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Preface

This is a write�up of lectures given at the 
Kleine Herbstschule ��� of the Graduier�
tenkolleg 
Mathematik im Bereich Ihrer Wechselwirkungen mit der Physik� at the
Ludwig�Maximilians�Universit�at M�unchen
 Starting from classical algebraic geometry
over the complex numbers �as it can be found for example in �GH�� it was the goal
of these lectures to introduce some concepts of the modern point of view in algebraic
geometry
 Of course� it was quite impossible even to give an introduction to the whole
subject in such a limited time
 For this reason the lectures and now the write�up con�
centrate on the substitution of the concept of classical points by the notion of ideals
and homomorphisms of algebras


These concepts were established by Grothendieck in the ��s
 In the following they
were proven to be very fruitful in mathematics
 I do not want to give an historic
account of this claim
 Let me just mention the proof of the Weil conjectures by Pierre
Deligne �see �H�App
C�� and the three more recent results� Faltings� proof of Mordell�s
conjecture� Faltings� proof of the Verlinde formula and Wiles� work in direction towards
Fermat�s Last Theorem
� But also in theoretical physics� especially in connection with
the theory of quantum groups and noncommutative geometries� it was necessary to
extend the concept of points
 This is one reason for the increasing interest in modern
algebraic geometry among theoretical physicists
 Unfortunately� to enter the �eld is
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not an easy task
 It has its own very well developed language and tools
 To enter it
in a linear way if it would be possible at all �which I doubt very much� would take a
prohibitive long time
 The aim of the lectures was to decrease the barriers at least a
little bit and to make some appetite for further studies on a beautiful subject
 I am
aiming at mathematicians and theoretical physicists who want to gain some feeling and
some understanding of these concepts
 There is nothing new for algebraic geometers
here


What are the prerequisites� I only assume some general basics of mathematics �mani�
folds� complex variables� some algebra�
 I try to stay elementary and hence assume only
few facts from algebraic geometry
 All of these can be found in the �rst few chapters of
�Sch�


The write�up follows very closely the material presented at the lectures
 I did with�
stand the temptation to reorganize the material to make it more systematic� to supply
all proofs� and to add other important topics
 Especially the in�nitesimal and the global
aspects are still missing
 Such an extension would considerably increase the amount of
pages and hence obscure the initial goal to give a short introduction to the subject and
to make appetite for further self�study
 What made it easier for me to decide in this way
is that there is a recent little book by Eisenbud and Harris available now �EH� which
�at least that is what I hope� one should be able to study with pro�t after these lec�
tures
 The book �EH� substitutes �at least partially� the for a long period only available
pedagogical introduction to the language of schemes� the famous red book of varieties
and schemes by Mumford �Mu���
� If you are looking for more details you can either
consult Hartshorne �H� or directly Grothendieck �EGA I���EGA�
 Of course� other good
sources are available now


Finally� let me thank the audience for their active listening and the organizers of
the Herbstschule for the invitation
 It is a pleasure for me to give special thanks to
Prof
 M
 Schottenloher and Prof
 J
 Wess


�� Varieties

As we know from school the geometry of the plane consists of points� lines� curves�
etc
 with certain relations between them
 The introduction of coordinates �i
e
 numbers�
to 
name� the points has been proven to be very useful
 In the real plane every point
can be uniquely described by its pair ��� �� of Cartesian coordinates
 Here � and � are
real numbers
 Curves are 
certain� subset of R � R � R� 
 The notion 
certain� is of

�Which is still very much recommended to be read� Recently� it has been reprinted in the Springer

Lecture Notes Series�
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course very unsatisfactory


In classical algebraic geometry the subsets de�ning the geometry are the set of points
where a given set of polynomials have a common zero �if we plug in the coordinates
of the points in the polynomial�
 To give an example� the polynomials X and Y are
elements of the polynomial ring in � variables over the real numbers R
 They de�ne the
following polynomial functions�

X� Y � R� � R� ��� �� �� X��� �� � �� resp
 Y ��� �� � � �

These two functions are called coordinate functions
 The point ���� ��� � R� can be
given as zero set

f��� �� � R� j X��� ��� �� � �� Y ��� ��� �� � � g �

Let me come to the general de�nition
 For this let K be an arbitrary �eld �e
g

C � R� Q � Fp � Fp � � � � � and K n � K � K � � � � � K� �z �

n times

the n�dimensional a�ne space over

K 
 I shall describe the objects of the geometry as zero sets of polynomials
 For this
let Rn � K �X� � X�� � � � � Xn� be the polynomial ring in n variables
 A subset A of K n

should be a geometric object if there exist �nitely many polynomials f�� f�� � � � � fs � Rn

such that

x � A if and only if f��x� � f��x� � � � � � fs�x� � � �

Here and in the following it is understood that x � �x�� x�� � � � � xn� � K n and f�x� � K
denotes the number obtained by replacing the variable X� by the number x�� etc



Using the notion of ideals it is possible to de�ne these sets A in a more elegant
fashion
 An ideal of an arbitrary ring R is a subset of R which is closed under addition �
I � I � I � and under multiplication with the whole ring� R � I � I 
 A good reference
to recall the necessary prerequisites from algebra is �Ku�
 Now let I � �f�� f�� � � � � fr�
be the ideal generated by the polynomials f�� f�� � � � � fs which de�ne A� e
g


I � R � f� �R � f� � � � �� R � fs � fr�f� � r�f� � � � �� rsfs j ri � R� i � �� � � � � sg �

De�nition� A subset A of K n is called an algebraic set if there is an ideal I of Rn

such that
x � A �	 f�x� � � for all f � I�

The set A is called the vanishing set of the ideal I� in symbols A � V �I� with

V �I� �� fx � K n j f�x� � �� 
f � I g � �����
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Remark �� It is enough to test the vanishing with respect to the generators of the ideal
in the de�nition


Remark �� There is no �niteness condition mentioned in the de�nition
 Indeed this is
not necessary� because the polynomial ring Rn is a noetherian ring
 Recall a ring is
a noetherian ring if every ideal has a �nite set of generators
 There are other useful
equivalent de�nitions of a noetherian ring
 Let me here recall only the fact that every
strictly ascending chain of ideals �starting from one ideal� consists only of �nitely many
ideals
 But every �eld K has only the �trivial� ideals f�g and K �why��� hence K
is noetherian
 Trivially� all principal ideal rings �i
e
 rings where every ideal can be
generated by just one element� are noetherian
 Beside the �elds there are two important
examples of principal ideal rings� Z the integers� and K �X� the polynomial ring in one
variable over the �eld K 
 Let me recall the proof for Z
 Take I an ideal of Z
 If I � f�g
we are done
 Hence assume I �� f�g then there is a n � N with n � I minimal
 We
now claim I � �n�
 To see this take m � I
 By the division algorithm of Euklid there
are q� r � Z with � � r � n such that m � qn � r 
 Hence� with m and n in I we
get r � m � qn � I
 But n was chosen minimal� hence r � � and m � �n�
 Note that
the proof for K �X� is completely analogous if we replace the division algorithm for the
integers by the division algorithm for polynomials


Now we have

Hilbertscher Basissatz� Let R be a noetherian Ring� Then R�X� is also noetherian�

As a nice exercise you may try to proof it by yourself �maybe guided by �Ku��


Remark �� If R is a noncommutative ring one has to deal with left� right and two�sided
ideals
 It is also necessary to de�ne left� right� and two�sided noetherian


It is time to give some examples of algebraic sets�

��� The whole a�ne space is the zero set of the zero ideal� K n � V ���


��� The empty set is the zero set of the whole ring Rn� 
 � V �����


��� Let � � ���� ��� � � � � �n� � K n be a point given by its coordinates
 De�ne the ideal

I� � �X� � ��� X� � ��� � � � � Xn � �n��

then f�g � V �I��


�	� Now take � points �� � and their associated ideals I�� I� as de�ned in ���
 Then
I� � I� is again an ideal and we get f�� �g � V �I� � I�� 

This is a general fact
 Let A � V �I� and B � V �J� be two algebraic sets then the
union A � B is again an algebraic set because A � B � V �I � J�
 Let me give a proof
of this
 Obviously� we get for two ideals K and L with K � L for their vanishing sets
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V �K� � V �L�
 Hence because I � J � I and I � J � J we obtain V �I � J� �
V �I� � V �J�
 To proof the other inclusion assume that there is an x �� V �I� � V �J�
then there are f � I and g � J with f�x� �� � and g�x� �� �
 Now f � g � I � J but
�f � g��x� � f�x� � g�x� �� �
 Hence x �� V �I � J�
 Let me repeat the result for further
reference�

V �I� � V �J� � V �I � J� � �����

�
� A hypersurface H is the vanishing set of the ideal generated by a single polynomial
f � H � V ��f��
 An example in C � is given by I � �Y � � �X� � g�X � g�� where
g�� g� � C 
 The set V �I� de�nes a cubic curve in the plane
 For general g�� g� this curve
is isomorphic to a �complex� one�dimensional torus with the point � removed


��� Linear a�ne subspaces are algebraic sets
 A linear a�ne subspace of K n is the
set of solutions of a system of linear equations A � x � b with

A �

�
� a���
� � �
ar��

�
A � b �

�
� b�
� � �
br

�
A � ai�� � K n � bi � K � i � �� � � � � r �

The solutions �by de�nition� are given as the elements of the vanishing set of the ideal

I � �a��� �X � b�� a��� �X � b�� � � � � ar�� �X � br� �

��� A special case are the straight lines in the plane
 For this let li � ai��X�ai��Y �bi�
i � �� � be two linear forms
 Then Li � V ��li��� i � �� � are lines
 For the union of the
two lines we obtain by �����

L� � L� � V ��l�� � �l��� � V ��l� � l��� �

Note that I do not claim �l�� � �l�� � �l� � l��
 The reader is encouraged to search for
conditions when this will hold
 For the intersection of the two lines we get L� � L� �
V ��l�� l��� which can be written as V ��l��� �l���
 Of course� this set consists just of one
point if the linear forms l� and l� are linearly independent
 Again� there is the general
fact

V �I� � V �J� � V �I � J�� �����

where
I � J �� f f � g j f � I� g � J g �

You see there is a ample supply of examples for algebraic sets
 Now we introduce
for K n a topology� the Zariski�Topology
 For this we call a subset U open if it is a
complement of an algebraic set� i
e
 U � K n n V �I� where I is an ideal of Rn
 In
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other words� the closed sets are the algebraic sets
 It is easy to verify the axioms for a
topology�

��� K n and 
 are open

��� Finite intersections are open�

U� � U� � �K n n V �I��� � �K n n V �I��� � K n n �V �I�� � V �I��� � K n n V �I� � I�� �

��� Arbitrary unions are open�

�
i�S

�K n n V �Ii�� � K n n
�
i�S

V �Ii� � K n n V �
X
i�S

Ii� �

Here S is allowed to be an in�nite index set
 The ideal
P

i�S Ii consists of elements
in Rn which are �nite sums of elements belonging to di�erent Ii
 The claim ����� easily
extends to this setting


Let us study the a�ne line K 
 Here R� � K �X�
 All ideals in K�X� are principal
ideals� i
e
 generated by just one polynomial
 The vanishing set of an ideal consists just
of the �nitely many zeros of this polynomial �if it is not identically zero�
 Conversely�
for every set of �nitely many points there is a polynomial vanishing exactly at these
points
 Hence� beside the empty�set and the whole line the algebraic sets are the sets
of �nitely many points
 At this level there is already a new concept showing up
 The
polynomial assigned to a certain point set is not unique
 For example it is possible to
increase the vanishing order of the polynomial at a certain zero without changing the
vanishing set
 It would be better to talk about point sets with multiplicities to get a
closer correspondence to the polynomials
 Additionally� if K is not algebraically closed
then there are non�trivial polynomials without any zero at all
 These ideas we will take
up in later lectures
 The other important observation is that the open sets in K are
either empty or dense
 The latter says that the closure U of U � i
e
 the smallest closed
set which contains U is the whole space K 
 Assuming the whole space to be irreducible
this is true in a more general context


De�nition�

�a� Let V be a closed set
 V is called irreducible if for every decomposition V � V��V�
with V�� V� closed we have V� � V or V� � V 

�b� An algebraic set which is irreducible is called a variety


Now let U be an open subset of an irreducible V 
 The two set V n U and U are
closed and V � �V nU��U 
 Hence� V has to be one of these sets
 Hence� either U � 

or V � U 
 As promised� this shows that every open subset of an irreducible space is
either empty or dense
 Note that this has nothing to do with our special situation
 It
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follows from general topological arguments
 In the next section we will see that the
spaces K n are irreducible


Up to now we were able to describe our geometric objects with the help of the ring
of polynomials
 This ring plays another important role in the whole theory
 We need
it to study polynomial �algebraic� functions on K n 
 If f � Rn is a polynomial then
x �� f�x� de�nes a map from K n to K 
 This can be extended to functions on algebraic
sets A � V �I�
 We associate to A the quotient ring

R�A� �� K �X� � X�� � � � � Xn��I �

This ring is called the coordinate ring of A
 The elements of R�A� can be considered
as functions on A
 Take x � A� and �f � R�A� then �f�x� �� f�x� is a well�de�ned
element of K 
 Assume �f � �g then there is an h � I with f � g � h hence f�x� �
g�x� � h�x� � g�x� � �
 You might have noticed that it is not really correct to call this
ring the coordinate ring of A
 It is not clear� in fact it is not even true that the ideal I is
�xed by the set A
 But R�A� depends on I
 A �rst way to avoid these complications
is to assign to every A a unique de�ning ideal�

I�A� �� ff � Rn j f�x� � �� 
x � Ag � �����

It is the largest ideal which de�nes A
 For arbitrary ideals we always obtain I�V �I�� � I


There is a second possibility which even takes advantage out of the non�uniqueness

We could have added the additional data of the de�ning ideal I in the notation
 Just
simply assume that when we use A it comes with a certain I
 Compare this with the
situation above where we determined the closed sets of K 
 Again this at the �rst glance
annoying fact of non�uniqueness of I will allow us to introduce multiplicities in the
following which in turn will be rather useful as we will see


Here another warning is in order
 The elements of R�A� de�ne usual functions on
the set A
 But di�erent elements can de�ne the same function
 In particular� R�A� can
have zero divisors and nilpotent elements �which always give the zero function�


The ring R�A� contains all the geometry of A
 As an example� take A to be a curve
in the plane and P a point in the plane
 Then A � V ��f�� with f a polynomial in X
and Y and P � V ��X��� Y ���� 
 Now P � A �which says that the point P lies on
A� if and only if �X � �� Y � �� � �f�
 Moreover� in this case we obtain the following
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diagram of ring homomorphisms

R�
��f�

����� R�A�

�

x		 �

x		
�X � �� Y � ��

��f�
����� �X � �� Y � ����f�

�

x		 �

x		
�f� ����� f�g �

The quotient �X � �� Y � ����f� is an ideal of R�A� and corresponds to the point P
lying on A


Indeed� this is the general situation which we will study in the following sections� the
algebraic sets on A correspond to the ideals of R�A� which in turn correspond to the
ideals lying between the de�ning ideal of A and the whole ring Rn


Let me close this section by studying the geometry of a single point P � ��� �� � K � 

A de�ning ideal is I � �X � �� Y � ��
 If we require �multiplicity one� this is the
de�ning ideal
 Hence� the coordinate ring R�P � of a point is K �X�Y ��I �� K 
 The
isomorphismus is induced by the homomorphism K �X�Y �� K given byX � �� Y � �

Indeed� every element r of K �X�Y � can be given as

r � r� � �X � �� � g � �Y � �� � f� r� � K � f� g � K �X�Y � � �����

Under the homomorphism r maps to r� 
 Hence r is in the kernel of the map if
and only if r� equals � which in turn is the case if and only if r is in the ideal I
 The
description ����� also shows that I is a maximal ideal
 We call an ideal I a maximal
ideal if there are no ideals between I and the whole ring R �and I �� R�
 Any ideal
strictly larger than the above I would contain an r with r� �� �
 Now this ideal would
contain r� �X � ��� �Y � �� hence also r�
 Hence also �r��

�� � r� � �
 But an ideal
containing � is always the whole ring


On the geometric side the points are the minimal sets
 On the level of the ideals
in Rn this corresponds to the fact that an ideal de�ning a point �with multiplicity
one� is a maximal ideal
 If the �eld K is algebraically closed then every maximal ideal
corresponds indeed to a point




CONCEPTS OF MODERN ALGEBRAIC GEOMETRY �

�� The spectrum of a ring

In the last lecture we saw that geometric objects are in correspondence to algebraic
objects of the coordinate ring
 This we will develop more systematically in this lecture

We had the following correspondences ������ �����

ideals of Rn
V
�� algebraic sets

ideals of Rn
I
�� algebraic sets


Recall the de�nitions� �Rn � K �X� � X�� � � � � Xn��

V �I� �� fx � K n j f�x� � �� 
f � I g� I�A� �� f f � Rn j f�x� � �� 
x � A g �

In general I�V �I�� will be bigger than the ideal I
 Let me give an example
 Consider
in C �X� the ideals I� � �X� and I� � �X��
 Then V �I�� � V �I�� � f�g
 Hence both
ideals de�ne the same point as vanishing set
 Moreover I�V �I��� � I� because I� is a
maximal ideal
 If we write down the coordinate ring of the two situations we obtain
for I� the ring C �X���X� �� C 
 This is the expected situation because the functions on
a point are just the constants
 For I� we obtain C �X���X�� �� C � C � � the algebra
generated by � and � with the relation �� � � �X maps to ��
 Hence� there is no ���
correspondence between ideals and algebraic sets
 If one wants such a correspondence
one has to throw away the �wrong� ideals
 This is in fact possible �by considering the
so called radical ideals� see the de�nition below�
 Indeed� it is rather useful to allow all
ideals to obtain more general objects �which are very useful� than the classical objects


To give an example� take the a�ne real line and let It � �X� � t�� for t � R be a
family of ideals
 The role of t is the role of a parameter one is allowed to vary
 Obviously�

It � ��X � t��X � t�� � �X � t� � �X � t��

For t �� � we obtain V �It� � ft��tg and for t � � we obtain V �I�� � f�g
 We see
that for general values of t we get two points� and for the value t � � one point
 If we
approach with t the value � the two di�erent points �t come closer and closer together

Now our intuition says that the limit point t � � better should be counted twice
 This
intuition we can make mathematically precise on the level of the coordinate rings
 Here
we have

Rt � R�X��It �� R � R � �� �� � t� �

The coordinate ring is a two�dimensional vector space over R which re�ects the fact
that we deal with two points
 Everything here is also true for the exceptional value
t � �
 Especially R� is again two�dimensional
 This says we count the point f�g twice
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The drawback is that the interpretation of the elements of Rt as classical functions
will not be possible in all cases
 In our example for t � � the element �X will be nonzero
but �X��� � �


For the following de�nitions let R be an arbitrary commutative ring with unit ��

De�nition�

�a� An ideal P of R is called a prime ideal if P �� R and a � b � P implies a � P or
b � P 


�b� An ideal M of R is called a maximal ideal if M �� R and for every ideal M � with
M � �M it follows that M � �M or M � � R


�c� Let I be an ideal
 The radical of I is de�ned as

Rad�I� �� f f � R j �n � N � fn � I g �

�d� The nil radical of the ring R is de�ned as nil�R� �� Rad�f�g� 


�e� A ring is called reduced if nil�R� � f�g


�f� An ideal I is called a radical ideal if Rad�I� � I


Starting from these de�nitions there are a lot of easy exercises for the reader�

��� Let P be a prime ideal
 Show� R�P is a ring without zero divisor �such rings are
called integral domains�


��� Let M be a maximal ideal
 Show R�M is a �eld


��� Every maximal ideal is a prime ideal


��� Rad�I� is an ideal


��� Rad�I� equals the intersection of all prime ideals containing I


��� nil�R�I� � Rad�I��I and conclude that every prime ideal is a radical ideal


��� Rad I is a radical ideal


Let me return to the rings Rt de�ned above
 The ideals It are not prime because
neither X � t nor X � t are in It but �X � t��X � t� � It
 In particular� Rt is not
an integral domain� �� � t��� � t� � �
 Let us calculate nil�Rt�
 For this we take an
element � �� z � a� b� and calculate

� � �a� b��n � an �



n

�

�
an��b���



n

�

�
an��b��� � � � � �
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Replacing �� by the positive real number t� we obtain

� � �a� b��n �



an �



n

�

�
an��b�t� �



n

�

�
an��b�t� � � � �

�
�

��




n

�

�
an��b� �



n

�

�
an��b�t� � � � �

�
�

From this we conclude that all terms in the �rst and in the second sum have to vanish
�all terms have the same sign�
 This implies a � �
 Regarding the last element in both
sums we see that for t �� � we get b � �
 Hence nil�Rt� � f�g� for t �� � and the ring Rt

is reduced
 For t � � the value of b is arbitrary
 Hence nil�R�� � ���� which says that
R� is not a reduced ring
 This is the typical situation� a non�reduced coordinate ring
R�V � corresponds to a variety V which should be considered with higher multiplicity


For the polynomial ring we have the following very important result


Hilbertscher Nullstellensatz� Let I be an ideal in Rn � K �X� � X�� � � � � Xn�� If K is
algebraically closed then I�V �I�� � Rad�I��

The proof of this theorem is not easy
 The main tool is the following version of the
Nullstellensatz which more resembles his name

Hilbertscher Nullstellensatz� Let I be an ideal in Rn � K �X� � X�� � � � � Xn�� I �� Rn�
If K is algebraically closed then V �I� �� 
� In other words given a set of polynomials
such that the constant polynomial � cannot be represented as a Rn�linear sum in these
polynomials then there is a simultaneous zero of these polynomials�

For the proof let me refer to �Ku�


The Nullstellensatz gives us a correspondence between algebraic sets in K n and the
radical ideals of Rn � K �X� � X�� � � � � Xn�
 If we consider the prime ideals we get

Proposition� Let P be a radical ideal� Then P is a prime ideal if and only if V �P � is
a variety�

Before we come to the proof of the proposition let me state the following simple obser�
vation
 For arbitrary subsets S and T of K n the ideals I�S� and I�T � can be de�ned
completely in the same way as in ������ i
e
�

I�S� �� ff � Rn j f�x� � �� 
x � Sg � �����

It is easy to show that

I�S � T � � I�S� � I�T �� and V �I�S�� � S � �����
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Here S denotes the topological closure of S� which is the smallest �Zariski��closed subset
of K n containing S


Proof of the above proposition� Let P be a prime ideal and set Y � V �P � then
I�V �P �� � Rad�P � � P by the Nullstellensatz
 Assuming Y � Y� � Y� a closed
decomposition of Y then I�Y � � I�Y� � Y�� � I�Y�� � I�Y�� � P 
 Because P is prime
either P � I�Y�� or P � I�Y��
 Assume the �rst then Y� � V �I�Y��� � V �P � � Y
�using that Y� is closed�

Conversely� let Y � V �P � be irreducible with P a radical ideal
 By the Nullstellensatz
P � Rad�P � � I�Y �
 Let f � g � P then f � g vanishes on Y 
 We can decompose
Y � �Y � V �f�� � �Y � V �g�� into closed subset of Y 
 By the irreducibility it has to
coincide with one of them
 Assume with the �rst
 But this implies that V �f� � Y and
hence f is identically zero on Y 
 We get f � I�Y � � P 
 This shows that P is a prime
ideal
 �

Note the fact that we restricted the situation to radical ideals corresponds to the fact
that varieties as sets have always multiplicity �� hence they are always 
reduced�
 To
incorporate all ideals and hence 
nonreduced structures� we have to use the language
of schemes �see below�


Let us look at the maximal ideals of Rn � K �X� � X�� � � � � Xn�
 �Still K is assumed
to be algebraically closed�
 The same argument as in the two�dimensional case shows
that the ideals

M� � �X� � ��� X� � ��� � � � � Xn � �n�

are maximal and that Rn�M�
�� K 
 This is even true if the �eld K is not algebraically

closed
 Now let M � be a maximal ideal
 By the Nullstellensatz �here algebraically
closedness is important� there is a common zero � for all elements f �M �
 Take f ��M �

then Rn � �f�M ��
 Now f��� � � would imply that � is a zero of all polynomials in
Rn which is impossible
 Hence� every polynomial f which vanishes at � lies in M

�
 All
elements in M� have � as a zero
 This implies M� �M � � Rn 
 By the maximality of
M� we conclude M� �M �


Everything can be generalized to an arbitrary variety A over an algebraically closed
�eld
 The points of A correspond to the maximal ideals of Rn lying above the de�ning
prime ideal P of A
 They correspond exactly to the maximal ideals in R�A�
 All of
them can be given as M��P 
 This can be extended to the varieties of K n lying on A

They correspond to the prime ideals of Rn lying between the prime ideal P and the
whole ring
 They in turn can be identi�ed with the prime ideals of R�A�
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Coming back to arbitrary rings it is now quite useful to talk about dimensions


De�nition� Let R be a ring
 The �Krull�� dimension dimR of a ring R is de�ned as
the maximal length r of all strict chains of prime ideals Pi in R

P� � P� � P� � � � � Pr � R �

Example �� For a �eld K the only �prime� ideals are f�g � K 
 Hence dimK � �


Example �� The dimension of Rn � K �X� � X�� � � � � Xn� � R�K n� is n
 This result one
should expect from a reasonable de�nition of dimension
 Indeed we have the chain of
prime ideals

��� � �X�� � �X�� X�� � � � � � �X� � ��� X� � ��� � � � � Xn � �n� � Rn �

Hence dimRn � n
 With some more commutative algebra it is possible to show the
equality� see �Ku�S
���


Example �� As a special case one obtains dimK �X� � �
 Here the reason is a quite
general result
 Recall that K �X� is a principal ideal ring without zero divisors
 Hence�
every ideal I can be generated by one element f 
 Assume I to be a prime ideal� I �� f�g
and let M � �g� be a maximal ideal lying above I
 We show that I is already maximal

Because �f� � �g� we get f � r �g
 But I is prime
 This implies either r or g lies in I
 If
g � I we are done
 If r � I then r � s � f and f � f � s � g
 In a ring without zero divisor
one is allowed to cancel common factors
 We obtain � � s � g
 Hence� � � M which
contradicts the fact that M is not allowed to be the whole ring
 From this it follows
that dimK �X� � �
 Note that we did not make any reference to the special nature of
the polynomial ring here


What are the conditions on f assuring that the ideal �f� is prime
 The necessary
and su�cient condition is that f is irreducible but not a unit
 This says if there is
decomposition f � g � h then either g or h has to be a unit �i
e
 to be invertible�
which in our situation says that g or h must be a constant
 This can be seen in the
following way
 From the decomposition it follows �using �f� is prime� that either g or
h has to be in �f� hence is a multiple of f 
 By considering the degree we see that the
complementary factor has degree zero and hence is a constant

Conversely� let f be irreducible but not a unit
 Assume g �h � �f�� then g �h � f � r
 In
the polynomial ring we have unique factorization �up to units� into irreducible elements

Hence� the factor f is contained either in g or h
 This shows the claim


Example �� The ring of integers Z is also a principal ideal ring without zero divisor

Again we obtain dimZ � �
 In fact� the integers behave very much �at least from
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the point of view of algebraic geometry� like the a�ne line over a �eld
 What are the

points� of Z� As already said the points should correspond to the maximal ideals

Every prime ideal in Z is maximal
 An ideal �n� is prime exactly if n is a prime number

Hence� the 
points� of Z are the prime numbers


Now we want to introduce the Zariski topology on the set of all prime ideals of a
ring
 First we introduce the sets

Spec�R� �� f P j P is a prime ideal of R g�

Max�R� �� f P j P is a maximal ideal of R g �

The set Spec�R� contains in some sense all irreducible 
subvarieties� of the 
geometric
model� of R
 Let S be an arbitrary subset of R
 We de�ne the associated subset of
Spec�R� as the set consisting of the prime ideals which contain S�

V �S� �� f P � Spec�R� j P � S g � �����

The subsets of Spec�R� obtained in this way are called the closed subsets
 It is obvious
that S � T implies V �S� � V �T � 
 Clearly� V �S� depends only of the ideal generated
by S� V ��S�� � V �S�


This de�nes a topology on Spec�R� the Zariski topology


��� The whole space and the empty set are closed� V ��� � Spec�R� and V ��� � 



��� Arbitrary intersections of closed sets are again closed��
i�J

V �Si� � V �
�
i�J

S� � �����

��� Finite unions of closed set are again closed�

V �S�� � V �S�� � V ��S�� � �S��� � �����

Let me just show ����� here
 Because �S��� �S�� � �S��� �S�� we get V �S���V �S�� �
V ��S��� �S���
 Take P � V ��S��� �S���
This says P � �S��� �S��
 If P � �S�� we get
P � V �S�� and we are done
 Hence� assume P � �S��
 Then there is a y � �S�� such
that y �� P 
 But now y � �S�� is a subset of both �S�� and �S�� because they are ideals

Hence� y � �S�� � P 
 By the prime ideal condition �S�� � P which we had to show
 �

Remark �� The closed points in Spec�R� are the prime ideals which are maximal ideals


Remark �� If we take any prime ideal P then the �topological� closure of P in Spec�R�
is given as

V �P � � fQ � Spec�R� j Q � P g �
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Hence� the closure of P consists of P and all 
subvarieties� of P together
 In particular
the closure of a curve consists of the curve as geometric object and all points lying on
the curve


At the end of this lecture let me return to the a�ne line over a �eld K � resp
 its
algebraic model the polynomial ring in one variable K �X�
 We saw already that we
have the non�closed point corresponding to the prime ideal f�g and the closed points
corresponding to the prime ideals �f� �which are automatically maximal� where f is
an irreducible polynomial of degree � �
 If K is an algebraically closed �eld the only
irreducible polynomials are the linear polynomials X � �
 Hence� the closed points of
Spec�K �X�� indeed correspond to the geometric points � � K 
 The non�closed point
corresponds to the whole a�ne line


Now we want to drop the condition that K is algebraically closed
 As example let
us consider R�X�
 We have two di�erent types of irreducible polynomials
 Of type �i�
are the linear polynomials X �� �with a real zero �� and of type �ii� are the quadratic
polynomials X���aX� b with pairs of conjugate complex zeros
 The maximal ideals
generated by the polynomials of type �i� correspond again to the geometric points of
R
 There is no such relation for type �ii�
 In this case we have V �X� � �aX � b� � 


Hence� there is no subvariety at all associated to this ideal
 But if we calculate the
coordinate ring R�A� of this �not existing� subvariety A we obtain

R�A� � R�X���X� � �aX � b� �� R � R �X

with the relation �X� � ��a �X�b
 In particular� R�A� is a two�dimensional vector space

It is easy to show that R�A� is isomorphic to C 
 Instead of describing the 
point� A
as non�existing we should better describe it as a point of the real a�ne line which is
C�valued
 �Recall that for the points of type �i� R�A� �� R
� This corresponds to the
fact that the polynomial splits over the complex numbers C into two factors

�X � �a�
p
a� � b���X � �a�

p
a� � b���

In this sense� the ideals of type �ii� correspond to conjugate pairs of complex numbers

Note that there is no way to distinguish between the two numbers from our point of
view


In the general situation for K one has to consider L�valued points� where L is allowed
to be any �nite�dimensional �eld extension of K 
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�� Homomorphisms

Part �� Let V and W be algebraic sets �not necessarily irreducible�� resp


R�V � � K �X� � X�� � � � � Xn��I� R�W � � K �Y� � Y�� � � � � Ym��J

their coordinate rings
 If  � V �W is an arbitrary map and f �W � K is a function
then the pull�back  ��f� �� f � is a function V � K 
 If we interpret the elements
of R�W � as functions we want to call  an algebraic map if  ��f� � R�V � for every
f � R�W �
 Roughly speaking this is equivalent to the fact that  
comes� from an
algebra homomorphism R�W �� R�V �
 In this sense the coordinate rings are the dual
objects to the algebraic varieties


To make this precise� especially also to take care of the multiplicities� we should start
from the other direction
 Let ! � R�W � � R�V � be an algebra homomorphism
 This

homomorphism de�nes a homomorphism e! �where � is the natural quotient map�

e! � ! � � � K �Y� � Y�� � � � � Ym�� R�V � with e!�J� � � mod I �

Such a homomorphism is given if we know the elements e!�Yj�
 Conversely� if we �x
elements r�� r�� � � � � rm � R�V � then e!�Yj� �� rj� for j � �� � � � �m de�nes an algebra

homomorphism e! � K �Y� � Y�� � � � � Ym�� R�V �
 If f�r�� r�� � � � � rm� � � mod I for all

f � J then e! factorizes through R�W �
 Such a map indeed de�nes a map !� on the
set of geometric points�

!� � V � W� !����� ��� � � � ��n� �� ���� ��� � � � � �m�

where the �j are de�ned as

�j � Yj�!
����� ��� � � � � �n�� �� e!�Yi����� ��� � � � � �n��

We have to check whether !���� � � � Km lies on the algebraic set W for � � V 
 For
this we have to show that for all f � J we get f�!����� � � for � � V 
 But

f�!����� � f
�
Y��!

������ � � � � Ym�!
�����



� f

�e!�Y������ � � � � e!�Ym����
 � e!�f���� �
Now e!�f� � � � hence the claim

Example �� A function V � K is given on the dual objects as a K�algebra homomor�
phism

 � K �T � � R�V � � K �X� � X�� � � � � Xn��I�
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Such a  is uniquely given by choosing an arbitrary element a � R�V � and de�ning
 �T � �� a
 Here again you see the �now complete� interpretation of the elements of
R�V � as functions on V 


Example �� The geometric process of choosing a �closed� point � on V can alternatively
be described as giving a map from the algebraic variety consisting just of one point to
the variety
 Changing to the dual objects such a map is given as a map  � from R�V �
to the �eld K which is the coordinate ring of a point
 In this sense points correspond
to homomorphisms of the coordinate ring to the base �eld K 
 Such a homomorphism
has of course a kernel ker � which is a maximal ideal
 Again� it is the ideal de�ning
the closed point �


We will study this relation later
 But �rst we take a di�erent look on the situation


Part �� Let R be a K �algebra where K is a �eld
 The typical examples are the quotients
of the polynomial ring K �X� � X�� � � � � Xn�
 Let M be a module over R� i
e
 a linear
structure over R
 In particular� M is a vector space over K 
 Some standard examples
of modules are obtained in the following manner
 Let I be an ideal of R� � � R � R�I
the quotient map then R�I is a module over R by de�ning r � ��m� �� ��r �m�


De�nition� Let M be a module over R
 The annulator ideal is de�ned to be

Ann�M� �� f r � R j r �m � �� 
m �Mg �

That Ann�M� is an ideal is easy to check
 It is also obvious that M is a module over
R�Ann�M�
 By construction in the above example the ideal I is the annulator ideal of
R�I
 Hence� every ideal of R is the annulator ideal of a suitable R�module


De�nition� A module M is called a simple module if M �� f�g and M has only the
trivial submodules f�g and M 


Claim� M is a simple module if and only if there is a maximal ideal P such that
M �� R�P �

Proof� Note that the submodules of R�P correspond to the ideals lying between R and
P 
 Hence� if P is maximal then R�P is simple
 Conversely� given a simple module M
take m �M�m �� �
 Then R �m is a submodule of M 
 Because � �m � m the module
R �m �� f�g� hence it is the whole moduleM 
 The map 	�r� � r �m de�nes a surjective
map 	 � R � M 
 This map is an R�module map where R is considered as a module
over itself
 The kernel P of such a map is an R�submodule
 But R�submodules of
R are nothing else than ideals of R
 In view of the next lecture where we drop the
commutativity let us note already that submodules of a ring R are more precisely the
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left ideals of R
 The kernel P has to be maximal otherwise the image of a maximal ideal
lying between P and R would be a non�trivial submodule of M 
 Hence� M �� R�P 
 �

From this point of view the maximal ideals of R�V � correspond to R�V ��module
homomorphisms to simple R�V ��modules
 If R�V � is a algebra over the �eld K � then
a simple module M is of course a vector space over K 
 By the above� we saw that it is
even a �eld extension of K 
 �Recall that M �� R�P with P a maximal ideal�
 Because
R�V � is �nitely generated as K�algebra it is a �nite dimensional vector space over K
�see �Ku�S
���� hence� a �nite �algebraic� �eld extension


Observation� The maximal ideals �the 	points
� of R � K �X� � X�� � � � � Xn��I cor�
respond to the K�algebra homomorphism from R to arbitrary �nite �algebraic� �eld
extensions L of the base �eld K � We call these homomorphisms L�valued points�

In particular� if the �eld K is algebraically closed there are no nontrivial algebraic �eld
extensions
 Hence� there are only K�valued points
 If we consider reduced varieties �i
e

varieties whose coordinate rings are reduced rings� we get a complete dictionary
 Let V
be a variety� P � I�V � the associated prime ideal generated as P � �f�� f�� � � � � fr� with
fi � K �X� � X�� � � � � Xn� suitable polynomials� and R�V � the coordinate ring Rn�P 

The points can be given in � ways�

��� As classical points
 � � ���� ��� � � � � �n� � K n with
f���� � f���� � � � � � fr��� � �


��� As maximal ideals in R�V �
 They in turn can be identi�ed with the maximal
ideals in K �X� � X�� � � � � Xn� which contain the prime ideal P 
 In an explicit
manner these can be given as �X� � ��� X� � ��� � � � � Xn � �n� with the
condition f���� � f���� � � � � � fr��� � �


��� As surjective algebra homomorphisms 
 � R�V �� K 
 They are �xed by de�ning
�Xi �� 
� �Xi� � �i� i � �� � � � � n in such a way that

�f�� � 
�f�� � � � � � 
�fr� � �


The situation is di�erent if we drop the assumption that K is algebraically closed
 The
typical changes can already be seen if we take the real numbers R and the real a�ne line

The associated coordinate ring is R�X�
 There are only two �nite extension �elds of R�
either R itself or the complex number �eld C 
 If we consider R�algebra homomorphism
from R�X� to C then they are given by prescribing X �� � � C 
 If � � R we are again
in the same situation as above �this gives us the type �i� maximal ideals�
 If � �� R then
the kernel I of the map is a maximal ideal of type �ii� I � �f� where f is a quadratic
polynomial
 f has � and �� as zeros
 This says that the homomorphism !�� � X �� ��
which is clearly di�erent from !� � X �� � has the same kernel
 In particular� for
one maximal ideal of type �ii� we have two di�erent homomorphisms
 Note that the
map � � �� is an element of the Galois group G�C �R� � fid� �g where � is complex
conjugation
 The two homomorphisms !� and !�� are related as !�� � � �!�


This is indeed the general situation for R�V �� a �nitely generated K�algebra
 In
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general� there is no ��� correspondence between ��� and ��� anymore
 But there is a
��� correspondence between maximal ideals of R�V � and orbits of K�algebra homo�
morphism of R�V � onto �nite �eld extensions L of K under the action of the Galois
group

G�L�K � �� f� � L � L an automorphism of �elds with �jK � idg �

	� Some Comments on the noncommutative situation

For the following let R be a �not necessarily commutative� algebra over the �eld K 

First� we have to distinguish in this more general context left ideals �e
g
 subrings I
which are invariant under multiplication with R from the left�� right ideals and two�
sided ideals �which are left and right ideals�
 To construct quotient rings two�sided
ideals are needed
 If we use the term ideal without any additional comment we assume
the ideal to be a two�sided one


We want to introduce the concepts of prime ideals� maximal ideals� etc

 A �rst
de�nition of a prime ideal could be as follows
 We call a two�sided ideal I prime if the
quotient R�I contains no zero�divisor
 This de�nition has the drawback that there are
rings without any prime ideal at all
 Take for example the ring of ��� matrices
 Beside
the ideal f�g and the whole ring the matrix ring does not contain any other ideal
 To
see this assume there is an ideal I which contains a non�zero matrix A
 By applying
elementary operations from the left and the right we can transform any matrix to normal
form which is a diagonal matrix with just � �at least one� and � on the diagonal
 By
multiplication with a permutation matrix we can achieve any pattern in the diagonal

These operations keep us inside the ideal
 Adding suitable elements we see that the unit
matrix is in the ideal
 Hence the ideal is the whole ring
 But obviously� the matrix ring
has zero divisors
 Hence� f�g is not prime in this de�nition
 We see that this ring does
not contain any prime ideal at all with respect to the de�nition
 We choose another
name for such ideals� they are called complete prime ideals


De�nition� A �two�sided� ideal I is called a prime ideal if for any two ideals J� and
J� with J� � J� � I it follows that J� � I or J� � I 


This de�nition is equivalent to the following one


De�nition� A �two�sided� ideal I is called a prime ideal if for any two elements a� b � R
with a �R � b � I it follows that a � I or b � I
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Proof� ��
 D� �	 ��
 D�� Take J� � I and J� � I ideals
 We have to show that
J� � J� � I
 For this choose x � J� n I and y � J� n I
 Then x �R � y � J� � J� but there
must be some r � R such that x � r � y �� I due to the condition that I is prime with
respect to ��
 D�
 Hence� J� � J� � I which is the claim

��
 D� �	 ��
 D�� Take a� b � R
 The ideals generated by these elements are RaR
and RbR
 The product of these �principal� ideals is not a principal ideal anymore
 It
is RaR � RbR � RaRbR �� �arb j r � R�
 Assume arb � I for all r � R
 Hence
�RaR��RbR� � I and because I is prime we obtain by the �rst de�nition ��
 D� that
either RaR or RbR are in I
 Taking as element of R the � we get a � R or b � R
 �

Every ideal which is a complete prime is prime
 Obviously� the condition ��
 D� is a
weaker condition than the condition that already from a � b � I it follows that a � R or
b � R �which is equivalent to� R�I contains no zero�divisors�
 If R is commutative then
they coincide
 In this case a � r � b � r � a � b� and with a � b � I also r � a � b � I which
is no additional condition
 Here you see clearly where the noncommutativity enters the
picture
 In the ring of matrices the ideal f�g is prime because if after �xing two matrices
A and B we obtain A �T �B � � for any matrix T then either A or B has to be the zero
matrix
 This shows that the zero ideal in the matrix ring is a prime ideal


Maximal ideals are de�ned again as in the commutative setting just as maximal
elements in the �non�empty� set of ideals
 By Zorn�s lemma there exist maximal ideals


Claim� If M is a maximal ideal then it is a prime ideal�

Proof� Take I and J ideals of R which are not contained inM 
 Then by the maximality
of M we get �I �M� � R and �J �M� � R hence�

R �R � R � �I �M��J �M� � I � J �M � J � I �M �M �M �

If we assume I � J � M then R � M which is a contradiction
 Hence I � J � M 
 This
shows M is prime
 �

By this result we see that every ring has prime ideals

In the commutative case if we approach the theory of ideals from the point of view of
modules over R we obtain an equivalent description
 This is not true anymore in the
noncommutative setting
 For this let M be a �left��module over R
 As above we de�ne

Ann�M� �� f r � R j r �m � �� 
m �Mg �

the annulator of the module M 
 Ann�M� is a two�sided ideal
 Clearly� it is closed
under addition and is a left ideal
 �This is even true for an annulator of a single element
m � M�
 It is also a right ideal� let s � Ann�M� and t � R then �st�m � s�tm� � �
because s annulates also tm
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De�nition� An ideal I is called a primitive ideal if I is the annulator ideal of a simple
module M 


Let us call the set of prime� resp
 primitive� resp
 maximal ideals Spec�R�� Priv�R�
and Max�R�


Claim�

Spec�R� � Priv�R� � Max�R� �

Proof� ���
 Let P be a maximal ideal
 Then R�P is a �left��module
 Unfortunately� it
is not necessarily simple �as module�
 The submodules correspond to left�ideals lying
between P and R
 Choose Q a maximal left ideal lying above P 
 Then R�Q is a simple
�left�� module and P � �R�Q� � � because P �R � P � Q
 Hence� P � Ann�R�Q� and
because Ann�R�Q� is a two�sided ideal we get equality

���
 Take P � Ann�M�� a primitive ideal
 Assume P is not prime
 Then there exist
a� b � R but a� b �� P such that for all r � R we get arb � P 
 This implies arbm � �
for all m � M but bm �� � for at least one m
 Now B � R�bm� is a non�vanishing
submodule
 Obviously� a � Ann�B�� hence B �� M 
 This contradicts the simplicity of
M 
 �

Clearly� in the commutative case Priv�R� � Max�R�
 Let me just give an example
from �GoWa� that in the noncommutative case they fall apart
 Take V an in�nite�
dimensional C�vector space
 Let R be the algebra of linear endomorphisms of V and I
the nontrivial two�sided ideal consisting of linear endomorphisms with �nite�dimensional
image
 The vector space V is an R�module by the natural action of the endomorphisms

We get that V � R �v where v is any non�zero vector of V 
 This implies that the module
V is simple and that Ann�V � � f�g
 Hence f�g is primitive� but it is not maximal
because I is lying above it


In the commutative case we saw that we could interpret homomorphisms of the
coordinate ring �which is an algebra if we consider varieties over a base �eld� into a �eld
as points of the associated space
 Indeed� it is possible to give such an interpretation
also in the noncommutative setting
 Let me give an example� for details see �Ma���

Let Mq��� for q � C � q �� � be the �noncommutative� C�algebra generated by a� b� c� d�
subject to the relations�

ab �
�

q
ba� ac �

�

q
ca� ad � da�



�

q
� q

�
bc�

bc � cb� bd �
�

q
db� cd �

�

q
dc �

�����

This algebra is constructed by �rst considering all possible words in a� b� c� d
 This
de�nes the free noncommutative algebra of this alphabet
 Multiplication is de�ned by
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concatenation of the words
 Take the ideal generated by the expressions �left�side� "
�right�side� of all the relations ����� and build the quotient algebra
 Note that for q � �
we obtain the commutative algebra of polynomial functions on the space of all � � �
matrices over C 
 In this sense the algebra Mq��� represents the 
quantum matrices� as
a 
deformation of the usual matrices�
 To end up with the quantum group Glq��� we
would have to add another element for the formal inverse of the quantum determinant

D � ad�
�

q
bc
�

Now let A be another algebra
 We call a C�linear algebra homomorphism
! � Hom�Mq���� A� an A�valued point of Mq���
 It is called a generic point if ! is
injective
 Saying that a linear map ! is an algebra homomorphism is equivalent to
saying that the elements !�a��!�b��!�c��!�d� ful�ll the same relations ����� as the
a� b� c and d
 One might interpret ! as a point of the 
quantum group�
 But be careful�
it is only possible to 
multiply� the two matrices if the images of the two maps

!� � B� ��



a� b�
c� d�

�
� !� � B� ��



a� b�
c� d�

�
�

lie in a common algebra A�� i
e
 a�� b�� c�� d� � A� � A� and a�� b�� c�� d� � A� � A�

Then we can multiply the two matrices B� � B� as prescribed by the usual matrix
product and obtain another matrix B� with coe�cients a�� b�� c�� d� � A�
 This matrix
de�nes only then a homomorphism of Mq���� i
e
 an A��valued point if !��Mq����
commutes with !��Mq���� as subalgebras of A�
 In particular� the product of ! with
itself is not an A�valued point ofMq��� anymore
 One can show that it is an A�valued
point of Mq����


Because in the audience there a couple people who had and still have their share
in developing the fundamentals of quantum groups �the Wess�Zumino approach� there
is no need to give a lot of references on the subject
 Certainly� these people know it
much better than I do
 For the reader let me just quote one article by Julius Wess and
Bruno Zumino �WZ� where one �nds references for further study in this direction
 Let
me only give the following three references of books� resp
 papers of Manin which are
more connected to the theme of these lectures� 
Quantum groups and noncommuta�
tive geometry� �Ma���� 
Topics in noncommutative geometry� �Ma���� and 
Notes on
quantum groups and the quantum de Rham complexes� �Ma���


For the general noncommutative situation I like to recommend Goodearl andWar�eld�

An introduction to noncommutative noetherian rings� �GoWa� and Borho� Gabriel�
Rentschler� 
Primideale in Einh�ullenden au��osbarer Liealgebren� �BGR�
 These books
are still completely on the algebraic side of the theory
 For the algebraic geometric side
there is still not very much available
 Unfortunately� I am also not completely aware of
the very recent developments of the theory
 The reader may use the two articles �Ar���
and �R� as starting points for his own exploration of the subject


�There are other objects which carry also the name quantum groups�
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� A
ne schemes

Returning to the commutative setting let R be again a commutative ring with unit
�
 We do not assume R to be an algebra over a �eld K 
 If we consider the theory of
di�erentiable manifolds the model manifold is Rn 
 Locally any arbitrary manifold looks
like the model manifold
 A�ne schemes are the 
model spaces� of algebraic geometry

General schemes will locally look like a�ne schemes
 Contrary to the di�erentiable
setting� there is not just one model space but a lot of them
 A�ne schemes are very
useful generalizations of a�ne varieties
 Starting from a�ne varieties V over a �eld K
we saw that we were able to assign dual objects to them� the coordinate rings R�V �

The geometric structure of V �subvarieties� points� maps� 


� are represented by the
algebraic structure of R�V � �prime ideals� maximal ideals� ring homomorphisms� 


�

After dualization we are even able to extend our notion of 
space� in the sense that we
can consider more general rings and regard them as dual objects of some generalized

spaces�
 In noncommutative quantum geometry one even studies certain noncommu�
tative algebras over a �eld K 
 Quantum spaces are the dual objects of these algebras

We will restrict ourselves to the commutative case� but we will allow arbitrary rings


What are the dual objects �dual to the rings� which generalize the concept of a variety

We saw already that prime ideals of the coordinate ring correspond to subvarieties and
that closed prime ideals �at least if the �eld K is algebraically closed� correspond to
points
 It is quite natural to take as space the set Spec�R� together with its Zariski
topology
 But this is not enough
 If we take for example R� � K and R� � K ��������
then in both cases Spec�Ri� consists just of one point
 It is represented in the �rst
case by the ideal f�g in the second case by ���
 Obviously� both Spec coincide
 Let us
compare this with the di�erentiable setting
 For an arbitrary di�erentiable manifold the
structure is not yet given if we consider the manifold just as a topological manifold
 We
can �x its di�erentiable structure if we tell what the di�erentiable functions are
 The
same is necessary in the algebraic situation
 Hence� Spec�R� together with the functions
�which in the case of varieties correspond to the elements of R� should be considered as

space�
 So the space associated to a ring R should be �Spec�R�� R�
 In fact� Spec�R�
is not a data independent of R
 Nevertheless� we will write both information in view
of globalizations of the notion
 Compare this again with the di�erentiable situation
 If
you have a manifold which is Rn �the model manifold� then the topology is �xed
 But if
you have an arbitrary di�erentiable manifold then you need a topology at the �rst place
to de�ne coordinate charts at all
 In view of these globalizations we additionally have to
replace the ring of functions by a data which will give us all local and global functions
together
 Note that in the case of compact complex analytic manifolds there would exist
no non�constant analytic functions at all
 The right setting for this is the language of
sheaves
 Here it is not the time and place to introduce this language
 Just let me give
you a very rough idea
 A sheaf is the coding of an object which is local and global in a
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compatible way
 A standard example �which is in some sense too simple� is the sheaf
of di�erentiable functions on a di�erentiable manifold X
 It assigns to every open set
U the ring of di�erentiable functions de�ned on U 
 The compatibility just means that
this assignment is compatible with the restriction of the sets where the functions are
de�ned on
 In Appendix A to this lecture you will �nd the exact de�nition of a sheaf of
rings
 So� given a ring R its associated a�ne scheme is the pair �Spec�R��OR� where
Spec�R� is the set of prime ideals made into a topological space by the Zariski topology
and OR is a sheaf of rings on Spec�R� which we will de�ne in a minute
 For simplicity
this pair is sometimes just called Spec�R�


Recall that the sets V �S� �� fP � Spec�R� j P � Sg� where S is any S � R� are the
closed sets
 Hence the sets Spec�R� nV �S� are exactly the open sets of X �� Spec�R�

There are some special open sets in X
 For a single element f � R we de�ne

Xf �� Spec�R� n V �f� � fP � Spec�R� j f �� Pg � �����

The set fXf � f � Rg is a basis of the topology which says that every open set is a
union of Xf 
 This is especially useful because the Xf are again a�ne schemes
 More
precisely� Xf � Spec�Rf �
 Here the ring Rf is de�ned as the ring of fractions with the
powers of f as denominators�

Rf �� f
g

fn
j g � R� n � N� g �

Let me explain this construction
 It is a generalization of the way how one constructs
the rational numbers from the integers
 For this let S be a multiplicative system�
i
e
 a subset of R which is multiplicatively closed and contains �
 �In our example�
S �� f�� f� f�� f�� � � � g
� Now introduce on the set of pairs in R � S the equivalence
relation

�t� s� � �t�� s�� �	 �s�� � S such that s���s�t� st�� � � �

The equivalence class of �s� t� is denoted by
s

t

 There is always a map R � Rf given

by r ��
r

�

 The ideals in Rf are obtained by mapping the ideals I of R to Rf and

multiplying them by Rf � Rf � I
 By construction� f is a unit in Rf 
 Hence� if f � P
where P is a prime ideal then Rf � Rf � P 
 If f �� P then Rf � P still is a prime ideal
of Rf 
 This shows Xf � Spec�Rf �
 For details see �Ku�


You might ask what happens if f is nilpotent� i
e
 if there is a n � N such that fn � �

In this case f is contained in any prime ideal of Rf 
 Hence Spec�Rf � � 
 in agreement
with Rf � f�g


If f is not a zero divisor the map R� Rf is an embedding and if f is not a unit in
R the ring Rf will be bigger
 This is completely in accordance with our understanding
of R resp
 Rf as functions on X� resp
 on the honest subset Xf 
 Passing from X to Xf
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is something like passing from the global to the more local situation
 This explains why
this process of taking the ring of fractions with respect to some multiplicative subset
S is sometimes called localization of the ring
 The reader is adviced to consider the
following example
 Let P be a prime ideal� show that S � R nP is a multiplicative set

How can one interpret the ring of fractions of R with respect to S�

Now we de�ne our sheaf OR for the basis sets Xf 
 In Xf � Xg are the prime
ideals which neither contain f nor g
 Hence they do not contain f � g
 It follows that
Xf �Xg � Xfg
 We see that the set of the Xf are closed under intersections
 Note also
that X� � X and X� � 

 We de�ne

OR�X� �� R� OR�Xf � �� Rf � �����

For Xfg � Xf �Xg � Xf we de�ne the restriction map


ffg � Rf � �Rf �g � Rfg� r ��
r

�
�

It is easy to check that all the maps 
���� are compatible on the intersections of the basis
open sets
 In Appendix B I will show that the other sheaf axioms are ful�lled for the
Xf with respect to their intersections
 Hence� we have de�ned the sheaf OR on a basis
of the topology which is closed under intersections
 The whole sheaf is now de�ned by
some general construction
 We set

OR�U� �� proj lim
Xf�U

OR�Xf �

for a general open set
 For more details see �EH�
 Let us collect the facts


De�nition� Let R be a commutative ring
 The pair �Spec�R��OR�� where Spec�R�
is the space of prime ideals with the Zariski topology and OR is the sheaf of rings on
Spec�R� introduced above is called the associated a�ne scheme Spec�R� of R
 The
sheaf OR is called the structure sheaf of Spec�R�


Let me explain in which sense the elements f of an arbitrary ring R can be considered
as functions� i
e
 as prescriptions how to assign a value from a �eld to every point
 This
gives me the opportunity to introduce another important concept which is related to
points� the residue �elds
 Fix an element f � R
 Let �P � � Spec�R� be a �not necessarily
closed� point� i
e
 P is a prime ideal
 We de�ne

f��P �� �� f mod P � R�P

in a �rst step
 From the primeness of P it follows that R�P is an integral domain ring
�i
e
 it contains no zero�divisor�
 Hence S �� �R�P � n f�g is a multiplicative system and
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the ring of fractions� denoted by Quot�R�P �� is a �eld� the quotient �eld
 Because R�P
is an integral domain it can be embedded into its quotient �eld
 Hence� f��P �� is indeed
an element of a �eld
 Contrary to the classical situation� if we change the point �P � the
�eld Quot�R�P � will change too


Example �� Take again R � C �X�Y � and f � R
 Here we have three di�erent types of
points in Spec�R�

Type �i�� the closed points �M � with M � �X � �� Y � �� a maximal ideal
 We write
f � f� � �X � �� � g � �Y � �� � h with f� � f��� �� � C and g� h � R
 Now

f��M �� � f mod M � f� � �X � �� � g � �Y � �� � h mod M � f� �

The quotient R�M is already a �eld� hence it is the residue �eld
 In our case it is even
the base �eld C 
 The value f��M �� is just the value we obtain by plugging the point
��� �� into the polynomial f 
 Note that the points are subvarieties of dimension �

Type �ii�� the points �P � with P � �h�� a principal ideal
 Here h is an irreducible
polynomial in the variables X and Y 
 If we calculate R�P we obtain C �X�Y ���h� which
is not a �eld
 As residue �eld we obtain C �X�Y ���h�
 This �eld consists of all rational
expressions in the variables X and Y with the relation h�X�Y � � �
 This implies that
the transcendence degree of the residue �eld over the base �eld is one� i
e
 one of the
variables X or Y is algebraically independent over C and the second variable is in an
algebraic relation with the �rst and the elements of C 
 Note that the coordinate ring
has �Krull�� dimension one and the subvariety corresponding to �P � is a curve� i
e
 is an
object of geometric dimension one

Type �iii�� �f�g� the zero ideal
 In this case R�P � C �X�Y � and the residue �eld is
C �X�Y � the rational function �eld in two variables
 In particular� its transcendence
degree is two and coincides with the �Krull��dimensions of the coordinate ring and the
geometric dimension of the variety V �f�g� which equals the whole a�ne plane C � 


Strictly speaking� we have not shown �and will not do it here� that there are no other
prime ideals
 But this is in fact true� see �Ku�
 The equality of the transcendence degree
of the residue �eld and the �Krull�� dimension of the coordinate ring obtained above is
true for all varieties over arbitrary �elds
 For example� if we replace C by R we obtain
for the closed points� the maximal ideals� either R or C as residue �elds
 Both �elds
have transcendence degree � over R


Example �� Consider R � Z� the integers� then Spec�Z� consists of the zero ideal and
the principal ideals generated by prime numbers
 As residue �eld we obtain for ��� the
�eld Quot�Z����� � Q and for the point ��p�� �which is a closed point� Fp � Z��p��
the prime �eld of characteristic p
 In particular� we see at this example that even for
the maximal points the residue �eld can vary in an essential way
 Note that Z is not an
algebra over a �xed base �eld


Up to now we considered one ring� resp
 one scheme
 In any category of objects one
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has maps between the objects
 Let  � R � S be a ring homomorphism
 If I is
any ideal of S� then  ���I� is an ideal of R
 The reader is advised to check that if
P is prime then  ���P � is again prime
 Hence�  � � P ��  ���P � is a well�de�ned
map Spec�S� � Spec�R�
 Indeed� it is even continuous because the pre�image of a
closed set is again closed
 Let X � �Spec�S��OS� and Y � �Spec�R��OR� be two
a�ne schemes
 The map  induces also a map on the level of the structure sheaves
 � � OR � OS 
 The pair � 

�� �� of maps ful�lls certain compatibility conditions which
makes them to a homomorphism of schemes


We will not work with schemes in general later on but let me give at least for com�
pleteness the de�nition here


De�nition� �a� A scheme is a pair X � �jXj�OX� consisting of a topological space
jXj and a sheaf OX of rings on X� such that X is locally isomorphic to a�ne schemes
�Spec�R��OR�
 This says that for every point x � X there is an open set U containing x�
and a ring R �it may depend on the point x� such that the a�ne scheme �Spec�R��OR�
is isomorphic to the scheme �U�OXjU �
 In other words there is a homeomorphism
! � U � Spec�R� such that there is an isomorphism of sheaves

!	 � OR
�� !��OX jU � �

Here the sheaf !��OX jU � is de�ned to be the sheaf on Spec�R� given by the assignment

!��OX jU ��W � �� OX�!
���W ��� for every open set W � Spec�R��

�b� A scheme is called an a�ne scheme if it is globally isomorphic to an a�ne scheme
�Spec�R��OR� associated to a ring R


Fact� The category of a
ne schemes is equivalent to the category of commutative rings
with unit with the arrows �representing the maps� reversed�

There are other important concepts in this theory
 First� there is the concept of a
scheme over another scheme
 This is the right context to describe families of schemes

Only within this framework it is possible to make such useful things precise as degen�
erations� moduli spaces etc
 Note that every a�ne scheme is in a natural way a scheme
over Spec�Z�� because for every ring R we have the natural map Z� R� n �� n � � 

Taking the dual map introduced above we obtain a homomorphism of schemes

If R is a K�algebra with K a �eld then we have the map K � R� � �� � � �� which is a
ring homomorphism
 Hence� we always obtain a map� Spec�R�� Spec�K � � �f�g� K�

By considering the coordinate ring R�V � of an a�ne variety V over a �xed algebraically
closed �eld K and assigning to it the a�ne scheme Spec�R�V �� we obtain a functor
from the category of varieties over K to the category of schemes over K 
 The schemes
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corresponding to the varieties are the irreducible and reduced noetherian a�ne schemes
of �nite type over Spec�K �
 The additional properties of the scheme are nothing else
as the corresponding properties for the de�ning ring R�V �
 Here �nite type means that
R�V � is a �nitely generated K�algebra
 You see again in which sense the schemes
extend our geometric objects from the varieties to more general 
spaces�


The second concept is the concept of a functor of points of a scheme
 We saw already
at several places in the lectures that points of a geometric object can be described as
homomorphisms of the dual �algebraic� object into some simple �algebraic� object
 If
X is a scheme we can associate to it the following functor from the category of schemes
to the category of sets� hX�S� � Hom�S�X�
 Here S is allowed to be any scheme
and Hom�S�X� is the set of homomorphisms of schemes from S to the �xed scheme
X
 Such a homomorphism is called an S�valued point of X
 Note that we are in
the geometric category� hence the order of the elements in Hom��� �� is just the other
way round compared to the former lectures
 The functor hX is called the functor of
points associated to X
 Now X is completely �xed by the functor hX 
 In categorical
language� X represents its own functor of points
 The advantage of this view�point
is that certain questions of algebraic geometry� like the existence of a moduli space
for certain geometric data� can be easily transfered to the language of functors
 One
can extract already a lot of geometric data without knowing whether there is indeed a
scheme having this functor as functor of points �i
e
 representing the functor�
 If you
want to know more about this beautiful subject you should consult �EH� and �Mu���


Appendix A� The de�nition of a sheaf of rings� A presheaf F of rings over a
topological space X assigns to every open set U in X a ring F�U� and to every pair of
open sets V � U a homomorphism of rings


UV � F�U�� F�V ��

�the so called restriction map� in such a way that


UU � id�


UV � 

W
U � 
WV for V � U �W �

Instead of 
UV �f� for f � F�U� we often use the simpler notation fjV 
 A presheaf is
called a sheaf if for every open set U and every covering �Ui� of this open set we have
in addition�
��� if f� g � F�U� with

fjUi � gjUi

for all Ui then f � g�
��� if a set of fi � F�Ui� is given with

fijUi�Uj � fjjUi�Uj
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then there exists a f � F�U� with

fjUi � fi�

Given two sheaves of rings F and G on X
 By a sheaf homomorphism

� � F � G

we understand an assignment of a ring homomorphism �U �for every open set U�

�U � F�U�� G�U��

which is compatible with the restriction homomorphisms

U F�U�
�U
�� G�U�

S 		y 		y
V F�V �

�V
�� G�V �

More information you �nd in �Sch�


Appendix B� The structure sheaf OR� In this appendix I like to show that the
sheaf axioms for the structure sheaf OR on X � Spec�R� are ful�lled if we consider only
the basis open sets Xf � Spec�R� n V �f� 
 Recall that the intersection of two basis
basis open sets Xf �Xg � Xfg is again a basis open set
 The sheaf OR on the basis
open sets was de�ned to be OR�Xf � � Rf and the restriction maps were the natural
maps

Rf � �Rf �g � Rfg� r ��
r

�
�

Here I am following very closely the presentation in �EH�


Lemma �� The set fXf j f � Rg is a basis of the topology�

Proof� We have to show that every open set U is a union of such Xf 
 By de�nition�

U � Spec�R� n V �S� � Spec�R� n �
�
f�S

V �f�� �
�
f�S

�Spec�R� n V �f�� �
�
f�S

Xf � �

Obviously� only a set of generators ffi j i � Jg of the ideal generated by the set S
is needed
 Hence� if R is a noetherian ring every open set can already be covered by
�nitely manx Xf 
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Lemma �� Let X � Spec�R� and ffigi�J a set of elements of R then the union of
the sets Xfi equals X if and only if the ideal generated by the fi equals the whole ring
R�

Proof� The union of the Xfi covers Spec�R� i� no prime ideal of R contains all the fi

But every ideal strictly smaller than the whole ring is dominated by a maximal �and
hence prime� ideal
 The above can only be the case i� the ideal generated by the fi is
the whole ring
 �

Lemma �� The a
ne scheme X � Spec�R� is a quasicompact space� This says every
open cover of X has a �nite subcover�

Proof� Let X �
S
j�J

Xj be a cover of X
 Because the basis open set Xf are a basis of

the topology� every Xj can be given as union of Xfi 
 Altogether� we get a re�nement of
the cover X �

S
i�I

Xfi 
 By Lemma � the ideal generated by these fi is the whole ring


In particular� � is a �nite linear combination of the fi
 Taking only these fi which occur
with a non�zero coe�cient in the linear combination we get �using Lemma � again� that
Xfik

� k � �� ��� r is a �nite subcover of X
 Taking for every k just one element Xjk

containing Xfik
we obtain a �nite number of sets which is a subcover from the cover we

started with
 �

Note that this space is not called a compact space because the Hausdor� condi�
tion that every distinct two points have disjoint open neighbourhoods is obviously not
ful�lled


The following proposition says that the sheaf axioms ��� and ��� from App
 A for the
basis open sets are ful�lled


Proposition� Let Xf be coverd by fXfigi�I �

�a� Let g� h � Rf � OR�Xf � with g � h as elements in Rfi � OR�Xfi� for every
i � I� then g � h also in Rf �

�b� Let gi � Rfi be given for all i � I with gi � gj in Rfifj � then there exist a
g � Rf with g � gi in Rfi�

Proof� Because Xf � Spec�Rf � is again an a�ne scheme it is enough to show the
proposition for Rf � R� where R is an arbitrary ring
 Let X �

S
i�I

Xfi 


�a� Let g� h � R be such that they map to the same element in Rfi 
 This can only
be the case if in R we have

fnii � �g � h� � �� 
i � I�
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�see the construction of the ring of fractions above�
 Due to the quasicompactness it is
enough to consider �nitely many fi� i � �� ��� r
 Hence� there is a N such that for every
i the element fNi annulates �g� h�
 There is another number M � depending on N and
r� such that we have for the following ideals

�fN� � fN� � � � � � fNr � � �f�� f�� � � � � fr�
M �

Because the Xfi � i � �� ��� r are a cover of X the ideal on the right side equals ���

Hence� also the ideal on the left
 Combining � as linear combination of the generator
we get

� � �g � h� � �c�f
N
� � c�f

N
� � � �� crf

N
r ��g � h� � � �

This shows �a�
�b� Let gi � Rfi � i � I be given such that gi � gj in Rfifj 
 This says there as a N such
that

�fifj�
Ngi � �fifj�

Ngj

in R
 Note that every gi can be written as
g�i
fkii

with g�i � R
 Hence� if N is big enough

the elements fNi gi are in R
 Again by the quasicompactness a common N will do it for
every pair �i� j�
 Using the same arguments as in �a� we get

� �
X

eif
N
i � ei � R �

This formula corresponds to a 
partition of unity�
 We set

g �
X

eif
N
i gi �

We get

fNj g �
X
i

fNj eif
N
i gi �

X
i

eif
N
i fNj gj � fNj gj �

This shows g � gj in Rfj 
 �
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�� Examples of Schemes

�� Projective Varieties� A�ne Varieties are examples of a�ne schemes over a �eld
K 
 They have been covered thoroughly in the other lectures
 For completeness let me
mention that it is possible to introduce the projective space Pn

K
of dimension n over

a �eld K 
 It can be given as orbit space �K n
� n f�g�� �� where two �n � ���tuple
� and � are equivalent if � � � � � with � � K � � �� �
 Projective varieties are
de�ned to be the vanishing sets of homogeneous polynomials in n�� variables
 See for
example �Sch� for more information
 What makes them so interesting is that they are
compact varieties �if K � C or R�
 Again everything can be dualized
 One considers the
projective coordinate ring and its set of homogeneous ideals �ideals which are generated
by homogeneous elements�
 In the case of Pn

K
the homogeneous coordinate ring is

K �Y� � Y�� � � � � Yn�
 Again it is possible to introduce the Zariski topology on the set of
homogeneous prime ideals
 It is even possible to introduce the notion of a projective
scheme Proj� which is again a topological space together with a sheaf of rings� see �EH�


In the same way as Pn
K
can be covered by �n � �� a�ne spaces K n it is possible

to cover every projective scheme by �nitely many a�ne schemes
 This covering is even
such that the projective scheme is locally isomorphic to these a�ne scheme
 Hence� it
is a scheme
 The projective scheme Proj�K �Y� � Y�� � � � � Yn�� is locally isomorphic to
Spec�K �X� � X�� � � � � Xn�� 
 For example� the open set of elements � with Y���� �� � is

in ��� correspondence to it via the assignment Xi ��
Yi
Y�



As already said� the projective schemes are schemes and you might ask why should
one pay special attention to them
 Projective schemes are quite useful
 They are
schemes with rather strong additional properties
 For example� in the classical case �e
g

nonsingular varieties over C � projective varieties are compact in the classical complex
topology
 This yields all the interesting results like� there are no non�constant global
analytic or harmonic functions� the theorem of Riemann�Roch is valid� the integration
is well�de�ned� and so on
 Indeed� similar results we get for projective schemes
 Here it
is the feature 
properness� which generalizes compactness


�� The scheme of integers� The a�ne scheme Spec�Z� � �Spec�Z��OSpec�Z�� we
discussed already in the last lecture
 The topological space consist of the element �f�g�
and the elements ��p�� where p takes every prime number
 The residue �elds are Q �
resp
 the �nite �elds Fp 
 What are the closed sets
 By de�nition� these are exactly the
sets V �S� such that there is a S � Z with

V �S� �� f ��p�� � Spec�Z� j �p� � Sg � V ��S�� � V ��gcd�S��� �

For the last identi�cation recall that the ideal �S� has to be generated by one element n
because Z is a principle ideal ring
 Now every element in S has to be a multiple of this
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n
 We have to take the biggest such n which ful�lls this condition� hence n � gcd�S�

If n � � then V �n� � V ��� � Spec�Z�� if n � � then V �n� � V ��� � 
� otherwise V �n�
consists of the �nitely many primes� resp
 their ideals� dividing n
 Altogether we get
that the closed sets are beside the whole space and the empty set just sets of �nitely
many points
 As already said at some other place of these lectures Z resembles very
much K �X�
 By the way� we see that the topologial closure �f�g� � Spec�Z� is the whole
space
 For this reason �f�g� is called the generic point of Spec�Z�


All these has important consequences
 We have two principles which can be very
useful�

��
� Let some property be de�ned over Z and assume it is a closed property
 Assume
further that the property is true for in�nitely many primes �e
g
 the property is true if
we consider the problem in characteristic p for in�nitely many p� then it has to be true
for the whole Spec�Z�
 Especially� it has to be true for all primes and for the generic
point� i
e
 in characteristic zero


��
� Now assume that the property is an open property
 If it is true for at least
one point� then it is true for all points except for possibly �nitely many points
 In
particular� it has to be true for the generic point �characteristic zero� because every
non�empty open set has to contain the generic point


�� A family of curve� This example illustrates the second principle above
 To allow
you to make further studies by yourself on the example I take the example from �EH�

You are encouraged to develop your own examples
 Consider the conic X� � Y � � �

It de�nes a curve in the real �or complex� plane
 In fact� it is already de�ned over the
integers which says nothing more than that there is a de�ning equation for the curve with
integer coe�cients
 Hence� it makes perfect sense to ask for points ��� �� � Z� which
solve the equation
 We already saw that it is advantagous to consider the coordinate
ring
 The coordinate ring and everything else make sense also if there would be no
integer solution at all
 Here we have�

Z � R � Z�X�Y ���X� � Y � � ��� Spec�R� � Spec�Z� �

We obtain an a�ne scheme over Z
 Now Spec�Z� is a one�dimensional base� the �bres
are one�dimensional curves� and Spec�R� is two�dimensional
 It is an arithmetic surface

We want to study the �bres in more detail
 Let Y � X be a homomorphism of schemes
and p a point on the base scheme X
 The topological �bre over p is just the usual pre�
image of the point p
 But here we have to give the �bre the structure of a scheme
 The
general construction is as follows
 Represent the point p by its residue �eld k�p� and
a homomorphism of schemes Spec�k�p�� � X 
 Take the 
�bre product of schemes�
of the scheme Y with Spec�k�p�� over X
 Instead of giving the general de�nition let




� MARTIN SCHLICHENMAIER

me just write this down in our a�ne situation�

Spec�R� ����� Spec�R
N
Z

k�p�� R ����� R
N
Z

k�p�		y 		y x		 x		
Spec�Z� ����� Spec�k�p�� Z ����� k�p�

Both diagrams are commutative diagrams and are dual to each other


Here we obtain for the generic point ��� the residue �eld k��� � Q and as �bre the
Spec of

R
N
Z

Q � Q �X�Y ���X� � Y � � �� �

For the closed points �p� we get k�p� � Fp and as �bre the Spec of

R
N
Z

Fp � Fp �X�Y ���X� � Y � � �� �

In the �bres over the primes we just do calculation modulo p
 A point lying on a curve
in the plane is a singular point of the curve if both partial derivatives of the de�ning
equation vanish at this point
 Zero conditions for functions are always closed conditions

Hence non�singularity is an open condition on the individual curve
 In fact� it is even an
open condition with respect to the variation of the point on the base scheme
 The curve
X� � Y � � � � � is a non�singular curve over Q 
 The openness principle applied to the
base scheme says that there are only �nitely many primes for which the �bre will become
singular
 Here it is quite easy to calculate these primes
 Let f�X�Y � � X� � Y � � �

be the de�ning equation
 Then �f
�X

� �X and �f
�Y

� �Y 
 For p � � both partial
derivatives vanish at every point on the curve �the �bre�
 Hence every point of the �bre
is a singular point
 This says that the �bre over the point ����� is a multiple �bre
 In
this case we see immediately �X� � Y � � �� � �X � Y � ��� mod �
 This special �bre
is Spec�F� �X�Y ����X � Y � ���� which is a non�reduced scheme
 For p �� � the only
candidate for a singular point is ��� ��
 But this candidate lies on the curve if and only
if � � � mod p hence only for p � �
 In this case we get one singularity
 Here we
calculate that �X� � Y � � �� � �X � Y ��X � Y � mod �
 Altogether we obtain that
nearly every �bre is a non�singular conic
 Only the �bre over ����� is a double line and
the �bre over ����� is a union of two lines which meet at one point


	� Other objects� In lecture � we already said that moduli problems �degenerations
etc
� can be conveniently be described as functors
 It is not always possible to �nd a
scheme representing a certain moduli functor
 To obtain a representing geometric object
it is sometimes necessary to enlarge the category of schemes by introducing more general
objects like algebraic spaces and algebraic stacks
 It is quite impossible even to give the
basics of their de�nitions
 Here let me only say that in a �rst step it is necessary to
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introduce a �ner topology on the schemes� the etale topology
 With respect to the etale
topology one has more open sets
 Schemes are 
glued� together from a�ne schemes
using algebraic morphisms
 Algebraic spaces are objects where the 
glueing maps� are
more general maps �etale maps�
 Algebraic stacks are even more general than algebraic
spaces
 The typical situation where they occur is in connection with moduli functors

Here one has a scheme which represents a set of certain objects
 If one wants to have
only one copy for each isomorphy class of the objects one usually has to divide out a
group action
 But not every orbit space of a scheme by a group action can be made to
a scheme again
 Hence we indeed get new objects
 This new objects are the algebraic
stacks

Let me here only give a few references
 More information on algebraic spaces you can
�nd in the book of Artin �Ar��� or Knutson �Kn�
 For stacks the appendix of �Vi� gives
a very short introduction and some examples
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