach a state ¢ where all clause-components are in their true-state.
sat can be performed in ¢ and we are done.

Proposition 1 Sys (F) is deadlock-free and F is not satisfiable if and only if
ki 18 live in Sys (F).

Proof. 1t is clear that Sys (F') is deadlock-free because ¢, is enabled in every
global state.

<: Let £ be live in Sys (F'). We want to show that F is not satisfiable. Assume
that there is an assignment o such that o (F') = 1. From Lemma 1 we conclude
that there is an initial fragment of a run

AXs—1

ps=q" S

such that sat can be performed in ¢°. k; only participates finitely many often in
p defined by

Ds ::qoﬂ...a‘il qs‘gtqss&t...
This is a contradiction.

= Let F' not be satisfiable. We want to show that x; is live in Sys (F'). Assume
this is not the case. Then there is a run

0 @ 1 91

p=q —q — ...



such that from some point on x; does not participate any more. Note that the
only connector that does not let x; participate is sat. This means that there is
some ng such that o, = sat for all n > ng. Therefore a state where sat can be
performed is reachable in Sys (F). Lemma 1 implies that F is satisfiable. This
is a contradiction.

Example 1: Let F' = (21 VT3V a3) A (TT Va2 VT3) A (TT VT2 VIT3). Fis
satisfiable, namely o(F) =1 for o(x1) = 1,0(z2) = 1,0(x3) = 0.

Consider Sys(F) = (K, {A;}iex, C,{T:}icx ). The set of components is given
by K = {(1,0),(1,1),(1,2),(1,3),(2,0),...,(3,3),x} and the port sets A; for
i € K, the connector-set C' as well as the local transition systems {7;};cx are
defined as above. One possible fragment of a run constructed from o according
to Lemma 1 is as follows.

pi= qO setﬁl}m1 ql 562,12 q2 seg;n3 q4 t(;’” q5 t(i?) q5 t(i)’g,) q6
In the first step component (1,1) moves to its true-state and (2,1) and (3,1)
move to their respective false-state. Analoguously the other six literal-compo-
nents change their state according to setl,, and set0,,. In steps four to six
components (1,0), (2,0), and (3,0) move to their true-state together with (1, 1),
(2,2), respectively (3,3). Note that in the fifth step (5 3) could also have been

performed because q(s2 3) = qug) as well. sat is enabled in ¢5.

4 Conclusion and Related Work

This work is closely based on [Min06] where it was shown that the detection of
deadlocks in interaction systems is NP-hard. We followed the reduction presented
there making the necessary adjustments. This led to the result that the question
whether a set of components is live is NP-hard for interaction systems even
without the use of complete interactions. This yields a motivation for sufficient
criteria for liveness that work in polynomial-time such as the polynomial-time
checkable sufficient condition for liveness of a subset of components in interaction
systems presented in [GGMCT07]. In [GSG106] one can find sufficient criteria
for other properties of component-based systems as well as considerations about
ensuring properties by construction using composability.
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