
Mannheimer Manuskripte ���

q�alg����	�	�

Rev
 ��
�
��

BEREZIN�TOEPLITZ QUANTIZATION

OF COMPACT K�AHLER MANIFOLDS

Martin Schlichenmaier

January ��
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�� Introduction

Let me start with some mathematical aspects of quantization
 As a mathematician�
especially as an algebraic geometer� I 
nd the following concepts very fascinating
 Dear
reader if you are a physicist or a fellow mathematician working in a di�erent 
eld �e
g

in measure theory� you will probably prefer other aspects of the quantization
 So please
excuse if these other important concepts are not covered here


The arena of classical mechanics is as follows
 One starts with a phase spaceM � which
locally should represent position and momentum
 We assume M to be a di�erentiable
manifold
 The physical observables are functions on M 
 One needs a symplectic form
�� a non�degenerate antisymmetric closed ��form� which roughly speaking opens the
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possibility to introduce dynamics
 This form de
nes a Poisson structure on M in the
following way
 One assign to every function f its Hamiltonian vector 
eld Xf via

f � C��M� �� Xf � with Xf de
ned by ��Xf � �� � df��� �

A Lie algebra structure on C��M� is now de
ned by the product

ff� gg �� ��Xf � Xg� �

The Lie product ful
ls the compatibility

for all f� g� h � C��M� � ff � g� hg � f � fg� hg� ff� hg � g �

This says that �C��M�� � � f�� � ��g� is a Poisson algebra
 The pair �M��� is called
a symplectic manifold
 A Hamiltonian system �M���H� is given by 
xing a function
H � C��M�� the so called Hamiltonian function


The 
rst part of quantization �and only this step will be discussed here� consists
in replacing the commutative algebra of functions by something noncommutative
 But
there is the fundamental requirement� that the classical situation �including the Poisson
structure� should be recovered again as �limit�
 There are some methods to achieve at
least partially this goal
 I do not want to give a review of these methods
 Let me just
mention a few
 There is the �canonical quantization�� the deformation quantization
using star product� geometric quantization� Berezin quantization using coherent states
and Berezin symbols� Berezin�Toeplitz quantization� and so on
 I am heading here
for Berezin�Toeplitz quantization which has relations to the more known geometric
quantization as introduced by Kostant and Souriau
 In the following section I will
recall some necessary de
nitions for the case I will consider later on
 For a systematic
treatment see ��	�� ����


�� Geometric Quantization

Here I will assume �M��� to be a K�ahler manifold� i
e
 M is a complex manifold
and � a K�ahler form
 This says that � is a positive� non�degenerate closed ��form of
type �	� 	�
 If dimC M � n and z�� z�� � � � � zn are local holomorphic coordinates then it
can be written as

� � i
nX

i�j��

gij�z�dzi � dzj � gij � C��M� C � �

where the matrix �gij�z�� is for every z a positive de
nite hermitian matrix
 Obviously
�M��� is a symplectic manifold
 A further data is �L� h�r� � with L a holomorphic
line bundle� h a hermitian metric on L �conjugate�linear in the 
rst argument�� and
r a connection which is compatible with the metric and the complex structure
 With
respect to local holomorphic coordinates and with respect to a local holomorphic frame
of the bundle it can be given as r � � � � logh� �
 The curvature of L is de
ned as

F �X�Y � � rXrY �rYrX �r�X�Y � �
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De�nition� The K�ahler manifold �M��� is called quantizable� if there is such a triple
�L� h�r� with

F �X�Y � � � i��X�Y � � �	�

The condition �	� is called the prequantum condition
 The bundle �L� h�r� is called
a �pre�quantum line bundle
 Usually we will drop h and r in the notation


Example �� The �at complex space C n with

� � i
nX
j��

dzj � dzj �

Example �� The Riemann sphere� the complex projective line� P�C � � C �f�g 	� S�

With respect to the quasi�global coordinate z the form can be given as

� �
i

�	 � zz��
dz � dz �

The quantum line bundle L is the hyperplane bundle
 For the Poisson bracket one
obtains

ff� gg � i �	 � zz��
�
�f

�z
�
�g

�z
�
�f

�z

�g

�z

�
�

Example �� The �complex�� one dimensional torus M 
 Up to isomorphy it can be
given as M � C ��� where �� �� fn �m� j n�m � Zg is a lattice with Im� � �
 As
K�ahler form we take

� �
i	

Im�
dz � dz �

with respect to the coordinate z on the covering space C 
 The corresponding quantum
line bundle is the theta line bundle of degree 	� i
e
 the bundle whose global sections are
multiples of the Riemann theta function


Example 	� A compact Riemann surfaceM of genus g 
 �
 Such anM is the quotient
of the open unit disc E in C under the fractional linear transformations of a Fuchsian

subgroup of SU�	� 	�
 If R �

�
a b
b a

�
with jaj��jbj� � 	 �as an element of SU�	� 	��

then the action is

z �� R�z� ��
az � b

bz � a
�
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The K�ahler form

� �
� i

�	� zz��
dz � dz

of E is invariant under the fractional linear transformations
 Hence it de
nes a K�ahler
form on M 
 The quantum bundle is the canonical bundle� i
e
 the bundle whose local
sections are the holomorphic di�erentials
 Its global sections can be identi
ed with the
automorphic forms of weight � with respect to the Fuchsian group


Example 
� The complex projective space Pn�C �
 This generalizes Example �
 The
points in P

n�C � are given by their homogeneous coordinates �z� � z� � � � � � zn� 
 In
the a�ne chart with z� �� � we take wj � zj�z� with j � 	� � � � � n as holomorphic
coordinates
 The K�ahler form is the Fubini�Study fundamental form

�FS �� i
�	 � jwj��

Pn
i�� dwi � dwi �

Pn
i�j��wiwjdwi � dwj

�	 � jwj���
�

The quantum line bundle is the hyperplane bundle H� i
e
 the line bundle whose global
holomorphic sections can be identi
ed with the linear forms in the n� 	 variables zi


Example �� Projective K�ahler submanifolds
 Let M be a complex submanifold of
PN �C � and denote by i �M 
� PN �C � the embedding� then the pull�back of the Fubini�
Study form i���FS� � �M is a K�ahler form on M and the pull�back of the hyperplane
bundle i��H� � L is a quantum line bundle for the K�ahler manifold �M��M �
 Note
that by general results i�M� is an algebraic manifold


There is an important observation
 If M is a compact K�ahler manifold which is
quantizable then from the prequantum condition �	� we get for the Chern form of the
line bundle the relation

c�L� �
i

�	
F �

�

�	
�

This implies that L is a positive line bundle
 In the terminology of algebraic geometry
it is an ample line bundle
 By the Kodaira embedding theorem M can be embed�
ded �as algebraic submanifold� into projective space PN �C � using a basis of the global
holomorphic sections si of a suitable tensor power L

m� of the bundle L

z �� �s��z� � s��z� � � � � � sN �z�� � P
N �C � �

These algebraic manifolds can be described as zero sets of homogeneous polynomials

Note that the dimension of the space �hol�M�Lm�� consisting of the global holomor�
phic sections of Lm� � can be determined by the Theorem of Grothendieck�Hirzebruch�
Riemann�Roch� see �	��� ����
 So even if we start with an arbitrary K�ahler manifold
the quantization condition will force the manifold to be an algebraic manifold and we
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are in the realm of algebraic geometry
 This should be compared with the fact that
there are �considerable more� K�ahler manifolds than algebraic manifolds
 This tight
relation between quantization and algebraic geometry can also be found in the theory
of coherent states as explained by A
 Odzijewicz ���� and S
 Berceanu ���


Here a warning is in order
 With the help of the embedding into projective space
we obtain by pull�back of the Fubini�Study form another K�ahler form on M and by
pull�back of the hyperplane bundle another quantum bundle on M 
 As holomorphic
bundles the two bundles are the same� but in general the K�ahler form and the metric
of the bundle and hence the connection will be di�erent
 Essentially� these data will
only coincide if M is a K�ahler submanifold� or in other words if the embedding is an
isometric K�ahler embedding
 The situation is very much related to Calabi�s diastatic
function �	��� �		� �nd ref
�� see also Section �


Now we have to deal with the functions and how to assign operators to them
 In
geometric quantization such an assignment is given by

P � �C��M�� f� � �g�� End����M�L�� �� � ���� f �� Pf �� �rXf � i f � id �

Here ���M�L� is the space of di�erentiable global sections of the bundle L
 Due to the
prequantum condition this is a Lie homomorphism


Unfortunately one has too many degrees of freedom
 The 
elds depend locally on
position and momentum
 Physical reasons imply that they should depend only on half
of them
 Such a choice of �half of the variables� is called a polarization
 In general there
is no unique choice of polarization
 However� for K�ahler manifolds there is a canonical
choice of coordinates� the splitting into holomorphic and anti�holomorphic coordinates

To obtain a polarization we consider only sections which depend holomorphically on the
coordinates
 This is called the K�ahler �or holomorphic� polarization


If we denote by
 � ���M�L�� �hol�M�L��

the projection operator from the space of di�erentiable sections onto the subspace con�
sisting of holomorphic sections then the quantum operators are de
ned as

Q � C��M�� End��hol�M�L��� f �� Qf �  Pf  �

This map is still a linear map
 But it is not a Lie homomorphism anymore


�� Berezin�Toeplitz Quantization

Let the situation be as in the last section
 We assume everywhere in the following
thatM is compact
 We take ! � �

n��
n as volume form on M 
 On the space of section
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���M�L� we have the scalar product

h�� �i ��

Z
M

h��� �� ! � jj�jj ��
p
h�� �i � ���

Let L��M�L� be the L��completion of the space of C��sections of the bundle L and
�hol�M�L� be its 
nite�dimensional closed subspace of holomorphic sections
 Again let
 � L��M�L�� �hol�M�L� be the projection


De�nition� For f � C��M� the Toeplitz operator Tf is de
ned to be

Tf ��  �f �� � �hol�M�L�� �hol�M�L� �

In words� One multiplies the holomorphic section with the di�erentiable function f 

This yields only a di�erentiable section
 To obtain a holomorphic section again� we have
to project it back


The linear map

T � C��M�� End
�
�hol�M�L�

�
� f � Tf �

will be our Berezin�Toeplitz quantization
 It is neither a Lie algebra homomorphism
nor an associative algebra homomorphism� because in general

Tf Tg �  �f �� �g�� ��  �fg�� �

From the point of view of Berezin�s approach ���� Tf is the operator with contravariant
symbol f �see also �����
 At the end of this section I will give some more references


Due to the compactness of M this de
nes a map from the commutative algebra of
functions to a noncommutative 
nite�dimensional �matrix� algebra
 A lot of information
will get lost
 To recover this information one should consider not just the bundle L alone
but all its tensor powers Lm and apply all the above constructions for every m
 In this
way one obtains a family of matrix algebras and maps

T �m	 � C��M�� End
�
�hol�M�Lm�

�
� f � T

�m	
f �

This in
nite family should in some sense �approximate� the algebra C��M�
�See ���
for a de
nition of such an approximation
�

For the Riemann sphere P�C � we obtain with the help of an integral kernel the
following explicit expression for the Toeplitz operator

�T
�m	
f s��z� �

m� 	

�	

Z
C

�	 � z
�mf�
�s�
�

�	 � 

�m
i d
 � d


�	 � 

��
�
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Here the function s is representing a holomorphic section of Lm
 The Toeplitz operator
in our situation has always an integral kernel
 Let k�m� �� dim�hol�M�Lm� and take
an orthonormal basis si� i � 	� � � � � k�m� of the space �hol�M�Lm� then

�T
�m	
f s��z� �

Z
M

k�m	X
i��

h�m	
�
si�w�� f�w�s�w�

�
� si�z� !�w� � ���

These Toeplitz operators are still complicated but they are easier to handle than the
quantum operators
 For compact M we have the following relation

Q
�m	
f � i � T

�m	

f� �
�m
f

� i

�
T
�m	
f �

	

�m
T
�m	

f

�
�

This is a result of Tuynman ���� Thm
�
	� reinterpreted in our context� see also ���
 Here
the Laplacian " has to be calculated with respect to the metric g�X�Y � � ��X� IY � �
where I is the complex structure
 We see that for m � � the quantum operator of
geometric quantization will asymptotically be equal to the quantum operator of the
Berezin�Toeplitz quantization


For the following let us assume that L is already very ample
 This says that its global
sections will already do the embedding
 If this is not the case we would have to start
with a certain m��tensor power of L and the form m� �
 The following three theorems
were obtained in joint work with Martin Bordemann and Eckhard Meinrenken ���


Theorem �� For every f � C��M� there is some C � � such that

jjf jj� �
C

m
� jjT

�m	
f jj � jjf jj� as m�� �

Here jjf jj� is the sup�norm of f onM and jjT
�m	
f jj is the operator norm on �hol�M�Lm��

In particular� we have limm�� jjT
�m	
f jj � jjf jj��

Theorem �� For every f� g � C��M� we have

jjm i �T
�m	
f � T �m	

g �� T
�m	
ff�ggjj � O�

	

m
� as m�� �

The proofs can be found in the above mentioned article ���
 I will give some ideas of
them in the next section


These theorems give two approximating sequences of maps

�C��M�� jj��jj��� �gl�n� C �� jj��jjm ��
	

m
jj��jj� f �� imT

�m	
f � f �� mQ

�m	
f �
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Restricted to real valued functions the maps take values in u�k�� for k � dim�hol�M�Lm�

These families of maps are only linear maps� not Lie homomorphism with respect to
the Poisson bracket
 But by Theorem 	 they are nontrivial and by Theorem � they are
approximatively Lie homomorphisms
 So every Poisson algebra of a K�ahler manifold is
a u�k�� k � � limit
 This was a conjecture in ��� and our starting point was the aim
to prove this conjecture
 In ��� also a Egorov type theorem is presented


If one puts � � �
m
in Theorem � one can rewrite it as

lim
���

jj
i

�
�T

����	
f � T ����	

g �� T
����	
ff�gg jj � � �

One should compare this with the de
nition of a star product deformation of C��M�
�see ���� ����� based on the deformation theory of algebras as developed by Gerstenhaber

Because there are di�erent variants let me recall the de
nition we are using


Let A � C��M������ be the algebra of formal power series in the variable � over
the algebra C��M�
 A product 
 on A is called a �formal� star product if it is an
associative C ������linear product such that

�	� A��A 	� C��M�� i
e
 f 
 g mod � � f � g�

���
	

�
�f 
 g � g 
 f� mod � � � i ff� gg


Note that f
g �
�P
i��

Ci�f� g��
i with C �bilinear maps Ci � C

��M��C��M�� C��M�


With this we calculate

C��f� g� � f � g� and C��f� g�� C��g� f� � � i ff� gg � ���

Theorem �� There exists a unique �formal� star product on C��M�

f 
 g ��
�X
j��

�
jCj�f� g�� Cj�f� g� � C��M�� ���

in such a way that for f� g � C��M� and for every N we have

jjT
�m	
f T �m	

g �
X

��j�N

�
	

m

�j
T
�m	
Cj�f�g	

jj � KN �f� g�

�
	

m

�N
���

for m��� with suitable constants KN �f� g��

We do not say anything about the convergence of the series ���
 Hence we do not
claim to obtain a �strict deformation quantization� as introduced by Rie�el ����
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We obtain a star product deformation not just by cohomological techniques as �	��
but a geometrically induced one
 There are other geometric constructions of a star
product deformation for Poisson algebras
 An important one is given by Fedosov �	��
�

�See Omori� Maeda� Yoshioka ���� and Karasev� Maslow ���� for related ones
� As
pointed out by Deligne �	�� it would be interesting to examine the relations between the
two di�erent approaches


Here it is not the place and in fact I am not the expert to give a complete list of
references on the Berezin�Toeplitz quantization
 So let me just quote few of them

Berezin�Toeplitz quantization was mainly examined for certain complex symmetric do�
mains
 For older work see besides Berezin ��� also Berger�Coburn ���
 Similar results
as stated in Theorem 	 and Theorem � were recently obtained in these cases
 To give
a few names� Klimek�Lesniewski ����� Borthwick�Lesniewski�Upmeier ���� Coburn �	���



 As I will explain in Section � the techniques in these cases are very di�erent from
ours
 They will not work in the case of a general K�ahler manifold
 On the contrary�
our methods are closely related to the compactness
 So the results are at two di�erent
edges of the theory
 Let me add that the case of compact Riemann surfaces of arbitrary
genus has been proven by the �classical techniques� ����� �nd ref
� for g 
 � and ��� for
g � 	�
 In some cases the relation to star product deformations have been studied �	��


Closely related to the Berezin�Toeplitz quantization is the quantization via Berezin�s
coherent states using the Berezin symbols ��� in the formulation of Cahen� Gutt and
Rawnsley �		�
 This technique was also used to de
ne star products
 See also the
construction of star products by Moreno and Ortega�Navarro ����� ����
 For the idea of
relating asymptotics to a deformation of the Poisson bracket see Karasev and Maslov
����

Let me close this section with the remark that Berezin�Toeplitz quantization 
ts into
the concept of �prime quantization� introduced by Ali and Doebner ���� �	�


�� Some remarks on the proofs

One way to prove the theorems is to represent the sections of L in a certain way� write
down the projection operator as integral operator and calculate norms of the Toeplitz
operators
 This was done by Bordemann� Hoppe� Schaller and Schlichenmaier in ��� for
the case of the n�dimensional complex torus using theta functions� and for the Riemann
sphere �unpublished�
 For Riemann surfaces of genus g 
 � it was done by Klimek
and Lesniewski ���� using automorphic forms
 Similar techniques work for symmetric
domains
 In all these cases it was important that one could represent the sections as
ordinary functions on some simple covering of the manifold under consideration


�See also the Bourbaki expos�e by Weinstein ���� and the review by Flato and Sternheimer ��	��
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For general K�ahler manifolds this does not work
 We need a di�erent approach
 The

principal idea is to group all T
�m	
f together to a global object
 Take �U� k� �� �L�� h���

the dual of the quantum line bundle� Q the unit circle bundle inside U �with respect
to the metric k� and � � Q�M the projection
 Note that for the projective space the
bundle U is just the tautological bundle whose 
bre over the point z � P

N �C � consists
of the line in C N�� which is represented by z
 In particular the total space of U without
the zero section can be identi
ed with C N�� n f�g


Starting from the function #k��� �� k��� �� on U we de
ne $a ��
	

� i
�� � �� log #k on

U n � �with respect to the complex structure on U� and restrict it to Q
 Denote this
restriction by �
 Now d� � ��Q� �with d � dQ� and � � �

���
�! � � is a volume

form on Q
 With respect to this form we take the L��completion L��Q� �� of the space
of functions on Q
 The generalized Hardy space H is the closure of the functions of
L��Q� �� which can be extended to holomorphic functions on the whole disc bundle

The generalized Szeg�o projector is the projection  � L��Q� ��� H


By the natural circle actionQ is a S��bundle and the tensor powers of U can be viewed
as associated bundles
 The space H is preserved by this action
 It is the �completed�
direct sum H �

P�
m��H

�m	 where c � S� acts on H�m	 as multiplication by cm

Sections of Lm � U�m can be identi
ed with functions � on Q which satisfy the
equivariance condition ��c�� � cm����
 This identi
cation is an isometry
 Hence�
restricted to the holomorphic objects

�hol�M�Lm� 	� H�m	 �

There is the notion of Toeplitz structure �%� � as developed by Guillemin and Boutet
de Monvel in �	��� ����
 Here is not the place to go into the details of the general de
n�
itions
 Let me just explain what is needed here
 Here % is the symplectic submanifold
of the tangent bundle of Q with the zero section removed�

% � f t���� j � � Q� t � � g � T �Q n � �

and  is the above projection
 A �generalized� Toeplitz operator of order k is an operator
A � H � H of the form A �  �R � where R is a pseudodi�erential operator �&DO�
of order k on Q
 The Toeplitz operators build a ring
 The �principal� symbol of A is the
restriction of the principal symbol of R �which lives on T �Q� to %
 Note that R is not

xed by A but Guillemin and Boutet de Monvel showed that the �principal� symbols
are well�de
ned and that they obey the same rules as the symbols of &DOs

��A�A�� � ��A����A��� ���A�� A��� � i f��A��� ��A��g�� ���

Here we use the ��form �� �
P

i dqi � dpi on T
�Q to de
ne the Poisson bracket there


We are only dealing with two Toeplitz operators�
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�	� The generator of the circle action gives the operator D� �
	

i

�

��

 It is an operator

of order 	 with symbol t
 It operates on H�m	 as multiplication by m

��� For f � C��M� letMf be the multiplication operator on L

��Q� ��� i
e
Mf �g���� ��
f������g���
 We set Tf �  �Mf �  � H � H 
 Because Mf is constant along the


bres� Tf commutes with the circle action
 Hence Tf �
�L
m��

T
�m	
f � where T

�m	
f is the

restriction of Tf to H
�m	
 After the identi
cation of H�m	 with �hol�M�Lm� we see

that these T
�m	
f are exactly the Toeplitz operators T

�m	
f introduced in Section �
 In

this sense we call Tf also the global Toeplitz operator and the T
�m	
f the local Toeplitz

operators
 Tf is an operator of order � and its symbol is just f pull�backed to Q and
further to T �Q �and restricted to %�
 Let us denote by ��� � % � ��Q � Q � M the
composition then we obtain for its symbol ��Tf � � ����f�

This is the set�up more details can be found in ���


Proof of Theorem �� Now we are able to proof Theorem �
 The commutator �Tf � Tg� is
a Toeplitz operator of order �	
 Using ��jt��		 � �t���� for t a 
xed positive number�

we obtain� with ��� that its principal symbol is

���Tf � Tg���t����� � i f���f� �
�
�gg��t����� � � i t��ff� ggM������ �

Now consider
A �� D�

� �Tf � Tg� � iD� Tff�gg �

Formally this is an operator of order 	
 Using ��Tff�gg� � ���ff� gg and ��D�� � t we see
that its principal symbol vanishes
 Hence it is an operator of order �
 NowM and hence
Q are compact manifolds
 This implies that A is a bounded operator �&DOs of order
� are bounded�
 It is obviously S��invariant and we can write A �

P�
m��A

�m	 where

A�m	 is the restriction of A on the space H�m	
 For the norms we get jjA�m	jj � jjAjj

But

A�m	 � AjH�m� � m��T
�m	
f � T �m	

g � � imT
�m	
ff�gg�

Taking the norm bound and dividing it by m we get the claim of Theorem �
 �

Proof of Theorem �� This proof is a modi
cation of the above approach
 One constructs
inductively Cj�f� g� � C��M� such that

AN � DN
� TfTg �

N��X
j��

DN�j
� TCj�f�g	

�Unfortunately� in �	� the minus sign was missing� This causes in Thm� ��
 of that article also the
wrong sign�
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is a zero order Toeplitz operator
 Because AN is S��invariant and it is of zero order its
principal symbol descends to a function onM 
 Take this function to be CN �f� g�
 Then
AN � TCN �f�g	 is of order �	 and AN�� � D��AN � TCN �f�g	� is of order zero
 The
induction starts with A� � TfTg which implies ��A�� � ��Tf ���Tg� � f � g � C��f� g�

As a zero order operator AN is bounded� hence this is true for the component operators

A
�m	
N 
 We obtain

jjmNT
�m	
f T �m	

g �
N��X
j��

mN�jT
�m	
Cj�f�g	

jj � jjAN jj �

dividing this bymN we obtain the asymptotics ��� of the theorem
 Writing this explicitly
for N � � we obtain for the pair �f� g�

jjm�T
�m	
f T �m	

g �m�T
�m	
f �g �mT

�m	
C��f�g	

jj � K �

and a similar expression for the pair �g� f�
 By subtracting the corresponding operators�
using the triangle inequality� dividing by m and multiplying with i we obtain

jjm i �T
�m	
f T �m	

g � T �m	
g T

�m	
f �� T

�m	

i
�
C��f�g	�C��g�f	

�jj � O�
	

m
� �

With Theorem � this yields jjT
�m	

ff�gg� i
�
C��f�g	�C��g�f	

�jj � O� �
m
�
 But Theorem 	

says that the left hand side has as limit jff� gg � i �C�

�
f� g� � C��g� f�

�
j� � hence

ff� gg � i �C��f� g�� C��g� f��
 This shows equation ���
 Uniqueness of the CN �f� g�
follows inductively in the same way from ���� again using Theorem 	
 The associativity
follows from the de
nition by operator products
 �

Unfortunately� Theorem 	 has a rather complicated proof using Fourier integral op�
erators� oscillatory integrals and Berezin�s coherent states
 �At least we have not been
able to 
nd a simpler one�
 For the special situation of projective K�ahler submanifolds
we have a much less involved proof� using Calabi�s diastatic function


Recall from Section � that a projective K�ahler submanifold is a K�ahler manifold M
which can be embedded into projective space PN �C � �with N suitable chosen� such
that the K�ahler form of M coincides with the pull�back of the Fubini�Study form
 The
pull�back of the tautological bundle is the dual of the quantum bundle
 We denote
this bundle by U 
 On the tautological bundle we have the standard hermitian metric
k�z� w� �� hz� wi � 'zw in C N�� 
 By pull�back this de
nes a metric on U 
 Note that in
this case the pull�back is essentially just the restriction of all objects to the submanifold

The Calabi �diastatic� function �	����		� �nd ref
� is de
ned as

D �M �M � R�� � f�g� D������ ����� � � log jk��� ��j�
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�where we have to choose � and � with k��� �� � k��� �� � 	 representing the points of
M�
 It is well�de
ned� vanishes only along the diagonal and is strictly positive outside
the diagonal


Proof of Theorem 	 for this case� First the easy part �which of course works in all cases�


Note that jjT
�m	
f jj � jj �m	M

�m	
f  �m	jj � jjM

�m	
f jj and for � �� �

jjM
�m	
f �jj

�

jj�jj�
�

R
M
h�m	�f�� f��!R
M
h�m	��� ��!

�

R
M
f�z�f�z�h�m	��� ��!R
M
h�m	��� ��!

� jjf jj�� �

Hence�

jjT
�m	
f jj � jjM

�m	
f jj � sup

����

jjM
�m	
f �jj

jj�jj
� jjf jj��

To proof the 
rst inequality� let x� �M be a point where jf j assumes its maximum� and

x a �� � ����x�� with k���� ��� � 	
 We de
ne a sequence of holomorphic functions
$��m	 by setting $��m	��� �� k���� ��

m 
 Because $��m	�c�� � cmk���� ��
m � cm $��m	���

this de
nes an element ��m	 of �hol�M�Lm�
 Note that

hm���m	� ��m	��x� � $��m	��� $��m	��� � k���� ��
m
k���� ��

m � exp��mD�x�� x��

With Cauchy�Schwartz�s inequality we obtain

jjT
�m	
f jj 


jjT
�m	
f ��m	jj

jj��m	jj


j � ��m	� T

�m	
f ��m	 � j

� ��m	� ��m	 �

�
j
R
M
f�x�hm���m	� ��m	��x�!�x�jR
M
hm���m	� ��m	��x�!�x�

�
j
R
M
f�x�e�mD�x��x	!�x�jR
M
e�mD�x��x	!�x�

�

We want to consider the m � � limit
 The part of the integral outside a small
neighbourhood of x� will vanish exponentially
 For the rest the stationary phase theorem
��	� allows one to compute the asymptotics
 The point x � x� is a zero of D and it is a
non�degenerate critical point
 Hence we obtain for the right hand side the asymptotic

jf�x��j� O�m���

	 �O�m���
� jf�x��j� O�m����

and hence
jjT

�m	
f jj 
 jf�x��j� O�m��� � jjf jj� � O�m��� � �
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