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ABSTRACT 

The complexity of modern industrial processes makes high dependability an essential 

demand for reducing production loss, avoiding equipment damage, and increasing 

human safety. A more dependable system is a system that has the ability to: 1) detect 

faults as fast as possible; 2) diagnose them accurately; 3) recover the system to the 

nominal performance as much as possible. Therefore, a robust Fault Detection and 

Isolation (FDI) and a Fault Tolerant Control (FTC) system design have attained 

increased attention during the last decades. This thesis focuses on the design of a robust 

model-based FDI system and a performance recovery controller based on a new 

performance index called Dynamic Safety Margin (DSM).  

The DSM index is used to measure the distance between a predefined safety 

boundary in the state space and the system state trajectory as it evolves. The DSM 

concept, its computation methods, and its relationship to the state constraints are 

addressed. The DSM can be used in different control system applications; some of them 

are highlighted in this work. 

Controller design based on DSM is especially useful for safety-critical systems to 

maintain a predefined margin of safety during the transient and in the presence of large 

disturbances. As a result, the application of DSM to controller design and adaptation is 

discussed in particular for model predictive control (MPC) and PID controller.  

Moreover, an FDI scheme based on the analysis of the DSM is proposed. Since it is 

difficult to isolate different types of faults using a single model, a multi-model approach 

is employed in this FDI scheme. The proposed FDI scheme is not restricted to a special 

type of fault. 

In some faulty situations, recovering the system performance to the nominal one 

cannot be fulfilled. As a result, reducing the output performance is necessary in order to 

increase the system availability. A framework of FTC system is proposed that combines 

the proposed FDI and the controllers design based on DSM, in particular MPC, with 

accepted degraded performance in order to generate a reliable FTC system. 

The DSM concept and its applications are illustrated using simulation examples. 

Finally, these applications are implemented in real-time for an experimental two-tank 

system. The results demonstrate the fruitfulness of the introduced approaches.  
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ZUSAMMENFASSUNG 

Die Komplexität moderner Industrieanlagen macht hohe Verlässlichkeit zu einer 

notwendigen Anforderung um Produktausfall, Beschädigung der Anlage und Sicherheit 

zu gewährleisten. Ein verlässliches System kann: 1) Fehler so schnell wie möglich  

detektieren; 2) Die Ursache des Fehlers genau diagnostizieren; 3) Die Systemleistung so 

nah wie möglich am Nominalverhalten wiederherstellen. Deswegen wuchs das Interesse 

an robuster Fehlerdetektion und Isolierung (Fault Detection and Isolation FDI) und 

fehlertoleranter Regelung (Fault Tolerant Control FTC) in den letzten Jahren erheblich. 

In dieser Dissertation wird, basierend auf einem neuen Gütekriterium der „Dynamic 

Safety Margin“ (DSM), der Entwurf eines robusten modellbasierten FDI-Systems und 

eines Reglers zur Systemwiederherstellung entwickelt.  

Das DSM-Gütekriterium wird benutzt um die Entfernung zwischen dem Rand 

vordefinierten Sicherheitsgebietes im Zustandsraum und der sich entwickelnden 

Systemtrajektorie zu bewerten. Es werden das DMS-Konzept, seine Berechnung und 

die Beziehung zu den Zustandsbeschränkungen behandelt. DSM kann für verschiedene 

regelungstechnische Anwendungen eingesetzt werden. Einige dieser Anwendungen 

werden in dieser Arbeit vorgestellt.  

Ein Reglerentwurf mit Hilfe von DSM ist speziell nützlich für sicherheitskritische 

Systeme um einen vordefinierten Sicherheitsabstand sowohl während des 

Transientenverhaltens als auch während großer Störungen einzuhalten. Aus diesem 

Grund wird die Anwendung des DSM bei Reglerentwurf und Regleranpassung speziell 

für modellbasierte prädiktive Regelung und PID-Regler betrachtet.  

Zusätzlich wird ein FDI-Schema anhand der Analyse des DSMs vorgeschlagen. Da 

es schwierig ist, verschiedene Fehler unter Verwendung eines einzelnen Modells zu 

isolieren, wird ein Multi-Modell Ansatz in diesem Schema eingesetzt. Die Anwendung 

des DSMs um Fehler zu entdecken und zu isolieren verringert die Anzahl der 

Diagnosevariablen, die der gemessene Zustand oder Ausgangsvektoren der 

anderen Methoden sind. Dazu ist das vorgeschlagene FDI-Schema nicht auf spezielle 

Fehlertypen beschränkt.  

In einigen fehlerverursachten Situationen kann es unmöglich werden, die 

Systemleistung vollständig wiederherzustellen. Deswegen muss die Ausgangsleistung 

verringert werden um die Verfügbarkeit des Systems zu steigern. Die beiden auf dem 
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DSM basierenden Verfahren zur FDI und FTC, speziell die für den MPC, werden in 

einem Framework kombiniert um ein zuverlässiges FTC-System mit einer akzeptablen 

Leistungsminderung zu erhalten.  

Das DSM-Konzept und seine Anwendungen werden anhand von 

Simulationsbeispielen erklärt. Schließlich werden diese Anwendungen in Echtzeit auf 

einer Zwei-Tank-Laboranlage implementiert. Die Ergebnisse zeigen die 

Leitungsfähigkeit der eingeführten Ansätze auf. 
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NOMENCLATURE 

Some of the terminology used in this thesis is given below. Most of these 

terminologies were made by the safe process technical committee of IFAC. 

Active fault tolerant 

control systems 

Control systems where faults are explicitly detected and 

accommodated through changing of the control laws 

Analytical 

redundancy 

Use of more than one, not necessary identical, way to 

determine a variable, where one way uses a mathematical 

process model in analytical form 

Availability Probability that a system or equipment will operate 

satisfactory and effectively at any point in time  

Dependability Ability of the system to successfully and safely complete its 

mission 

Dependable system A system that has a high reliability in terms of high 

availability and where the consequences of a fault are limited 

to the system it self, i.e. Local faults do not developed into 

failure at plant level 

Disturbance An unknown and uncontrolled input acting on a system 

Error A deviation between a measured or computed value of an 

output variable and it’s true or theoretically correct one 

Failure A Permanent interruption of a systems ability to perform a 

required function under a specified operating condition 

Failure Modes The various ways in which failures occur 

Fault An unpermitted deviation of at least one characteristic 

property or variable of the system from acceptable/normal/ 

standard condition 

Fault Detection Determination of faults present in a system and time of 

detection 
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Fault Diagnosis Determination of kind, size, location, and time of detection of 

a fault. Follows fault detection. Includes fault isolation and 

identification 

Fault Identification Determination of the size and time-variant behavior of a fault. 

Usually, follows isolation 

Fault Isolation Determination of kind, location, and time of detection of a 

fault. Follows fault detection. Follows fault detection 

Fault Tolerant System A system where a fault can be accommodated, so that a single 

fault at subsystem level does not developed into a failure on a 

system level 

Malfunction An intermittent irregularity in the fulfillment of a system’s 

desired function 

Passive Fault 

Tolerance 

A fault tolerant system where faults are not explicitly detected 

and accommodated, but the controller is designed to be 

insensitive to a certain set of faults in the system 

Quantitative Model Uses of static and dynamic relations among system variables 

and parameters in order to describe a system’s behavior in 

quantitative mathematical terms 

Reconfiguration Ability of a system to modify its structure/parameters to 

account for the detected fault in the system 

Reliability Ability of a system to perform a recurred function under 

stated conditions, within a given period of time 

Residual 

 

A fault indicator, based on a deviation between measurements 

and model-equation-based computations 

Robustness 

 

Ability of a system to maintain satisfactory performance in 

the presence of parameter variations 

Safety Ability of a system not to cause danger to human operators, 

equipment or the environment 

Symptom A change of an observable quantity from normal behavior 
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AFTC   Active Fault Tolerant Control 

DSM   Dynamic Safety Margin 

EA   Eigenstructure Assignment 

EKF   Extended Kalman Filter 

ETA   Event Tree Analysis 

FDE   Fault Detection and Estimators 

FDI   Fault Detection and Isolation 

FMEA   Failure Mode Effect Analysis 
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MIMO   Multi-Input Multi-Output 

MM   Multiple Model 

MMAE   Multiple Model Adaptive Estimator 

MM-FDI   Multiple Model- Fault Detection and Isolation 

MPC   Model Predictive Control 

mp-QP   multi-Parametric Quadratic Program 

PCA   Principle Component Analysis  

PFTC   Passive Fault Tolerant Control  

QP   Quadratic Programming  

SISO   Single-Input Single-Output 

UIO   Unknown Input Observer 
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CHAPTER 1 

1 INTRODUCTION AND PROBLEM STATEMENT 

1.1 Background and Motivation 

Typical industrial processes are of large and complex nature, involving a huge number 

of components. The complexity makes systems more vulnerable to faults. A fault 

changes the behaviour of an industrial process such that the system does no longer 

satisfy its purpose. It may arise due to component aging and wear, or human errors in 

connection with installation, operation, and maintenance. It may also arise due to the 

environmental conditions change that causes, for instance, a temperature increase, 

which eventually stops a reaction or even destroys the reactor in chemical process.  In 

any case, a fault is the primary cause of changes in the system structure or parameters 

that leads to a degraded system performance or even the loss of the system function.  

In large systems, every component is designed to provide a certain function and the 

overall system works satisfactorily only if all components provide the service they are 

designed for. Therefore, a fault in a single component usually changes the performance 

of the overall system.   

A fault can be very costly in terms of production loss, equipment damage and human 

safety. In order to maintain a high level of safety, performance and availability in 

controlled processes it is important that the system errors, component faults and 

abnormal system operation are detected promptly, and that the source and severity of 

each malfunction is diagnosed so that the corrective action can be taken. The human 

operator can correct some system “errors”, e.g., by closing down the part of the process 

which has malfunctioned or by re-scheduling the feedback control or the set point 

parameters. The complexity and fast response required in the system made the manual 

supervision, to detect a fault, isolate its cause and accommodate the system to a new 

condition, is hard. Therefore, it is necessary to move the more basic supervision to be 

automated and become more autonomous. 

As a consequence, attention has changed towards increased dependability, a 

synonym for high degree of availability, reliability, and safety under changing operating 
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conditions. A more dependable system is the system that has the ability to tolerate faults 

and prevents them to develop into failures at a subsystem or plant level. Furthermore, it 

should be guaranteed that all essential faults are detected and all critical faults are 

accommodated. Hence, modern technological systems rely on sophisticated control 

functions to meet increased performance requirements. 

1.1.1 Reliability and Dependability 

The dependability of a system reflects the user's degree of trust in that system. It reflects 

the extent of the user's confidence that it will operate as users expect and that it will not 

'fail' in normal use. For critical systems, it is usually the case that the most important 

system property is the dependability of the system  [1]. Dependability is the ability of the 

system to successfully and safely complete its mission. In particular, a dependable 

system implies the ability of the system to: 

• Deliver services when requested (Availability).  

• Deliver services as specified (Reliability).  

• Operate without catastrophic failure (Safety).  

• Satisfy mission constraints on performance and time. 

Reliability is one of the important properties of a dependable system. Reliability is 

the probability of failure-free system operation over a specified time in a given 

environment for a given purpose. Reliability studies evaluate frequency with which the 

system is faulty, but they cannot say anything about the current fault status  [2].  

1.1.1.1 Reliability Achievement 

The reliability of the system can be achieved by  [1],  [3]: 

• Fault avoidance: Development techniques are used that either minimize 

the possibility of errors or trap errors before they result in the 

introduction of system faults.  

•  Fault detection and removal: Verification and validation techniques that 

increase the probability of detecting and correcting errors before the 

system goes into service are used.  

• Fault tolerance: Run-time techniques that accommodate the diagnosed 

faults and prevent them to develop into failure, 
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•  Autonomous supervision and protection: Run-time techniques that 

reconfigure the system in order to isolate faults. 

1.1.2 Safety Critical Systems 

Safety is a property of a system that reflects the system's ability to operate, normally or 

abnormally, without danger of causing human injury or death and without damage to 

the system's environment  [1]. It describes the absence of danger. A safety system is a 

part of the control equipment that protects a controlled system from permanent damage. 

It enables a controlled shut-down, which brings the controlled system into a safe state  [2]. 

A critical system is a system that failures can result in significant economic losses, 

physical damage or threats to human life.  

Critical systems can be classified into  [1]:   

• Safety-critical system: A system whose failure may result in injury, loss 

of life or major environment damage. For example, a control system for 

a chemical manufacturing plant and nuclear power plant.  

• Mission-critical system: A system whose failure may result in the failure 

of some goal-directed activity. For example, a navigational system for a 

spacecraft.  

• Business-critical system: A system whose failure may result in the 

failure of the business using that system. For example, customers 

account system in a bank.  

Safety and reliability are related but distinct. In general, reliability and availability are 

necessary but not sufficient conditions for system safety.  

Reliability is concerned with conformance to a given specification and delivery of 

service. Whereas safety is concerned with ensuring that the system will not cause 

damage, irrespective of whether or not it conforms to its specification. 

1.1.2.1 Safety Achievement 

The safety of system can be achieved by  [1]: 

• Hazard avoidance: The system is designed so that some classes of 

hazard simply cannot arise.  

• Hazard detection and removal: The system is designed so that hazards 

are detected and removed before they result in an accident.  
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• Damage limitation: The system includes protection features, which 

minimize the damage that may result from an accident.  

Reliability and safety analysis can be performed by Fault Tree Analysis (FTA)  [5], 

Failure Mode Effect Analysis (FMEA)  [6], Event Tree Analysis (ETA), Cause-

Consequence Analysis (CCA), Fault Hazard Analysis (FHA), etc. see for example  [3], 

and  [4]. 

1.1.3  Down-time in the Process Industries 

Down time in process industries causes significant economic losses. Moreover, 

restarting the process takes a long time (hours or days), mainly in critical systems such 

as petrochemical industries, power plants, etc. Therefore, the availability of the system 

should be high. Contrarily, the downtime should be reduced. Availability is the 

probability of a system to be operational and able to deliver the requested services when 

needed. Contrary to reliability it also depends on the maintenance policies, which are 

applied to the system components.  Figure  1-1 explains the availability and down-time 

 [1],  [5]. 
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Figure  1-1: Availability and down-time 

Here, it can be concluded that early fault detection, accurate fault diagnosis, and fault 

tolerant capability enhance the overall system safety and availability besides reliability 

of the monitored system, i.e. enhance the overall system dependability.  
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1.2  Model Based Fault Detection and Diagnosis 

The complexity and sophistication of the new generation of engineered systems, along 

with growing demands for their reliability, safety and low cost operation, is being met 

by the use of more automated monitoring and Fault Detection and Isolation (FDI) 

subsystems. The goal is to accurately isolate problems and restore the system to the 

nominal operation by making control changes to bring system behavior back to desired 

operating ranges or at least safe mode of operation. This defines the needs for fault 

detection, isolation, and recovery. 

A fault detection system compares expected behavior of the system with the actual 

behavior. If the actual behavior deviates from the expected behavior, a symptom is 

detected and the detection system generates an alarm. The diagnosis system is able to 

determine the type, size and location of the fault, based on observed analytical 

symptoms and heuristic symptoms, knowledge of faulty behaviors. This is called fault 

isolation. Fault diagnosis methods broadly consist of statistical pattern recognition and 

decision making, such as classification and fuzzy rule-based technique  [7]. 

In general, fault detection methods can be grouped into: (a) model based, (b) 

knowledge based, and (c) signal based. Further, model-based approaches are typically 

grouped into quantitative and qualitative models. Quantitative models (differential 

equations, state space methods, transfer functions, etc.) are used to generally utilize 

results from the field of the control theory  [7]. In qualitative models, the relation 

between the variables to obtain the expected system behavior is expressed in terms of 

qualitative functions centered around different units in the process such as causal 

models and abstraction hierarchy  [8],  [9]. They are used, in particular, for large and 

nonlinear systems. The analysis methods used in the qualitative model are FTA, FMEA, 

ETA, structure analysis, etc. The formal approach uses qualitative reasoning and 

qualitative modeling  [7],  [8].   

Knowledge-based approaches are based on the use of artificial intelligence methods, 

neural networks, fuzzy logic, and combination of these methods. These approaches 

utilize deep understanding of process structure, process unit functions and qualitative 

models of the process units under various faulty conditions. It is used when it is difficult 

to obtain a model for the system in case of nonlinear and uncertain systems  [10]- [12]. 

Recent developments in empirical modeling, such as the use of neural networks and 

fuzzy, have broadened the scope of the quantitative modeling to include ‘data based 
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model’, in additional to the traditional models based on physical principle  [13]- [15], 

 [11]. A class of model-free-based FDI approaches has also been developed. Various 

algorithms have been implemented employing fuzzy logic  [16],  [17],  [10],  [11], and 

artificial neural networks  [18]- [20]. In many other techniques, different operating 

conditions including normal and abnormal ones are treated as patterns. Neural networks 

are then applied to analyze the online measurement data and map them to a known 

pattern directly so that the current system condition is identified  [18],  [21],  [13].  

Signal processing methods, such as spectral analysis, the wavelet decomposition 

 [22], and Principle Component Analysis (PCA)  [23],  [24], which do not incorporate any 

model, can be used for fault detection and diagnosis. Integration of fault detection 

methods are used to detect system faults in some applications. A combination of self-

organized neural network (knowledge base) with wavelet analysis and statistical 

analysis techniques is used in  [25]. 

There is another classification of FDI in literature, which classifies the FDI methods 

into only two main categories, model-based and signal-based approaches. Each of 

which is grouped into quantitative and qualitative methods  [9]. In signal-based methods, 

quantitative methods use signal processing methods, such as spectral analysis, PCA, etc. 

while qualitative methods use knowledge based method such as fuzzy and neural 

classification, etc.  The signal-based methods, whether quantitative or qualitative, do not 

incorporate model. The fault detection method, which employs model based on artificial 

intelligent (knowledge based), is classified under the qualitative model-based FDI 

methods.  

 Any of the methods presented above has its own strength and field of application. 

However, it is widely recognized that in many cases, the design of diagnosis systems for 

complex plants calls for a wise combination of various techniques, see for example  [26] 

and  [27]. The use of Finite State Automata (FSA) to describe a complex industrial plant 

under diagnosis has been considered in  [28]- [30], where the fault observer was derived 

using the information provided by the sequence of events registered under working 

conditions. The results of the method in  [28] were in agreement with those provided by 

a standard FMEA, but it has less effort for its developments than FMEA. Fault 

diagnosis using stochastic FSA is introduced in  [31]. A combination of model based 

with signal processing in fault detection of a hybrid system was introduced in  [32].  
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The block diagram of Figure  1-2 shows the classification of fault detection methods. 

A comparison of various diagnostic methods based on the desirable characteristics is 

explained in  [9],  [33], and  [8]. 

Fault detection 
methods 

Model-based Signal-based Knowledge-based 

Quantitative Qualitative 

 

Figure  1-2: Classification of fault detection methods 

1.2.1 Model-based Fault Detection Methods 

In this section, a more detailed description of analytical model-based fault detection and 

isolation is introduced. Increasing usage of explicit models in FDI has a large potential 

due to the following advantages  [34]: 

• Higher FDI performance can be obtained, for example, more types of 

faults can be detected and the detection time is shorter. 

• FDI can be performed over a large operating range. 

• FDI can be performed passively without disturbing the operation of the 

process. 

• Increased possibilities to perform isolation. 

• Disturbances can be compensated, i.e. high diagnosis performance can 

be obtained in spite of presence of disturbances. 

• Reliance on hardware redundancy can be reduced, which means that the 

cost and weight can be reduced. 

The disadvantage of model-based FDI is, quite naturally, the need for a reliable 

model and possibly a more complex design procedure. 

The accuracy of the model is usually the major limiting factor of the performance of 

a model based FDI system. Compared to model-based control, the quality of the model 
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is much more important in FDI. The reason is that the feedback, used in control, tends 

to be forgiving with respect to model errors. Diagnosis should be compared to open-

loop control since no feedback is involved. All model errors propagate through the 

diagnosis performance  [34]. 

Model-based methods are normally performed in two steps: residual generation and 

residual evaluation (decision-making). Residuals are generated by comparing the 

expected behavior of the system with the measured behavior, where the expected 

behavior is obtained from a model of the system. Figure  1-3 shows the basic structure of 

model based fault detection and diagnosis. 

Actual 
input Outputs 

S analytical 
symptoms  

Noise 

Process Actuators 

Process 
Model 

Feature 
generation 

Change 
detection 

Fault 
diagnosis 

Model based 
fault detection 

Features (residuals) 

Faults 

Nominal 
behavior 

Faults 

Measured 
inputs  

Measured 
outputs 

Sensors

Figure  1-3: General scheme of process model-based fault detection and diagnosis  [35]  

The selection of model-based FDI method depends on the type of faults and available 

information of the model. A fault is defined as an unpermitted deviation of at least one 

characteristic property of a variable from acceptable behavior. Therefore, the fault is a 

state that may lead to malfunction or failure of the system. The time dependency of 

faults can be distinguished as abrupt fault (stepwise), incipient fault (drift-like) or 

intermitted fault. With regard to the process models, the faults can be further classified 

as additive or multiplicative faults. Additive faults appear, e.g., as offsets of sensors, 

whereas multiplicative faults are parameter changes within a process  [7],  [13]. 
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The residual generators of model-based FDI are classified into three main categories; 

observer-based approaches, parity space approaches, and parameter estimation 

approaches  [7]- [9],  [35],  [36]. More details about residual generation methods are 

described in Chapter 3. The principle of observer-based approaches is to estimate the 

system variables (state or outputs) with Luenberger observer for the deterministic case 

or a Kalman filter for the stochastic case, and use the estimate errors as residuals. The 

observer based method can be applied if the process parameters are known. Fault 

modeling is performed with additive faults at the input (additive actuator or process 

faults) and at the output (sensor offset faults). The design of  proper observer gain 

design has suggested by various methods, such as Eigenstructure assignment  [37]- [39], 

unknown input observer  [7],   [40],  [41], Kronecker canonical form  [7], fault sensitive 

filter  [43], and frequency domain optimization approach  [44]. Some recent 

developments in the application of Kalman filter in FDI are found in  [45],  [46], and 

 [47]. A bank of observer or kalman filters with distinct properties, which is defined as a 

class of multi-model FDI system, can be used in parallel to isolate faults  [7],  [48],  [13]. 

Recently, a bank of Extended Kalman Filter (EKF) is used to detect and estimate the 

faults based on the Multiple Model Adaptive Estimator (MMAE) is presented in  [49] 

and  [50]. The number and nature of faults to be detected and isolated necessitate 

different structures  [51]- [53]. Methods of nonlinear observer design are addressed in 

 [54], and  [55]. A recent approach to detect and isolate the fault by reconstructing the 

fault value instead of generating the residuals using observer has been discussed in  [56] 

and the references therein.  

In the parity space approaches, using the input-output model of the system, residuals 

are computed as a difference of the measured outputs and estimated outputs and their 

associated derivatives. The parity space approach has been developed in frequency 

domain in  [57] and in time domain in  [58]. The residual then depends only on the 

additive input faults and output faults. It is simpler to design and to implement than 

output observer-based approaches and lead approximately to the same results  [35]. The 

primary residual signals could be reshaped using a transformation matrix to make the 

residual insensitive to unknown disturbances and to increase fault identification ability; 

this process is defined as a structure residual generation. A structure residuals 

generation, based on parity approach in order to obtain good isolation patterns for the 

residuals, is discussed in  [10]. Fault detection in a hybrid system, using structure parity 

residuals, is discussed in  [59],  [60]. A lower order parity vector means a simple online 
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realization but a poorer performance index, while a higher order vector brings a better 

performance index but leads to higher computational load and a higher rate of 

misdetection. Therefore, parity space fault detection based on stationary Wavelet 

Transform (WT) is introduced in  [61]. In that contribution, stationery WT is introduced 

into the residual signal in order to ensure a good performance index of detection, a 

satisfactory low misdetection rate, and a suitable response speed to faults with low order 

parity vector and a simple online implementation form. A comparison between parity 

space approach and a signal base PCA method is discussed in  [62].  

The concept of parameter estimation methods for FDI is that faults typically affect 

the physical coefficient of the process. By continuously estimating the parameters of the 

process model, residuals are computed as the parameters estimation error. To isolate 

faults successfully, the mapping from the model coefficients to the process parameters 

must exist and known. Different methods for parameter estimation in FDI have been 

studied: least squares estimation, output error methods  [63],  [64],  [65],  [66],  [67], 

sliding mode estimation  [68], neural network estimation  [69] and extended Kalman 

filters  [70]. Moving horizon method for detecting and estimating parameter changes is 

described in  [71]. Parameter estimation methods usually need a process input excitation 

and are especially suitable for the detection of the multiplicative faults. A fault detection 

using parameter estimation employing fuzzy clustering to diagnosis the fault is 

addressed in  [64] and  [65].  

Several interesting approaches have been utilized to design and implement FDI 

algorithms scattered in literature, such as, Linear Matrix Inequality (LMI) approach 

 [72], frequency domain approaches  [73], H2/H∞ approach  [74], and geometric approach 

for bilinear system  [75].  

A fault decision is taken, if the residual has changed sufficiently from the nominal 

behavior. Several decision-making methods have been used, such as binary decision and 

statistical decision. 

1.2.2 Fault Diagnosis Methods 

The task of fault diagnosis consists of the determination of the type of fault with as 

many details as possible such as the fault size, location and time of detection. The 

diagnostic procedure is based on the observed analytical and heuristic symptoms and 

the heuristic knowledge of the process, as shown in Figure  1-3. The symptoms may be 
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presented just as binary values [0,1] or as, e.g., fuzzy sets to consider gradual sizes  [35]. 

The analytical symptoms in the model-based fault detection are the residuals. If the 

relationship between the residuals and the faults are completely known due to the design 

of residuals method, then the fault information can be extracted from the residuals 

directly. For instance, unknown input observer  [7] , [40], fault sensitive filter  [43],  [50], 

a bank of observer or kalman filters  [7],  [48],  [50] and a bank of extended Kalman filter  

to detect and estimate the faults  [49],  [50] in case of observer fault detection methods, 

and structure residuals generation based on parity-space approach  [10]. 

The relationship between the symptom and the faults may be unknown or partially 

known. Therefore, classification and inference methods are used for fault diagnosis  [7], 

 [35].  

1.2.2.1 Classification Methods 

Classification or pattern recognition methods can be used, if no further knowledge is 

available for the relationships between features (residuals) and faults. The features are 

determined experimentally for certain faults. The relation between features and faults is 

therefore learned (or trained) experimentally and stored, forming an explicit knowledge 

base. Faults can be concluded by comparing of the observed features with the nominal 

feature. 

The classification methods can be grouped as statistical or geometrical classification 

 [7],  [35]. A further possibility is the use of neural networks because of their ability to 

approximate non-linear relations and to determine flexible decision regions for faults in 

continuous or discrete form  [68],  [18],  [21]. By fuzzy clustering, the use of fuzzy 

separation areas is possible  [64],  [65]. 

1.2.2.2 Inference Methods 

Inference methods can be used if the basic relationships between faults and symptoms 

are at least partially known. This prior knowledge can be represented in causal relations: 

fault→ events → symptoms. The establishment of these causalities follows the FTA, or 

the ETA. To perform a diagnosis, this qualitative knowledge can now be expressed in 

the form of rules: IF <condition> THEN <conclusion>. The condition part contains 

facts in the form of symptoms as inputs, and the conclusion part includes events and 

faults as a logical cause of the facts. If several symptoms indicate an event or fault, the 

facts are associated by AND and OR connections. In this case, the symptoms and events 
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are considered as binary variables, and the condition part of the rules can be calculated 

by Boolean equations for parallel serial connection  [35],  [7]. Because of the continuous 

natural of the faults and symptoms, this procedure has not proved to be successful. For 

this reason, approximate reasoning and fuzzy logic are more appropriate for the 

diagnosis of technical processes, see  [35] and the references therein for more details. 

The use of Transferable Belief Model (TBM) in fault diagnosis and its performance in 

comparison to Boolean and fuzzy logic approaches  are investigated in  [76], and  [77]. 

1.2.3 Robustness in Fault Detection System  

Usually, the parameters of the system vary with time, and the characteristics of the 

disturbances and noises are unknown so that they can not be modeled accurately. Since 

an accurate mathematical model of a physical process is not always available, there is 

often a mismatch between the actual process and its mathematical model, even if no 

fault in the process occurs. This constitutes a source of false alarm, which can corrupt 

the performance of the fault detection and diagnosis system. The effect of modeling 

uncertainties, disturbances, and noise is therefore the most crucial point in the model-

based FDI concept, and the solution to these problems is the key for its practical 

applicability  [78]. 

 To overcome these difficulties, FDI system has to be made robust to such modeling 

errors and disturbances. In the context of automatic control, the term robustness is used 

to describe the insensitivity or invariance of the performance of control systems with 

respect to disturbances, model-plant mismatches or parameter variations. Fault 

diagnosis schemes, on the other hand, must of course also be robust to the mentioned 

disturbances, but, in contrast to automatic control systems, they must not be robust to 

actual faults. On the contrary, while generating robustness to disturbances, the designer 

must maintain or even enhance the sensitivity of fault diagnosis schemes to faults. The 

robustness as well as the sensitivity properties must moreover be independent of the 

particular fault and disturbance mode  [7],  [13]. 

An FDI system, which is designed to provide both sensitivity to faults and robustness 

to modeling errors and disturbances, is called a robust FDI scheme  [42]. During the last 

decades, much FDI research has focused on robust fault diagnosis of uncertain systems. 

Adaptive threshold can be used to increase the robustness to modeling uncertainties 

 [79]. Surveys of adaptive threshold technique are provided in  [37]. One of the most 
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successful robust FDI approaches is the use of disturbance decoupling principle. This 

can be done by using unknown input observers  [7],  [40],  [13]. Nevertheless, in some 

cases such as unstructured uncertainties or structured uncertainties, which does not enter 

the system as an additive disturbance, perfect decoupling is not possible  [80]. An 

adaptive observer technique for robust FDI with independent effects on the system 

outputs is introduced in  [81]. A game-theoretic approach for robust FDI system is 

introduced in  [82] and  [83]. An integrated design approach of FDI in time-frequency 

based on WT is introduced in  [84]. A robust FDI relies on H∞ filters is suggested in 

 [73],  [85]. Recently, FDI for an imprecise model of a system is performed by 

partitioning the uncertainty space of the imprecise model into smaller subspace models 

 [86]. When new measurements become available, inconsistent subspace models are 

refuted resulting in a smaller uncertainty space. When all subspace models are refuted, 

then a fault has been detected. Robust FDI for nonlinear system is discussed in different 

works, see for example  [87] and  [88]. Robust FDI problem is defined in details in 

Chapter 3. 

1.3 Fault Tolerant Control System and Performance Recovery 

The reliability of systems can be increased by insuring that faults will not occur, 

however, this objective is unrealistic and often unattainable because faults may arise not 

only due to component aging and wear, but also as human errors in connection with 

installation and maintenance. In addition, there are some faults that arise due to 

uncontrollable external effects and sources such as surges, accidences, etc. Therefore, it 

is necessary to design control systems that are able to tolerate possible faults in systems 

to improve reliability and availability. This type of control system is often known as 

Fault Tolerant Control (FTC) systems, which can be classified into two categories: 

Active Fault Tolerant Control (AFTC) and Passive Fault Tolerant Control (PFTC)  [89]. 

1.3.1 Definition of Fault Tolerant Control System 

An FTC system is a control system that can accommodate system component faults and 

is able to maintain stability and acceptable degree of performance when not only the 

system is fault-free, but also when there are component malfunctions. FTC system 

prevents faults in a subsystem from developing into failure at the system level  [89]. 
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An FTC system may be called upon to improve system reliability, maintainability, 

and survivability  [90],  [91],  [2]. The objectives of an FTC system may be different for 

different applications. An FTC system is said to improve reliability if it allows normal 

completion of tasks, even after component faults. FTC system could improve 

maintainability by increasing the time between maintenance actions and allowing the 

use of simpler repair procedures  [89]. 

Although FTC is a recent research topic in control theory, the idea of controlling a 

system that deviates from its nominal operating conditions has been investigated by 

many researchers. The methods for dealing with this problem usually stem from linear 

quadratic, adaptive, or robust control  [92].  The problems to be considered in FTC are 

quite particular; first, the number of possible faults and consequently action; second, the 

correct isolation of the faulty components; finally, the accommodation of the system 

after fault to recover the system to the nominal behavior. 

1.3.2 Types of Fault Tolerant Control Systems 

The design techniques for FTC system can be classified into two approaches: PFTC 

system and AFTC system  [93],  [2]. A particular approach, to be employed, depends on 

the ability to determine the faults that a system may undergo at the design phase, the 

behavior of fault-induced changes, and the type of redundancy being utilized in the 

system. Figure  1-4 shows classification of FTC system approaches. 

1.3.2.1      Passive Fault Tolerant Control System 

In this approach, a system may tolerate only a limited number of faults, which are 

assumed to be known prior to the design of the controller. Once the controller is 

designed, it can compensate for the anticipated faults without any access of on-line fault 

information. PFTC system treats the faults as if they were sources of modeling 

uncertainty  [93].  

PFTC system has a very limited fault tolerance capability. When running on-line, a 

passive controller is robust only to the presumed faults. Therefore, it is quite risky to 

rely on PFTC system alone  [93]. When redundant hardware components are available, 

methods of PFTC are also called reliable control methods  [94]- [96]. In general, PFTC 

system has the following characteristics  [89]: 

• Robust for anticipated faults. 
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• Utilize hardware redundancy (multiple actuators and sensors, etc.). 

• More conservative. 

Adaptive controller seems to be the most natural approach to accommodate faults; 

the faults effects appear as model parameter changes, and they are identified online, and 

the control law is reconfigured automatically based on new parameters  [97], [98]. 

Robust control methods are used to compensate the effect of the fault in FTC system by 

assuming the faults as model uncertainties  [99],  [100]. 

Designing an output feedback controller as a fault tolerant compensator to stabilize 

the system, not only during its nominal operating but also in the case of sensors or 

actuators would fail, have been discussed in  [101]. In which, it is concluded that, such 

compensator always exists, provided that the system is detectable from each output and 

stablizable from each input.  

Fault Tolerant control systems

Passive (PFTC) Active (AFTC) 

On-line 
Controller selection

On-line 
Controller redesign 

 

Figure  1-4: Classification of fault tolerant control systems  [89] 

 

1.3.2.2 Active Fault Tolerant Control System 

In most conventional control systems, controllers are designed for fault-free systems 

without considering the possibility of fault occurrence. In other case, the system to be 

controlled may have a limited physical redundancy and it is not possible to increase or 

change the hardware configuration due to cost or physical restrictions. In these cases, an 

AFTC system could be designed using the available resources, and employing both 

physical and analytical system redundancy to accommodate unanticipated faults. Figure 

 1-5 shows a general schematic diagram of an AFTC system. 
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An AFTC system compensates for the effects of faults either by selecting a pre-

computed control law, or by synthesizing a new control law on-line in real-time. Both 

approaches need a FDI algorithm to identify the fault-induced changes and to 

reconfigure the control law on-line  [89]. 

An AFTC system involves significant amount of on-line fault detection, real-time 

decision making, and controller reconfiguration. It accepts a graceful degradation in 

overall system performance in the case of faults  [2],  [102]- [103]. Generally, AFTC 

system has the following characteristics  [89]: 

• Employs analytical redundancy in addition to the available hardware 

redundancy. 

• Utilizes FDI algorithm and reconfigurable controller. 

• Accepts degraded performance in the presence of a fault. 

• Reduces conservationist. 

AFTC system is a complex interdisciplinary field that covers a wide range of 

research areas, such as stochastic systems, applied statistics, risk analysis, reliability, 

signal processing, control and dynamic modeling  [89]. 

Despite reducing hardware redundancy by using AFTC, the hardware redundancy is 

mandatory in some of catastrophic failures, which can not be accommodated using only 

analytical redundancy. 
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Figure  1-5: Schematic diagram for AFTC system 
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1.3.3 Control System Reconfiguration 

In AFTC system, controller reconfiguration is necessary to compensate for the effects of 

the failed components. Reconfiguration mechanisms can be classified as on-line 

controller selection and on-line controller calculation methods  [89]. In the first 

approach, controllers associated with presumed fault conditions are computed a priori in 

the design phase and selected on-line based on the real-time information from FDI 

algorithm. In the second approach, controllers are synthesized on-line and in real-time 

after the occurrence of faults  [104]. 

Control law re-scheduling, multiple models and interacting multiple models 

approaches are examples of the on-line selection approach,  [105]- [107],  [108],  [50]. 

This approach is highly dependent on prompt and correct operation of the FDI 

algorithm. Any false, missed, or error in detection may lead to degraded performance or 

even to a complete loss of stability of the closed-loop system. Therefore, methods have 

been proposed to deal with FDI robustness and to design a stability guaranteed AFTC 

system, see for example  [109],  [104], and  [89]. 

The pseudo-Inverse method (PIM) is one of the on-line controller design methods. 

The principle of PIM is to re-compute the controller gain matrix such that the 

reconfigured system approximates the nominal system in some sense. A severe 

drawback of this method is that the stability of the reconfigured system is not 

guaranteed  [110]. To overcome this stability problem, a modified PIM method was 

proposed, in which the difference between the closed-loop matrices is minimized 

subject to the stability constraints  [111]. 

An Eigenstructure Assignment (EA) based algorithm was proposed in  [112]. In this 

approach, the post-fault eigenvectors are assigned in an optimal way such that 

performance recovery of the original system is maximized. Extension to integrated FDI 

and reconfiguration control design using EA algorithm has been developed in  [108], 

 [109], and  [113].  

In  [114] an FTC system is designed based on the on-line estimation of an eventual 

fault and the addition of new control law to the nominal control law, in order to reduce 

the fault effect once the fault is detected and isolated. The new control law is designed 

where the closed loop system stability is achieved. 

Another on-line reconfiguration method is the model-following approach. In this 

approach, controller gains are calculated on-line either by enforcing system trajectories 
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to follow the desired trajectories (explicit model following  [115]), or by minimizing a 

quadratic cost function of the actual and the modeled states (implicit model following 

 [116]). Model Predictive Control (MPC) has been employed in FTC  [117]- [119], where 

an adjustable objective function was optimized based on a simple linear model. Fault 

tolerant control with re-configuring sliding-mode schemes is discussed in  [120]. 

Feedback controller design for FTC based on Youla parameterization is suggested in 

 [121] and  [122]. 

Control allocation, which manages the distribution of the control law requirements 

among multiple actuators in some optimal manner in case of actuator fault, for 

reconfiguration of the controller in particular for flight control application is addressed 

using constrained linear and quadratic programming in  [124],  [123], and  [50]  

Stabilizing of AFTC systems with imperfect fault detection and diagnosis is recently 

addressed in  [104],  [89], in which an algorithm that provides a necessary and sufficient 

condition for exponential stabilization is derived. 

AFTC system design schemes with explicit consideration of graceful performance 

degradation using explicit model-following approach have been proposed in  [102]. 

Recently, an Iterative Learning Observer (ILO) to estimate the state is used to 

reconfigure the controller in order to compensate the effect of stuck actuator  [125].  

Feedback linearization is an established on-line reconfiguration technique applied to 

non-linear system  [126]- [127]. Here, an adaptive based on-line controller is modified 

on-line by the output of parameter estimation algorithm. AFTC has been developed in 

 [128] based on adaptive tracking design that uses neural networks to approximate the 

unknown fault function for a class of nonlinear system. Recently, an FTC is investigated 

using an auto-tuning PID controller for nonlinear systems in  [129], in which AFTC 

scheme composing an auto-tuning PID controller based on an adaptive neural network 

model is proposed. The model is trained on-line using the Extended Kalman Filter 

(EKF) algorithm.  

To overcome difficulties in existing on-line methods, and to integrate the FDI 

scheme and on-line reconfiguration control law in a coherent manner without any pre-

assumption of the knowledge of the post-fault system, several integrate design 

approaches have been proposed  [108],  [113]. An on-line reconfiguration method that 

does not require the use of FDI algorithms is the hybrid adaptive linear quadratic 

control proposed in  [130]. Even though this design method does not need explicit fault 

information, it has an on-line accommodation capability. Another on-line 
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reconfiguration based on a model reference control with stabilized recursive least-

square algorithm for adaptation is introduced in  [131],  [91] without explicit FDI. 

Recently, designing an FTC unit able to automatically offset the effect of faults, 

without the need of an explicit FDI process and consequent explicit reconfiguration is 

discussed in  [132]. In  [133], stable indirect and direct adaptive controllers are applied to 

achieve fault tolerant engine control by using Takagi-Sugeno fuzzy systems to “learn” 

the unknown dynamics caused by faults, and to accommodate faults by updating the 

controller.  

1.4 Problem Statement and Main Contribution  

The problem of FDI has drawn increasing attention in a lot of work in the last decades. 

The disturbance and model uncertainties are the main source of error in the performance 

of FDI subsystem. For that reason, an FDI system must be insensitive to the model 

uncertainty and system disturbances with respect to generated features (residuals) and 

highly sensitive to faults, i.e. robust FDI system. Moreover, the controller should have 

the capabilities, after fault occurrence, to recover performance close to the nominal 

desired performance. In addition, it should have the ability to make the system well-

behaved in a stable monotonic way during a transient period between the fault 

occurrence and the performance recovery, which is an important feature to increase 

system dependability.  

1.4.1 Problem Statement 

The problem of FDI design and performance recovery can be defined as: 

For a system model given in the form of  

⎩
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where x∈ℜn is the state vector of the system model, u∈ℜm is the input vector, y∈ℜp is 

the output vector, f ∈ ℜl is the unknown additive fault signal vector, d is the unknown 

disturbance, ν is the system noise, ∆ is the time derivative operator in continuous 

system and shift operator in discreet one, g: ℜn×ℜm×ℜl→ℜn, h: ℜn×ℜm×ℜl→ℜp, θ∈Θ 

system parameters and Θ the set of system parameters in faulty and fault-free cases.  
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It is required to first, develop a robust FDI method that can be used for early 

detection and isolation of faults; second, design a fault-tolerant control system such that 

the impact of the fault is minimized, and the system dependability (safety, reliability, 

availability) is increased.  

1.4.2 Main Contributions 

A new performance index for the control system design, which is called “Dynamic Safety 

Margin” (DSM), is introduced in  [134]. This index measures how far the system state 

trajectory is from a predefined safety boundary in the state space at any instance and 

answers the following questions: Does the system operate in a safe mode all the time even 

during the transient phase? If so, how far is the current state from a predefined safety 

boundary? Hence, the DSM value can be taken as a measure for the quality of the controller 

in this respect.  As a result, the main contributions in this thesis concentrate on the DSM 

concept and its applications.    

1.4.2.1 DSM in Contrast to State Constraints 

In fault-free situation, the system state remains inside a closed region during the time of 

operation. This region is defined as a safe operation region.  The instantaneous variation 

of the system state with respect to the safe operation region boundary is indicated by 

DSM. Therefore, the concept and the computation methods of DSM are discussed in 

 [134] and  [136]. An important question might come in mind; what is the difference 

between safe region boundary and individual state limits (constraints)? Operating the 

system within state limits does not always mean that the system is fault-free. It is 

necessary to distinguish between safety boundary, which is used to calculate DSM, and 

individual state limits. Therefore, the relation between DSM and state constraints are 

investigated in Chapter 2 and  [136]. 

1.4.2.2 Relation to Dependability 

The DSM index indicates the system mode of operation, whether it is safe or not. More-

over, its value explains how far the system state is away from the safe mode. Therefore, in 

addition to using DSM as a quality measure to compare between different controllers per-

formance, it can be used as a measure of dependability. Since the dependability analysis 

depends mainly on statistical models, it cannot reflect the system dynamics. On the 

other side, the DSM reflects the system dynamics. This is one of the main advantages of 
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using DSM as a dependability measure. Implementing DSM in different types of con-

troller design is also discussed in  [134]. It is concluded that controller design based on 

DSM permits to maintain a predefined margin of safety during transient and steady state 

of safety-critical systems. Since the system failure occurs mostly during the transient 

phase, designing a controller based on DSM to maintain a predefined margin of safety 

during transient period is a formidable task. Moreover, it can help speeding up perform-

ance recovery in some faults, which increases the system dependability  [134]- [135].  

1.4.2.3 Applications of DSM in Fault-Detection and Performance Recovery 

A robust FDI method, based on the analysis of DSM instead of traditional residuals, is 

introduced in  [135],  [140], and  [141]. One of advantages of dealing with DSM in FDI is 

that DSM value can be considered as a reduction of data, i.e. measured state variables or 

subset of them are transformed or projected to a single quantity (DSM).  

Considering DSM in controller design is discussed in more details in  [139]. In which, 

two controllers, PID and MPC, design and adapting based on DSM is addressed. DSM 

is taken as a performance index to adapt the PID controller parameters. Due to the 

advantage of MPC to deal with system constraints (state and input), DSM is considered 

as constraint in MPC design. The solution of MPC based on DSM is deduced. 

Moreover, the feasibility problem of MPC based on DSM is addressed. 

An FTC scheme based on DSM is proposed in  [138] and  [139], in order to recover 

the system performance during the faulty period. The suggested FTC based on DSM is 

suitable to be applied in either AFTC or PFTC, according to the available fault 

information. 

1.4.2.4 Practical Implementations and Experiments 

The fruitfulness of DSM design and its applications in controller design, robust FDI, 

and FTC are demonstrated through several real-time experiments in Chapter 5. The 

experimental setup uses standard industrial components, which introduce more realism 

and robustness into the experiments. 

1.5  Outline of the Thesis 

The summaries of the different chapters, given below, indicate the scope of the thesis. 

The thesis consists of six chapters and the main contributions are in Chapter 2, 3, and 4. 
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The chapters are devoted to a dynamic safety margin definition and application, robust 

FDI system, and FTC. They are organized as follow: 

Chapter 2 defines the DSM index, and explains the difference between state 

constraints and DSM. DSM computation methods are discussed as well. Moreover, the 

different applications of DSM especially in controller design and adaptation is 

highlighted. Using DSM in first, switching between pre-designed controllers; second, 

optimal control design as soft constraint; finally, adapting PID controller are tested in 

illustrating examples, in order to maintain a predefined margin of safety during transient 

period, steady state period, and in case of disturbance or fault.  

 Chapter 3 demonstrates the problem of robust FDI system. A robust FDI scheme 

based on DSM is introduced. The advantage of using DSM in robust FDI, based on 

multi-model fault isolation scheme, is also discussed. An illustration example is 

introduced to show the applicability of the proposed FDI scheme.  

Chapter 4 discusses the application of DSM in controller design and adaptation, 

especially PID controller for SISO systems and MPC in case of MIMO systems. The 

method of adapting PID controller parameters based on DSM is deduced and tested on 

an illustration example. The solution of MPC based on DSM is discussed, and the 

adapting algorithm in order to find a feasible is introduced as well. Moreover, a general 

framework for FTC system based on DSM is introduced. 

Chapter 5 illustrates the practical application of DSM in controller design (PID and 

MPC), FDI, and FTC for an experimental setup. Different types of controller design 

based on DSM are tested. Different types of faults such as actuator, sensor and internal 

faults are tested to indicate the applicability of the proposed FDI scheme. The proposed 

FTC scheme is tested for actuator fault considering AFTC and PFTC design. The 

practical results demonstrate the usefulness of DSM and its application. 

Chapter 6 concludes the work in this thesis, in addition to some suggestions for 

possible future work as an extension of this work. It illustrates the reason and benefits 

of using DSM in control system in particular, FDI and FTC system design in order to 

enhance the overall system dependability. It is usual to find restriction conditions and 

disadvantages for applying a new approach. For that reason, the restrictions of the 

proposed approaches are discussed. Finally, open topics related to the analysis and 

application of DSM are highlighted. 
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CHAPTER 2 

2 DYNAMIC SAFETY MARGIN DEFINITION AND 

PRINCIPLES 

2.1  Introduction 

The main goal of control system design is to achieve a desired performance of the 

controlled system, which can be specified e.g. according to the stability, rise and settling 

times or a general norm of the controlled variable. The evaluation of the control system 

depends mainly on a comparison between the desired performance and the actual 

performance. The selection of a controller also depends on the available information 

(quantitative or qualitative) about the controlled system. A quantitative controller is 

based on the accurate model of the system (model-based), while the qualitative 

controller depends on the information of the system behavior (knowledge-based) in case 

that a system model is not available or it is difficult to obtain  [142].  

Physical constraints exist in many control problems in industry. These constraints 

can be on inputs, due to actuator limitation, as well as on outputs and some intermediate 

variables, and can be due to safety limitations, product quality requirements, and 

efficiency consideration. For example, pressure in a chemical reactor must not be higher 

than some limits; movements of a robot arm may have been restricted in a certain region 

of space, and so on. Therefore, the system variables should satisfy the system 

constraints in order to maintain safe operation. 

In this chapter, a new performance index for the control system design is proposed, 

which is called “Dynamic Safety Margin” (DSM)  [134]. This index can also be 

considered as an additional term in a more general cost functional. This index measures 

the instantnous distance between the state trajectory and the boundry of a predefined 

safe operation region in state space. The sign of this index is used to indicate wether the 

sytem operates in the safe mode or not even if durng the transient phase. As a result, it 

measures how far the current state is from the predefined safety boundary. Hence, 

determining DSM can be taken as a measure for the quality of the controller in this 

respect.  
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Designing a controller based on DSM is important to maintain a predefined margin 

of safety during transient and disturbance actions. Moreover, it can help speeding up 

performance recovery in some cases of system faults. Here are some of DSM 

applications that will be discussed in this chapter. 

2.2 Dynamic Safety Margin  

Briefly to explain the idea, let X be the state space in ℜn and consider that a subspace 

Φ⊆X, which defines the safe operation region for some crucial state variables x∈ℜm in 

the state subspace Φ and m≤ n, can be specified by an inequality “φ(x) ≤ 0” while     

φ(x) >0 indicates unsafe operation (Figure  2-1)1, where φ:ℜm →ℜ. It will be further 

assumed that the system is stable -in the sense of Lyapunov- with the safe region fully 

contained in the stability region. Starting with the initial condition xo, the system 

trajectory will evolve to the operating point xs traversing the state space with varying 

distance to the safety boundary. DSM, in this case, is defined as the shortest distance, 

δ(t), between the system state of interest and a predefined boundary φ(x)=0 in this 

subspace of the state variables. At the operating point dδ(t)/dt=0 and δ(.) reaches a 

constant value, δss, indicating the Stationary Safety Margin (SSM). Most industrial 

designs are made to satisfy SSM of specified values. Figure  2-2 shows the idea of DSM 

for a system described by two state variable x1 and x2.  

 

Figure  2-1: DSM definition 

                                                 
1 Figure  2-1 explains the idea of DSM for a system described by two state variable x1 and x2. Safe 
operation means that there is no fault or large disturbance. 

Safety boundary 
φ(.)=0

x1 

x2 

Unsafe operation region 
φ(.)>0 

δ(t) 

Safe 
operation region 

φ(.)≤0 

δss 
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Most of the time the variables are dependent on one another and none of them 

adequately defines the system safety by itself. Thus, it is necessary to distinguish 

between safety boundary and individual state limits. Sometimes, some of the safety 

boundaries are defined by the state limits. Figure  2-2 shows the difference between 

variable limits and safety boundary. It is clear from the figure that all state variables 

within thier amplitude limits, but some state vectors, for instance xo, do not satisfy 

safety boundary constraints.  

 

Figure  2-2: DSM and state limits 

The boundary of the safe region is determined according to the available experience 

about the process operation and safety limitation. The system should remain during time 

of operation inside this region, which implies that the controller should make the 

nominal system remains in this region despite the existence of disturbance and 

uncertainties of the model used in the controller design. DSM is called dynamic, 

because the magnitude of DSM varies with time as the system trajectory evolves in the 

state space. 

In general, the safe-operation region Φ⊆X is defined by a set of inequalities 

{ }qii ,...,10)( =≤=Φ xφ , (2.1) 

in addition, the subspace { } Φ⊂=== qii ,...,1;0)(vvV φ , v∈ℜm, determines the 

boundary state of  Φ. Therefore, DSM is given by 

min)()( xv −⋅= tstδ  (2.2) 

x
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where
⎩
⎨
⎧
−

=
regionoperation  safe  the  if1

regionoperation  safe  the  if1
)(

outsidex
insidex

ts   

φ  to)( from distanceshortest ˆmin tx=⋅ , q is the number of defined inequalities and m is 

the number of state variables relevant to safety. 

2.2.1 DSM Computation 

The boundary constraints of the safe region can be defined by a set of either piece-wise 

linear or nonlinear functions. Therefore, the distance between the state vector and the 

safety boundaries, in general, can be defined as the solution of the optimization problem  
2
2)(min vx

v
−  (2.3) 

subject to  

{ }qii ,...,1;0)( ==∈ vvv φ   (2.4) 

where x is the current state, and (x-v) is the distance vector between x and v. 

The solution of the optimization problem is the state vector vo. where  

⎟
⎠
⎞⎜

⎝
⎛ −= 2

2)(minarg vxv
vo  

 Therefore, the minimum distance between x and safety boundaries ({φi=0}) is given by 

2)( ovx −=δ  (2.5) 

2.2.1.1 DSM computation for safety region defined by linear boundaries  

In many cases, the safe operation region can be defined by a set of linear 

inequalities{ }0=iφ . Furthermore, if the boundary function φi is nonlinear, it can be 

subdivided into two or more linear constraints (piecewise linear approximation).  

The distance between a linear safety boundary equation and a certain state vector x in 

state space can be computed in different ways, for example linear algebra, vector 

algebra, etc., besides the optimization method described before. Linear algebra is more 

general and easier than an optimization method to obtain the solution. Therefore, the 

solution using linear algebra is deduced in this section. The vector algebra solution and 

the optimization method are proved in Appendix A as well, to insure the results.  
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Let the number of state variables of interest be all state variables (m=n) in order to 

generalize the algorithm.  If the safe region is defined by q linear inequalities in the 

form of 

( ) 0T ≤−= iij cvaxφ ;  i=1,2,…,q  (2.6) 

then the boundary equations can be written in the form of  

( ) 0T =−= iiji cvavφ  (2.7) 

where ai∈ℜn  is a constant vector and vi ∈Vi ={vi| ai
T . xi = ci }⊂ ℜn. Therefore, for any 

state vector x, the following equation is valid 

( ) xaxva .c iiij
TT −=−  (2.8) 

By taking the absolute value of both side of (2.8), it follows 

( ) xaxva .c iiii
TT −=−  (2.9) 

According to Cauchy-Schwarz inequality theorem  [143] 

  

( ) ( ) 22
T xvaxva −≤− iiii  (2.10) 

then  

( )
2

2

T

i

.ic i
i a

xa
xv

−
≥−  

where ( ) 2xv −i  is the distance between x and any state vector vi ∈Vi. Therefore, the 

minimum distance, the distance between x and the projection of x on φi(.), will be  

( )
2

2

T

i

.i
)(

i
i

i
i

c
min a

xa
xv

x

−
=−=δ  (2.11) 

Hence, in general if x (t) is the system state vector at time t then 

⎩
⎨
⎧
<
≥

>

<−
=

0)(i

0)( 

2
)(  ff0

iff0T

x
x

a
xa

i

i
i

)t(.i
i

ic
t φ

φ
δ  (2.12) 

The result of (2.12) is the same result which is obtained in Appendix A.      

The distance vector for all boundaries d(t)=[δ1(t) ,δ2(t),…, δq(t)]T can be calculated 

from  
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where d(.)∈ℜq, cc∈ℜq ,dc ∈ ℜq, Da ∈ ℜq×n and Dia ∈ ℜq×q 
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Definition 2.1: If Φ is convex and the boundary constrains are linear, then the safe 

region is a polytope  [144],  [145].  

Theorem 2.1: If Φ is a polytope, there are three possibilities of the component values of 

d , δi, according to the current state position with respect to the safety boundaries:  

1. All positive, i.e. x ∈ Φ . Then δ(.), DSM, is the minimum element in d(.) i.e.  

 )t()t( iqi
δδ

≤≤
=

1
min   (2.14) 

2. Only one negative i.e. x ∉ Φ and only one constraint of the safe boundary is 

violated. Then, δ(.) is negative and can be calculated from (2.14), which is 

equal to the component of d corresponding to the violated constraint. 

3. Two or more are negative, i.e. more that one constraint is violated. In this case, 

the minimum distance, from the state vector to the intersection of violated 

constraints (vertex of polytope between the violated constraints), should be 

compared with d, i.e.   

{ }

2
min

minmin

xv −=

=
≠

ljlj

jllj

ji
j,l

),,()t(

δ

δδδδ

 (2.15) 

where (l,j)∈{index of violated constraints}, δl and δj are the distances to violated 

constraints number l and j respectively, δlj is the distance to the intersection of the 
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violated constraints l and j, vlj ∈Vij={xlj⎜φi(xlj)=0 ∨ φj(xlj)=0 }is the intersection between 

the two boundaries l and j (vertex). 

Proof: Figure  2-3 describes the different possible situations of the state vector x with 

respect to the convex safe region. 

In Figure  2-3, δu1 and δu2 are the minimum distances from the violated constraints 

φ1(.) and φ2(.) respectively. 

Note that, 1ua δδ ≥ and 2ua δδ ≥ where δa is the actual minimum distance to the 

safe region (DSM), which is the distance between the current state and the vertex 

between φ1(.) and φ2(.) (v12).  

 

Figure  2-3: The relation between DSM and the minimum distance to the boundaries 

For simplicity, (2.14) can also be used to calculate DSM if more than one constraint 

is violated, which gives an approximate solution. In case of Figure  2-3, assume 

that 12 uu δδ ≥ , then the DSM value, calculated using (2.14), is 2uδ  that is the closest 

one to the actual value aδ .  

Example 2.1  

The state space model of a separately exited DC motor (Figure  2-4) is given by 
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where [ ] [ ]TT
lIa Tv,I == ux ω , ω is the motor speed (angular velocity), Ia is the 

armature current, f is the friction coefficient of the motor, J is the moment of inertia, kt 

is the torque constant of the motor, L is the motor armature inductance, R is the motor 

armature resistance, vI is the input voltage and Tl is uncontrollable input which represent 

the load torque 

At steady state the relation between armature current and motor speed will be 

Ia =(ω f+Tl)/kt  

Taking into consideration that: 

1. The safety variables are all the state variables (speed and current); 

2.  For simplicity, all motor parameters (R, L, f, kt, and J) are unity; 

3. The maximum speed is 3 rad/s and armature current 3 A; 

4. The load torque varies from 0 to 0.5 Nm. 

In other words, Φ (the safe operation region) is given by: 

( )
( )

40
40

050
050

≤≤
≤≤

≤+−
≤+−

ω

ω
ω

a

ta

ta

I
k.fI
k.fI

 (2.17) 

This region is depicted in Figure  2-5. In this example, Φ is defined in the first quadrant 

only for simplicity.  

 

Figure  2-4: Separately excited DC motor  
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Figure  2-5: Safe region of the DC motor in Example 2.1 

The open loop response of this motor and DSM variations for a step input of 4v are 

shown in Figure  2-6. Note that d1, d2, d3, and d4 are the minimum distances between 

the motor trajectory and the safe region boundaries (b1, b2, b3, and b4). It is clear that 

DSM at a time t is the minimum value of {d1,…,d4}.  
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Figure  2-6: Open loop response of the DC motor 

To maintain the system state within a predefined margin of safety, the value of DSM 

must be considered in controller design. Implementing DSM in a controller can be 

achieved by various methods.  
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The safe region Φ can be considered, as a controlled invariant set  [144],  [145] if 

there is a controller, which assures that DSM is positive for the closed loop system. 

Definition 2.2: The set Φ ⊂ℜn is said (robustly) controlled invariant for the system 

))(()(
)),(),(),(()(

tgt
tttft

xy
wuxx

=
=∆

 

If for all x(0)∈ Φ there is a continuous feedback control law  

))(()( tt yu ψ=  or ))(()( tt xu ψ=  

which assures the existence and uniqueness of the solution, x(t) ∈ Φ, and then Φ is 

positively invariant for the closed loop system. 

where x(t)∈ ℜn is the system state, u(t)∈ ℜm is the control input, y(t) ∈ ℜp is the output, 

w(t) )∈ W⊂ ℜq is the external input (disturbance), W is assigned compact set, and ∆ is 

the derivative operator in continuous time and shift operator in discrete time case.  

Hence, the invariance condition can be defined as 

0inf),dist( =−=Φ
Φ∈

i
i

xxx
x

 

 this means that DSM ≥ 0. 

It is not possible in all cases to find a linear controller to a controlled invariant 

polytope  [144],  [146], it is often necessary to consider non-linear control laws see for 

example  [146]- [149]. In the following section DSM applications and some ideas about 

designing controller based on DSM are discussed  

2.3 DSM Applications  

DSM can be used in different applications, for example:  

1.  Controller design: DSM is an indication to system safety. Hence, controller 

design based on DSM is important for a safety-critical system to maintain a 

predefined margin of safety during transient and in the presence of large 

disturbance or system uncertainties. 

2. Controller evaluation and performance analysis: DSM can be used as 

additional performance index to evaluate the controller behaviour and safety 

performance of the system. Hence, it can be used as a quality measure for the 

control system.  
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3. Fault diagnosis and prognosis: According to the definition of safe region and 

DSM, the analysis of DSM can help in fault diagnosis and prognosis. 

4. Fault tolerant control and performance recovery: DSM index can also be used 

in designing FTC system, in order to compensate the uncertainties in fault 

information. 

 Using DSM in fault diagnosis and fault tolerant control will be addressed in Chapter 

3 and Chapter 4 respectively. In the following, applying DSM to improve the system 

performance during transient and in steady state, in the presence of a disturbance or 

occurerance of “faults” without prior fault information, is explained.   

The benefits of employing DSM will be clear in the response of the DC motor 

(Example 2.1). The block diagram of the motor with PID controller, employing 

analogical gates  [151] for anti-reset wind-up, is shown in Figure  2-7. The input voltage 

to the motor is limited to ±5 v. The strategy for anti-rest wind-up is as follows: 

• In linear control range, neither the magnitude nor the sign of the 

integral-gain (KI) is changed. 

• When commend-saturation occurs, the magnitude of the KI gain is 

reduced first. 

• As the difference between the saturated (u) and the unsaturated 

command (uo) further increases, the sign of KI is made negative together 

with further decrease of the magnitude. 

The strategy of employing analogical gates for anti-reset wind-up is implemented 

using a single analogical-gate, namely the XOR-gate (see Appendix B and  [151] for 

details) as follows: 

( )( ) ( )[ ]oooioi uuuuuKK ⊕−=  (2.18) 

where KI and KIo are the current and the initial integral-gain respectively. The 

unsaturated and saturated control commands are uo and u respectively. 

Figure  2-8 shows the motor speed response and DSM variation for step reference 

speed of 2 rad/s and load torque 0.2 N.m, using PID controller with tuned parameter 

Kp=4, KI=2 and Kd=2. Note that, the response (transient and steady state) of the motor 

speed is satisfactory, but the motor state trajectory traverses in the transient period 

outside the safe operation region (DSM negative). In order to improve the DSM during 

the transient period, a controller must be redesigned, or the PID controller parameter 
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must be retuned. The method of tuning PID controller parameter based on DSM is 

discussed in the Chapter 4. 

 

Figure  2-7: PID-controller with saturation employing analogical-gates for anti-reset 

wind-up 
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Figure  2-8: DC Motor response and DSM variation using fixed parameter PID-

controller  

2.3.1 Effect of DSM Design during Transients and in the Presence of 

Disturbances  

Consider that the motor was suddenly exposed to a load torque disturbance from 0.2 to 

0.5 Nm after 10s from the motor start. Three controllers including DSM action are 

tested in this section. 
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2.3.1.1 Multi-Controllers with Supervisor 

DSM can be used as a control signal to switch between two different controllers. The 

first one operates when DSM is positive (normal operation) and the other when DSM is 

negative (unsafe operation). The first controller is designed to satisfy the nominal 

performance, while the priority for designing the second controller is to improve DSM 

rather than the desired output performance. 

 Figure  2-9 shows the block diagram of DC motor with two PID controllers (with 

different parameters) and a supervisory controller to switch between them. If DSM is 

positive, then the switch moves toward PID1 and the input to the controller is the error. 

Otherwise, it moves to PID2 as shown in the supervisor automata in Figure  2-9b. The 

input to the second controller (PID2) is the DSM.  

Note that if δ(.)<0, then DSM is the distance between the current state and one of the 

violated constraints according to the approximate solution (2.14) of Theorem 2.1, 

therefore   
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where ci and ai=[ai1 ai2]T are the parameters of the violated constraint number i and 

11 /)(()( iaiir akIack −=ω   

DSM in (2.19) represents the error of the output speed with respect to a new 

reference )(krω , which changes according to the current state and the violated constraint 

used in (2.19), in order that the state trajectory traverses toward the safe region. 

Therefore, the input to the second PID controller is DSM instead of the error between 

the output and nominal reference. 

Figure  2-10 shows the DC motor response using switching controller. Note that 

DSM is improved in the transient period, and the disturbance effect is decreased but the 

state trajectory is not smooth, and it eventually leaves the safe area. Hence, the state 

trajectory can be smoothed either by readjusting the two different PID controllers or by 

changing the switching criteria. Adjusting the two controllers gives a smooth response 

as shown in Figure  2-11. However, the response is slower than that in Figure  2-10.   
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b) Supervisor automata 
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Figure  2-9: Block diagram of DC motor with two controllers and supervisor 
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Figure  2-10: DC motor response and DSM using switching controller with  

 

PID1: KP=4; KI=1; KD=1.1 
PID2: KP=2; KI=2; KD=2.0 
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Figure  2-11: DC motor response and DSM using switching controller with 

 

2.3.1.2 Optimal Control 

Optimal control can be used to improve system performance and DSM. In this case, the 

control problem can be solved as a Linear Quadratic Tracking problem (LQT)  [152] to 

find the state feedback gains. The DSM can be added to LQT as inequality constraints 

in state and the performance index is  
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The optimal control problem with inequality constraints is an infinite horizon 

optimization problem with infinite number of constraints. The solution of this type of 

PID1: KP=1; KI=1; KD=1.1 
PID2: KP=2; KI=2; KD=2.0 
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problem is so difficult therefore MPC is preferred in this case (see Chapter 4). If Φ is 

convex and the safety boundaries are linear, then DSM constraints can be added as 

additional term in the main objective function, i.e. DSM constraints are considered as 

soft constraints to simplify the solution.  

The new objective function will be, in this case  
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Here δi(k) is the minimum distance to each boundary of the safe operation region Φ 

(2.12); δ(k) is the DSM at instance k; i is number of inequality constrains; u is the 

control signal vector; e is the error vector between the actual response and the desired 

response; Q, P, and R  are the weighting matrices; d(.) is calculated from (2.13). 

The control law will be 

( ) ( ) ( )kkk f xKru −=  (2.21) 

where Kf is the state feedback gain matrix and r is the reference inputs. 

Figure  2-12 shows the DC motor response and DSM variations using the 

optimization algorithm with the following parameters: 

0.5739]  [0.457   and ]1010110[ ]511[ ]2[ ==== f,.,.,,.diag,., KPQR ,  

Note that the DSM values are positive for the whole operation period, which means 

that the motor operates safely. 
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2.3.1.3  Adaptive Control 

To maintain the system state within a predefined margin of safety, the value of DSM 

can be taken as an index to adapt controller parameters. The controller parameters 

should be adapted when the DSM is relatively positive small or negative, otherwise the 

parameters have to be maintained without change. 

2.3.1.3.1 Linear Adaptation 

The adapted parameters can be defined as a linear function of the DSM, and calculated 

from the following equation: 

( ) ( )
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∂
++=∆+

)(
2)(1

δαδα ; i=1,2,…,N (2.22)  

where δ (t) is the DSM at any instance t, ki is the controller parameter number i, N is the 

total number of controller parameters, and αi is the adaptation parameter.  

The results of (2.22) may not guarantee that the adapted gains will maintain the state 

in the safe region in all cases (positive DSM). Therefore, replacing δ (.) in (2.22) by the 

term ( )
ik∂

∂ .δ  with appropriate choice of αi, could guarantee that DSM is positive. The new 

adaptation equation will be   
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However, ( ) ik. ∂δ∂  in most cases, is nonlinear and not easy to compute. More details 

about the parameters adaptation of the controller will be discussed in Chapter 4. 

2.3.1.3.2 Fuzzy Adaptation 

A Fuzzy controller [243] based on DSM can be used to calculate the incremental values 

in the adapted parameters, where the relation between controller gains and DSM, in 

most cases, is nonlinear and not easy to compute. The input variables of fuzzy controller 

are function of DSM, e.g. δ, ( )
t∂

∂ .δ , etc., and the output is the incremental value in the 

adapted parameters. The adapted parameter is calculated from the following equation  
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 (2.24)   
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where Mi is the fuzzy function and Fyi is the incremental gain, which is equal to the 

fuzzy output number i. 

The fuzzy controller parameters (membership functions, number of variables and 

their limits,…,etc.) are chosen based on the limits of controller gains. 

In each method of adaptation, the adapted parameter value should be bounded in the 

interval, ki∈[kil, kih], which satisfies the stability condition of the system. 

The complete block diagram of the adapted proportional gain of PID controller based 

on DSM is shown in Figure  2-13. Figure  2-14 shows the DC motor response using 

adapted proportional gain. It is clear that the transient and DSM are improved, and the 

torque disturbance effect is reduced. 

The different responses of the DC motor show that the system operates in safe mode 

at the transient as well as at the steady state, either in a normal operation or in a 

disturbance case, when DSM is considered in the controller design. Furthermore, DSM 

can be used as an index to evaluate the different method of control design. 

Note that the output response and DSM response of the controlled system change 

according the priorities in the controller design. For example, if the priority to satisfy 

DSM is higher than the output, then it is necessary to make DSM more positive even if 

the output response will degrade, and vice versa.  

 Adapted PID controller based on DSM is tested in the next section to recover level 

performance of one-tank system close to the nominal performance due to tank leakage. 
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Figure  2-12: DC motor response and DSM using LQT controller 
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Figure  2-14: DC motor response and DSM using adapted PID controller 

2.3.2 Implementation of DSM for System Performance Recovery 

The idea of controlling a system that deviates from the nominal operating conditions has 

been investigated by many researchers. The methods of dealing with this problem 

usually stem from linear quadratic, adaptive, or robust control  [92], [153],  [154], and 

 [161]. Most of the methods, used for performance recovery, depend on the diagnosis of 

the plant and readjust the controller, see Chapter 1. Online controller adapting, based on 

the value of DSM, helps in speeding up the performance recovery close to the nominal 

performance before the diagnosis of the system has been completed, or the changes in 

the model parameters are identified. The fault here is considered as unknown 

disturbance or uncertainties. More investigation about DSM in performance recovery 

and FTC is addressed in Chapter 4. The following example of a level process illustrates 

the effect of DSM in speeding up the performance recovery.  

Example 2.2  

An experimental level process, shown in Figure  2-15, which will be explained in 

Chapter 5, consists of one-tank system  [134],  [135],  [155],  [156]. The input flow is 
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adjusted at 1 l/s and the level is controlled using the outflow valve. The discrete linear 

model of the system at sampling rate 0.1 s is:  
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 (2.25) 

where [ ]  T ,vh=x h is the level in the tank (m) and v the valve limb movement (m).  

Consider that 

1. The variables relevant to system safety are the tank level rate (dh/dt) and the 

control signal (u) which simulate the valve opening (ν);  

2. the level rate (dh/dt) is bounded in the interval [-0.4,0.4] and bounded input 

[ ]5050 .,.v −∈  (0.5 means that the valve is completely open and -0.5 

completely close);  

3. A valve bias of 20% closing may occur during operation. 

then the safe operation region (Φ) is given by: 

 dh/dt +0.8 v ≤  0 

dh/dt +0.8 v -0.16 ≥  0 (2.26) 

-0.4  ≤  dh/dt  ≤ 0.4 

-0.5≤  v  ≤  0.5 

This region is shown in Figure  2-16 

 

h 
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Output flow  

Controlled 

 

 

Figure  2-15: Schematic diagram of one-tank level process 
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Figure  2-16: Safe region of the level process in Example 2.2 

Note that firstly, the state vector x= [h1 v]T, secondly, one of the safety variables is 

)(xfdt/dh =  not the state directly, where  f:ℜn→ℜ is a nonlinear function of x, 

( )hgkvQ
hAdt

dh
i ρ−=

)(
1  (2.27) 

where A(h) is the cross section area of the tank, k valve coefficient, and Qi is the input 

flow. 

Substituting from (2.27) into the constraint equations (2.26) gives the safety 

boundary functions. Unfortunately, the boundary functions are nonlinear in this case. 

Therefore, dh/dt is taken as an independent variable that can be easily computed from h 

in order to have linear constraints.  

A simulated leakage in the tank about 0.2 l/s has occurred after 200 sec of Example 

2.1. Figure  2-17 shows the level response using a fixed parameter PID controller. Note 

that the controller is unable to recover the system performance. Replacing the PID 

controller with adapted one according to (2.22) yields a response for the tank level as 

shown in Figure  2-18. It is clear that the level performance is recovered faster and closer 

to the nominal performance without fault (leakage) diagnosis. 

Figure  2-19 shows the level response and DSM variation with adapted proportional 

gain of PID controller with fuzzy adaptation. The fuzzy supervisor has one crisp input 

(δ) and one crisp output (incremental propotional gain). The domain of crisp input 

varible (δ) is divided into five input fuzzy variables: NH, NM, Z, PM, and PH. 

Whereas, the doman of the output crisp (Fyi) variable are devided into three output 

fuzzy variables: Z, H, and VH. Input/output membership functions are shown in Figure 
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 2-20, and fuzzy allocation matrix is shown in Table 2.1. The normalized input and 

output signal of the fuzzy controller can help in generalizing the fuzzy supervisor for 

more than one parameter adaptation. The DSM response can be improved by 

considering the DSM rate of change in the fuzzy controller design and increasing the 

number of fuzzy variables. 

It is clear, from both examples, that the variables relevant to the safety are not 

necessary to be the same controlled state (variables). For some proceses, they can be 

chosen to be mathematical variables related to the controlled state as in Example 2.2 in 

order to simplify the boundary equations. Therefore, the choice of the state variables 

relevant to the safety is not unique. 
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Figure  2-17: Level process response and DSM using PID controller 
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Figure  2-18: Level process response and DSM using adaptive PID controller 
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Figure  2-19: Level process response and DSM using adaptive PID controller based 

on fuzzy adapt 
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Figure  2-20: Membership function of normalized DSM and 

incremental gain 

 
At this point, the differences between the DSM approach and other related 

approaches can be discussed: 

1. Most of the approaches related to safety state, for instance  [157], define the safe 

values of each state individually, while most of the time, the variables are de-

pendent on one another and none of them adequately defines the system safety 

by itself. Therefore, DSM represents a general case as shown in Figure  2-2. 

2. The distance between current states and safe states is defined as 

D = 0 if x∈ Xs and D>0 if x∉ Xs 

where x is the current state vector, and Xs all safe state vectors  [157]. This 

means that system behaviour inside the safe region is not taken into considera-

tion. On the other hand, DSM has a positive value inside safe region and 

negative otherwise. Therefore, the value of DSM indicates the safety state 

more precisely. 

3. The safe region can be defined, as a controlled invariant set  [144],  [158],  [202]  

for the system if there is a controller, which ensures a positive DSM for the 

closed loop performance.  

Table  2-1: FAM of DSM and incremental gain 

δ NH NM Z PM PH 

Fyi VH H H Z Z 

Note: NH and NM are the abbreviations of negative high and negative medium respectively; PM 

and PH are the abbreviations of positive medium and positive high respectively. Z, H and VH 

denote zero, high, and very high respectively. 
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4. One of the main differences between invariant set and safe region Φ is that the 

defined safe region for the system is assumed constant if the system structure 

is changed, while invariant set should be defined for each structure.  

5. The problem of finding a controller for a system with state and input con-

straints has been the subject of study of many authors; see for example  [159]-

 [160],  [202], and  [185]. Controller design based on DSM can be considered as 

controller design for a system with state constraints.  More investigation about 

controller design for system with state constraints and DSM is discussed in 

Chapter 4.    

However, the main limitation of applying DSM is the determination of the safe 

region. In some processes, it is not quite easy to determine the safe operation region. 

Moreover, the mathematical formulation of the DSM is not easy to obtain for some 

shapes of the safe operation regions. DSM computation and application for large-scale 

system need excessive study. 

2.4  Conclusions 

In this chapter, a new definition (DSM) and its computation are presented. Some 

applications of DSM are stated as well, which cover the applications of DSM in, first, 

controller design; second, FDI design; third, FTC design. The advantages of controller 

design based on DSM are discussed. DSM can be used to control the safety of the 

system during transient and steady state operation, to decrease the disturbance effect, 

and to help speeding up the performance recovery in case of some system faults. 

Adaptive PID controller, LQT optimization, and switching controller based on DSM are 

tested using simulation example. The variables of the system cannot describe safe 

behaviour of the system individually. Thus, the relation between state boundary and 

DSM is discussed. It is clear that DSM can be used to evaluate the performance of 

different control design method as a safety index. Hence, DSM can be considered as a 

quality measure of the controller performance. Because of occurring most of failures in 

the transient phase, designing a controller to maintain a margin of safety at transient 

period of the system is important. The difference between the DSM concept and the 

related concepts are discussed as well.  

The choice of the state variables relevant to the safety and the determination of the 

associated safe operation region are not unique because they depend mainly on the 
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operation experience of the process (knowledge based). For some processes, it is not 

easy to find a mathematical formulation for the DSM due to the complicated shapes of 

the safe operation regions. In this case, a knowledge-based model (fuzzy, neural,…,etc.) 

can be used.  
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CHAPTER 3 

3 FAULT DETECTION AND DIAGNOSIS SYSTEM 

USING DYNAMIC SAFETY MARGIN 

3.1  Introduction  

In order to meet the increasing requirements of modern society, industrial processes 

become large and complex. The complexity makes the systems are vulnerable to faults. 

Moreover, a fault in a single component may cause a malfunction of the whole system. 

To achieve the increasing economic demands and safety restriction, high dependability 

of such processes becomes an essential demand. It is difficult for humans to 

troubleshoot such systems. Consequently, early fault detection and diagnosis are a vital 

task. Thus, an extensive research has been done in the field of FDI design. The major 

FDI methods stated in literature, see Chapter1, can be classified into three broad 

categories; (a) Model based, (b)Knowledge based, and (c) signal based. Most of Model-

based FDI systems depend mainly on the analysis of so-called residuals  [7]- [9],  [36] 

generated from the input and the output signals and applying dynamic process model. 

Residual generation is based, e.g., on parameters estimation, parity equation or state 

observers of the process. The generation of residuals is the first stage in FDI system. 

Designing a residual generation system, which is insensitive to model parameter 

variations and external disturbances, is a formidable task and called a robust FDI 

system. In general, designing a robust FDI system is quite difficult. The robustness is 

addressed, for linear and nonlinear systems; by different ways, see for example  [73], 

 [87],  [88],  [78] and  [153]. In this chapter, a robust FDI problem is explained, and the 

existing approaches and their limitations are discussed. In addition, a new approach for 

model-based FDI, which depends on the analysis of the DSM, is introduced. The idea of 

“Multiple-Model” (MM) system is the basis for the fault diagnosis method used here. 

3.2  Robust Fault Detection System 

The fault is detected in Model-based FDI by comparing the actual process behavior with 

the corresponding mathematical model behavior. Since an accurate mathematical model 

of a physical process is not always available, there is often a mismatch between the 
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actual process and its mathematical model, even if no fault in the process occurs. This 

constitutes a source of false alarm, which can corrupt the performance of the fault 

detection and diagnosis system. To overcome this difficulty, FDI system has to be made 

robust to such modeling errors or disturbances. A system which is designed to provide 

both sensitivity to fault and robustness to modeling error or disturbances is called a 

robust FDI scheme  [42],  [13]. Fault, disturbance, and uncertainties modeling should be 

described, to clarify robust FDI problem. Therefore, in this section, the effect of 

disturbances and model uncertainties on the residual generation is introduced, moreover 

the main limitations in the existing FDI methods. 

3.2.1 Fault Modeling 

A fault is defined as an unpermitted deviation of at least one characteristic property 

or parameter of the system from the accepted behavior  [7]. The fault is the state that 

may lead to malfunction or a failure in the system. Faults can be classified based on 

several criteria, such as the time characteristics of faults, physical locations in the 

system and the effect of faults on the system performance  [13]. The time dependency of 

faults can be distinguished as abrupt fault (stepwise), incipient fault (drift-like) or 

intermitted fault. When faults are classified according to their physical locations, three 

main faults can be defined: actuator faults, sensor faults, and plant component faults. 

Faults in an actuator range from loss off partial control effectiveness (stuck at a fixed 

value) to a complete loss of control. Since an actuator is often considered as the 

entrance to the system, actuator faults have severe consequences on the system 

performance. Sensor faults include incorrect readings due to malfunction in sensor 

circuit elements or transducers. Three types of sensor faults can be identified: dynamic 

changes in transducer, gain reduction, and unknown bias. Plant component faults cause 

changes in the dynamical relationship among the system variables. These faults are 

caused by physical parameters changes in the system, such as resistance, inductance, 

amplifier gain, etc. If faults are to be classified according to their induced effects on the 

system performance, they can be classified into two types: additive and multiplicative 

 [8],  [7]. Additive faults result in changes only in the mean value of the system output 

signal, which include sensor bias fault (input and output) and actuators faults. Whereas, 

multiplicative faults results in changes in variance, correlations of the system output 

signal, as well as changes in the spectral characteristics and dynamics of the system 
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which include process components (system parameters) faults and dynamic change in 

the transducer or gain reduction of the sensor  [13].  

The system model with faults for a discrete linear time invariant (LTI) system, 

shown in Figure  3-1, can be represented in the following form: 
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Figure  3-1: State space and fault modeling 

 

Equation (3.1) can be written as  
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where x is the state vector, u is the input vector, y is the output vector, fa is the input or 

state variable fault and fy the output faults, which represent the additive faults; Af, Bf, 

and Cf  are fault parameters, which represent the multiplicative faults; A, B, and C are 

the nominal system parameters; Ra and Ry are distribution fault matrix with appropriate 

dimensions. 

Different approaches for fault detection using mathematical model have been 

developed in the last 30 years, see, e.g.,  [7],  [10],  [53],  [63]- [67], [78], and  [162]. The 

task consists of the detection of fault in the processes, actuators, and sensors by using 

the dependencies between different measurable signals. Mathematical process models 

express these dependencies.  



 54

The basic idea of model-based FDI, as mentioned in Chapter 1, is to generate 

analytical redundancy with the help of a mathematical model of the diagnosed system. 

The fault-indicating signal, called usually “residual”, is generated by comparing the 

measured output or the state with the estimated ones.  

3.2.2 Residual Generation Methods  

The generation of symptoms (residual) is the main issue in model-based fault detection. 

Varieties of methods are available in literature for residual generation. Observer-based 

approaches, parity space approaches and parameter estimation approaches are the most 

popular approaches to produce residuals  [7],  [10],  [8],  [78]. The use of these approaches 

differs according to the fault types and the system model.  

3.2.2.1 Observer-Based Approaches  

The basic idea behind the observer or filter-based techniques is to estimate the output or 

state of the system from the measured using, Luenberger observers in a deterministic 

system or Kalman filters in a noisy environment. The output or state estimate error (or 

its weighted value) is therefore used as a residual. The advantage of the using observer 

is its flexibility in the selection of its gains, a matter that leads to a rich variety of FDI 

schemes  [40], [42],  [54],  [41]. Fault modeling is then performed with additive faults for 

the input (additive actuator or process faults) and the output (sensor faults). 

Consider a discrete LTI model for the process under consideration 

)()(
)()()1(

kk
kkk

Cxy
BuAxx

=
+=+

  (3.3) 

where u(k)∈ℜr is the input vector, x(k)∈ℜn is the state vector and y(k)∈ℜm is the output 

vector and assume that all matrices A, B and C of the system are perfectly known. 

 According to Figure  3-2, the following equations hold if there are no disturbances, 

noises, and parameters changes.  
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Figure  3-2: Process and state observer 
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and the output error e(k) becomes 

)()()( kkk yyx fRCee +=   (3.5) 

and the residual 

)()( kk Wer =   (3.6) 

When a sudden and permanent fault f(k) occurs, the state estimation error will deviate 

from zero. 

ex(k) and e(k) show dynamic behaviours, which are different for Rafa and Ryfy. Both 

ex(k) or e(k) can be taken as residuals. 

For the generation of residual with special properties, the design of the observer 

feedback matrix H is of interest  [78],  [37]- [39]. 

Limiting conditions are the stability and sensitivity against disturbance. If the signals 

are affected by noise, the Kalman filter must be used instead of classical observers, 

assuming the noises are Gaussian white noise  [13],  [8]. 

If the faults appear as changes Af , Bf , or Cf of the parameters, the process behavior 

becomes 
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while the state ex(k) and the output estimate e(k) errors are 
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The changes Af , Bf, and Cf are then multiplicative faults  [7],  [13]. In this case, the 

changes in the residuals depend on the parameter changes, as well as input and state 

variable changes. Hence, the influence of the parameter changes on the residuals is not 

straightforward as in the case of additive faults. 

Special observers were designed and summarized in  [162],  [35],  [78],  [13], and  [7]. 

1. Dedicated observers for MIMO process 

•  Observer, excited by one output: one observer is driven by one sensor 

output. The outputs y are reconstructed and compared with measured 

outputs y. This allows the detection of single sensor faults  [8],  [152]; 

•  Bank of observer, excited by all outputs: Several state observers are 

designed for a finite fault signal, and detected by hypothesis test  [8]; 

•  Bank of observers, excited by single outputs: Several observers for 

single sensor outputs are used. The estimated output y is compared with 

the measured output y. This allows the detection of multiple sensor 

faults  [8],  [163]  (Dedicated observer scheme); 

•  Bank of observers, excited by all outputs except one: As before, but 

each observer is excited by all outputs, except one sensor output which 

is supervised  [53]. 

2. Fault Detection filter (fault sensitive filter) for MIMO processes 

The feedback H of the state observer is chosen, so that particular fault signal fa changes 

in a definite direction and signal fy in a definite plane. With directional residual vectors, 

the fault isolation problem consists of determining which of the known fault signature 

directions the residual vector lies the closest one. More work in this area is found in 

 [41],  [43], and  [65]. 

Another possibility is the use of output observer (or unknown input observer), Figure 

 3-3, if the reconstruction of x(k) is not of interest. A linear transformation then leads to 

a new state variable z(k).  

)()( kk Txz =   (3.9) 

The state-space representation of the observer becomes 

)()()(ˆ)1(ˆ kkkk GyJuzFz ++=+  (3.10) 
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Figure  3-3: Process and output observer 

The residual can be designed such that they are independent of the unknown input, 

for example disturbance, and of the state x(k) and u by special selection of Wz and Wy. 

)()(ˆ)( kkk yz yWzWr +=  (3.11) 

subject to structural conditions: 
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In this way, the residual is dependent only on fault signals fa and fy  [7],  [10],  [41]. 

However, all process model matrices must be known precisely. 

3.2.2.2  Fault Detection with Parity Equations 

The basic idea of parity relations approach is to provide a proper check of the parity 

(consistency) of the measurements acquired from the monitored system. 

A straightforward model-based method of fault detection is to take a model 
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If Gp=Gm, then the output error for additive input and output faults becomes 

)()()( zzz yap ffGr +=  (3.14) 

Another possibility to generate a polynomial error or equation error is as shown in Figure 

 3-5  [13]. 
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Figure  3-4: Parity equation methods  [13] 

The residuals then depend only on the additive input faults fa and output faults fy. 

Moreover, for the generation of specific characteristics of the parity vector r(z), and for 

obtaining fault detection and isolation properties, the residual can be filtered according 

to matrix Gf(z) to compute the vector rf(z)  [7],  [10],  [8]: 

)()( zz ff rGr =  (3.16) 

 The same procedure can be applied for multivariable processes by using the state 

space model, as shown in [8] for discrete time system. 
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By substituting the second of (3.17) in the first one and delaying several times, the 

following system is obtained: 
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)()()( kkk ff QUTxY +=  

In order to remove the non-measurable states x(k), and to obtain a parity vector 

useful for FDI, a weighting matrix W is used, such that 

WT=0. (3.19) 

This lead to the residuals 

)()( kk ff WQUWYr −=  (3.20) 

The design of the matrix W gives some freedom to generate a structured set of 

residuals in order to obtain a good isolation pattern. The parity space approach is 

suitable for the detection of additive faults. In addition, it is simpler to design and to 

implement than output observer-based approaches and lead approximately to the same 

results. 

A comparison between observer-based and parity space techniques is gevin in  [164]. 

3.2.2.3 Fault Detection with Parameter Estimation 

In most practical cases, the process parameters are not known at all, or they are not 

known exactly enough. Therefore, they can be determined with parameter estimation 

methods, by measuring the input and output signals, u(k) and y(k), if the basic structure 

of the model is known  [67],  [7],  [13],  [8]. 

This approach is based on the assumption that the faults are reflected in the physical 

system parameters, and the basic idea is that the parameters of the actual process are 

estimated on-line using well-known parameter estimation methods. Two approaches for 

modelling the input-output behaviour of the system are used: minimization of equation 

error and output error.   

The discrete-time model of order n for an SISO process is written in the vector form 

θΨTty =)(  (3.21) 

where T
nn bbaa ],[ 11 KK=θ is the parameter vector of the transfer function

)(
)(

zA
zB  

and [ ]Tntutuntyty )()1()()1( −−−−=Ψ KK is the discrete-time data vector.  

The equation error e(t) is introduced as 

θΨTtyte −= )()(  (3.22) 
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The least-squares (LS) estimate of the parameters ( θ̂ ) is obtained from the 

minimization of the sum of squared error and 
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 (3.23) 

As described in e.g.,  [7] and  [66], the least-squares estimate can be also expressed in 

recursive form (RLS) with respect to the estimates at the instant t, with t=0,1,2,...  

)]()1()1()[()()1( tˆttyttˆtˆ T θΨθθ +−++=+ γ  (3.24) 
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The results are thus compared with the parameters of the reference model; obtained 

initially under fault free assumptions. Any discrepancy can indicate that a fault may 

have occurred. The symptoms are the deviation of the process parameter, ∆θ: 

oθθθ −=∆ ˆ  (3.26) 

where oθ is the nominal parameter, and θ̂  is the estimated parameters. 

As the process parameters )(pθ f= depend on physically defined process 

coefficients p (like stiffness, resistance, etc.), the determination of the changes ∆p 

allows usually a deeper insight and makes fault diagnosis easier  [8],  [7]. Parameter 

estimation methods usually need a process input excitation, and they are especially 

suitable for the detection of the multiplicative faults. 

3.2.3 Disturbance, Noise and Uncertainties Modeling 

The disturbance and noise of the system can be represented in the system model, in 

most cases, as additional unknown inputs with a specific distribution, while the 

uncertainties can be represented as unknown parameters. Therefore, the system model 

with disturbance, noise, and parameter uncertainties can be represent in a discrete linear 

model as: 
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where ∆A, ∆B, and ∆C are the parameters uncertainties, νx and νy are the state and 

output noise respectively, da and dy are the disturbance component in the state and 

output  respectively, and Ea and Ey are the distribution matrices of disturbance with the 

appropriate dimension, which is assumed to be known. 

3.2.4 Problem Formulation  

In order to summarize the robustness problem, the complete state space model with 

faults, disturbances, uncertainties, and noise is represented by combining (3.1) and 

(3.27) as 
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Equation (3.28) can be written in general form for different types of systems, weither 

linear or nonlinear, as 
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where θ=θ0 ∪ θf  ∪ ∆θ, θ0 is the nominal parameter space, θf is the faulty parameter 

space, and ∆θ is the uncertainty parameter space of the system; f=[fa fy]T ∈ℜf is the total 

additive fault vector, d=[da dy]T ∈ℜd is the total disturbance vector, and ν=[νx νy]T∈ℜn+m is the 

total noise vector; g: ℜn×ℜm×ℜf×ℜd×ℜn+m→ℜn and h: ℜn×ℜm×ℜf×ℜd×ℜn+m→ℜm. For 

the system (3.28),  

θ0={A,B,C,Ea,Ey}, θf ={Af,Bf,Cf,Ra,Rf}, and ∆θ={∆A, ∆B, ∆C}. 

It is required to design a FDI system, which is sensitive to system faults and less 

sensitive to system disturbances, uncertainties, and noise with respect to the detected 

features. 

It is clear that the uncertainties in the model parameters seem to be as nonlinear 

terms in the system model (3.28), and that is one of the difficulties of the robust FDI 

system. 
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By neglecting the noise in (3.28), the discrete transfer matrix description between the 

output y(k) and the input u(k) of the system (3.28) is then 

( ) )()()()()()()()( zzzzzzzz fduu fGdGuGGy ++∆+=  (3.30) 

where f(z)=[fa(z)  fy(z)]T is the total additive fault vector, d(z)=[da(z)  dy(z)]T is the total 

disturbance vector, ∆Gu(z) is used to describe modelling errors, whilst both ∆Gu and 

∆Gd represent modelling uncertainty.  

According to residual generator, general structure described in  [8],  [37] and  [108], 

r(z)=Hu(z) u(z)+Hy(z) y(z) (3.31) 

In case of no fault and uncertainties, the design of Hu and Hy must satisfy the 

constraints condition 

Hu(z)+ Hy(z) Gu=0 (3.32) 

The residual vector in case of fault and uncertainties has to be written as 

)()()()()()()()()()( zzzzdzzzzzz uydyfy uGHGHfGHr ∆++=  (3.33) 

Both faults and modeling uncertainties (disturbance and modeling error) affect the 

residual, and hence discrimination between these two effects is difficult. The principle 

of disturbance de-coupling for robust residual generation requires that the residual 

generator satisfy 

0)()( =zz dy GH  (3.34) 

in order to achieve total de-coupling between residual r(z) and disturbance d(z). 

During the last decades, many FDI researches have focused on robust fault diagnosis 

of an uncertain system. Adaptive threshold can be used to increase the robustness to 

modeling uncertainties  [79],  [8]. Surveys of adaptive threshold technique are provided 

in  [37]. This method represents a passive approach since no effort is made to design 

robust residual. One of the most successful robust FDI approaches is the use of 

disturbance decoupling principle. This can be done by using unknown input observers 

 [7],  [165],  [41],  [167], optimal (robust) parity relations  [58],  [7],  [166] or alternatively 

EA approach  [7],  [34],  [37],  [35]. However, the complete elimination of disturbance 

effect may be not possible due to the lack of degree of freedom  [13]. In addition, in 

some cases, such as unstructured uncertainties or structured uncertainties, which do not 

enter the system as an additive disturbance, perfect decoupling is not possible  [80]. 
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Moreover, it may be problematic, in some cases, because the fault effect may also be 

eliminated. Hence, an appropriate criterion for robust residual design should take into 

accounts both modeling error and faults. There is a trade-off between sensitivity to 

faults and robustness to modeling uncertainty, and hence robust residual generation can 

be considered as a multi-objective optimization problem  [78]. It consists of the 

maximization of fault effects and the minimization of uncertainty effects. Despite the 

extensively study of decoupling method in robust FDI system, their effectiveness 

regarding real problems has not been fully demonstrated. The described method of 

disturbance decoupling methods cannot be directly applied to the system with other 

uncertainties such as modeling error  [13].  Different robust FDI techniques are scattered 

in the literature, see for example  [81]- [88]. 

Although the analytical redundancy method for residual generation has been 

recognised as an effective technique for detecting and isolating faults, the critical 

problem of unavoidable modelling uncertainty has not been fully solved  [13]. 

3.3  Multi-Model Fault Detection and Isolation System 

Since failures in systems may cause structure change, the system cannot be modeled 

well by a single model. Moreover, accurate fault identification in favor of complete 

isolation cannot usually be achieved using a single model. One of the most effective 

approaches for such problems is based on the use of Multiple Models (MMs). It runs a 

bank of filters in parallel, each based on a model matching to a particular mode (i.e. 

structure or behavior pattern) of the system. Since a system subject to failures is a 

typical hybrid system  [168], MM algorithms for FDI have been developed for different 

names, such as multiple hypothesis test detector  [162], structure hypothesis test  [34] and 

Multiple Model Adaptive Estimator (MMAE) algorithm  [169],  [170],  [49],  [50]. In 

addition, a so-called dedicated observer scheme, which uses a bank of observers for FDI 

of deterministic system, was devised in  [163] and a generalized dedicated observer to 

enhance the robustness of FDI was given in  [53]. A neural network bank-based FDI 

approach was developed in  [171]. Only filter-based approaches are considered in the 

above approaches to estimate system state. The above filter-based approaches are based 

on the “non-interacting” MM method originally proposed by Magill  [172]: the single-

model based filters are running in parallel with out mutual interacting (i.e. each filter 

operates independently at all time). An Interacting Multiple-Model (IMM) estimator for 
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FDI was introduced in  [108]. The IMM differs from non-interacting MM algorithm in 

that the single-model based filters interact with each other in highly cost-effective 

fashion, and thus leads to significantly improved performance.  

Figure  3-5 shows the general diagram for MM-based FDI approaches. The system is 

described by a set of model M={M0, M1... Mz}, and each model is designed to 

distinguish one fault mode of the fault mode set. 

All fault detection and estimators (FDE) are driven by the system input u and the 

measurements y, and they operate in parallel to generate an individual residual for each 

one. All residuals and possibly all measurements are treated in the residual evaluation 

logic. The resulting faults are reflected in the alarm signal in the decision statements S= 

{a1, a2...az}; ai∈{0,1}. 

The task of the diagnosis system is to generate a diagnosis statement S, which 

contains information about which fault models that can explain the behavior of the 

process.  
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Figure  3-5: General block diagram of the MM fault detection scheme  

For each actuator fault, an FDE unit can be an UIO as in the case of Generalized 

Observer Scheme (GOS)  [7],  [35]. The number of observers is equal to the number of 

the control inputs. The i-th observer is sensitive to all faults instead of i-th fault. 

For a linear system with an additive actuator faults, the model can be defined as 
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The i-th model of actuator fault number i (i=1,2...m) has the form 
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and the corresponding observer  
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where xi(k) is the state of the model i, the triple (A, B, C) is the system matrix, bi is the 

i-th column of B, zi(k)∈ℜn denotes the observer state vector, ri (k) ∈ℜm is the residual 

vector and Fi, Ji, Gi, i
zW  and i

yW  are matrices to be designed with appropriate 

dimensions which satisfy 
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If the linear transformation Ti is chosen as [214] 
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where Ki is selected such that Fi is asymptotically stable and (Cbi)+is the pseudo inverse 

of matrix Cbi. 
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This selection makes the estimation error, as well as then the residual of the i-th UIO 

become independent of the i-th system input. However, the i-th input fault changes all 

the other UIO residuals. 

For sensor faults, a set of dynamic observers as in the case of Dedicated Observer 

Scheme (DOS)  [163] is designed. The i-th observer is designed where the estimated 

output error and then the residual of the i-th observer is dependent on the i-th sensor 

fault only. 

3.4  Dynamic Safety Margin in Fault Diagnosis System 

According to the previous discussion about robust FDI systems in section 3.2, we can  

conclude that:  

1. The complete elimination of disturbances effect may not be possible;  

2. Modelling uncertainties is difficult and has not been fully solved;  

3. Most of the methods in literature try to reduce the effect of either disturbance or 

uncertainties, but not both;  

4. The effectiveness of the existing robust FDI regarding real problems has not 

been fully demonstrated. In general, the robust FDI problem has not been fully 

solved.  

This section explains how DSM can be helpful in designing a robust FDI system. 

Assumption 3.1: Based on the definition of DSM in Chapter 2, the state variables of 

the diagnosed system (x) and the associated estimated state from the nominal model ( x̂ ) 

must satisfy { } Φ∈xx ˆ,  in normal operation, even if there exist bounded uncertainties, 

disturbances and/or noise, i.e. fault-free case. 

where Φ⊆ℜn={φi(x) ≤ 0⎟i=1...q} is a compact set which contains the entire safe state 

variable. 

 According to the definition of DSM, it is positive in normal operation with probable 

parameters variation (uncertainties in system model) and/or disturbance. Otherwise, 

DSM is negative if the system suffers from a large variation in the parameters or a large 

disturbance, which simulate different types of faults (additive and/or multiplicative). 

The following example explains that. 
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Example 3.1 

Consider a system having two state variables (x=[x1, x2]), and the nominal relation 

between the two variables is  

x1(t)-a x2(t)=b (3.40) 

where a and b are the nominal values of the system parameters.  

If the probable change in the system parameter a is ∆a∈[-α1,α2] and the parameter b 

is constant, then the safe operation region can be defined as 

btxtx
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≤++
≤−+−
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221

211

αα
αα

 (3.41) 

and δ (DSM) satisfies δ ≥ 0 ↔ ∆a∈[-α1,α2];  

  ∆a∉[-α1,α2] ∨ ∃fault→δ <0   

Any probable parameter variations or disturbances can be handled by the same way 

i.e. additional constrains can be added to increase the sensitivity of DSM to faults. 

Meanwhile, for larger systems the safe region is not readily obtained by this way. 

For linear system with bounded disturbance and uncertainties the safe operation 

region can be considered as an invariant set, as stated in Chapter 2, and the methods of 

determine the invariant set , see for example  [144],  [148],  [150],  [158] [148],  [202], can 

be applied to construct the safe operation region.  

If it is difficult to construct the safe operation region due to the less information 

about the system operation, using fuzzy or neural clustering is a helpful tool to 

determine the boundary of the safe region.    

Theorem 3.1: Based on the state space model of (3.28), if there is no fault and x(k)∈Φ, 

then for any xp∈∂Φ ={ }qipip ,...2,1,0)( ==xx φ  the following conditions are satisfied  
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On the other hand, if the fault exists, then there are two recursive instants k and 

k+1such that 
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where ∂Φ⊂Φ is the boundary state set of Φ, and x(k) is the current state vector. 

Proof: Based on the Assumption 3.1 and taking into consideration that all state variables 

are measurable, then the maximum effect of modelling uncertainties and disturbances 

together without faults should maintain x(k+1)∈Φ, which implies 

( ) ( )0)1(0)( ≥+∧≥ kk δδ  (first condition of (3.42))   

and  

Φ∈+∆++∆+=+ )()())(()())(()1( kkkkkk EduBBxAAx  (3.44) 

The difference between the current state and the next state is  
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The value of this difference varies due to the variation of the system parameters and 

current disturbance. Therefore, the maximum distance between the current and next 

state is  
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 (3.46) 

Consequently, the maximum effect of the combined disturbance and modeling 

uncertainties makes )1( +kx tends to ∂Φ i.e. 

max)()1()(inf kkkp
p

xxxx
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−+≥−  (3.47) 

Hence, from (3.46) and (3.47) the second condition of (3.42) is satisfied, which 

means that the distance between the state vectors from instant k to k+1 should be 

smaller than the minimum distance between the current state and ∂Φ.   

If there is a fault, then the state trajectory traverses outside the safety boundary. 

Therefore, there are two recursive instances k and k+1 where x(k)∈Φ and x(k+1)∉Φ i.e. 

there is an xp∈Xp that lies on the line between x(k) and x(k+1). This implies that the 

distance between x(k) and xp is smaller than the distance between x(k) and x(k+1) 

(second part of Theorem 3.1 (3.43)). 

Thus, the sign of DSM is sensitive to faults.  Moreover, the value of DSM itself is 

an indication of the hazards of faults. Hazards mean how much the fault can lead to a 

component failure or the damage of the process.  
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3.4.1 Fault Isolation  

It is not always sufficient to indicate that a fault occurred, but it is more important to 

know which fault or faults have occurred (fault isolation), fault size, location, etc... 

The suggested method for fault isolation depends on the generation of DSM from a 

set of models Μ= {Μ0, Μ1, Μz}, based on the idea of MM-FDI method discussed 

before,  for the system under consideration (analytical redundancy of DSM) and the 

comparison of  the generated DSM with the actual value calculated from the measured 

state. Each of these models simulates one fault of the faults set, which should be 

isolated in addition to the nominal fault free model as shown in Figure  3-6.  

The discrete model of each faulty model is described in general as  
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where xi ∈ℜn is the state vector of the system model i, u∈ℜm is the input vector, yi∈ℜp 

is output vector; fi⊆F∈ℜl is unknown additive fault signal vector, gi: ℜn×ℜm×ℜl→ℜn, 

hi: ℜn×ℜm×ℜl→ℜp, θi ⊂ θ is the system parameters for faulty model i, i∈{0,1,...,z}, and 

z is the number of anticipated faults in addition to fault free case, i=0, nominal model. 

In case of LTI system 

)()()(
)()()(

kkkh
kkkg

isiii

iaiiiii

fRuDCx
fRuBxA

++=
++=

 (3.49) 

and θi={Ai, Bi, Ci, Di, Rai, Rsi,} 

The fault isolation system is activated when δ(t)<0 and/or dδ(t)/dt <0. dδ(t)/dt <0 

means that the state trajectory moves in the direction of unsafe operation.  
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Figure  3-6: MM fault detection based on DSM 

3.4.1.1 Fault Modes 

Different faults can be classified into different fault modes. For example, consider a 

system containing a water tank and leakages exist in the bottom of this tank. All such 

leakages, regardless of their area, belong to the same fault mode “water tank bottom 

leakage"  [34]. 

The classification of different faults into fault modes corresponds to a partition of the 

fault-parameter space θ and additive fault space F. This means that each fault mode i is 

associated with a subset θi ⊆ θ and fi ⊆ F. One of the fault modes corresponds to the 

fault-free case. This fault mode will be denoted “no fault" or Mo. Further, all sets θi and 

fi are pair wise disjoint and  

i
i

θθ U
Ω∈

= and i
i

fU
Ω∈

=F  (3.50) 

where  Ω is used to denote the set of all fault modes. 

Let FθΣ U= is the total fault mode data, iii FθΣ U= is the fault mode i data, and 

i
i

ΣΣ U
Ω∈

=  

If fault mode i exists in the system, then Σi ∈ Σ. The fact that all sets Σi are pair wise 

disjoint means that only one fault mode can exist at the same time.  
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For notational convenience to each fault mode, an abbreviation is associated, e.g. “no 

fault" is abbreviated M0. All these are is illustrated in Figure  3-7, which shows how the 

whole set Σ has been divided into five subsets corresponding to fault modes M0, M1, M2, 

M3, and M4.   

000 FθΣ U=  

444 FθΣ U=

333 FθΣ U=

111 FθΣ U=  

222 FθΣ U=  

 

Figure  3-7: Parameter space and fault space divided into 

convex subspace 

Example 3.2  

Consider a SISO system represented in state space form (3.3), and assume that there are 

three different faults, which have to be detected and isolated; actuator fault, internal 

(leakage) fault and level sensor fault. Each of the actuator and the sensor fault has two 

types of faults, either bias or draft. Therefore, there are five modes of faults in addition 

to the fault-free case (3.3).  

1. The actuator bias fault model is defined as 
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 (3.51) 

θ1={A1, b1, c1}, f1=[fa 0 0]T 

where A1=A, b1=b, and c1=c, and  fa is the additive actuator bias. 

2. The actuator draft fault model is defined as 
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 (3.52) 

θ2={A2, b2, c2, α}, f2=[0 0 0]T 

where A2=A, b2=b, and c2=c, and  α  is the actuator draft. 
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3. The leakage fault model can be represented by two different methods; one of 

them can be represented as unknown parameters in A matrix (multiplicative fault). 

The other method, which is described here, represents the leakage fault as an 

additional signal in the state model.  
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 (3.53) 

θ3={A3, b3, c3, ba), f3=[0 fi 0]T 

where A3=A, b3=b, and c3=c, ba is leakage fault distribution matrix with 

appropriate dimension,  fi is the additive signal represent internal leakage. 

4. The sensor bias fault model is 

s44
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 (3.54) 

θ4={A4, b4, c4), f3=[0 0 fs]T 

where A4=A, b4=b, and c4=c,  fs is the additive signal represent sensor fault. 

5. The sensor draft fault model is 

s55s
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 (3.55) 

θ5={A5, b5, c5, αs), f5=[0 0 0]T 

where A5=A, b5=b, and c5=c, α  is the sensor draft. 

3.4.1.2 Fault Estimation 

One possibility to simulate the fault value by generating a set of models for the same 

fault type, each of which for a certain partial value of fault  [48]. For example, the fault 

in a sensor i can be modelled as 

 yi(k)= yoi(k)+a  (3.56) 

where a∈{0,a1,a2... yimax}∈ℜq represents a partial value sensor bias, yimax is the max 

input limit of sensor i, and q is the number of partial values of sensor fault; yoi is the 

measured output signal and yi is the actual output signal of the sensor number i.  

For each value of a there is a corresponding fault model. The number of models for 

bias fault mode is equal to q. The magnitude (size) of fault can be determined by the 
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probability-weighted sum of the fault magnitudes of the corresponding partial fault 

models  [48].   However, the main disadvantage of this approach is that the number of 

model increases proportionally with the resolution of fault discrimination. 

Another method of fault isolation is by estimating the fault magnitude from the 

measured data; see for example  [34]. 

 The suggested method is based on the estimation of the fault values from the input-

output data, and using these estimation parameters to determine the estimated state of 

the faulty model. For each faulty model the unknown fault parameter γi ∈ΣI, which 

simulates unknown multiplicative or unknown additive faults. γi can be estimated from 

⎟⎟
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 (3.57) 

where N is the estimation time.  

The main disadvantage of this method is that the minimization problem (3.47) is not 

easy to solve, especially in case of multiplicative parameters.  

Estimating the fault value from available redundant equations of the system model is 

considered a special case of estimation principle.  

The following example describes how the unknown parameters can be estimated for 

a linear model with actuator fault. 

Example 3.3 

A state space model of a linear system with actuator faults can be defined as 
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For a single actuator fault mode, the fault model will be   
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 (3.59) 

and the estimate actuator fault, aif̂  , according to (3.47) is given by 
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where Y=[y(k) y(k+1) ... y(k+N)]T, U=[u(k) u(k+1) ... u(k+N-1)]T, Ca and Cb matrices 

with appropriate dimension obtained from (3.48) 

Special case 

If the additive fault dynamics can be represented in state space form as  

iaiiai )k(f)k(f βα +=+1  (3.61) 

then the fault can be considered as an additional state variable, and it can be estimated 

using a state estimator as follows: 
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where αi and βi are assumed to be constant, for instance, αi =1 and βi=0 in case of bias 

fault. The new state space model has to be observable in order to estimate the state and 

fault value. 

The estimated faulty model state, ix̂ , and the fault, aif̂ , are obtained using the state 

observer 
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  where ⎥
⎦

⎤
⎢
⎣

⎡
=

ai

i
i f̂

ˆ
ˆ

x
z , ŷ is the estimated output, and L is the observer gain matrix. 

This procedure was implemented using EKF for constant sensor and actuator fault, i.e. 

αi =1 and βi=0, in  [49],  [50]. The fault can also be reconstructed using the idea in  [56]. 

3.4.1.3 Fault Isolation Algorithm 

The estimated fault parameters for each fault model are used to estimate the DSM of 

each model. The estimated value of DSM is compared with the DSM of the actual 

system, as shown in Figure  3-6. 
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It is clear, as in Figure  3-6, that the difference signal, ri, between the actual DSM and 

the estimated one can be considered as a residual. The fault isolation logic is obtained 

from the analysis of the residual vector r∈ℜz. The following algorithm is one of the 

simplest methods to isolate fault number ‘i’ from the other faults. 

1. Compute DSM for the actual system and the different faulty model δi(k)=h(xi(k)); 

i=0,1,2,...,z 

2. Compute  

ri(k)= δ(k)- δi(k); i=1,2,...,z (3.64) 

Ti= ∑
+

=

Nk

kk
i kr

N
0

0
)(1 ; i=1,2,...,z (3.65) 

3. Construct the decision logic statement 

S= {a1, a2, ...,az}; ai∈{0,1}  (3.66) 

where ai= 1 ↔ jji TT min= , i.e. fi (fault number i) exists; otherwise ai=0, h(.) is the 

DSM computation function, δ(.) is the DSM of the actual system, δi(.) is the DSM of 

fault model number i, z is the number of faults in addition to the fault free case, and N is 

the number of diagnostic samples (diagnostic time and isolation).  

The logic statement contains at most one element equal “1” which is corresponding 

to the existing fault “i”, and the others are “0”, i.e. fault “i” occurs if the average value 

of ‘⎢ri⎢’ has the minimum value among the others.  

There are some limitations in applying this algorithm: 

1. A false signal may be obtained if the diagnostic time is small with respect to the 

fault reaction time, or if there are more than one fault occurring at the same time. 

Using threshold can help solving these problems, and the decision statement 

elements can be calculated as  

ai= 1 ↔ Ti≤Tth(i),  i.e. fi exists; otherwise ai=0 

and Tth(i) ≤ δmax (3.67) 

where Tth ∈ℜz  is the threshold vector, Tth(i) is the threshold value corresponding 

to the fault number “i”, and δmax is the maximum positive value of DSM in the 

safe operation mode. In general, Tth(i) can be constant or time varying. For 

simplicity, in most cases all Tth(i)’s are constant and equal for all fault models. 
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2. If a particular fault exists and more than one fault mode can achieve the fault 

isolation condition (Ti≤Tth(i)) i.e. 1
1

>∑
=

z

i
ia , then this problem can be reduced if the 

magnitudes of the estimated fault parameters are considered in the isolation logic.  

Thus, some definitions and related conditions of fault delectability and isolability are 

defined in the following section. 

3.4.2 Detectability and Isolability 

Definition 3.2 (Fault Detectability): The fault is detectable if and only if the effect of 

the fault on the system state causes (δ(t) <0) ∨ (δ0(t) <0), other wise the fault cannot be 

detected. 

where δ(t) is the DSM computed from the measured state and δ0(t) is the DSM 

computed from the estimated state of nominal model (fault-free model).  

Definition 3.3 (Fault Isolability): the fault i is isolable from fault j if and only if 

( ) ( )itt thit
T≤−

∞→
)()(lim δδ ∧ ( ) ( )jtt thjt

T≥−
∞→

)()(lim δδ   

where δ (t) is the actual DSM and δi(t) and δj (t) are the estimated DSM from fault 

model i and j respectively.  

Definition 3.4 (Missed Detection): Assume that a fault i is exist, then the fault detection 

represents a missed detection if δ(t)>0 ∧δ0(t)>0. 

Definition 3.4 (Missed Isolation): Assume that a fault i is present. Then the diagnosis 

statement S represents a missed isolation if S(i)≠1. 

Definition 3.5 (False Alarm): Assume that no faults exist, i.e. θ0=θ0 ∧ f0=0. Then the 

diagnosis statement S represents a false alarm if S(0)≠1. 

Definition 3.6 (Complete Isolable): A Fault i is completely isolable from the fault set z 

if and only if ( ) thit
Ttt ≤−

∞→
)()(lim δδ ∧ { } iif Σθ ∈ˆ,ˆ .  

where iθ̂  is the estimated parameter of fault mode i, and if̂ is the estimated additive 

fault.  

3.4.3 Robustness of Detection and Isolation System 

The robust fault detection, as discussed before, means that the detection system should 

give an alarm signal in case of fault and avoid false alarm in case of system disturbance 
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and parameter variation. Using DSM as an indication to fault satisfies a good robustness 

of the monitored system because of the value of DSM is sensitive to fault based on the 

assumption that the system should operate in the safe region in fault-free case, in spite 

of the existence of disturbance or uncertainties in the system parameters. Moreover, 

most of the control systems try to maintain the desired system performance in normal, 

disturbed and/or uncertain case (robust controller) which means that the controller in 

fault-free case tries to maintain DSM positive.  Adaptive threshold for FDI method is 

one of the robust fault detection methods. The DSM value can be considered as an 

adaptive threshold where the DSM is the distance between the system state and the 

nearest state lying on the safety boundary, which is the maximum system state in fault 

free case. The maximum state value that the system can reach is not fixed, but it varies 

according to the boundary function and current state position. This  approach has a high 

robustness where it can give positive alarm, i.e. fault indication in most fault cases, 

while it gives a false alarm in limited cases e.g. a) if the fault effect is less than the 

effect of probable model uncertainties and/or disturbance; b) If there are simultaneous 

faults having an opposite effects. 

Robust fault isolation means that the fault isolation data should represent the actual 

system fault. MM fault isolation method is one of the most appropriate robust fault 

isolation methods. The main advantage of the suggested method is that the fault type 

and its estimated value are obtained in one-step. Moreover, it is not restricted to a 

special type of faults i.e. the fault can be modeled by any way as an additional signal or 

parameter variation.  

The advantage of using DSM in FDI instead of the outputs are: 

• The number of variables used in diagnosis using DSM is less (i.e. the 

measured output date are reduced to a single variable). 

•  The value of δ(t) and dδ(t)/dt is more sensitive to the system variation. 

• Slow faults (e.g. equipment weakling) are very hard to detect from the 

output and DSM helps in the diagnosis and prognosis of such types of 

faults. 

3.4.4 Simulation Example 

Consider the tank system in Example 2.2, the linearized nominal model is  
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and the safe region is defined as 

 dh/dt +0.8 vi ≤ 0 

dh/dt +0.8 vi -0.16 ≥ 0  

-0.4≤  dh/dt ≤ 0.4 (3.69) 

-0.5≤  vi ≤ 0.5 

2.75 ≤ h≤ 3.25 

where A= ⎥
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level in the tank (m) and vi the valve limb movement (m).  

Assume there are three different faults that should be detected and isolated; actuator 

bias fault ∈ [0,1], internal (leakage) fault in (l/s) ∈ [-0.5,0.5] and level sensor bias fault 

∈ [-0.35,0.35]. Therefore, there are three modes of faults in addition to the faulty free 

case (3.65). The parameters of each fault mode are obtained as in Example 3.2. In case 

of leakage fault, the system model as in (3.53) where ba=[1 0]T.  

The estimated state of the fault-free model is obtained using a state observer as 

shown in Figure  3-2, where [ ]T20041 −= .H  and W is not considered here because 

the purpose is to estimate the state. 

Figure  3-8 shows the level response and normalized DSM variation in case of 

actuator bias fault of 30% of the actuator limit after 200s. The DSM value is positive 

before the fault and negative after fault. Figure  3-9 shows the estimated fault value for 

each fault model. Note that the DSM value generated from the actuator fault model, 

sensor fault model, and actual DSM are coincident, but the value of estimated sensor 

fault is out of limits and increases with the time.  Therefore, according to Definition 3.6 

the actuator fault is completely isolable from the other faults. Figure  3-10 and Figure 

 3-12 show the system response and DSM variation for leakage fault of 0.25 l/s and 

sensor fault 0.05m respectively. Figure  3-11 and Figure  3-13 show the estimated fault 

values in leakage and sensor fault respectively. Table  3-1 summaries the results of the 

three fault scenarios.  
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Figure  3-14 shows the response in case of actuator bias fault 30% after 200s in 

addition to additive disturbance with frequency 0.1Hz and amplitude 0.0001. Figure 

 3-15 shows the estimated fault values. It is clear that DSM value is positive in case of 

disturbance while it is negative in case of faults occur. Moreover, the effect of 

disturbance i is reflected on the estimated fault value. 

    

3.5 Conclusions  

In this chapter, the robust FDI problem is defined, and the existing techniques to design 

a robust FDI system and their limitations are discussed. Design FDI system based on 

DSM is introduced. The main advantage of the proposed approach of using DSM in FDI 

is the reduction of the number of diagnostic variables.  In addition, DSM and its 

derivative are more sensitive to system parameter variation, i.e. DSM in FDI introduces 

robust fault-detection schemes. The simulation results demonstrate the advantage of this 

approach.  

 

 

Table  3-1: Summary of fault results  

 af̂  If̂  sf̂  0T  1T  2T  3T  

3.0=af  0.3 0.16 ramp > Tth ≤ Tth > Tth ≤ Tth 

25.0−=If  0.37 -0.25 ramp > Tth > Tth ≤ Tth ≤ Tth 

05.0s −=f  0.02 0 -0.05 > Tth > Tth > Tth ≤ Tth 

Note: fa, fl, and fs are the actuator, leakage and sensor faults respectively; af̂ , af̂ and af̂  are the 

estimated ones. Ti is the integral error between actual DSM and the computed one from each faulty 

model (3.37), i∈{0,1,2,3} is the fault mode, and Tth=0.1 is a threshold error with integration step N=10. 
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Figure  3-8: Actuator fault response 
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Figure  3-9: Estimation of faults in case of the actuator fault 

Tr: state trajectory; SB: Safety boundary; δ, δ0, δI,  δa , and δs are the DSM’s of the actual system, 
nominal model, internal fault model, actuator fault model, and sensor fault model respectively.   
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Figure  3-10: Leakage fault response 
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Figure  3-11: Estimation of faults in case of the leakage fault  
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Figure  3-12: Sensor fault response 
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Figure  3-13: Estimation of faults in case of the sensor fault 
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Figure  3-14: Actuator fault response with disturbance 
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Figure  3-15: Estimation of faults for actuator fault with 

disturbance 
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CHAPTER 4 

4 PERFORMANCE RECOVERY USING DYNAMIC 

SAFETY MARGIN 

4.1  Introduction 

The system performance deviates from the desired one due to different reasons, for 

instance, faults, disturbance, etc. Therefore, the performance recovery of a controlled 

system is an important task in order to enhance system dependability. It is addressed by 

different techniques, in particular, adaptive control and robust control. Designing a 

controller based on DSM is important to maintain a predefined margin of safety during 

transient and steady state in normal or due to disturbance actions. Moreover, it can help 

speeding up performance recovery in some cases of system faults. Hence, the controller 

design based on DSM is the main focus of this chapter. PID controller is one of the most 

popular controllers, particularly, for SISO systems. Hence, adapting PID controller 

parameters based on DSM is highlighted in Section 4.2 as an example of controller design 

based on DSM. For MIMO systems, MPC is successfully used in process control due to 

its ability to handle explicitly hard constraints on control and states. Therefore, it has 

been widely applied in petrochemical and related industries. MPC design based on 

DSM is addressed as another example for controller design based on DSM for SISO and 

MIMO systems as well.  

An FTC system is a performance recovery system due to faults. As stated in  [2],  [104], 

and Chapter 2, it is a control system that can accommodate components faults, and it is to 

maintain stability and acceptable degree of performance not only when the system is 

fault-free but also when component malfunctions are present. FTC prevents faults, 

which occur in a subsystem, from developing into failures at the system level. Hence, 

the application of MPC in FTC can be very useful, particularly because most of the 

processes have control and state constraints, which specify the actuator limits and safety 

requirements of the components. A frame work of FTC system using MPC based on 

DSM is introduced in Section 4.4.  
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4.2  Controller Design Based on Dynamic Safety Margin 

To maintain the system states within a predefined margin of safety, the value of DSM 

has to be considered in controller design. The controller design based on DSM has the 

advantage that the system will be maintained within the safe region not only during the 

normal operation (transient and steady state) but also in case of fault or disturbance. The 

inclusion of DSM into the controller design can be achieved by various methods; some 

of them are introduced in Chapter 2.  In this section, the inclusion of DSM in controller 

design, especially FTC to recover the system performance in faulty system, is 

addressed. The DSM value can be used as a performance index to adapt the parameters 

of a certain controller, select a controller among different pre-designed controllers, or to 

combine both methods of controller selection and tuning. 

4.2.1 Single Controller Tuning 

Adaptive control is one of the control techniques used to improve the system 

performance by adapting the controller parameters based on the deviation of the system 

performance from the desired one in case of disturbance or modeling error in the 

system. An adaptive controller, as stated in  [173], is a controller with adjustable 

parameters and mechanism for adjusting the parameters (see Figure  4-1). Model 

Reference Adaptive System (MRAS) (direct adaptive control) and Self-tuning 

Regulators (STR) (indirect adaptive control) are the most common approaches for 

parameter adjustments  [173].  Adaptive controller seems to be the most natural 

approach to accommodate faults; the faults effects appear as model parameter changes, 

and they are identified online, and the control law is reconfigured automatically based 

on new parameters  [97]- [98]. The controller acts as PFTC where no information about 

the fault is introduced. 

 

Set point 

  

Controller  
parameters  

  

 

Output   
Input Controller Plant 

Parameter 
adjustment

 

Figure  4-1: Block diagram of the adaptive system  [173] 
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DSM can be used as a performance index, instead of output error in MRAS 

technique, to tune the controller parameters in order to maintain the safety requirements 

in addition to the output performance. A brief description about controller adapting 

based on DSM is introduced in Chapter 2, more details are discussed here.  

Based on the MIT rule  [173], the controller parameters can be updated by using the 

following equation: 

)1()()1( +
∂
∂

+=+ k
k

kkkk
i

iii δα    (4.1) 

where kI is the controller parameter number i, αi is the adaptation parameter, and δ(k) is 

the discrete-time form of DSM. The performance index δ2 can also be used instead of  δ 

in (4.1) 

This equation can be applied either for δ≥ 0 or δ<0. In case of δ≥ 0, applying (4.1) 

moves the system state far away from the safety boundary. Contrarily, the system state 

is led to the safety boundary when δ<0. Since the adaptaition paratmter, αI, varies based 

on the sign of δ, using the absolute value of δ in (4.1) is not necessary. 

Note that, δ(.) is a nonlinear and non-differentiable function (2.14) and it depends on d 

(.), which is the distance vector from safe region boundaries. Therefore, ikk ∂+∂ )1(δ  can 

be replaced with a function fi( ikk ∂+∂ )1(δ ) i.e. 
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If d has only one element negative, i.e. only one constraint of Φ is violated, then  
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where δm is the distance between the current state and the violated constraint m∈{1,2...q}, 

and q is the total number of constraints. 

If more than one violated constraint are violated, then the infinity norm  
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+
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k
k

k v
ii
dδ   (4.4) 

is used. It corresponds to the maximum effect of ki on violated constraints. dv⊆d is the 

distances vector between the current state and violated constraints v≤q.  
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Adaptation Algorithm: The parameters can be adapted according to the following 

procedure: 

1. Calculate d(k)  

2. If d(k) ≥ 0 then fix the parameters at the nominal values which satisfy the output 

performance. 

3. If d(k)<0 then adapt the parameters according to (4.4). 

4. If ki(k+1) within the range which satisfy system stability then update the 

parameters. 

5. If one of the adapted parameters is out of the stability range, then it shall be 

fixed at the closest allowable gain to the calculated one.  

4.2.2 Multi-Controller Selection 

The system parameters variation and disturbances are not identified in the previous 

method (single controller tuning based on DSM). Thus, a single controller may not 

recover the system performance and safety requirements, especially in case of system 

fault or large disturbance. Recover the system performance can be achieved by 

reconfigure the controller. Reconfiguration mechanisms can be classified as on-line 

controller selection and on-line controller calculation methods based on DSM. 

Controller selection methods, assumed fault conditions are computed a priori in the 

design phase and initiated on-line, based on the real-time information from the 

diagnosis or supervisor system. On-line controller design methods are synthesized on-

line after the abnormal behaviors are diagnosed. The real-time information, which is 

obtained from the diagnosis system, and DSM are used to design a new controller.  The 

priority to select a certain pre-computed control law depends on the estimation of the 

system impairment status and DSM. This approach is highly dependent on prompt and 

correct operation of the diagnosis system. Any false, missed, or error in diagnosis may 

lead to a degraded performance or even a complete loss of the stability of the closed 

loop system.  

4.2.3 Multi-Controller Selection and Tuning 

In most cases, the information of the diagnosis system may not be sufficiently accurate. 

Therefore, the selected controller may need to be adapted on-line to compensate the 
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missed information. A combination between both of the above methods can be used to 

compensate inaccurate information about the diagnosed system i.e. after a fault has been 

detected a new controller is selected or redesigned on-line. Moreover, this controller is 

tuned based on the value of DSM in order to achieve the required output and safety 

performance.  

4.3  Examples of Controller Design Based on DSM 

4.3.1 PID Controller Tuning for SISO Systems 

The PID controller is one of the popular controllers used in more than 80% of industrial 

SISO process. It has dominated industrial control for half a century, and there has been 

a great deal of research interest into the implementation of the advanced controllers. The 

reason is that the PID control has a simple structure, which is easy to be understood by 

field engineers, and it is robust to disturbance and system uncertainty  [129]]. A tutorial 

given by Hang et al.  [174] outlined the recent development in PID parameters 

adjustment based on relay feedback test. Some other techniques have also been used in 

developing auto-tuning PID controllers, such as the gain and phase margin based 

method  [175]; the stable auto-tuning PID method designed using the Lyapiunov method 

 [176], etc.   

Methods based on online parameter estimation have also been proposed for the 

automatic tuning of PID regulators.  Some authors proposed auto-tuning regulators 

based on pole placement or Linear Quadratic Gaussian (LQG) design methods. Auto-

tuning of PID using adaptive parameter estimation method is proposed in  [177]. 

Another method for auto-tuning is to use expert (neural network, fuzzy, etc.) system to 

tune the controller see for example  [129],  [178]. 

In this section, a mathematical formula to adapt PID controller parameters based on 

DSM for a system defined by state space model is deduced, in order to satisfy the output 

performance and safety requirements.  

The control signal u∈ℜ at any instant k, using a discrete PID controller, is defined as 

T
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where KP, KI, and KD are the controller proportional, integral, and derivative gains 

respectively. 

It is required to adapt the PID controller parameters (KP, KI, and KD) to achieve the 

safety requirements (d(k+1) ≥ 0) in addition to the output performance. Hence, the 

incremental values of the parameters should depend on DSM.   

Consider that the safe operation region is a polytope, then the distance vector d(.) based 

on (2.13) is defined as  

)1()1( +−=+ kk ac xDdd   (4.6) 

Substituting by the state space model and control input equation of PID controller then 
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Refereeing to the single controller tuning method described in the previous section, then 
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v
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where v
aD ∈ℜvxn⊆Da ∈ℜqxn and v

cd ∈ℜvx1⊆dc ∈ℜqx1. The variation of d(k+1) with 

respect to PID parameters are given by: 

 

))1()(()1(

))(()1(

))(()1(

1

T
kekek

k

jek
k

kek
k

v
av

D

k

j

v
av

I

v
av

P

−−
−=+

∂
∂

∑−=+
∂
∂

−=+
∂

∂

=

bDd

bDd

bDd

  (4.8) 

and the updated parameters are   
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The initial values of the controller parameters are designed in order to satisfy the output 

performance in normal operation.  
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 Example 4.1 

Consider the DC motor model in Example 2.1, and assume that there exists a sudden 

load torque disturbance 0.5 N.m after 15 s. Figure  4-2 shows the system response and 

state trajectory using fixed PID controller parameters where KP, KI, and KD are 4, 2, and 

2 respectively. The output response of the fixed PID controller in Figure  4-2c is 

accepted with respect to the transient and the steady state because the settling time is 

less 5 s, and the steady state error is almost zero. However, the state trajectory lies 

outside the safe boundaries at the transient (Figure  4-2a) i.e. DSM <0. By decreasing the 

PID controller gain, the DSM response may be improved. On the other side, the reaction 

time (rise and settling time) will increase. Figure  4-3  shows the motor response and 

DSM variation using PID controller where KP, KI, and KD are 1.15, 1, and 1 

respectively. Note that the DSM is positive in transient and steady state response; 

contrarily, the motor reached the steady state after 10 s, while the motor reached steady 

state after 5 s in  Figure  4-2. Therefore, to obtain a fast response in addition to 

maintaining positive DSM in transient and steady-state period, the PID controller 

parameters have to be adapted based on DSM.  

Figure  4-4 shows the motor response using adapted PID controller parameters based 

on (4.9) where the nominal controller parameters KP, KI, and KD are 4, 2, and 2 

respectively (parameters of Figure  4-2); the adaptation parameters αP, αI and αD are 0.9, 

0.001, and 0.05 respectively.  Comparing the response of Figure  4-2 with Figure  4-4, it 

is clear that the controller in Figure  4-4 tries to pull the state trajectory in the direction 

of the safe region and the output response is almost similar to Figure  4-2. Changing the 

nominal controller parameters or adaptation factors could enhance DSM response.  

Figure  4-5 shows  the motor response using adapted PID controller based on DSM 

where nominal parameters KP, KI, and KD are 1.15, 1, and 1 respectively (parameters of 

Figure  4-3) and the same adaptation parameters. It is clear that the response in Figure 

 4-5 is the best among the previous responses, because the settling time is less than 5 s 

and the DSM is almost positive in the transient period. Despite using the same 

parameters in both responses of Figure  4-5 and Figure  4-3, the system response in 

Figure  4-5 is faster with acceptable DSM.   
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Figure  4-2: DC motor response using fixed parameter PID; KP=4, KI=2 and KD=2 

(SB: Boundary and Tr: Trajectory) 
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Figure  4-3 DC motor response using fixed parameter PID; KP=1.15, KI=1 

and KD=1 
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Figure  4-4: DC motor response using adapted PID controller; 

KP=4, KI=2 and KD=2 
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Figure  4-5: DC motor response using adapted PID controller; 

KP=1.15, KI=1 and KD=1 
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4.3.2 Predictive Controller Design Based on DSM for SISO and MIMO Systems  

Model predictive Control (MPC) or receding horizon control (RHC) is a form of control 

in which the current control action is obtained by solving on-line, at each sampling instance, 

a finite horizon optimal control problem, using the current state of the plant as the initial 

state. The internal model is used to obtain prediction of system behavior over the finite 

horizon  [179]- [182]. The optimization yields an optimal control sequence, but only the 

first control of the sequence is applied to the plant and in the next sampling time, the 

complete calculation is repeated (receding horizon principle). This is the main difference 

from conventional control, which uses a pre-computed control law.  

LQR (Linear Quadratic Regulator) and EA (Eigen Assessment) are among the most 

popular controller design techniques for MIMO systems. Each one has its own advantages 

and disadvantages  [102],  [89]. Most of the process operates at control and state constraints. 

It is not easy to handle control and state constraints using EA controller design. LQR is 

an infinite horizon optimization problem and therefore LQR design with control and 

state constraints is hard. 

Since MPC is formulated as an optimization problem, inequality constraints can 

naturally be added to the controller  [182]. It naturally handles the control of 

multivariable plant and takes into account the information on constraints arising from 

equipment limitations, safety requirements, etc. In its usual form, it does this by 

combining linear dynamic models with linear inequalities, which seems to be a very 

powerful combination, since the linear model keeps the dynamic simple, while the 

inequalities can be used to represent important nonlinearities, as well as constraints. The 

usual formulation of MPC using a quadratic or linear cost function combined with a 

linear model and linear inequalities leads to a quadratic programming (QP) or linear 

programming (LP) optimization problem  [181],  [183]. The ability to handle explicitly 

hard constraints on control and states may be viewed as one of the major factors of the 

success of MPC in process control. Therefore, it has been widely applied in process 

industries. Although constraints improve the appeal of MPC as an advanced control 

strategy, they make the controller implementation difficult.  

The control law of a predictive controller, for a system defined by the state-space 

model, is obtained by minimizing the 2-norm measure of predicted performance  [119], 

 [181] given by 
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with respect to the control sequence u  

where  
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 ( ) ( ) ( )kikˆikkikˆ d +−+=+ yye  

eQee
Q

T2
= , ( ) mkikˆ ℜ∈+e  is the predicted error between the desired and predicted 

response. x∈ℜn is the system state vector; yd∈ℜm is the reference output vector. kk )1(ˆ +x  

is the prediction of x(k+i) made at instance k, Xs ⊆ X is the set of state vectors which 

satisfy all state constraints. A, B, C and D system parameter matrices of adequate 

dimensions, Qi are the error weighting matrices, Ri are the input weighting matrices. N, N1 

and Nu are the maximum, minimum, and control horizons, respectively. Notice that Q, 

R, N, N1, and Nu are free design parameters. 

The MPC control law is based on the following idea: At time k, compute the optimal 

solution { }*
1

** ,, −+= uNkk uuu K  to problem (4), apply *)( kk uu = as input to the system, 

and repeat the optimization at time k+1 based on the new state x(k+1). 

In most cases, Xs is a polytope defined by a set of linear inequalities in the 

form i
T
i c≤xa , i=1,…,q, where ai∈ℜn, ci∈ℜ, and q is the number of constraints. 

Therefore the state constraints can be written as 

cc kikD cx ≤+ )(  (4.12) 

where Dc=[a1 … aq]T and cc=[c1…cq]T 
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4.3.2.1 Model Predictive Control with DSM constraints 

The design of MPC based on DSM can be handled by replacing Xs with the safe 

operation regionΦ. The state constraints can be written in the form 

0)(ˆ ≥+ kikδ or 0)(ˆ ≥+ kikd  (4.13) 

where ℜ∈+ )(ˆ kikδ  and qkik ℜ∈+ )(d̂  are the prediction of DSM and the distance 

vector between the predicted state and the boundaries of Φ, made at instance k, 

respectively. 

Assuming that Φ is a polytope, then the distance vector d(.) is obtained from (2.3), 

which is deduced in Chapter 2 

Consider the system model with input constraints and DSM constraints (4.13) then the 

objective function according to (4.10) is   
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The minimization of (4.14) is known as a Quadratic Programming (QP) problem. 

Since the problem depends on the current state x(k), the implementation of MPC 

requires the on-line solution of a QP at each time step.  Although efficient QP solvers 

( [180]- [182],  [184]) based on active set methods and interior point methods  [124], 

 [123],  [181] are available, computing the input u(k) demands significant on-line 

computation effort. For this reason, the application of MPC has been limited to “slow” 

and/or “small” processes. If all the constraints are inactive, the solution of the predictive 

controller is exactly the same as in the unconstrained case (see Appendix C). But if the 

constraints become active then the controller becomes nonlinear. The constrained 

predictive control law is a linear time invariant control law, in case that the set of active 

constraints is fixed. In practice the set of active constraints changes, so the control law 

seems as consisting of a number of linear controllers with the same structures and 

switching between them  [181]. 

A new idea to design a piecewise-linear controller for MPC with constraints is 

introduced in  [185] and  [186]. The idea is that for small problems, in which the state-

space is divided up into a manageably small number of (convex) pieces, one could pre-

compute (off-line) the control law that should be applied in each piece, and then the 

MPC algorithm would consist simply of reading the appropriate gain matrix from a 

look-up table, depending on the current state estimate. This idea is not feasible for 

application in which the number of constraints is large. The approach taken by  [185] 

and  [186] is based on the observation that in the MPC problem, the inequality 

constraints (4.15) depends on the current state x(k), which can be thought as a set of 

parameters of the QP problem. Therefore, the problem in (4.14) is defined as a multi-

parametric quadratic program (mp-QP)  [185],  [181].  

The solution of mp-QP described in  [185] is a Piecewise Affine (PWA). The 

complexity of the polyhedral partition tends to increase rapidly with the number of 
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constraints, and the dimension of state vector. This has led to approximate algorithms 

for solving mp-QP problems being investigated in  [187], and  [188], with significant 

reduction in complexity. Moreover, it has led to the investigation of efficient 

implementation of piecewise linear function evaluation  [189]. Several properties of the 

geometry of the polyhedral partition and its relation to the combinations of active 

constraints at the optimum of the quadratic program of the approach in  [185] are 

analyzed in  [190]. 

A major problem, which can occur with constrained MPC, is that the optimization 

problem may be infeasible. Standard QP solvers just stop in such case  [181],  [182]. This 

can happen because an unexpected large disturbance or fault has occurred. Therefore, 

there is really no way in which the plant can be kept within specified constraints. Some 

times also it can happen because the real plant behaves differently from the internal 

model. The predictive controller may then attribute differences between the plant and 

the model behaviors to large disturbances or fault. If these keep growing, then it can 

eventually decide, erroneously, that it does not have enough control authority to keep 

the plant within constraints. There are many ways in which the predictive control 

problem can become infeasible, and most of them are difficult to anticipate  [181].  

Thus, it is essential to have a strategy for dealing with the possibility of infeasibility. 

Various possibilities exist, ranging from ah hoc measures such as outputting the same 

control signal as in the previous case, or (better) the control signal computed u(k+2⎢k) 

in the previous step, to sophisticated strategies of ‘constraints managements’, in which 

one tries to relax the least-important constraints in an attempt to regain feasibility  [181].  

Typically, some of the constraints, such as physical limitations, must be enforced at all 

times, while other constraints can be relaxed in order to transform the optimization 

problem into a feasible one in the case of infeasibility. 

There exist techniques which transform an infeasible MPC into a feasible one 

without being able to explicitly differentiate between the relative importance’s among 

the constraints, see e.g.  [191] and  [192]. However, the constraints are often not equally 

important, e.g. a safety constraint is usually more important than a product quality 

constraint. One way to explicitly express this difference in importance is to give the 

constraints different priorities. When the on-line optimization problem becomes 

infeasible, the lowest prioritized constraints are dropped  [191]. In the research literature, 

there are some algorithms and methods to solve infeasible MPC based on the relaxation 
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of constraints with different priorities, see for example  [193]-[198],  [184],  [185], and 

[199]. 

The work in  [193] discusses issues related to the problems of infeasibility in 

constrained predictive control, and proposes several strategies to solve such problems, 

including strategies that involve priority levels. The most rigorous approach it proposes 

for infeasibility handling is to satisfy as many of the highest prioritized constraints as 

possible, and then compute a feasible relaxation of the other constraints by treating 

them as soft constraints, that is, a term is added to the cost function in the original MPC 

optimization problem that penalizes the violations of these constraints. 

An approach is presented in  [194] and  [195] for solving infeasible MPC problems 

considering that the constraints have different priorities,. In this approach, integer 

variables are introduced in order to handle the priorities in an optimal fashion. The 

minimization of the size of the violation of the constraints is performed according to 

their prioritization by solving a sequence of mixed integer optimization problems. In 

 [196], another algorithm to minimize a sequence of LP (or QP) problems in addition to 

the original MPC optimization is presented. An important difference between the 

algorithms presented in  [193]- [196] and the other approaches mentioned above which 

also take prioritization into account, is that the algorithms in  [193]- [196] minimize the 

violations of those constraints which can not be fulfilled.  

A modification of the  [196] approach is presented in  [197],  [198], and  [185].  In the 

case when all constraints have different priorities, it reduces the sequence of LP problems to 

a single LP problem by selecting the weights (or, cost vector) in this LP problem. It solves 

only a single LP in addition to the standard QP problem on-line in order to find the 

feasible solution of MPC with constraints. 

The approach, which is introduced  [198], divides the problem into a multi-objective 

framework that can handle a large class of prioritized objectives and constraints in an 

optimal fashion. The internal model, objectives and their relative can be changed on-line 

without the need for redesigning the controller off-line. However, this increase in 

flexibility also demands an increase in the amount of on-line computation power that is 

required. 

If there is an uncertain input in the system, which can be considered as the additive fault 

information in this case, Min-Max predictive controller design can be used  [200]- [202]. 

 



     101

Example 4.2  

Consider an MIMO system of magnetic tape drive system explained in  [203] is given by  
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A brief description of the system is introduced in Appendix D.  

Consider that, the system has the following linear boundary constrains   

1. φ1=[-2.11 2.113 0.372 0.375]x ≤ 2.5 

2.   φ2=[-2.11 2.113 0.372 0.375]x ≥ 1.75 (4.17) 

3. φ3=[0.5 0.5 0 0]x ≤ 1.5 

4. φ4=[0.5 0.5 0 0]x ≥ 0.5 

The distance vector from these boundaries is given from 
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qi
d

≤≤
=δ δ(k) is the DSM at sampling instance k, q=4 (number of 

constraints) and di(k) is the variable number i in d(k). 

Figure  4-6 shows the system response and DSM variation using MPC without 

DSM constraints for a command input vector r= [1 2]T and the system is affected by 
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a constant input disturbances ([-0.3 -0.2]T) after 1.5 s. The controller has the 

following parameters:  
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ky , where the sampling time T=0.05. 

In this case, the control law is (see Appendix C)  

[ ][ ]              )(00 k::)k( xyr xKyKIu −= L  (4.18) 
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The system response is acceptable in the transient and steady state, since that the 1% 

settling time is less than 1 sec for each output, and steady state errors are very small. 

However, the system behavior is not accepted in case of disturbance, DSM is negative 

and the steady state errors are 10% and 25% for the first and the second output 

respectively. Figure  4-7 shows the system response using MPC with DSM constraints; 

quadprog function in Matlab toolbox is used in the simulation in order to solve the 

quadratic optimization with hard constraints (4.14). The controller parameters are taken 

as in the previous response (Figure  4-6). The response is very bad since the steady state 

errors are 50% and 25% for the first and the second output respectively. The DSM is 

negative as well, not only due to disturbance but also in the normal case. The reason for 

that is the infeasibility of the solution of MPC with DSM constraints. Thus, to improve 

the responses the infeasibility problem should be solved.  

Based on the previous discussion about the infeasibility solution, it is clear that 

changing the parameters of the controller can solve the infeasibility of MPC with 

constraints. Figure  4-8 shows the MPC with DSM constraints with new controller 

parameters as follow:  
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Figure  4-6: Tape-system response using MPC without DSM 

constraints 
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Figure  4-7: Tape-response using MPC with DSM and the same 

parameters of MPC without DSM 
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Figure  4-8: Tape-Response with DSM as hard constraints  

The responses of the outputs and DSM (Figure  4-8) are improved, not only in normal 

operation but also in disturbance case.  

According to the discussion about constrained MPC and the previous example 

(Example 4.2), it is clear that the computation burden to find a feasible solution is high 

in addition to the complexity of the algorithms.  Therefore, in the following section two 

different methods are suggested to find a feasible solution and to reduce the on-line 

computation methods. 

4.3.2.1.1  Softening the DSM constraints 

Softening constraints is one systematic strategy for dealing with the infeasibility. That is 

to allow the constraints to be crossed occasionally, but only if really necessary, rather 

than regarding them as ‘hard’ boundaries that can never be crossed  [181]. 

The strategy to soften constraints is to add new variables, so-called ‘slack variables’, 

which are defined in such a way that they are non-zero only if the constraints are 

violated. Then their non-zero values are very heavily penalized in the cost function, so 

that the optimizer has a strong incentive to keep at zero if possible  [181].  
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Here, the distance vector d is taken as the slack variables. The 2-norm, 1-norm or ∞-

norm of d(·) can be introduced as additional term in the main objective function (4.10). 

The objective function of the predictive controller in this case can be rewritten in the 

following form  
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Pi is the weighting matrix for d, and it depends on the elements of d (dj); if δj is 

negative then the corresponding matrix Pi is increased and it is zero otherwise. Pio is a 

constant weighting matrix. The number of free-design parameters, in this case, is 

increased by Pio. In this case, hard constraints are restricted to control inputs. The 

solution of the problem given in the form of (4.14) can be obtained by using either 

direct (one-shoot) optimization or dynamic programming  [205],  [206]. A brief 

description about the two methods is given in the following section. 

a) One-shot Optimization  

The control problem, which is formulated as the optimization of (4.19), will now be 

solved using one-shoot optimization method.  Substituting (4.20) and (4.21) in (4.19) 

then the performance index can be written as   
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wheree , d and Qt are defined in the previous section, 
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The solution of (4.22) is deduced in Appendix C, and therefore the control law is 

defined as  
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[ ])(kxtdy xKdKyKu −+=   (4.23) 

where 

tBbtbBBty t QCDPDCQCRK TTT
1−

⎥⎦
⎤

⎢⎣
⎡ ++=  

tbbtbBBtd t PDDPDCQCRK TTT
1−

⎥⎦
⎤

⎢⎣
⎡ ++=  

⎥⎦
⎤

⎢⎣
⎡−

+⎥⎦
⎤

⎢⎣
⎡ ++= AtbabtbBBtx tBt DPDCQCDPDCQCRK TTT T1

 

The first component inu , namely u(k), is the control vector applied to the system. 

This control vector can be obtained from (4.23) as 

[ ][ ]
[ ]

        

)(        

)(0:0:)(

k

kk

xtdy

xtdyr

xKdKyK

xKdKyKIu

−+=

−+= L

 (4.24) 

 The MPC structure with DSM as soften constraints is shown in Figure  4-9. 

Despite the simplicity of the direct optimization algorithm, it needs much memory 

space because the matrices usually have large dimensions. Moreover, the problem could 

be numerically unstable when the horizons are very large. The derivation of (4.19) is 

explained in Appendix C. 

 

Figure  4-9: Block diagram of MPC with soften constraints 

b) Dynamic programming  

The solution of the control problem by applying dynamic programming is given by the 

u(k) 

dt 

Plant 

State 
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y  
y(k) 



     107

affine control law  [205] but without integral action in the form of  

( ) ( ) [ ][ ])(-)(1 T
1 k)j(kNj w xAPBMuKK +−=  (4.25) 

where uw represents the control vector due to the reference output (yr) and ux the control 

action based on the state feedback 
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The control vector uw(k) is given by  
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The solution is feasible if the control law calculated in (4.25) satisfies the constraints of 

control signal u(i+k). Otherwise, the objective function parameters should be adapted and 

the optimization problem has to be solved again until the control constraints are satisfied. 

The advantage of using dynamic programming optimization instead of direct 

optimization is that the matrices dimensions are smaller. However, the number of 

calculation steps is increased. 

The main advantage of using softening DSM constraints is that the control law has a 

fixed structure as in the case of no constraints (Figure  4-9), while its parameters change 

according to the distance vector (d) 

4.3.2.1.2 Adapting weight method 

As shown in Example 4.2, changing the weight matrices could be used to find a feasible 

solution. Therefore, a suggested method that adapts the MPC parameters in order to find a 

feasible solution and use a fixed controller structure is introduced in this section. The 

suggested method to find an optimal solution of the objective function (4.15) subject to 

(4.14) is based on solving the problem without constraints and tuning the weight matrices Q 

and R in order to satisfy the constraints. 

The control law without constraints using direct optimization is in the form of (4.18).  

By incorporating (4.18) in (4.15) then the condition for feasible solution will be: 

( ))()( kˆkˆ xybat xKyKDxDd −≥+   (4.26) 

The problem here is to solve Matrix Inequality (MI) (4.26) to find the weighting 

matrices Qt and Rt. However, equation (4.26) is not easy to be solved because it is a 

nonlinear MI. Therefore, (4.26) can be satisfied by tuning Qt and Rt around its nominal 

value using adaptive algorithm introduced in Section 4.2. Unfortunately, the rate of 

changes of DSM with respect to Qt and Rt is difficult to obtain. Hence, the adaptive 

algorithm of Section 4.2 can not be easily applied in some cases. Consequently, a 

simplified algorithm is proposed in the following: 

1. Determine Qto and Rto, which satisfy the desired performance at nominal 

situation. 

2. Let Qt (j)= Qto and Rt(j)= Rto; where j is the iteration number. 

3. Calculate the control vector (4.18) based on Qt(j) and Rt(j). 
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4. Check MI (4.26). if Qt (j) and Rt(j) do not satisfy (4.23), then calculate the new 

weights based on the following equations: 

RRR
QQQ

∆α+−=
∆α+−=

1

1
)1()(
)1()(

jj
jj

tt

tt  (4.27) 

5. Repeat step 3 and 4 until (4.26) satisfied or at least x(k+1) moves in the direction 

of Φ; where Qt (j)≥0  and Rt(j) ≥0    . 

6. The values of Qt and Rt, which satisfy (4.26) are the optimal weights of (4.14) 

that satisfy a feasible solution. 

where α1∈ℜ and α2 ∈ℜ are the adaptation parameters. ∆Q and ∆R are the incremental 

weight matrices for Q and R respectively.  

The values (∆Q, ∆R) ∈{(∆Qi, ∆Ri)}, where ∆Qi and ∆Ri are the incremental weight 

matrices, which reduce the distance between the current state and the maximum violated 

constraint number i at instance k; i∈ {1,2,…,q} and q is the number of constraints. These 

matrices (∆Qi, ∆Ri) are designed off-line for each constraint individually. 

The adaptation equation (2.27) can be replaced with  

(4.28) 

In order to avoid negative gain matrices in addition to a more simplification in the 

algorithm  

where βl≥ 0, l ∈{1,…,m}and m is the number of outputs; γp≥ 0, p ∈{1,…,r,}and r is the 

number of input; Qi and Ri are the weight matrices at prediction horizon number i. βl and 

γp are chosen based on the violated constraints. βl and γp can be determined off-line for 

each constraint, and they are selected one line from the set of pre-designed values. 

Although the DC motor is a simple example and a SISO system, it illustrates the 

effectiveness of each controller design method. It is a good example to compare 

between the different methods of MPC solution discussed above, since it is required to 

maintain DSM positive not only at steady state but also at transient in addition to obtain 

a faster response. Therefore, the introduced methods in this section are implemented on 

DC motor example. 

 

Qi (j) =diag[β1, β2, …, βm]  Qi(j-1) 

Ri (j)= diag[γ1, γ2, …, γm]   Ri(j-1)  
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Example 4.3  

Consider the example of DC motor in Example 4.1, and the reference output is 

computed using a reference model, a first order system, in the form of 

)(
5.01

1)( sR
s

sY
+

=  (4.29) 

where Y(s) and R(s) are the Laplace transform of the output and the input respectively, 

and s is the Laplace operator, Figure  4-10 shows the state trajectories and responses 

using MPC without constraints for 2 units a step input. The parameters of the controller 

are chosen as Q=70, R=0.01, N1=1, Nu=6, and N= 10.  

The response of MPC controller without considering DSM (Figure  4-10c) is accepted 

w.r.t. the error and rise-time but the state trajectory lies outside the safe boundaries at 

transient (Figure  4-10a) i.e. DSM is negative. The response is almost the same as in 

case of fixed parameters PID (Figure  4-2). To improve DSM at transient time, the 

controller should be redesigned according to DSM.  

Figure  4-11 shows the response using a predictive controller with DSM as hard con-

straint. The controller parameters are chosen as Q=30, R=0.01, N1=1, Nu=6, and N= 10. 

It is the best response among the other responses but the computation effort is high. In 

addition, the feasibility solution methods discussed before are not considered. The 

controller parameters are chosen manually, which produce a feasible solution in the 

whole operation time (transient and steady state). 

Figure  4-12 shows the response using MPC with softening the constraints of DSM 

(Section 4.3.2.1.1). The DSM is improved. The controller parameters are 

P0=diag(300,300,0,0,0,0), Qi=[70], Ri=[0.01], N=10, N1=1, and Nu=6. 

 Figure  4-13 shows the response using MPC with adapted weight based on DSM 

(Section 4.3.2.1.2). The DSM is improved but the response is faster than the previous 

response. The controller parameters are, Qi=[70], Ri=[0.01], N=10, N1=1, Nu=6, 

βl=0.95, and γl=1.4. 
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Figure  4-10: MPC without DSM 
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Figure  4-11: MPC with DSM as hard constraints 



     112

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Time (s)

S
ta

te
 v

ar
ia

bl
es

0 2 4 6 8 10
2

2.5

3

3.5

4

4.5

5

Time (s)

C
on

tr
ol

0 1 2 3 4
0

1

2

3

4

Speed (rad/sec)

C
ur

re
nt

 (
A

)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

Time (s)

D
S

M
 

Speed (rad/s)

Current (A)

Figure  4-12: MPC with DSM as soft-constraints 
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Figure  4-13: MPC with adapted weight 
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4.4 Frame Work of Fault Detection and Performance Recovery 

System 

An FTC system is a performance recovery controller due to faults. Design techniques 

for FTC system can be classified as passive and active (PFTC and AFTC)  [102],  [103], 

 [89]. A PFTC system may tolerate only a limited number of faults, which are assumed to 

be known prior to the design of the controller. Once the controller is designed, it can 

compensate for anticipated faults without any access of on-line fault information. PFTC 

systems treat the faults as if they were sources of modeling uncertainty. AFTC either 

compensates the effect of faults by selecting a pre-computed control law, or by 

synthesizing a new control law in real-time. Both methods need a fault detection and 

identification (FDI) algorithm to identify the fault-induced changes and to reconfigure the 

control low on-line  [89]. To design fault tolerant control (FTC) system, one of the 

important issues to consider is whether to recover the original system performance or to 

accept some degree of performance degradation after the occurrence of a fault  [102], 

 [198]. The philosophy of recovering the pre-fault system performance is unrealistic for 

some faults. In practice, because of a faulty part, the degree of the capability of other 

system components could be significantly reduced. If the design objective is still to 

maintain the original system performance, the remaining parts may be forced to work 

beyond the nominal duty to compensate for the handicaps caused by the fault. This 

situation is highly undesirable in practice due to the physical limitation of the other parts. 

The consequence of the so-designed FTC system may lead to a worse behavior and still 

cause further damage. Therefore, trade-off between achievable performance and safety re-

quirements of the operation should be carefully considered in FTC system design not only 

at steady state but also during transient (dynamic response)  [102]. 

It is known that the information about the fault obtained from FDI, in many cases, is 

not sufficiently accurate. Moreover, the uncertainties exist in faulty models. Therefore, 

considering DSM constraints in the recovery controller, particularly in MPC, is useful in 

order to compensate the unavailable fault information and model uncertainties ( [134]-

 [141]). Thus, the design of an FTC system that achieves an acceptable performance in case 

of system faults without violating the safety requirements of the overall system is the 

focus of the work presented here. 

The idea of using MPC in FTC is firstly discussed in  [103] and implemented on a 

simulation model of EL AL Flight 1862 in  [119]. Both references point out that MPC 
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provides suitable implementation architecture for fault tolerant control. The representation 

of both faults and control objective is relatively natural and straightforward in MPC. Some 

faults can be represented by modifying the constraints in MPC problem definition. Other 

faults can be represented by modifying the internal model used by MPC  [119],  [181]. In 

addition, MPC has a good degree of fault tolerant to some faults; especially actuator faults, 

under a certain conditions, even if the faults are not detected (PFTC). 

The degraded accepted performance can be handled in MPC by changing the 

objective function or using multi-objective function. According to the definition of 

DSM, MPC based on DSM constraints satisfies the safety requirements of the system 

and the accepted degraded performance. In addition, a control system, whose design is 

based on DSM, can compensate faults when it is difficult or just not possible to find an 

FDI system that provides full and exact information about the fault. Moreover, not all 

faults can be anticipated. In such situation, a DSM based FTC system could be very 

useful to overcome this problem, because controllers based on DSM can maintain a 

safety operation with acceptable degraded performance even in some cases of 

unanticipated faults. On the other hand, the proposed FTC system can be applied to 

active as well as passive FTC.  

In the proposed FTC design, three controllers are configured and used for the 

following scenarios: 

• Under normal operating conditions, a nominal controller is designed to 

guarantee the system’s stability and performance in the presence of the 

modeling uncertainty or disturbance. 

• When a fault occurs, the nominal controller should guarantee the system 

signal boundary by checking DSM until the fault is detected. 

•  After a fault is detected (DSM < 0), the nominal controller is replaced 

by MPC controller based on DSM using the nominal system model to 

compensate the effect of the fault. This controller may recover some 

control performances. 

• If the fault is isolated, then the MPC with DSM is reconfigured again 

using fault information by selecting the suitable faulty model to improve 

the control performances. 
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Remark 1: In the case of PFTC, no FDI system is used. The controller is reconfigured 

according to the value of DSM. i.e., there are two control configurations; nominal 

controller and MPC based on DSM using the nominal model.  

Remark 2: It is possible that, in some cases, the fault that has occurred cannot be 

isolated, for instance a fault whose functional structure is completely unknown a priori 

(i.e., does not belong to the fault set). Then, two controller configurations is used as in 

case of Remark 1.  

The switching between the three types of controllers could cause a severe effect on the 

controlled system. Therefore, a smooth transition from one controller to another is 

mandatory. Different methods can be employed to smooth the transition such as gradual 

changing of the input see Section 4.4.1.2, and control input signals fusion using for 

example fuzzy logic or analogical gate circuit  [151].   

In this approach, the fault is isolated using the algorithm introduced in Chapter 3, 

the reconfigurable controller is designed using MPC based on DSM and a new faulty 

model selected according to FDI algorithm information. Figure  4-14  shows the general 

structure for the proposed reconfigurable control scheme, which includes a set of 

reference models, MPC using safe region constraints, a Multi-Model FDI system 

employing parameters and state estimation, and a supervisor.  

)()()( kˆ,kˆ,kˆ fxθ  γ 

r

Multi-Model 
FDI and 

state/parameter 
estimator 

MPC with Φ Multi-Reference 
Model and 

command control
Process 

Disturbance Fault 

ν

 Supervisor 

 

Figure  4-14: Overall structure of the proposed FTC system 

4.4.1 Multi-Reference Model and Command Control Block  

As mentioned above, it is necessary to reduce the overall system performance to an 
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acceptable degraded performance in some fault situation. Moreover, in some faulty 

situation, the system cannot be able to follow the command input and therefore, it 

should be changed in order to maintain an adequate system operation. The change of the 

performance can be achieved by modifying the objective function of MPC  [204],  [119] 

or by selecting a pre-designed reference model  [102]. A combination of both methods is 

proposed here. The objective function is changed according to the DSM value in order 

to find a feasible solution of a constrained MPC. A degraded reference model can be 

used to reduce the effort to find a feasible solution for constrained MPC. The multi-

reference and command control block (see Figure 3) is dedicated to select an acceptable 

degraded performance in case of a specified fault. In case of a specified fault, a new 

command input is selected in order to maintain the system availability. The design of 

degraded reference model and command input for actuator faults is addressed in  [102]. 

This method can be generalized in most of the faulty case. This block is activated 

according to the information received from the supervisor.  

4.4.1.1 Degraded Reference Model Design 

Assume that the desired closed loop reference model of the system with no fault is 

represented by 

⎭
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+=

)()()(
)()()(
tkt
ttt

rr

rr
rDxCy
rBxAx&

 (4.30) 

The corresponding transfer function matrix of the desired reference model is then: 

rrrrr ss DBAICT +−= −1)()( . (4.31) 

Assume that the eignvalues of the closed-loop system are represented as 

[ ].21 nr diag λλλ L=Γ  

After a fault has occurred, it is expected that the closed-loop system eignvalues of the 

degraded reference model will move towards the imaginary boundary of s-plane to reflect 

the loss of dynamic performance of the system as will as the reduction in stability margin. 

Suppose that the eignvalues of the degraded reference model are represented as  

rd ΓΓ 1−Σ=  (4.32) 

where 
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[ ]ndiag βββ L21=Σ , ,1≥iβ .,,1 ni L=∀  

The transfer function matrix of the reference model of the degraded system then becomes 

ddddd ss DBAICT +−= −1)()(  (4.34) 

Assume that Ad is diagonal then 

rd ΓA 1−Σ=  

It is important to note that the desired and degraded reference models should have steady-

state gain for the purpose of commend input tracing. Therefore,  
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limlim  (4.35) 

and 

rrrrdddd DBACDBAC +=+ −− 11 )()(  (4.36) 

If it is assumed that Cd=Cr and Dd=Dr, then 

rrrd BAΓΣB 11 −−=  (4.37) 

Hence the degraded reference model can be represented as  
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 (4.38) 

4.4.1.2 Command Input Control 

In some faulty situations, the system cannot follow the command input and therefore, it 

should be changed in order to maintain system availability. A set of different command 

input for different fault mode can be previously designed and selected on line based on 

the detected fault. To avoid the transient effect due to the switching between the pre-

fault and post fault command input, it is important to change the command input 

gradually (smooth change). Thus, based on smooth command input switching described 

in  [102], the following modified command input rm will be generated based on the 

selected command input r as 

Dm
kk

mm kkkkekk D ≥−−−+−= −− )),1()()(1()1()( )( rrrr τµ   (4.39) 

where 
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are design parameters to provide smooth switching between rn and rf ; rn and rf are the 

command inputs before and after the fault detection. For large k, fm rr → . In fact, the 

command input rm(k) is an interpolation between r(k) and rm(k-1). 

Special case 

In some situations, it is difficult to find controller parameters, which can track the command 

input and achieve and the safety performance in addition to the stability. If the highest 

priority is given to the safety i.e. DSM should be positive, then the DSM index is used to 

determine the new command input as follows: 

When the DSM is negative, at each instant there exists at least one constraint from the 

constraints set of safe region is violated. In this case, DSM is the distance between the 

current state and the nearest boundary constraint to the current state, i.e.   

2)()()( kvkk ioi x−== δδ  

Assume that the violated constraint number i∈{1,2,…,q} is taken as the reference target 

to the system, and assume that D=0, then the new command will be 

ioc vk Cr =)(  (4.40) 

where 
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x
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 (4.41) 

subject to  

{ }0)( =∈ vvv ii φ   

and iφ is the nearest violated boundary constraint.  

For a SISO system and linear safety constraints, the command input can be 

calculated by another way without solving (4.41). The DSM can be defined for the 

violated constraint i according to (2.12) as 

)()( 11 kck T
iii xa−=δ  (4.42) 

each vector a1i can be written as 
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Therefore,   

)()( kckr isic xc−=  (4.43) 

where )(krc  is the new reference which depends on the current state of the system, y is the 

output, T
i1

a ∈ℜn and c1i∈ℜ. Equation (4.43) is used in Example 2.1 Section 2.3.1.1 

where the DSM is selected as the error between the desired and output of the system. 

It is clear that the reference is changed or adapted based on the system state location with 

respect to the safe region until the state reaches the safe region. 

Figure  4-15 shows the block diagram of command input selection and adjusting based 

on DSM. 
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Figure  4-15: Block diagram of command input selection based on DSM 
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4.4.2 MPC Employing DSM Block 

In the previous section, we discussed the MPC with constraints and showed how DSM can 

be introduced in MPC. In most faulty systems, the information from FDI is not accurate or 

sufficient to complete the fault description. Hence, an MPC complemented with DSM will 

insure a safety operation of the system and can compensate the missed information about 

the fault and uncertainties in the faulty model. The DSM index is used to specify the 

priority of the constraints that can be relaxed in order to find a feasible solution and to 

change the objective function parameters (weights). 

4.4.3 Multi-model FDI and State and/or Parameter Estimation 

The fault diagnosis and isolation subsystem described in Chapter 3 is activated when δ(t) < 

0 and/or dδ(t)/dt < 0. dδ(t)/dt < 0 means that the state trajectory moves in the direction of 

unsafe operation. In general, faults can be divided into two types: additive faults, which 

can be simulated as an unknown external signal, and multiplicative faults, which represent 

the change in the parameters of the system. In both cases, it is necessary to estimate the 

unknown external input or the new system parameters, according to the fault type, in 

order to obtain information about the fault. Therefore, parameters and state estimation are 

considered as a subsection of the FDI system. The outputs of this block are the estimated 

state and faulty model parameters, which are submitted to MPC block. Status information is 

also an output that is sent to the supervisory block. 

4.4.4 Supervisory Block 

Based on the results of FDI block, the fault information is positive or negative. Positive 

information means that one of the faulty models can describe the fault. Negative 

information signifies that it is difficult to represent the fault by one model of the set. 

Thus, positive information is treated according to the scenario of fault recovery 

described before, and the reference model and command signal can be selected easily 

according to the history of the system operation and the operation experience. 

Contrarily, negative information is not easy to be handled, and therefore the supervisory 

controller should select the command input as well as the reference model and/or 

reconfigure the system in order to maintain the system availability. The supervisor 

receives the data γ from FDI block, which contain the fault type, the output performance 

index and the DSM value. It sends the signal ν to FDI in order to select the new model, 
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which has to be used by the MPC. The DSM value plays an important role in 

supervisory control. It can be considered as a safety index for the recovery control 

performance, which is described by MPC. It is used in adapting the command input 

signal and in configuring the reference models. The MPC recovery controller uses the 

nominal plant model, in case of negative fault information, considering the fault as 

uncertainties or disturbance in the system until a fault is diagnosed. MPC with DSM 

constraints can recover the performance to a certain accepted degraded performance. 

Min-Max MPC  [200],  [201] can be used in case of unknown fault if it can be considered 

as an additional unknown input with known bound. 

4.5 Conclusions 

Designing MPC and adapting PID controlled parameters based on DSM are introduced 

in this chapter. DSM index is also used in adapting the weights of the objective function 

of MPC, in order to find a feasible solution and satisfy the safety requirements for a 

predefined performance. The controller design based on DSM improves safety-

assessment especially for safety-critical systems. Simulation results demonstrate the 

advantage of adapting PID and MPC design based on DSM, which maintains a margin 

of safety during transient state. FTC scheme based on DSM is introduced; MPC using 

DSM is discussed in the application of FTC system as well. A degraded performance 

has to be accepted in some faulty situation in order to increase the system availability. 

The accepted regarded performance can be achieved by changing either the command 

input or the model of the reference output or changing both. Therefore, multi-reference 

and multi-command selections are employed in the proposed FTC system.  
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CHAPTER 5 

5 REAL-TIME IMPLEMENTATION AND 

EXPERIMENTS 

5.1  Introduction 

In the previous chapters, the idea of DSM and its applications were addressed. The 

algorithms of these applications, particularly DSM in FDI, FTC and performance 

recovery, are implemented on a laboratory process in order to evaluate the efficacy of 

DSM and its applications. Therefore, this chapter is devoted to describe the plant and 

the real-time realization of the DSM applications at the laboratory process. These tasks 

are implemented in real-time using host/target configuration. Today it is very common 

to use two computers in a host/target configuration to implement real time systems. The 

host is a computer not necessary with real-time requirements, in which the developed 

environment, data visualization and control panel in the form of Graphic User Interface 

(GUI) reside. The real time system runs in the target, which can be an embedded system 

based on a board with DSP (Digital Signal Processing), Micro-controller, or a second 

PC. 

The separation between host and target is not necessary for small systems since hard 

real-time PC operating systems such as QNX, LynxOS, and RT-Linux have solved the 

problem of deterministic response time of real-times tasks, which exist together with 

non-real tasks on the same computers  [156]. However, if the project has spread, then 

host/target architecture is more flexibility and modular in addition to reduction in the 

computation burden. An additional advantage is that the real-time system still works 

when the host crashes, the matter that increases the reliability of the system  [156]. 

5.2  Plant Description and Real-Time Architecture 

The process control laboratory plant uses standard industrial components, which 

introduce more realism and robustness into the experiments with control application 

 [156]. Figure  5-1 shows an overview of the set-up. The plant consists essentially of two 

tanks of 100 l, a sump of 300 l, a pump (11kW), a heat exchanger, three control valves, 

seven on/off valves, six temperature sensors, three level sensors, 3 pressure sensors, and 
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one flow rate sensor. All these components are industrial ones. Valves are actuated by 

compressed air and all signals sensor/actuator and the computer systems are transmitted 

by using 4-20 mA standards. The plant works as follows: water is pumped from the 

sump and it circulates around the plant following a selected (by on/off valves) path to 

come back to the sump closing the loop. The pump works at a constant rotational speed 

and the flow rate is controlled by means of an electric modulating valve. 

Manual/automatic valves are used to change parameters and select different operating 

points. Figure  5-2 shows a photo of the manual operation panel, and Figure  5-3 shows 

the schematic diagram of the plant. 

Two additional distinctive features make the plant very interesting  [156]:  

(a) Water temperature increases very fast because the pump dissipates about 1 kW 

power in the water closed loop. Thus, a heat exchange unit is necessary to avoid 

the system ending in thermal runaway. 

(b) The two tanks are interconnected each other on the same stream in which the 

outlet flows are derived, therefore the dynamic model consists not only of 

differential equations but also of two implicit algebraic equations. 

The hybrid characteristics of the plant are analyzed in  [156] as follows: 

1. Different physical modes: physical systems are normally modeled dynamically by a 

smooth state-space function noted by 

),),(),(()( tttft uxx =&   (5.1) 

where the vector field f is obtained by using principles of conservation of mass, 

energy and momentum. These systems are usually referred as modes. However, 

differential equations (i.e. continuous-valued state trajectories) should be frequently 

supplemented by algebraic implicit equations as well as by discrete equations. 

Equation (5.1) can be valid only within limitations. In this case, the mixture is given 

by differential equations and inequalities. 



     125

 

Figure  5-1: overview of laboratory plant 

 
Figure  5-2: Manual operation panel 



     126

LL 

L 
T

F

T

P
P

T 

T 

P

T

Tank 1 
(100 l) Tank 2 

(100 l) 

Heat 
Exchanger

Pump 
(11 kW) 

By-pass 
Pipeline 

Cold 
Water

Electric 
Modulating 

Valve 

T 

On/Off
Valves

On/Off
Valves

On/Off
Valves

h1 h2 

H 
Pneumatic 

Control Valves

P0 P0 

P0 

δ1 δ2

δ3 

q1 q2

q3 

Qt

u1 

u2

uq 

Sump 
(300 l) 

P2 P1 

 

Figure  5-3: Schematic diagram of the two-tank system  

 

Such system is obtained with the laboratory plant by opening and closing the 

interconnected valve. In addition, different equations are obtained depending on the 

water level due to the geometry of the tanks. 

2. Discontinuous inputs: Switches and relays are also found in control systems and they 

can naturally be modeled as hybrid systems. This is the case of binary valves, which 

can be found in the plant actuators at the tank inlet flows, for changing the plant 

configuration and to enable/disable the cooling subsystem. 

3. Discontinuous outputs: these outputs are given by discrete sensors. They are not 

explicitly implemented in this plant. However, discrete level indicators in the tanks 

as well as temperature indicators can be simulated easily using data from analog 

sensors. 

4. Discontinuous control: on/off control can be used in this plant to control water level 

in the tanks if valves on the water inlet stream are used or to control flow 

temperature. This can be manipulated by three different valves such that a discrete 

controller based on an automaton can be implemented. 

The process has the ability to be controlled either manually using on/off switches and 

proportional analog tuner or automatically using PC control program. Manual on/off 

switches are used to test the on/off valves or to change the flow distribution to avoid 
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over flow in case of fault in the system. Moreover, proportional analog tuners are used 

to test and regulate the control valves. Therefore, the signals (discrete or continuous) to 

each valve (on/off or proportional) are from either manual consol or from PC; the 

selection between them is specified manually using manual/automatic switch. 

The PC based control system configuration, in this setup, is configured to satisfy 

real-time system requirements. The control tasks of the process are achieved using 

host/target configuration system supported by RT-Lab software. The host is a computer 

without real time requirment. 

RT-LAB is an industrial-grade software package for engineers who use mathematical 

block diagrams for simulation, control, and related applications. The software use 

popular programming tools MATLAB/Simulink and MATRIXx/SystemBuild, and 

works with viewers such as Lab VIEW and Altia, and programming languages 

including Visual Basic and C++. 

RT-LAB allows the user to readily convert Simulink or SystemBuild models to real-

time simulations, via Real-Time Workshop (RTW) or Autocode, and run them over one 

or more PC processors. This is used particularly for Hardware-in-the-Loop (HIL) and 

rapid control prototyping applications. RT-LAB transparently handles synchronization, 

user interaction, and real-world interfacing using I/O boards and data exchanges for 

seamless distributed execution. 

5.2.1 Hardware Configuration 

RT-LAB software runs on a hardware configuration consisting of command station 

(host node), compilation node, target nodes, the communication links (real-time and 

Ethernet), and the I/O boards.  

5.2.1.1 The Command Station 

The command station is a PC workstation that operates under Windows, and serves as 

the user interface. The command station allows users to: 

•  edit and modify models; 

•  see model data; 

•  run the original model under its simulation software (Simulink, 

SystemBuild, etc.); 

•  generate and separate code; 
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• control the simulator's Go/Stop sequences. 

5.2.1.2 Target nodes 

The target nodes are real-time processing and communication computers that use 

commercial processors interconnected by an Ethernet adapter. These computers can also 

include a real-time communication interface like FireWire or cLAN (depending on the 

selected OS), as well as I/O boards for accessing external equipment.  

The system may have a single target or multiple target configurations according to 

the size of the controlled process 

5.2.1.2.1 Single target configuration  

This configuration, as shown in Figure  5-4, is typically used for rapid control 

prototyping, in which a single computer runs the plant simulation or control logic. One 

or more hosts may connect to the target via an Ethernet link. The target can either run 

QNX or RedHawk Linux for applications where real-time performance is required or 

for fast simulations, or Windows XP as a simulation accelerator.  

 

HIL I/O 
Interfaces

 

Figure  5-4: Single target Configuration 

5.2.1.2.2 Distributed target configuration  

The distributed configuration, as shown in Figure  5-5, allows for complex models to be 

distributed over a cluster of PCs running in parallel. The target nodes in the cluster 

communicate between each other with low latency protocols such as FireWire, 

SignalWire or InfiniBand, fast enough to provide reliable communication for real-time 

applications. The real-time cluster is linked to one or more host stations through a 

TCP/IP network. The user can build and expand the PC-cluster as needed, then redeploy 
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the PCs for other applications when the simulation is done. RT-LAB can accommodate 

up to 64 nodes running in parallel.  

 

HIL I/O
Interfaces 

 

Figure  5-5: Distributed target Configuration 

The real-time target nodes perform: 

• Real-time execution of the model’s simulation; 

•  Real-time communication between the nodes and I/Os; 

•  Initialization of the I/O systems; 

•  Acquisition of the model’s internal variables and external outputs 

through I/O modules; 

•  Implementation of user-performed online parameters modification; 

•  Recording data on local hard drive, if desired; 

• Supervision of the execution of the model’s simulation, and 

communication with other nodes. 

5.2.1.3 Compilation Node 

The compilation node, which is one of the target nodes, is used to: 

• compile C code; 

• load the code onto each target node; 

• debug the user’s source code (S-function, User Code Block, etc.). 

5.2.1.4 Communication 

Different types of communication links are employed for the hardware configurations of 

RT-LAB. The command station and target node(s) communicate with each other using 
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Ethernet communication links. Both analog and digital I/O boards allow the connection 

between the target nodes and the external equipement for applications such as HIL. The 

communication between the target nodes and the synchronization between them and the 

I/O boards are performed using FireWire (IEEE P-1394) or cLAN interfaces. 

Single target configuration (Figure  5-4) is sufficient for the application of the 

described laboratory process. The command node and target node are commercial PC’s 

with different operating system. A PCI-626 I/O card (from Sensory Company Inc.) is 

used which satisfies all I/O requirements. Moreover, it is supported by QNX real-time 

operating system. In this configuration the only communication link used is between the 

target and command station using Ethernet communication. I/O board is attached 

directly to the target node without external communication link. 

5.2.2 Software Configuration 

Software: Integration with Matlab/simulink and Real-Time Workshop (RTW). RTW 

generates C codes directly from the Simulink model and construct a file that can be 

excuted in real time computer (target).  

For more details see  [209],  [155], and  [156]. 

RT-LAB software is configured on the Command Station. Simulations can be run 

entirely on the command station computer, but they are typically run on one or more 

target nodes. For real-time simulation, the preferred operating system for the target 

nodes is QNX.  

The starting point for any simulation is a mathematical model of the system 

components that are to be simulated. Users design and validate a model by analyzing 

the system to be modeled, and implementing the model in the dynamic simulation 

software. RT-LAB is designed to automate the execution of simulations for models 

made with offline dynamic simulation software, like Simulink or SystemBuild, in a real-

time multiprocessing environment. RT-LAB is fully scalable, allowing users to separate 

mathematical models into blocks to be run in parallel on a cluster of machines, without 

subtly changing the model’s behavior, introducing real-time glitches, or causing 

deadlocks. 

Using block diagrams for programming simplifies the entry of parameters, and 

guarantees complete and exact documentation of the system being modeled. Once the 

model is validated, the user separates it into subsystems and inserts appropriate 
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communication blocks. Each subsystem will be executed by target nodes in RT-Lab’s 

distributed system. 

When the C coding and compilation are complete, RT-LAB automatically distributes 

its calculations among the target nodes, and provides an interface so users can execute 

the simulation and manipulate the model’s parameters. The result is high-performance 

simulation that can run in parallel and in real-time. 

Users can interact with RT-LAB during a simulation by using the console, a 

command terminal operating under Windows (NT, 2000, or Xp). Communication 

between the console and the target nodes is performed through a TCP/IP connection. 

This allows users to save any signal from the model, for viewing or for offline analysis. 

It is also possible to use the console to modify the model’s parameters while the 

simulation is running.  

For the above configuration of RT-Lab, the software in the command station 

(console) is Windows XP, and the simulation software is Matlab-Simulink to program 

the simulation and control tasks. The simulation program is coded into C code in the 

consol unit and transferred to the target node, which has QNX operating system  [208]. 

The target unit compiles and executes the C code file in parallel with the simulation 

program in the console. The data is transferred on-line between the target and console 

throw communication Ethernet. In the consol station, the program is written in two main 

blocks (Consol-Master) as shown in Figure  5-6. The Consol block contains the 

supervisor control commands, such as manual/automatic switch, operating points, etc., 

and these commands can be changed and transferred to the target not on-line during the 

run of the program. In Master block, all control task programs are grouped, such as FDI, 

FTC, etc., and it cannot be activated on-line. The arrows between the two blocks 

represent the on-line data transfer. 
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5.3  Experimental Results 

Practical implementation of the FDI and the FTC based on DSM is carried out on the 

laboratory setup described before. Therefore, many experiments have been tested in the 

laboratory process, which are grouped into two categories: 1) fault detection results; 2) 

performance recovery and controller adjusting.  

The experimental setup has a hybrid characteristic due to the combination of discrete 

and continuous actuators. The complete hybrid model of the two-tank system without 

considering the heat-exchange unit, as shown in Figure  5-3, has been derived in  [156] as 

follow: 

( ))(
)(

1
111

1

1 tqq
hAdt

dh
i −= δ  (5.2) 

Figure  5-6: Consol-Master connection 
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( ))(
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2

2 tqq
hAdt

dh
i −= δ  (5.3) 

where 

)()( 10111 PPghCtq −+= ρ ,  (5.4) 

)()( 2222 PPghCtq o −+= ρ  (5.5) 

The outflow rates are given by 

)()()( 11111 tuPPgHKCtq ouvo −+= ρ  (5.6) 

)()()( 22222 tuPPgHKCtq ouvo −+= ρ   (5.7) 

332211 iiit qqqQ δδδ ++=  (5.8) 

qi1, qi2, and qi3 are the input flow to the tank number 1, 2 and the sump tank respectively; 

h1 and  h2 are the levels in the first and second tank respectively; u1 and u2 are the input 

signals to the control valves of each tank; ku1 and ku2 are constant factors of the valves; 

C1 and C2 are the overall conductance of each tank; Cv1 and Cv2  are the conductance of 

the control valve 1 and 2; H is the height of the pipeline; δ1, δ2 and δ3 are discrete 

signals ∈{0,1}that represent the state of each discrete valve feeding each tank, 0 means 

that the valve is closed and contrarily 1 is open; Qt is the total input flow controlled by 

the flow valve. 

The flow rates must satisfy mass balance equations, i.e. 

1211 qqq o +=  and  1222 qqq o −=  (5.9) 

where 

2112211212 )sgn( PPCPPq −−= δ  (5.10) 

C12 is the conductance of the inter-connected valve; δ12 is the discrete signal ∈{0,1} that 

represent the state of each interconnected valve  

Introducing (5.3)-(5.6) and (5.9) in (5.8) implicit equations 

0)sgn()()()( 211221121211111 =−−−−+−−+ PPCPPtuPPgHKCPPghC ouvo δρρ
 (5.11) 
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0)sgn()()()( 211221122222222 =−−+−+−−+ PPcPPtuPPgHKCPPghC ouvo δρρ
 (5.12) 

are obtained, which have to be solved for P1 and P2.  

Since the distances between the outlet pipelines and the corresponding tank are small 

with respect to the distance between the two tanks, the outlet pipeline of each tank may 

be considered as it is direct connected to the tank. Therefore, the model of the two-tank 

system could be approximated as follows:   

( )
( )21122112222222

2

2

21122112111111
1

1

)()(
)(

1

)()(
)(

1

hhgChhsiguHhgKCq
hAdt

dh

hhgChhsiguHhgKCq
hAdt

dh

uvi

uvi

−−++−=

−−−+−=

δδρδ

δδρδ
 (5.13) 

 In our experiments, the setup is set as one-tank or two-tank configuration. The input 

flow (Qt) is set to 1 l/sec by controlling the flow value (uv) either manual or automatic. 

In one-tank configuration, the discrete signals δ2 , δ3 and δ12   are set to zero, while δ1 is 

set to one, i.e. Qt =q1=1 l/s and q12=0. The level is controlled through the outflow 

control valve (u1). The system is nonlinear and the discrete linearized state space model 

at the operating point (h1=0.3m, u1=50%) of one-tank is shown in Table 5-1. The 

discrete linear model is a second order that represents the dynamic of the tank and the 

valve movements.  

In two tank configuration, the discrete signals δ2 ,and  δ3 are set to zero, while δ1 and 

δ12 are set to one, i.e. Qt =q1=1 l/s and q12 is calculated from (5.1). The linearized 

discrete model of two tank system about the operating point (h1=h2=0.3m, u1=35% and 

u2=10%) is shown in Table  5-2. The control input is u1, and the input u2 represents the 

load disturbance or leakage. The controlled variable, in this case, is h1, while h2 is 

floating.  

Table 5-1: Linear state-space model of the one-tank system 

A B 

⎥
⎦

⎤
⎢
⎣

⎡ −−
740818.00

494.6999741.0 e
 ⎥

⎦

⎤
⎢
⎣

⎡ −−
25918177.0

50932.1 e
 

C D 

[ ]01  [ ]0  
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Table  5-2: Linear state-space model of the two-tank system 

A B 

 0 .9 7 4 8   0 .0 0 1 9    - 0 .0 1 4 6
- 0 .1 6 1 6    - 0 .2 1 0 4     0 .5 5 5 5
- 2 .4 3 2 3    - 1 .1 4 0 8     0 .2 3 0 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
- 0 .0 0 0 4
- 0 .0 1 0 5
- 0 .0 1 7 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

C D 
[1 0 0]  [0]  

 

5.3.1 Fault Detection and Isolation Results 

The robust FDI algorithm, which is described in Chapter 3, is implemented on two-tank 

system configurations for different types of faults, especially control actuator, leakage 

and sensor faults. The parameters of the identified system model have uncertainties due 

to two reasons:  

1. The input flow rate (Qt) is not fixed at 1 l/s, but it varies within the interval [0.92, 

1.05] because of the high rate of the pump (11Kw), which  makes any small 

variation in the flow control valve increase the flow rate with bigger amount. 

2. The cross section areas of both tanks are not constant due to the geometry of the 

tank, since they depend on the level height, i.e. Ai=f(hi); i∈{1,2}. 

There is also a disturbance due to the opening of uncontrolled valve of the right tank 

(u2) within [0,10%], which represents the load disturbance. 

Thus, the system has uncertainties in the model parameters and uncontrolled input 

disturbance together. The uncertainties are not completely known. 

Hence, the FDI system should have the capability to detect different faults and 

isolate them correctly.  

Before applying the FDI algorithm, the safe region of the system operation should be 

determined. Based on the experimental measurements of the system operation the safe 

operation region is defined as follow: 

1. one-tank system operation 

dh1/dt + 0.8 vi - 0.08 ≤ 0;  

dh1/dt + 0.75 vi + 0.14 ≥ 0; 

- 0.4 ≤ dh1/dt ≤ 0.4; (5.14) 
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 -0.5≤ vi ≤ 0.5, 

0.25≤h1≤0.35 

2. two-tank system operation 

The safe operation region is defined by the same constraints of the one-tank 

configuration, in addition to the following constraint: 

0.≤(h1-h2)≤0.05. 

where the valve opening is normalized within [-0.5, 0.5] i.e. 0.5 means fully opened and -

0.5 completely closed. The level rate change (dh1/dt ) is  in [mm/s]. 

Note that, firstly the state vector is x= [h1 h2 vi]T in case of two tank system and 

[ ]T1 ivh=x  in case of one tank system; secondary one of the safety variables is  dh/dt, 

which is not the state directly, where dh/dt =f(x)  and f:ℜn→ℜ is a nonlinear function of 

x, therefore dh/dt  is taken as an independent variable, which can be easily computed from 

h1 in order to have linear constraints.  

The three fault mode parameters are defined as in Example 3.2. In case of leakage 

fault, the system model as in (3.53) where ba=[1 0 0]T.  

5.3.1.1 Actuator fault results 

The actuator fault can be either bias or draft fault as discussed in Chapter 3. Actuator 

bias fault is tested in the following experiments. 

Consider that an actuator bias fault of 30% opening within the time interval [700s, 

1100s] after the system operation. An adapted PID controller is used to control the level 

of the left tank at 0.3 m. In this experiment, we assume that the fault set is the actuator 

fault, leakage fault, and fault free. 

Figure  5-7 shows the response, and the normalized DSM variation due to the actuator 

fault bias. Figure  5-8 shows the estimated leakage and actuator fault. Figure  5-9 shows 

the DSM variation of the actual system compared with DSM of the fault-free, the actuator 

bias fault, and internal leakage fault models.  

Based on the FDI method described in Chapter 3, DSM signals of both fault-free 

model and actual system are negative. Therefore, the fault is detectable. The fault is 

detected after 20 s. The estimated actuator and leakage faults are within the allowable 

range. However, the integral error between the actual DSM and the estimated from the 
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actuator fault model is the smallest one among the other errors of the fault set (leakage 

fault and the fault-free case), in addition to the threshold value. Thus, the isolated fault is 

the actuator fault and the estimated value is about 0.25. The error between the estimated 

actuator fault and the actual one is due to the uncertainties in the model and the 

nonlinearities. 
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Figure  5-7: Level response and DSM variation in case of 

actuator fault 
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Figure  5-8: Estimated actuator and leakage fault 
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Figure  5-9: DSM variation for different fault modes 

 The same experiment is repeated, but the desired level height is 0.2 m instead of 0.3 

m; the same model of the two-tank system is used in order to check the robustness of fault 



     139

detection where the parameters of the model, in this case, differ from the model at 0.3 m 

operating point. Figure  5-10, Figure  5-11 and Figure  5-12 show the response, estimated 

faults and DSM variation for different fault mode respectively due to actuator bias fault 

20 % closing after 900s. The fault is also detected after 20 s and isolated after 25 s. The 

estimated leakage fault is positive, which means that its value is out of the allowable 

range. 
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Figure  5-10: Level response and DSM variation in case of actuator fault at 0.2m 

level 
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Figure  5-11: estimated actuator and leakage fault in case of 

actuator fault at 0.2m level 
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Figure  5-12: DSM variation of different fault mode in case of 

actuator fault at 0.2m level 

5.3.1.2 Leakage fault results 

Figure  5-13 shows the response and DSM variation due to the internal leakage simulated 

by opening the leakage valve 30% after 700s. Figure  5-14 shows the estimated leakage 

and actuator fault in case of leakage fault. Figure  5-15 shows the DSM variation of the 

actual system with respect to the other models of actuator bias, fault-free, and internal 

leakage. The fault is also detectable, and it is detected after 20 s and isolated after 25 s.  
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Figure  5-13: Level response and DSM variation in case of 

leakage fault 
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Figure  5-14: Estimated leakage and actuator fault in case of 

leakage fault 
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Figure  5-15: DSM variations for different fault mode in case of 

leakage fault 

 

Table  5-3 summarize the experimental results of the two faults (actuator and leakage) 

103103
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5.3.1.3 Sensor fault results 

Consider that a sensor bias fault about 0.05 exists within the time interval [850s, 1100s] 

in the level sensor of the left tank. An adapted PID controller is used to control the level 

of the left tank at 0.3 m. In this experiment, we assume that the fault set is the actuator 

fault, leakage fault, sensor fault and fault free. 

 Figure  5-16 shows the response and DSM variation due to a bias in the level sensor of 

the left tank after 800s. In this experiment, a load disturbance about 10% opining of the 

u2 exists from the starting time of the experiments in addition to the input flow 

disturbance (Qi), a matter that lead to a change in the model parameters. Figure  5-17 

shows the estimated sensor, actuator and leakage faults. Figure  5-18 shows the DSM 

variation of the actual system and sensor, actuator and internal leakage models. The fault 

is also detected after 10 s and isolated after 20 s. Table  5-4 summarize the senor fault 

results 

 

Table  5-3 Actuator and leakage fault results 

 af̂  If̂  0T  1T  2T  

ABF: 3.0=af  0.25 0.0001 > Tth ≤Tth >T th 

LF: 0001.0−=If  0.26 -.00015 > Tth > Tth ≤ Tth 

 
where ABF is the abbreviation of actuator bias fault and LF is leakage fault,  fa, and  fl, are the actuator 

and leakage fault respectively; af̂  and If̂ are the estimated ones. Ti is the integral error between actual 

DSM and the computed one from each faulty model, i∈{0,1,2} is the fault mode, and Tth=0.1 is a 

threshold error with integration step N=100. 

Table  5-4: Sensor fault result 

 af̂  lf̂  sf̂  T0 T1 T2 T3 

Sensor fault 

bias=0.05 

0.1 -0.0001 0.08 >Tth >Tth >Tth <Tth 

where fa, fl and  fs, are the actuator, leakage and sensor fault respectively; af̂ , If̂ and sf̂ are the estimated 

ones; T0, T1, T2 and T3 are the integral error between actual DSM and the computed one from nominal, 

actuator, leakage, and sensor fault models respectively, i.e. 4 fault mode; Tth=0.1 is a threshold error with 

integration step N=100. 
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Figure  5-16: Level response and DSM variation in case of 

sensor fault 
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Figure  5-17: Estimated actuator fault in case of sensor fault in 

case of sensor fault 
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Figure  5-18: DSM variation in case of sensor fault in case of 

sensor fault 

5.3.2 Performance Recovery and Safety Control Results 

Different controllers design based on DSM, which are discussed in the previous 

Chapter, are implemented in order to recover the output performance and to maintain 

the system state inside the safe operation region due to the existence of large 

disturbance or fault. These methods are implemented practically on the experimental 

set-up explained before in order to demonstrate the fruitfulness of this design. The 

experiments are grouped into two groups: 1) performance recovery and safety margin 

control due to unknown disturbance; 2) FTC system (passive and active). 

5.3.2.1 Performance Recovery for Disturbed System 

Adapted PID and MPC based on DSM are tested, which are explained in Chapter 4. 

5.3.2.1.1 Adapted PID controller parameters based on DSM 

In this experiment, the plant is configured (Figure  5-3) where the level in the left tank (h) 

was selected as controlled variable and the control signal u is applied to the left control 
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valve. On the right tank, the valve was selected at a variable opening to simulate different 

load disturbance (output flow) of the left tank. The interconnecting valve is commanded 

according to the following criteria: the valve becomes off, before the level in the left tank 

reaches the desired value and then on after that (Figure  5-19).  At the first instance, the 

plant behaves as a one-tank system until the level of the left tank reaches a certain steady 

state limit and two-tank system after the interconnected valve is opened. Figure  5-19 

shows the hybrid automaton of this experiment. 

 

h1<0.15 m 
Valve closed

Two-Tank 
System 

01 =dt
dh

& t>500 sec & h1≥ 0.28m 

Valve opened 

 

One-Tank 
System 

 

Figure  5-19: Hybrid automaton of two-tank system 

Figure  5-20 shows the real time response, control signal and DSM variation using 

fixed PID controller parameters (KP=4, KI=0.08, KD=0.1), and the disturbance valve was 

opened with the sequence 0%, 10%, 30%, 50% and 40% respectively, as shown in Figure 

 5-20a. 

Figure  5-21 shows the real-time response and control signal using linear adapted 

proportional gain of the PID controller as in (2.22) with the same disturbances as Figure 

 5-20, where αi1=2 and αi2=0.  Comparing the two responses (fixed PID parameters and 

adapted proportional PID), it is clear that in case of one-tank or two-tank system, the 

system response using adapted PID controller based on safety boundary is better than 

fixed PID, for either a normal or a disturbed system. The results insure that considering 

DSM in adapting controller parameters improves system performance. 

Figure  5-22  shows real time response using fuzzy adaptation as in (2.24) for the same 

disturbance sequence as in Figure  5-21. The fuzzy supervisor has one input (deviation 

from the safe boundary), one output (incremental proportional gain) with input/output 

membership function shown in Figure 2.20, and Fuzzy allocation matrix shown in Table 

 2-1. Normalized input and output signal of fuzzy controller can help to generalize the 

fuzzy supervisor for more than one parameter adaptation.  
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The level responses of Figure  5-21 and Figure  5-22 have not changed with leakage 

10% and 30%, but it began to change with 50% leakage with small rate and recovered at 

40% leakage.  

It is clear that adapting controller parameters, based on DSM, improves the system 

output performance and can help in safety control of safety critical system. 
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Figure  5-22: Level response and DSM using adapted Fuzzy 

PID parameters 
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5.3.2.1.2 Predictive control based on DSM 

The MPC design without constraints and with DSM constraints, either soft or hard, are 

discussed in Chapter 4. The algorithms of MPC without constraints and with DSM 

constraints as hard constraints are tested in real-time operation. In the current experiment, 

the interconnecting valve is fully opened, the disturbance valve (control valve of 2nd 

tank) was adjusted to simulate a different load discharge disturbance and the control 

valve, of the first tank, is used to adjust the level in both tanks. The two-tank system is 

fed at constant flow 1 l/s in the first tank. The discrete linear model of the system at 

sampling rate equals to 10 Hz is given in Table  5-2. 

Figure  5-23 shows the real-time results without considering DSM in predictive 

controller for the actual two-tank system when the leakage valve is opened 10% after 

500 sec, 30 after 650 sec, and 50% after 800 sec, in order to regulate the level of the left 

tank at a set point of 0.3 m. The MPC controller parameters are Qi = [30], Ri = [0.001]; 

N=10, N1=1, and Nu=5. Figure  5-24 shows the real-time results of DSM in predictive 

controller as hard constraints for the same faults. It is clear from Figure  5-24 that in case 

of fault, the controller has the ability to operate the system within the safety limit until 

the fault is repaired or isolated.  
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Figure  5-23: Predictive control without DSM 
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Figure  5-24: Predictive control with DSM 

5.3.2.2 FTC Results 

The FTC algorithm, discussed in Chapter 4, is implemented in real-time operation on an 

experimental laboratory process. A model predictive controller is used with and without 

DSM to regulate the level of the left tank at the set point of 0.3 m in case of actuator fault.  

5.3.2.2.1 PFTC result 

In this experiment, it is assumed that there is no FDI algorithm, or there is no information 

about the fault (Remark 1 Chapter 4). MPC with and without DSM constraints are used to 

recover the output performance and improve DSM. 

Figure  5-25 shows real-time implementation of the FTC algorithm for the two-tank 

system in case of bias fault 30% in the control valve after 500 s until 1500 s (fault 

scenario). MPC without DSM is used as a nominal controller from the beginning until a 

fault occurs with the following parameters: Qi = [50], Rj = [0.01], i∈{1, 2,...,N}, N=5, 

j∈{1,2,…,Nu}, Nu=5, and N1=1. After fault, the MPC with DSM constraint as soft 

constraints, which discussed in Chapter 4 Section 4.3.2.1.1, is used with the following 
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parameters Qi = [30], Ri = [0.01], P0 = diag(10,10,10,10,10,10), N=5, N1=1, and Nu=5. 

As shown in Figure  5-25, the DSM (Figure  5-25b) is negative after the fault. According to 

FTC algorithm another MPC with DSM constraints is used until the fault is identified. It 

is assumed that there is no FDI subsystem; therefore, the second controller (MPC with 

constraints) has been used alone to recover the performance. It is clear that the output 

performance (Figure  5-25a) has improved using the second controller and the DSM value 

as well.    

Figure  5-26 shows the real-time results in case of repeated 20% actuator bias fault 

between "350:500s" and "700:920s". The nominal controller has been used from the start 

time (t=0) until the second fault (t≥700), i.e. the nominal controller has been used to 

recover the performance in the first fault. MPC with constraints is used to recover the 

second fault after DSM<0 as in Figure  5-26. It is clear that MPC with DSM constraints 

has improved the system performance, and the safety margin is better than nominal MPC.   

5.3.2.2.2 AFTC result 

In this experiment, the information obtained from FDI subsystem is used to reconfigure 

the controller in order to improve the output performance and DSM. Figure  5-27 shows 

real-time implementation of the FTC algorithm for the two-tank system in case of bias 

fault 20% in the control valve after 320s until 480s (fault scenario). Three controllers 

are used: MPC without DSM in normal operation until DSM<0 (0:370s), MPC with 

DSM constraints when DSM<0 until fault diagnosis (370:400s), and MPC with DSM 

using faulty model (actuator fault model) after fault diagnosis (after 400s). It is clear 

that the output and the safety performance are better than Figure  5-25 and Figure  5-26 

using two controllers only; the recovery time is shorter, the steady state error is smaller 

and the DSM is better than the previous results for the same fault. The parameters of 

MPC with DSM constraints are chosen as 

Qi = [50], Ri = [0.01], P0 = diag(10,10,10,10,10,10), N=5, N1=1, and Nu=5 

in the second controller configuration, while they are  

Qi = [30], Ri = [0.01], P0 = diag(5,5,1,1,1,1), N=5, N1=1, and Nu=5 

in the third controller configuration. 
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Figure  5-27: Predictive controller for AFTC system based on 

DSM 

5.4 Conclusions 

In this Chapter, an experimental laboratory process consisting of two-tank system is 

introduced. The hardware and software required to implement the control tasks of the 

process are explained. Several experiments have been tested on the process in order to 

show the applications of DSM. These experiments are classified as: a) a robust FDI based 

on DSM results; b) controller design based on DSM especially PID and MPC; c) FTC 

based on DSM. The theoretical background of the applications is discussed in previous 

chapters.  

Three types of faults are tested; actuator fault, internal leakage fault and sensor fault. A 

discrete linearized model of the system is identified experimentally. The experimental 

setup model parameters are time variant due to the non-linearties of the system model and 

input flow variation, in addition to the existence of load disturbance. The practical FDI 

results demonstrate the advantage and robustness of this approach. The main advantage of 

the proposed approach of using DSM in FDI is the reduction in the number of diagnostic 
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variables. Moreover, it is not restricted to a special type of faults or models.  In addition, 

DSM and its derivative is more sensitive to system parameter variation i.e. DSM in FDI 

introduces robust fault-detection schemes.  

Two types of controller design based on DSM are tested, PID and  MPC. Adapting 

the controller parameter based on DSM improves the system response, mainly the 

system that is exposed to non-considerable and non-measurable disturbance, whether 

the system model is well known or there is uncertainity in the system parameters. 

Adapting PID controller based on DSM, linear and fuzzy adaptation, has been 

implemented on an experimental hybrid plant. The main advantage of this adaptation 

method is that the exact model of the system is less important, and we do not need to 

identify the system parameter each time to reconfigure the controller. MPC without 

DSM and with DSM as hard constraints are implemented. Using predictive controller 

based on DSM gives better response than PID one, but the algorithm is complex and the 

computation time is considerably high. The controller design based on DSM improves 

safety-assessment of safety-critical systems 

MPC based on DSM in the application of FTC system is implemented on a two-tank 

process. PFTC (one or two controller configuration) and AFTC (three controller 

configuration) based on DSM results demonstrate the advantage of the proposed FTC. 

MPC based on DSM can compensate the effect of disturbance and uncertainties of the 

isolated fault result. 
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CHAPTER 6 

6 CONCLUSIONS AND DISCUSSION 

The FDI and FTC systems are important topics in the modern control system design. 

During the last 3 decades, excessive work has been exerted in the field of FDI and FTC 

systems. A robust FDI system and reliable FTC system are necessary to increase the 

overall system dependability. A more dependable system is the system that has the 

ability to tolerate faults and prevents them from developing into failures at a subsystem 

or plant level.  

Designing a robust FDI system and a performance recovery controller based on a 

new performance index called DSM are the main aspects of this work in order to design 

a reliable FTC system. 

In Chapter 1, a comprehensive overview and literature survey of FDI and FTC 

systems have been presented. Furthermore, the main difficulties in designing FDI and 

FTC systems have been discussed. 

The DSM definition and computation have been introduced in Chapter 2. Its 

computation methods for safe region defined by linear boundaries have been deduced 

too. Furthermore, its applications and limitations have been stated. Advantages of 

controller design based on DSM have been discussed as well. DSM index can be used 

as a new quality measure to compare between different controller design methods. A 

controller design based on DSM maintains a predefined margin of safety not only at 

steady state but also during transient operation. It also decreases the disturbance effect, 

and help speeding up performance recovery in case of some system faults.  

The uncertainties in the system model parameters and the disturbances are the main 

difficulties in designing a FDI system, which affect the behaviour of FDI system. 

Therefore, the FDI system has to be robust to such modelling error and disturbance. The 

robustness of FDI system has been discussed in Chapter 3, and the existing techniques 

to design a robust FDI system and their limitations have been discussed. Since each 

robust FDI scheme has limitations and is applied in a special application, a robust FDI 

problem has not been fully solved. Thus, design a FDI system based on DSM is 

introduced in Chapter 3. The main advantage of the proposed approach of using DSM 

in FDI is the reduction of the number of diagnosis variables.  In addition, DSM and its 



     158

derivative are more sensitive to system parameter variation than the measured signal 

output or residual, i.e. using DSM in FDI introduces robust fault-detection schemes. 

The proposed FDI scheme does not restrict to a special type of faults, but it can be 

applied for different type of faults whether additive or multiplicative. 

The controller design based on DSM improves safety-assessment of safety-critical 

systems. Since PID controller is one of most popular and robust controller in particular 

for SISO systems, and MPC is an effective controller for the MIMO systems due to its 

ability to deal with hard constraints, the MPC design and the PID controlled parameters 

adaptation based on DSM are introduced in Chapter 4. The MPC using DSM has been 

discussed in the application of FTC system as well. Adapting the weights of MPC 

objective function based on DSM index has been highlighted too, in order to find a 

feasible solution and satisfy the safety requirements for a predefined performance. Finally, a 

general frame work of FTC system design based on DSM has been introduced and 

discussed. The proposed FTC scheme employs the introduced FDI scheme in addition to 

the controllers design based on DSM, in particular MPC with DSM. In some faulty 

situation, recovering the system performance to the nominal one can not be achieved. As a 

result, reducing the output performance is necessary in order to increase the system 

availability. Thus, the selection of degraded reference model and command input have been 

discussed and included in the proposed FTC scheme. The combination of controller design 

and FDI based on DSM with accepted degraded performance generates a reliable FTC 

system, which enhance the overall system dependability. 

DSM applications in FDI, controller adaptation and design, and FTC system, which 

have been introduced in Chapter 3 and Chapter 4, have been implemented in real-time on 

an experimental laboratory process in Chapter 5. Different fault simulations have been 

tested in real time; actuator fault, internal leakage fault and sensor fault. The practical FDI 

results demonstrate the advantage and robustness of this approach. Two types of 

controller design based on DSM has been tested, PID and  MPC, as well. The MPC 

based on DSM in the application of FTC system either PFTC or AFTC design have been 

implemented. The results of the real-time implementation demonstrate the advantages and 

show the applicability of the proposed shames.  

The key issue of the DSM application is the determination of the safe region. The 

better specified safe region is, the more powerful benefits can be obtained, such as 

robust FDI system, robust controller and dependable FTC. The choice of the state 

variables relevant to the safety is not unique because it depends on the operation 
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experience of the process (knowledge based). The safe operation region can be 

considered as an invariant set and can be constructed by the same procedures if the 

disturbance and uncertainties belong to compact sets.  

However, in some processes, it is quite difficult to determine the safe operation 

region. Moreover, the mathematical formulation of the DSM is not easy to obtain for 

some safety regions such as non-convex region and/or nonlinear boundaries; a 

knowledge-based model (fuzzy, neural, etc.) can be used in this case.  Thus, more 

investigation about safety region construction and DSM computation will be the focus 

of future work.  

The applicability and DSM computation for large-scale system, and using DSM in 

fault prognosis are important topics, which will be covered as well. 
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APPENDIX A 

DSM Computation 
 

A.1 Vector Algebra Method 

Let the number of state variables of interest are all state variable (m=n) to generalize the 

algorithm.    Consider the safe region is defined by q linear inequalities in the form  

φi(x)=ai
T. x - ci  ≤ 0;  i=1,2,…,q  (A.1) 

Then the boundary equation can be written in the form 

φi(xi)= ai
T . xi - ci = 0  (A.2) 

where ai
T∈ℜn is constant vector, and, xi ∈{ x |φi(x)=0}, and (x-xi) is the distance 

vector between x and xi. 

Consider three dimension state vector (n=3), and let xi1, xi2 two vector on the 

boundary φi  (FigureA1) then 

φi (xi1)- φi (xi2)=ai
T(xi1- xi2)=0  

This indicates that ai is the orthogonal vector on the boundary (ai
T⊥ φi(x)) 

i

i

a
ap =  is the direction of orthogonal vector on the boundary as shown in Figure A1 

 

di xi2 

xi1 

p  

x1 

x2 

x3 

x 

xi1 

φi(x)=
0 

 

Figure A1: boundary surface 
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The minimum distance between any state vector (x) in state space and the boundary 

must be the norm of a vector in the direction of ± p , start from x and terminate at state 

vector on the boundary (xi). 

di = 2
- xx i  
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Multiply both side of (A.3) by ai
T and replace 2- xxi by di then 
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The absolute value of the result of equation (A.4) gives the minimum distance 

between the boundary and any state vector in state space and the sign indicates the 

satisfaction of the constrain. 

In general if x (t) is the system state vector at any time t then     )(.)(
2a

a x

i

ii
i

tctd
−

=  

A.2 Optimization Method 

2
2)(min i

i
xx

x
−  (A.5) 

subject to  

φi(x)= ai
T xi - ci = 0 (A.6) 

using Lagrange principle the objective function will be 

( )( )ii
T

ii
i

cxa −+− .)(min 2
2

,
λ

λ
xx

x
 (A.7) 

Taking the derivative with respect to xi and λ, it leads to the equations   



     163

0

)(
0

0
0

)(

)(
)(

0
200

20
002

22

11

1

2

1

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂

xa

x

ii

inn

i

i

ini

in

i

i

c
xx

xx
xx

aa
a

a
a

J

J

MM

L

L

MOM

M

L

λ
λ

  (A.8) 

Hence, )(1
2
2

1 xaa
a

cMxx ii
T

i
i

xi c −==− −   (A.9) 

where ,

)(

)(
)(

  ,

)(
0

0
0

,

0
200

20
002

22

11

1

1

2

1

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

inn

i

i

i

ii

x

ini

in

i

i

xx

xx
xx

caa
a

a
a

M
M

L

L

MOM

M

L

xx

xa

cM and xi is 

the solution of optimization problem.  

It is sufficient to compute the last raw of M-1, where all component of cx are zero 

instead of the last element. Therefore,  
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APPENDIX B 

Analogical Exclusion-XOR Gate 

The Boolean gates are used when the inputs are limited within two values, 0 and 1. If all 

the four Quadrants of the input space are considered i.e. each input variable ∈[-max, 

+max], then the Boolean gates are no longer suitable. Quantization of the input space 

could be used to solve this difficulty. On the other side, the number of input space is 

increasing proportionally with the resolution required.  The analogical gates are a 

generalisation of the Boolean gates when the four Quadrant of the input space are 

considered  [151].     

Analogical XOR gate, which is used in this thesis to behave as the anti-windup 

circuit for PID controller, is explained here. 

The functionality description of analogical XOR: 

Refereeing to Figure B.1, The output is identically zero if both inputs equal in 

magnitude. If one input is zero, the output is equal to the present non-vanishing input. 
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where a=1.02889, b=0.3574 and x,y∈ℜ 

 

Basic Characteristics: 
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z

Figure B1: Analogical XOR 
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 x ¤ y= y ¤ x 

c(x ¤ y)= cx+ cy, c ∈ℜ 

x ¤ x=0 

x ¤ 0=0 

x ¤ -x=0 

min(x,y) ≤ x ¤ x≤ max(x,y) 

∂ (x¤ y)/ ∂ x⏐x=0 =0 

∂ (x¤ y)/ ∂ y⏐y=0 =0 

 

Anti-rest wind-up Network for PID controller 

The Strategy for anti-rest wind-up is as follows: 

a) In linear control range,  neither the magnitude nor the sign of the integeral-gain 

(KI) is changed. 

b) When commend-saturation occurs, the magnitude of the KI gain is reduced first. 

c) As the difference between the saturated (u) and the unsaturated command (uo) 

further increases, the sign of KI is made negative together with further decrease 

of the magnitude. 

This strategy can be implemented using a single XOR analogical-gate,  

KI =KIo[((u-uo)/uo)¤(u/uo)] 

where the first input x=((u-uo)/uo) and the second one   y=u/uo 

If the controller under normal operation (unsaturated) then x=0 otherwise x is 

negative. Negative x means that the command input is saturated; y is always positive. 

Therefore, the value of integral action ,KI, is controlled based on x. 
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APPENDIX C 

MPC Solution Using One Shot Optimization 
1. MPC without DSM Constraints  

The objective function of MPC in (4.10)  
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Considering the state space model of the system, this equation can be written in the 

form of  

rcJ T ++= uHuMu 2  C.2 

The problem here is that minimize equation C. 2 with respect to the control sequence 

u with out considering the state and control constraints.  

where  
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Note that all the matrices, used here, are defined in Chapter 4 Section 4.3.2  

The control sequence is deduced using one shot optimization as fallow: 

According to the optimality principle, 0=
ud

dJ  at the optimal control sequence (u*)  

then  
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i.e.  
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And the current input vector is  
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2.  MPC with DSM constraint as soft constraint 

The objective function of MPC with softening DSM constraint (4.22)   
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can also be written in the form    

rcJ T *** 2 ++= uHuMu  C. 9 
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And the optimal sequence is obtained as C.5 
T*1** Hu −

−= M  

 

Substituting from C. 10 and C. 11 into C. 9, then   
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APPENDIX D 

Magnetic-Tape-Drive system  

The Magnetic-tape-Drive system is a MIMO system shown in Fig.4.6. There is an 

independently controllable drive motor on each end of the tape; therefore, it is possible 

to control the tape position over the read head, x3, as well as the tension in the tape. The 

tape is modeled to be a linear spring with small amount of viscous damping. The goal of 

the control system is to enable commanding the tape to specific position over the read 

head while maintaining a specified tension in the tape at all times. The desired 

specifications are that the tape position must be adjusted if the tape head is moved 1mm 

with 1% settling time of 2.50 sec and overshoot less than 20%. The tape tension, Te, 

should be controlled to 2 N with constraint that 0 < Te < 4. The current is limited to 1A 

at each drive motor. 

The equation of motion of the system  [203] is 

 

x1 
x3 x2 

b 

K 

i1 i2 

Figure C1: Schematic diagram of magnetic tape drive  
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where i1 and  i2  are the current into drive motors 1, 2, respectively, Te tension in tape 

(N), θ1 , θ2  angular position of motor, r assembly, x1and x2  position of tape over read 

head (mm),  

J=0.006375 kg.m2, motor and capstan inertia, 

r =0.1 m, radias,  

Km=0.544 N.m/A, motor torque constant, 

k=2.113 N/m, tape spring constant 

b=0.375 N sec/m, tape damping constant. 

Equation (4.16) is the system state space model where the state vector x=[x1 x2 ω1 

ω2]T, input vector u=[i1 i2]T and the output vector y=[x3 Te]T is  
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