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Abstract
This thesis studies different aspects of the linear and the nonlinear stochastic filtering
problem. It consists of four chapters. In the first chapter we derive the Kalman
and the extended Kalman filter algorithms and we study some of their qualitative
properties. In the second chapter we present a unified general framework on particle
filter methods. In particular, we show how the particle filter methods surmount
the difficulties due to the Kalman approach to filtering and we compare different
particle filter algorithms. In the third chapter we study a real life example, tracking
the position and the speed of a car, then we compare the extended Kalman filter
and the particle filter methods. Finally, in the fourth chapter we generalize the
formulation of the filtering with the Zakai equation to the case of multidimensional
systems with unbounded observation functions and an Ornstein-Uhlenbech type
noise.

Zusammenfassung
Diese Dissertation studiert unterschiedliche Aspekte des linearen und nichtlinearen
stochastischen filternproblems. Sie besteht aus vier Kapiteln. Im ersten Kapitel
leiten wir den Kalman und den Extended Kalman Filteralgorithmen ab und wir
studieren einige ihrer qualitativen Eigenschaften. Im zweiten Kapitel stellen wir
einen vereinheitlichten allgemeinen Rahmen auf Partikelfiltermethoden dar. Ins-
besondere zeigen wir wie die Partikelfiltermethoden die Schwierigkeiten wegen Die
Extended kalman Annäherung übersteigen und wir vergleichen unterschiedliche Par-
tikelfilteralgorithmen. Im dritten Kapitel studieren wir ein reales Lebenbeispiel,
schätzen die Position und die Geschwindigkeit eines Autos, dann vergleichen wir
den Extended Kalman Filter und die Partikelfiltermethoden. Schließlich im vierten
Kapitel generalisieren wir die Formulierung der Filternproblems mit der Zakai Gle-
ichung zum Fall der mehrdimensionalen Systeme mit unbegrenzten Beobachtung
Funktionen und einer Ornstein-Uhlenbech Art Geräusche.

keywords: Stochactic differential equation, Kalman filter, Monte Carlo methods,
Zakai equation.
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Introduction

This thesis studies different aspects of the linear and the nonlinear stochastic filter-
ing problem. It gives an introduction to the stochastic filtering theory together with
new results, new proofs for classical results, and several examples and applications.
The stochastic filtering problem arises in many different areas of science including
tracking, automatic control, econometrics and others. It essentially deals with the
estimation of the present state of a process X = {Xt}t∈T⊂R+ , called the signal or the
state process, based on measurements supplied by an associate process Z = {Zt}t∈T,
called the observation process.
In the Bayesian framework, a stochastic dynamical equation that provides the prior
distribution of the state process and an observation equation that gives rise to the
likelihood of the observations are available and all relevant information on the state
Xt are included in the posterior distribution P (Xt ∈ A

∣
∣{Zs, s ∈ T, s ≤ t}). This is

known as the Bayesian filtering problem called also the optimal filtering problem.
We will study the discrete time and the continuous time stochastic filtering problem
ie. the cases T ⊂ N and T = [a, b] ⊂ R+, respectively.
The discrete filtering problem: Often the observations or measurements arrive
sequentially in time, and one is interested in estimating recursively in time the evolv-
ing posterior distribution. In 1960, R.E. Kalman published his famous paper [43]
on recursive minimum variance estimation in linear Gaussian dynamical systems.
This paper introduces an algorithm known as the discrete Kalman filter. Since then,
qualitative properties, including controllability, stability and others, of the Kalman
filter were extensively studied [14, 39, 40, 45, 59].
However, in many realistic problems, dynamical systems involve elements of nonlin-
earity which exclude the use of the Kalman filter algorithm. One idea is to replace
the original equations of the system by a family of linear Gaussian ones and to apply
the Kalman algorithm, [40]. This method is known as the extended Kalman filter
(EKF). The EKF algorithm has numerous drawbacks and its performance heavily
depends on the system parameters behavior [8, 33, 52].
With the advance of computational power, sequential Monte Carlo methods, also
called particle filter methods, have been developed to address the Bayesian filtering
problem. Those methods are very flexible, often easy to implement. Moreover, these
methods do not suppose linear, Gaussian or dimensional hypothesis on the models.
Particle filter methods approximate the posterior distributions with empirical mea-
sures based on clouds of particles. The particles are sampled from appropriate
distributions. The convergence is obtained when the number of sampled particles
increases.
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The continuous filtering problem: In the case of continuous time parameters,
the filtering problem consists of estimating the statistics of a partially observed
Markov process X = {Xt}t∈[0,T ], called the signal process, based on the observation

process Zt =
∫ t

0
h(Xs, s)ds+Nt, 0 ≤ t ≤ T , corrupted by a Gaussian noise process

N .
The conditional expectation πt(ϕ) = E[ϕ(Xt, t)

∣
∣{Zs, 0 ≤ s ≤ t}], where ϕ is a

bounded Borel function, gives the minimum variance estimation of the random vari-
able ϕ(Xt, t).
When the noise N is a Brownian motion, then under some regularity assumptions,
see [7, 54, 57, 69, 77], the measure πt satisfies a measure valued nonlinear stochas-
tic partial differential equation (SPDE), called the Kushner-Stratonovitch equation.
Moreover, the Kallianpur-Strieble formula states that

πt(ϕ) =
pt(ϕ)

pt(1)
,

where pt(ϕ) is the unnormalized conditional expectation. pt(ϕ) is characterized as
the solution of a linear SPDE, called the Zakai equation.
Recently, interest has been developed when the noise is a Ornstein-Uhlenbeck or a
general Gaussian process [9, 10, 56, 65].
Bhatt et al. [10] studied the case of Ornstein-Uhlenbeck noise. They considered
1-dimensional processes and bounded observation function h, they derived an anal-
ogous to the Zakai equation and they proved existence and uniqueness results.
The linearity of the Zakai equation makes its numerical approximations attractive.
Crisan [16] and Crisan et al. [21] approximated the solution of the Zakai equation
using branching particle methods. In [18], Crisan used a particle approximation
method. A time dependent weight is attached to each particle. The particles move
independently w.r.t. the law of the state process. He also gives a comparison with
the branching particle methods.
Other methods using Galerkin approximation and Cameron-Martin version of the
chaos decomposition can be found in [1, 38, 66].

Summary and main results of the thesis

Appendices We recall in a series of appendices various notions and tools that one
will need. Specially, we present:

• The Euler-Maruyama discretization

• The Monte Carlo integration

• The Bayesian approach estimation

• The minimum variance estimation (MVE)

• The best affine minimum variance estimation (BAMVE)

• Errors and convergence criterions
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Chapter 1 First section: We study linear systems that are not necessarily Gaus-
sian. Instead of calculating the (nonlinear) minimum variance estimation (MVE),
we derive a recursive algorithm for the best affine minimum variance estimation
(BAMVE). When the system is Gaussian then BAMVE = MVE.
D.E. Catlin [14] gave similar results for the best linear minimum variance estimation
(BLMVE) where its systems have no optional control inputs as ours.
We study then some qualitative properties of the Kalman filter. Firstly, we give
lower and upper bounds on the error covariance matrix. Those bounds are based
on stronger conditions than those of Jazwinski in [40] but much simpler to verify.
Secondly, using the technical Lemma 1.1.7, we give in Proposition 1.1.6 a new and
simple proof of the uniform asymptotic stability, see Definition 1.1.5, of the Kalman
filter. We end this section by an illustrative example.
Second Section: We derive the extended Kalman filter (EKF) algorithm for non-
linear models with Gaussian noises. Our main result, Theorem 1.2.6, gives an upper
bound on the error in the EKF algorithm for a class of nonlinear dynamical systems.
The results are illustrated by numerical examples.

Chapter 2 Based on previous work including [3, 17, 19, 20, 22, 23, 24, 51, 62], we
aim to present a unified general framework on particle filter methods.
We start with a general dynamical system and we simplify some essentially known
approaches for proving the validity of those numerical methods. Some original
developments are also presented. We first prove the almost sure or weak convergence
of the particle filter algorithm through a generic model. Although the measures,
defined by the particle filter algorithm, converge weakly to the right measure, one
has no idea about the rate of convergence. Using the mean square convergence,
we show that those measures converge with a rate proportional to 1/N0, N0 is the
initial number of particles injected to the particle filter algorithm.
The particle filter algorithm essentially consists of three stages: prediction, update
and resampling. The importance sampling functions are tools to accomplish the
prediction and the update stages. We give:

• Strategies of selection of the importance sampling functions

• A collection of importance sampling functions

In the resampling stage, we use branching mechanisms to renew the generations of
the particles. We give:

• Strategies of selection of the branching mechanisms

• A collection of branching mechanisms

Several numerical and illustrative examples are provided.

Chapter 3 Tracking the position and the speed of an observed moving object has
received much of interest in many scientific areas, see for example [36, 37, 48]. This
Chapter deals with the estimation of the dynamics, position and speed, of a moving
vehicle.
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Scenario: A rolling car and a fixed observer who measures on-line his distance to
the vehicle

We derive the car dynamical equation, state equation. The state equation is a 2-
dimensional stochastic differential equation (SDE) with non Lipschitz and non linear
growth bounded coefficients. We prove the existence and the uniqueness of solutions
of a family of SDE’s with non Lipschitz and non linear growth bounds conditions.
We apply the result to the state equation.
We discretize the state equation and we prove that the Euler-Maruyama discretiza-
tion converges strongly with order 1/2. A discretization to the observation equation
is deduced. A comparison of the EKF and the particle filter algorithms shows that
the latter one performs better.

Chapter 4 We present a generalization of both the work of Bensoussan in [7] and
the work of Bhatt et al. in [10]:

• Multi-dimensional dynamical systems

• An Ornstein-Uhlenbeck type noise

• An unbounded observation function that admits a linear growth bound

We prove that the unnormalized measure satisfies the Zakai equation and under
some additional assumptions:

1. We prove the existence and uniqueness of the solution of the Zakai equation

2. We construct a sequence of particle measures converging to the solution of the
Zakai equation

3. We give a rate of convergence

4. We establish an implementation scheme

This will permit us to solve numerically the filtering problem via a Kallianpur-
Striebel formula.
Computations are performed on a Pentium III, 730 MHz, with 256 Mb RAM under
a Linux system (Suse 9.2) with Matlab and Scilab/plotlib.



Chapter 1

The Discrete Kalman and
Extended Kalman Filter

Filtering is the problem of estimating the state of a system as a set of observations
becomes available on-line. In 1960, R.E. Kalman published his famous paper [43] on
recursive minimum variance estimation for linear Gaussian dynamical systems. The
paper introduces an algorithm known as the discrete Kalman filter. The Kalman
filter has been used in diverse areas including tracking, navigation, and guidance.
Since Kalman’s work, many papers and books appeared on the Kalman filter in-
cluding continuous time systems [29, 39, 40, 47, 59].
In many cases, dynamical systems are nonlinear or non Gaussian and computing
the minimum variance estimation, see appendix C.2, turns to be a difficult and
sometimes an impossible exercise. One idea is to extend the Kalman work to the
nonlinear and non Gaussian framework. This can be done by approximating the
system equations by linear Gaussian ones and apply the Kalman filter algorithm.
That gave birth to the extended Kalman Filter, [40, 67].
In this chapter we derive the Kalman and the extended Kalman filter algorithms,
and we study some of their qualitative properties.
In subsection 1.1.1, we consider linear systems that are not necessarily Gaussian,
then instead of calculating the minimum variance estimation (MVE), we give in The-
orem 1.1.1 an analytical recursive algorithm for the best affine minimum variance
estimation (BAMVE), see appendix C.2. If, in addition, the system is Gaussian then
the BAMVE coincide with the MVE, Corollary 1.1.2. In the book of D.E. Catlin
[14], one can find similar results for the best linear minimum variance estimation,
see appendix C.2, and for systems that have no optional control inputs as ours.
In [40], Jazwinski studied some qualitative properties of the Kalman filter. He
proved, under controllability and observability conditions [44], the uniform asymp-
totic stability of the filter and gave bounds on the error covariance matrix. In
subsection 1.1.2, we consider stronger conditions, Assumptions 1.1-1.4, than those
of Jazwinski, but they are much simpler to verify and allow us to give a lower and
upper bounds on the error covariance matrix, Proposition 1.1.4.
We give in Proposition 1.1.6 a simple proof of the uniform asymptotic stability of
the Kalman filter. In Corollary 1.1.8 we derive a result on the asymptotic behavior
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of the filter with respect to its initialization. We end the subsection with an illus-
trative example.
In subsection 1.2.1, we derive the extended Kalman filter (EKF) algorithm for non-
linear models with Gaussian noises. In subsection 1.2.2, we exploit the parameters
of the system to give an upper bound on the error in the EKF algorithm for a class
of nonlinear dynamical systems. Finally, we give two numerical examples: in the
first the errors remains bounded and in the second the errors are unbounded and
the EKF fails to give good results.

1.1 The discrete Kalman filter

1.1.1 Kalman filter algorithm

n-dimensional state equation:

xk+1 = φ(k) xk + Ψ(k) ak + Λ(k) uk , k ≥ 0 (1.1)

• φ(k), Ψ(k) and Λ(k) are respectively n×n, n× l and n×r known real matrices

• The optional control input ak is a known l-dimensional discrete static process

• The process uk is an r-dimensional white, called the state noise process

• The initial state x(0) is supposed to be a square integrable random variable

• For all 0 ≤ j ≤ k,

E[uk] = 0 and E[ukx
T
j ] = 0 (1.2)

• The matrix Q(k) = E[uku
T
k ] is known for all k ≥ 0

m-dimensional measurement equation:

zk = H(k) xk + Π(k) wk , k ≥ 0 (1.3)

• H(k) is a known m× n-real matrix, called the measurement matrix

• Π(k) is a known m× p-real matrix

• wk is a p-dimensional white process, called measurement noise

• For all 0 ≤ j ≤ k

E[wk] = 0 , E[wku
T
j ] = 0 and E[wkx

T
j ] = 0 (1.4)

• The matrix R(k) = E[wkw
T
k ] is known for all k ≥ 0
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Denoting by x̂(k|j) the BAMVE, see Appendix C.2, of xk based on

yj =






z0
...
zj




 . (1.5)

Thus, x̂(k|j) is the orthogonal projection onto the n-fold product of Mj with it self,
Mj being the affine span of the components of the vector yj.

If j = k, then x̂(k|k) is the filtered estimate.

If j < k, then x̂(k|j) is the predicted estimate.

If j > k, then x̂(k|j) is the smoothed estimate.

We define the n× n-matrix

P (k|j) = E[(x̂(k|j) − xk)(x̂(k|j) − xk)
T ] . (1.6)

P (k|j) is the error covariance matrix of the estimate x̂(k|j) to xk.

Theorem 1.1.1 (The Kalman Filter Algorithm). The BAMVE x̂(k|k) may be gen-
erated recursively according to the following two stages

1. Prediction

x̂(k + 1|k) = φ(k)x̂(k|k) + Ψ(k)ak , (1.7)

P (k + 1|k) = φ(k)P (k|k)φ(k)T + Λ(k)Q(k)Λ(k)T . (1.8)

2. Update

K(k + 1) = P (k + 1|k)HT
[
HP (k + 1|k)HT

+Π(k + 1)R(k + 1)Π(k + 1)T
]+
,

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[zk+1 −Hx̂(k + 1|k)] , (1.9)

P (k + 1|k + 1) = [In −K(k + 1)H]P (k + 1|k) . (1.10)

Where we have denoted simply H(k + 1) by H.
The matrix K(k + 1) is called the Kalman gain matrix.

Proof. If µy(j) = E[yj], Γy(j) = cov(yj, yj), µx(k) = E[xk] and Γx,y(k, j) = cov(xk, yj),
for every k, j ≥ 0, then the BAMVE of xk and xk+1 based on yk, see Theorem C.2.4,
satisfies

x̂(k|k) = Γx,y(k, k)Γy(k)
+(yk − µy(k)) + µx(k) ,

x̂(k + 1|k) = Γx,y(k + 1, k)Γy(k)
+(yk − µy(k)) + µx(k + 1) .

(1.11)

Firstly, we prove the equality (1.7). From the properties (1.2) and (1.4) of the noises
we get

µx(k + 1) = Φ(k)µx(k) + Ψ(k)ak

yk − µy(k) = H(k)(xk − µx(k)) + Π(k)wk
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This implies that

Γx,y(k + 1, k) = E[(xk+1 − µx(k + 1))(yk − µy(k))
T ]

= E[(φ(k)(xk − µx(k) + Λ(k)uk)(yk − µy(k))
T ]

= φ(k)Γx,y(k, k) . (1.12)

Now, using together the equalities (1.11) and (1.12) we obtain the equality (1.7).
Secondly, we prove the equality (1.8). The equality (1.7) implies that

x̂(k + 1|k) − xk+1 = φ(k)(x̂(k|k) − xk) − Λ(k)uk .

Since x̂(k|k)−xk is orthogonal to yk−µy(k), and uk is uncorrelated with x̂(k|k)−xk

and yk−µy(k), we deduce easily the result using the definition of P (k+1|k) in (1.6).
Finally, an application of Theorem C.2.6, 1., gives the equalities (1.9) and (1.10).

• The process ẑ(k + 1|k) = H(k + 1)x̂(k + 1|k) is called the predicted measure

• The process ν(k + 1) = zk+1 − ẑ(k + 1|k) is called the innovation

• If x̂(k|k) and yk+1 are Gaussian, then x̂(k + 1|k + 1) is Gaussian too

Corollary 1.1.2. If the processes uk and wk are Gaussian and the process x0 is
either deterministic or Gaussian, then, see Theorem C.2.8, 2., the MVE is Gaussian
and satisfies the same relations in Theorem 1.1.1. Moreover,

xk

∣
∣ yk ∼ N (x̂(k|k), P (k|k)) (1.13)

xk+1

∣
∣ yk ∼ N (x̂(k + 1|k), P (k + 1|k)) (1.14)

Equations (1.8) and (1.10) of Theorem 1.1.1 taken together constitute a recursively
solvable matrix difference equation known as the discrete Riccati equation. These
matrices may be computed in advance. In particular, P (k|j) may be defined as the
conditional covariance matrix

P (k|j) = E[(x̂(k|j) − xk)(x̂(k|j) − xk)
T
∣
∣yj] .

The relations in Theorem 1.1.1 still true and P (k|j) = E[P (k|j)], see [40].

Remark 1.1.3. If a matrix A is symmetric positive definite we write A > 0 and if
A is symmetric positive semidefinite we write A ≥ 0. Also, we write that A ≤ B if
B − A ≥ 0 and that A < B if B − A > 0.

For the remainder of this Chapter we suppose that the conditions of Corol-
lary 1.1.2 hold and that ak = 0, Λ(k) = In and Π(k) = Im, for all k ≥ 0.
Suppose that P (0|0) ≥ 0 and for all k ≥ 1, Q(k) and R(k) are positive definite,
then [H(k)P (k|k − 1)H(k)T +R(k)]−1 exists, P (k|k) is positive definite and

P (k|k)−1 = P (k|k − 1)−1 +H(k)TR(k)−1H(k) , (1.15)

K(k) = P (k|k)H(k)TR(k)−1 . (1.16)
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1.1.2 Bounds and stability of the Kalman filter

This subsection deals with some qualitative properties of the Kalman filter, namely
bounds, stability, convergence w.r.t. the initialization, and the propagation of errors.
Suppose that the coefficients of the system satisfy the following assumptions:

Assumption 1.1. The covariances matrices Q(k) and R(k) are symmetric definite
positive.

Assumption 1.2. The transition matrix Φ(k) is invertible.

Assumption 1.3. P (0|0) > 0.

Let us define, for every integer k ≥ 1, the following symmetric positive matrix

I(k) = Φ(k)−TH(k)TR(k)−1H(k)Φ(k)−1

+H(k + 1)TR(k + 1)−1H(k + 1) , (1.17)

where Φ(k)−T = (Φ(k)−1)T .

Assumption 1.4. The matrices Q(k) and I(k) are uniformly bounded. That is,
there exists two real numbers 0 < α ≤ β such that

0 < α In ≤ Q(k), I(k) ≤ β In , ∀k ≥ 0 .

Proposition 1.1.4. Under the Assumptions 1.1-1.4, the error covariance matrices
{P (k|k)}k≥1 are uniformly bounded. More precisely,

α

1 + α β
In ≤ P (k|k) ≤ 1 + α β

α
In , ∀k ≥ 1 . (1.18)

Proof. Let us prove first the second inequality, ie.

P (k|k) ≤ 1 + α β

α
In , ∀k ≥ 1 . (1.19)

If we combine the equalities (1.7) and (1.9) we get

zk = H(k)Φ(k)−1xk+1 −H(k)Φ(k)−1uk + wk .

Let us define the process

x̄(k + 1|k + 1) = I(k)−1{Φ(k)−TH(k)TR(k)−1zk +H(k + 1)TR(k + 1)−1zk+1} .

Then, using the expression of the matrix I(k) in (1.17), we obtain

x̄(k + 1|k + 1) = I(k)−1{I(k)xk+1 + Φ(k)−TH(k)TR(k)−1wk

+H(k + 1)TR(k + 1)−1wk+1

−Φ(k)−TH(k)TR(k)−1H(k)Φ(k)−1uk} .
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From which we deduce

xk+1 − x̄(k + 1|k + 1) = I(k)−1{Φ(k)−TH(k)TR(k)−1H(k)Φ(k)−1uk

−(Φ(k)−TH(k)TR(k)−1wk

+H(k + 1)TR(k + 1)−1wk+1)} (1.20)

The process x̄(k + 1|k + 1) is, apriori, not the MVE, then

P (k + 1|k + 1) ≤ E[(xk+1 − x̄(k + 1|k + 1))(xk+1 − x̄(k + 1|k + 1))T ] . (1.21)

Let us denote Ēk+1 = E[(xk+1 − x̄(k + 1|k + 1))(xk+1 − x̄(k + 1|k + 1))T ], if we
use that Φ(k)−TH(k)TR(k)−1H(k)Φ(k)−1 ≤ I(k), see (1.17), then from the equality
(1.20) we get

Ēk+1 = I(k)−1 + cov(I(k)−1Φ(k)−TH(k)TR(k)−1H(k)Φ(k)−1uk)

≤ I(k)−1 +Q(k)

≤ (
1

α
+ β) In . (1.22)

It is clear that from the inequalities (1.21) and (1.22) we get the inequality (1.19).
Now, we prove the first inequality, ie.

α

1 + αβ
In ≤ P (k + 1|k + 1) . (1.23)

Consider the following system

x̄k+1 = Φ̄(k)x̄k + ūk ,

z̄k = x̄k + w̄k ,

where Φ̄(k) = Φ(k)−T and ūk and w̄k are independent Gaussian noises with covari-
ance matrices given by

Q̄(k) = E[ūkū
T
k ] = Φ(k)−TH(k)TR(k)−1H(k)Φ(k)−1

R̄(k) = E[w̄kw̄
T
k ] = Q(k)−1

We initialize the Kalman filter for this system by taking

P̄ (0|0) = P (0|0)−1 −H(0)TR(0)−1H(0) .

Then, using the equalities (1.8) and (1.15) we get by induction:

P̄ (k|k) = P (k|k)−1 −H(k)TR(k)−1H(k) , ∀k ≥ 1 .

In particular,
Ī(k) = Φ(k)Q(k)Φ(k)T +Q(k + 1) , ∀k ≥ 0 .

Reasoning as for the first inequality, we get

P̄ (k|k) ≤ Ī(k)−1 + Q̄(k) .

The definition of the matrix I, see (1.17), implies

P (k|k)−1 ≤ Ī(k)−1 + I(k)

Finally, since α In ≤ Q(k+1) ≤ Ī(k) and I(k) ≤ β In, then we deduce the inequality
(1.23).
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Consider the following r-dimensional linear system

Z(k + 1) = Υ(k)Z(k) , k ≥ 0. (1.24)

For every 0 ≤ k1 ≤ k2, let us define the matrix Υ(k2, k1) = Υ(k2) . . .Υ(k1).

Definition 1.1.5. The system (1.24) is said to be uniformly asymptotically stable
if there exists two real constants C > 0 and γ > 0 such that

‖Υ(k2, k1)‖ ≤ C exp (−γ(k2 − k1)) , ∀k2 ≥ k1 (1.25)

where ‖ · ‖ = ‖ · ‖2 is the spectral norm.

A sufficient condition to get (1.25), see [45, 46], is to find scalar functions Vk :
Rr → R and λi : R → R, 1 ≤ i ≤ 3 satisfying the following conditions

1. λi is continuous and λi(0) = 0 for 1 ≤ i ≤ 3, and λ1 and λ2 are nondecreasing

2. λ1(x) → +∞ as x→ +∞ and λ3(x) < 0 for x 6= 0

3. Vk(0) = 0 for all k ≥ 0, and for some integers 0 < N ≤ M and for all k ≥ M
such that Z(k) 6= 0,

0 < λ1(‖Z(k)‖) ≤ Vk(Z(k)) ≤ λ2(‖Z(k)‖) , (1.26)

Vk(Z(k)) − Vk−N(Z(k −N)) ≤ λ3(‖Z(k)‖) . (1.27)

The function V is called a Lyapunov function for the system (1.24).
To prove the stability of the Kalman filter, we use equations (1.7) and (1.9) to write

x̂(k + 1|k + 1) = Υ(k)x̂(k|k) + U(k)

where Υ(k) = [In −K(k + 1)H(k + 1)]Φ(k) and U(k) = K(k + 1)zk+1. The matrix
Υ is called the state transition matrix of the filter. using the equality (1.10), we get

Υ(k) = P (k + 1|k + 1)P (k + 1|k)−1Φ(k) .

Consider the linear system

Ẑ(k + 1) = Υ(k)Ẑ(k)

= P (k + 1|k + 1)P (k + 1|k)−1Φ(k)Ẑ(k) (1.28)

Proposition 1.1.6. The Kalman filter, ie. the linear system (1.28), is uniformly
asymptotically stable.

For the proof we need the following Lemma

Lemma 1.1.7. Suppose that P and R are two n × n−symmetric definite positive
matrices and suppose that

0 < α In ≤ P ≤ β In and 0 < λ In ≤ R ≤ µ In .

Then, there exists a real number c > 0 such that

(P +R)−1 − P−1 ≤ −c In .
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Proof. For any n× n-matrix M , see [40] p.262, we have

(P−1 +MTRM)−1 = P − PMT (MPMT +R−1)−1MP .

Taking M = P−1 we get

(P +R)−1 − P−1 = P−1((P−1 + PRP )−1 − P )P−1

= P−1((P−1 + P−1RP−1)−1 − P )P−1

= −P−1(P−1 +R−1)−1P−1

Denoting by γ = inf{‖P−1x‖ , ‖x‖ = 1}. Since P−1 is continuous and invertible
and 0 /∈ {x ∈ Rn , ‖x‖ = 1} is a compact then γ > 0. We deduce that

P−1(P−1 +R−1)−1P−1 ≥ γ2 λα

λ+ α
In .

Then,

(P +R)−1 − P−1 ≤ −γ2 λα

λ+ α
In .

It is sufficient to take c = γ2 λα
λ+α

and the proof is complete.

Proof. (Proposition 1.1.6.) It is sufficient to find the right Lyapunov function V for
the system (1.28). Let

Vk(Ẑ(k)) = Ẑ(k)TP (k|k)−1Ẑ(k) .

From Proposition 1.1.4 we have α/(1 + αβ) In ≤ P (k|k)−1 ≤ (1 + αβ)/α In, then

α

1 + αβ
‖Ẑ(k)‖2 ≤ Vk(Ẑ(k)) ≤ 1 + αβ

α
‖Ẑ(k)‖2 ,

which proves (1.26). Now, we prove (1.27) for N = M = 1. Using (1.28), we get

Vk+1(Ẑ(k + 1)) − Vk(Ẑ(k))

= Ẑ(k + 1)TP (k + 1|k + 1)−1Ẑ(k + 1) − Ẑ(k)TP (k|k)−1Ẑ(k)

= Ẑ(k)T [Φ(k)TP (k + 1|k)−1P (k + 1|k + 1)P (k + 1|k)−1Φ(k)

− P (k|k)−1]Ẑ(k) (1.29)

It is sufficient to show that the matrix in (1.29) is negative definite, ie. there exists
a real number c > 0 such that

Φ(k)TP (k + 1|k)−1P (k + 1|k + 1)P (k + 1|k)−1Φ(k) − P (k|k)−1 ≤ −c In
From the equalities (1.8) and (1.15), we can write

Φ(k)TP (k + 1|k)−1P (k + 1|k + 1)P (k + 1|k)−1Φ(k)

= Φ(k)TP (k + 1|k)−1
(
P (k + 1|k)−1

+H(k + 1)R(k + 1)−1H(k + 1)T
)−1

P (k + 1|k)−1Φ(k)

≤ Φ(k)TP (k + 1|k)−1Φ(k) (1.30)

= Φ(k)T (Φ(k)P (k|k)Φ(k)T +Q(k))−1Φ(k)

= (P (k|k) + Φ(k)−1Q(k)Φ(k)−T )−1 .
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In the inequality (1.30) we have used the fact that

P (k + 1|k)−1 ≤ P (k + 1|k)−1 +H(k + 1)R(k + 1)−1H(k + 1)T .

Then,

Φ(k)TP (k + 1|k)−1P (k + 1|k + 1)P (k + 1|k)−1Φ(k) − P (k|k)−1

≤ (P (k|k) + Φ(k)−1Q(k)Φ(k)−T )−1 − P (k|k)−1

Since the matrices P (k|k) and Φ(k)−1Q(k)Φ(k)−T satisfy the conditions of the
Lemma 1.1.7, we deduce the result.

Corollary 1.1.8. If
(
x1(0|0), P 1(0|0)

)
and

(
x2(0|0), P 2(0|0)

)
are two different ini-

tializations of the Kalman filter algorithm such that

P i(0|0) > 0 <, , i ∈ {1, 2} .

Then, there exists two constants C > 0 and γ > 0 such that

‖P 1(k|k) − P 2(k|k)‖ ≤ C exp (−γk) .

The effect of the initialization P (0|0) is exponentially forgotten with time. This
is important if P (0|0) is poorly known.

Proof. Let K1(k) and K2(k) be the Kalman gain matrices corresponding to P 1(k|k)
and P 2(k|k) respectively. From the equality (1.16) we obtain

P 1(k|k)H(k)TK2(k)T = K1(k)H(k)P 2(k|k) , ∀ k .

Denoting ∆(k) = P 1(k|k) − P 2(k|k), then

∆(k + 1) = P 1(k + 1|k + 1)(In −K2(k + 1)H(k + 1))T

−(In −K1(k + 1)H(k + 1))P 2(k + 1|k + 1)T

=
(
P 1(k + 1|k + 1) − (In −K1(k + 1)H(k + 1))Q(k)

)

×
(
In −K2(k + 1)H(k + 1))T − (In −K1(k + 1)H(k + 1)

)

×
(
P 2(k + 1|k + 1) −Q(k)(In −K2(k + 1)H(k + 1))T

)

= (In −K1(k + 1)H(k + 1))Φ(k)

×∆(k)Φ(k)T (In −K2(k + 1)H(k + 1))T . (1.31)

The matrices Υi(k) = (In −Ki(k+1)H(k+ 1))Φ(k), i = 1, 2, are uniformly asymp-
totically stable by Proposition 1.1.6.
If Υi(k2, k1) = Υi(k2) . . .Υ

i(k1) for 0 ≤ k1 ≤ k2 and i = 1, 2, then

∆(k + 1) = Υ1(k)∆(k)Υ2(k)T

= Υ1(k, 0)∆(0)Υ2(k, 0)T .

Finally, from the inequality (1.25) we get the result.
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Figure 1.1: Two Kalman filter approximations of a path of the state x with two
different initializations x(0|0) and y(0|0).

Example 1.1.9 (Kalman filter). Consider the following linear dynamic system

2-dim. state equation xk+1 =

[
1 T
0 1

]

xk + uk

1-dim. measurement equation zk =
[

1 0
]
xk + wk

where x0 ∈ R
2 is an arbitrary fixed point, T = 0.1, and the processes (uk)k and

(wk)k are independent and Gaussian with covariance matrices given respectively by
Q = Q(k) = I2 and R = R(k) = 100.
The matrix I(k) defined in (1.17) is given by

I(k) = 10−2

[
2 −T

−T T 2

]

> 0 .

In particular, λ1 I2 ≤ I(k) ≤ λ2 I2 where λ1 = 0.5(2 + T 2 −
√
T 4 + 4) > 0 and

λ2 = 0.5(2 + T 2 +
√
T 4 + 4) > 0.

The Assumptions 1.1-1.4 hold and if the initialization of the Kalman algorithm is
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such that P (0|0) > 0, then the Proposition 1.1.4, the Proposition 1.1.6 and the
Corollary 1.1.8 say that

- The error covariance matrices {P (k|k)}k are uniformly bounded
- The filter is uniformly asymptotically stable
- The filter forgot exponentially its initialization

Suppose that

x0 =

[
x1

0

x2
0

]

=

[
0
0

]

.

We apply the Kalman algorithm for two different initializations. Denoting x(k|k)

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

k

PSfrag replacements

δ(k)
C exp(−γk)

Figure 1.2: Kalman error covariance behavior: δ(k) = ‖P1(k|k) − P2(k|k)‖ ≤
C exp(−γk).

and y(k|k) the two update estimates of the state xk relative to the following initial-
izations:

1. x(0|0) =

[
x1(0|0)
x2(0|0)

]

=

[
−100
−10

]

and P1(0|0) =

[
1 0
0 1

]

> 0

2. y(0|0) =

[
y1(0|0)
y2(0|0)

]

=

[
300
15

]

and P2(0|0) =

[
6 −2
−2 1

]

> 0

Figure 1.1: k ∈ {0, 1, . . . , 200}
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Up plot: A path of the first component x1
k of the state and the two Kalman esti-

mates x1(k|k) and y1(k|k)

Down plot: A path of the first component x2
k of the state and the two Kalman

estimates x2(k|k) and y2(k|k)

Let δ(k) = ‖P1(k|k) − P2(k|k)‖, there exists two constants C and γ > 0 such that

δ(k) ≤ C exp(−γ k) .

Figure 1.2: We plot (k, δ(k)), 0 ≤ k ≤ 120, against the function C exp(−γ k),
where C = 6.7050 and γ = 0.7741744.
The constants C and γ are obtained by a least squares fit of log(C) and γ.

1.2 The discrete extended Kalman filter

1.2.1 The extended Kalman filter algorithm

n-dimensional state equation x(k + 1) = fk(x(k),u(k)), k ≥ 0

m-dimensional measurement equation z(k) = hk(x(k),w(k)), k ≥ 0

where

• u(k) is an r−dimensional Gaussian white process satisfying conditions (1.2)

• w(k) is an p−dimensional Gaussian white process, satisfying conditions (1.4)

• x(0) is either Gaussian or deterministic with mean µ0 and covariance Γ0

The filtering problem consists of calculating the minimum variance estimate (MVE)
of the state given measurements up to the time of interest. That is, if for every
j ≥ 0,

yj =






z(0)
...

z(j)




 . (1.32)

The MVE of state x(k) given yj is given by x̂(k|j) = E[x(k)
∣
∣ yj ].

The estimate x̂(k|k) is called the filtered estimate of x(k). The estimate x̂(k|j) is
called the predicted estimate, when j < k, and the smoothed estimate, when j > k.
The error covariance matrix of the estimate x̂(k|j) to x(k) is

P (k|j) = E[(x̂(k|j) − x(k))(x̂(k|j) − x(k))T
∣
∣yj] . (1.33)

In many cases, dynamical systems are nonlinear or non Gaussian, and computing
the MVE turns to be a difficult and sometimes an impossible exercise. One idea is to
approximate the optimal solution (MVE) of the filter problem by approximating the
system’s dynamics. This can be done by replacing the original equations by a family
of linear Gaussian equations obtained by a first order Taylor expansions around a
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reference trajectory and apply the Kalman algorithm to the obtained linear system.
The validity of such approximations: How are good these linearizations, and
which reference trajectory should be chosen?
We start with a nominal reference trajectory:

• x∗(0) fixed in Rn

• x∗(k + 1) = fk(x
∗(k), 0), for all k ≥ 0

Let us define the following two processes

δ(k) = x(k) − x∗(k) , (1.34)

ν(k) = z(k) − hk(x
∗(k), 0) . (1.35)

A first order of Taylor’s series expansion gives

fk(x(k),u(k)) ≈ fk(x
∗(k), 0) +Dxfk(x

∗(k), 0)(x(k) − x∗(k))

+Dufk(x
∗(k), 0)u(k) (1.36)

hk(x(k),w(k)) ≈ hk(x
∗(k), 0) +Dxhk(x

∗(k), 0)(x(k) − x∗(k))

+Dwhk(x
∗(k), 0)w(k) (1.37)

The functions f and h are supposed sufficiently regular and one can drop all higher
than first order terms in the Taylor expansions. We denote for all k ≥ 0,

Φ(k) = Dxfk(x
∗(k), 0) , Λ(k) = Duf(x∗(k), 0) ,

H(k) = Dxhk(x
∗(k), 0) , Π(k) = Dwhk(x

∗(k), 0) .

Then,

δ(k + 1) = x(k + 1) − x∗(k + 1)

= fk(x(k),u(k)) − fk(x
∗(k), 0)

≈ Φ(k)δ(k) + Λ(k)u(k) (1.38)

Similarly,
ν(k) ≈ H(k)δ(k) + Π(k)w(k) . (1.39)

We apply the Kalman filter algorithm to the approximate linear model (1.38) and
(1.39). We denote the state estimate by δ̂(j|k) and the error covariance matrix by
P (j|k). A reasonable choice of estimates to x(k + 1) are

x̂(k + 1|k) = x∗(k + 1) + δ̂(k + 1|k)
x̂(k + 1|k + 1) = x∗(k + 1) + δ̂(k + 1|k + 1)

We come now to the choice of the reference trajectory (x∗(k))k≥0. In the extended
Kalman filter (EKF) setting, the reference trajectory {x∗(k)}k is chosen on-line.
That is, the first order Taylor’s expansion (linearization) is made about the last
predicted or filtered estimate as the algorithm proceeds.

The Extended Kalman Filter Algorithm
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Initialization

x̂(0|0) = µ0 , P (0|0) = Γ0 .

Prediction

Φ(k) = Dxfk(x̂(k|k), 0) , Λ(k) = Dufk(x̂(k|k), 0) ,
x̂(k + 1|k) = fk(x̂(k|k), 0) ,

P (k + 1|k) = Φ(k)P (k|k)Φ(k)T + Λ(k)Q(k)Λ(k)T .

Update

H(k + 1) = Dxhk(x̂(k + 1|k), 0) , Π(k + 1) = Dwhk(x̂(k + 1|k), 0) ,
K(k + 1) = P (k + 1|k)H(k + 1)T [H(k + 1)P (k + 1|k)H(k + 1)T

+Π(k + 1)R(k + 1)Π(k + 1)T ]+ ,
x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[z(k + 1) − hk+1(x̂(k + 1|k), 0)] ,

P (k + 1|k + 1) = P (k + 1|k) −K(k + 1)H(k + 1)P (k + 1|k) .

Remark 1.2.1 (Drawbacks of the EKF).

1. The derivation of the Jacobian matrices are non trivial in most applications
and often lead to significant implementation difficulties

2. Smoothness of the coefficients of a dynamical system may be not required
and even they are smooth, higher than the first order terms of the Taylor
expansions can not be neglected

3. The extended Kalman filter approximates the MVE’s by Gaussian estimates.
If they are non Gaussian, e.g. bimodal, then a Gaussian ones can never ap-
proximated it well.

1.2.2 On the convergence of the EKF

In general, the convergence of the EKF algorithm to the solution of the filtering
problem may not be obtained. It depends on how good the linearized system ap-
proximates the true one, see Remark 1.2.1. The performance of the EKF depends
on

• The regularity and the behavior of the functions f and h and their derivatives

• The noises and their covariances matrices Q and R

• The initialization of the algorithm

Krener [52], and Guo and Zhu [33] gave convergence results for some classes of
deterministic nonlinear systems. They considered an EKF as an observer on the
system, ie. Q and R are artificial inputs to control the quality of the convergence.
Bertsekas [8] provides a non-stochastic analysis of the convergence and he interpret
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the EKF as an incremental Gauss-Newton method and uses least squares methods.
Here, we exploit directly the EKF algorithm and we give a suitable upper bound
on the error for a class of nonlinear dynamical systems. This upper bound depends
heavily on the coefficients of the system and on the covariance matrices of the noises.
Let us consider Z(k) = σ{z(i) , 0 ≤ i ≤ k}. It is clear from the algorithm that
x̂(k|k) and x̂(k + 1|k) are Z(k)-measurable. We define the following two processes:

V (k) = x(k) − x̂(k|k)
Ṽ (k) = E[V (k)|Z(k)] = E[x(k)|Z(k)] − x̂(k|k)

We measure the performance of the EKF with the quantity εk = E[Ṽ (k)T Ṽ (k)]1/2.
In particular,

ε2k = E[Ṽ (k)T Ṽ (k)] ≤ E[V (k)TV (k)] . (1.40)

For a class of dynamical systems, we give an upper bound for εk, see Theorem 1.2.6.
This upper bound depends on the initialization, on the regularity of the functions
of the system, and on the noises and their covariances.
Suppose that the functions f and h sufficiently smooth, we make for simplicity the
following notations:

• For all X = (X1, . . . , Xn) ∈ (Rn)n and u ∈ Rr,

Φ̂X,u(k) =






Dxf
1
k (X1, u)

...
Dxf

n
k (Xn, u)






• For all x ∈ Rn and U = (U1, . . . , Un) ∈ (Rr)n,

Λ̂x,U(k) =






Duf
1
k (x, U1)

...
Duf

n
k (x, Un)






• For all X = (X1, . . . , Xm) ∈ (Rn)m and w ∈ Rp,

ĤX,w(k + 1) =






Dxh
1
k(X1, w)

...
Dxh

m
k (Xm, w)






• For all x ∈ Rn and W = (X1, . . . , Xm) ∈ (Rp)m,

Π̂x,W(k + 1) =






Dwh
1
k(x,W1)
...

Dwh
m
k (x,Wm)
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• For any differentiable function F : (x, y) ∈ R
n1 × R

n2 → F (x, y) ∈ R
n3 we

define

|||DxF ||| = sup
(x1,...,xn3 ,y)∈(Rn1 )n3×Rn2

‖






DxF
1(x1, y)
...

DxF
n3(xn3 , y)




 ‖

In particular, ‖DxF (x, y)‖ ≤ |||DxF |||. we define similarly |||DyF |||

For every k ≥ 0,

i. There exists Xf,k = (X1
f,k, . . . , X

n
f,k) ∈ [x(k), x̂(k|k)]n ⊂ (Rn)n and Uf,k =

(U1
f,k, . . . , U

n
f,k) ∈ [0,u(k)]n ⊂ (Rr)n such that

fk(x(k),u(k)) − fk(x̂(k|k), 0) = Φ̂Xf,k ,u(k)(k)(x(k) − x̂(k|k)) + Λ̂x̂(k|k),Uf,k(k)u(k)

ii. There exists Xh,k+1 = (X1
h,k+1, . . . , X

m
h,k+1) ∈ [x(k+1), x̂(k+1|k)]m and Wh,k+1 =

(W 1
h,k+1, . . . ,W

m
h,k+1) ∈ [0,w(k + 1)]m such that if

∆hk+1 = hk+1(x(k + 1),w(k + 1)) − hk+1(x̂(k + 1|k), 0) ,

then

∆hk+1 = ĤXh,k+1,w(k+1)(k + 1)(x(k + 1) − x̂(k + 1|k))
+Π̂x̂(k+1|k),Wh,k+1(k + 1)w(k + 1)

= ĤXh,k+1,w(k+1)(k + 1)Φ̂Xf,k ,u(k)(k)(x(k) − x̂(k|k))
+ĤXh,k+1,w(k+1)(k + 1)Λ̂x̂(k|k),Uf,k(k)u(k)

+Π̂x̂(k+1|k),Wh,k+1(k + 1)w(k + 1)

It follows that

V (k + 1) = [In −K(k + 1)Ĥ(k + 1)]Φ̂(k)V (k)

+[In −K(k + 1)Ĥ(k + 1)]Λ̂(k)u(k)

−K(k + 1)Π̂(k + 1)w(k + 1) . (1.41)

In particular,

E[|V (k + 1)|2]1/2 ≤ E[|{In −K(k + 1)Ĥ(k + 1)}Φ̂(k)V (k)|2]1/2

+E[|{In −K(k + 1)Ĥ(k + 1)}Λ̂(k)u(k)|2]1/2

+E[|K(k + 1)Π̂(k + 1)w(k + 1)|2]1/2 . (1.42)

From now, we suppose that the following assumptions hold

Assumption 1.5. For all k ≥ 0, x ∈ Rn, u ∈ (Rr)m and w ∈ (Rp)m,

• Λ̂x,u(k)Q(k)Λ̂x,u(k)T and Π̂x,w(k + 1)R(k)Π̂x,w(k + 1)T are invertible

• There exists positive constants ηi , i = 1, 2 and γ such that
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– ‖Q(k)‖, ‖Λ̂x,u(k)Q(k)Λ̂x,u(k)T‖ ≤ γ

– ‖R(k)‖, ‖Π̂x,w(k + 1)R(k)Π̂x,w(k + 1)T‖ ≤ η1

– ‖
(
Π̂x,w(k + 1)R(k)Π̂x,w(k + 1)T

)−1‖ ≤ η2

Assumption 1.6. There exists positive constants αi , βi , i = 1, 2 and γ such that

|||Dxfk||| ≤ α1 , |||Dufk||| ≤ α2 ,
|||Dxhk||| ≤ β1 , |||Dwhk||| ≤ β2 .

Assumption 1.7. τ = β2
1η2γ < 1 and α1 < 1 −√

τ .

Assumption 1.8. P (0|0) ≥ 0.

Under the Assumption 1.5-1.8, we obtain

P (k + 1|k + 1)−1 = P (k + 1|k)−1 +H(k + 1)T R̃(k + 1)−1H(k + 1) ,

K(k + 1) = P (k + 1|k + 1)H(k + 1)T R̃(k + 1)−1 .
(1.43)

Lemma 1.2.2. There exists a real number θ > 1 such that

θ2τ < 1 and α2
1 <

θ − 1

θ
(1 − θτ) .

Proof. For every θ ∈ (1,
√

1/τ) the first inequality of the Lemma is satisfied. For

the second inequality we consider the function g defined on the interval (0,
√

1/τ)
by

g(θ) =
θ − 1

θ
(1 − θτ) , ∀ θ ∈ (0,

1√
τ
) .

The functiong is C1-class on (0,
√

1/τ) and for all θ ∈ (0, 1√
τ
) we have

g′(θ) =
1 − τθ2

θ2
> 0 .

Then, The function g is a strictly increasing and from the Assumption 1.7, α2
1 < (1−√

τ )2 = g( 1√
τ
). The two inequalities are satisfied for θ in

(
max{1, g−1(α2)} ,

√

1/τ
)
.

Proposition 1.2.3. Let us choose a real number θ > 1 satisfying the Lemma 1.2.2.
If ‖P (0|0)‖ ≤ θ−1

α2
1
γ, then

‖P (k|k)‖ ≤ θ − 1

α2
1

γ , ∀k ≥ 0 .

Remark 1.2.4. • Since α2
1 <

θ−1
θ

(1 − θτ), we choose α1 such that

(θ − 1

θ

)2
< α2

1 <
θ − 1

θ
(1 − θβ2

1η2γ) (1.44)
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• For simplicity, we denote by

– Q̃(k) = Λ̂(k)Q(k)Λ̂(k)T

– R̃(k + 1) = Π̂(k + 1)R(k)Π̂(k + 1)T

Proof. Since ‖P (0|0)‖ ≤ θ−1
α2

1
γ, we prove the result by induction. Let k ≥ 0 and

suppose that ‖P (k|k)‖ ≤ θ−1
α2

1
γ, then

P (k + 1|k) = Φ(k)P (k|k)Φ(k)T + Q̃(k) .

Then,

‖P (k + 1|k)‖ ≤ ‖Φ(k)‖2‖P (k|k)‖ + ‖Q̃(k)‖

= α2
1

(θ − 1)

α2
1

γ + γ = θγ

We denote by H = H(k + 1). From the equalities (1.43) we get

P (k + 1|k + 1) =
(
In −K(k + 1)H

)
P (k + 1|k)

=
(
In − P (k + 1|k + 1)HT R̃(k + 1)−1H

)
P (k + 1|k) .

This leads to
‖P (k + 1|k + 1)‖(1 − θβ2

1η2γ) ≤ θγ

From (1.44) we have 1 − θβ2
1η2γ > 0 and θγ

1−θβ2
1η2γ

≤ θ−1
α2

1
γ. Then,

‖P (k + 1|k + 1)‖ ≤ θ − 1

α2
1

γ .

Corollary 1.2.5. If λ = (θ − 1)/(α1θ) < 1 and Θ = θβ1η2γ, then for all k ≥ 0 we
have

1. ‖{In −K(k + 1)Ĥ(k + 1)}Φ̂Xf,k ,u(k)(k)‖ ≤ λ

2. ‖In −K(k + 1)ĤXh,k+1,w(k+1)(k + 1)‖ ≤ λ× 1/α1

3. ‖K(k + 1)‖ ≤ λ× Θ/α1

From the inequality (1.42) we conclude that

E[|V (k + 1)|2]1/2 ≤ λE[|V (k)|2]1/2 +
λα2

α1
E[|u(k)|2]1/2 +

λΘβ2

α1
E[|w(k + 1)|2]1/2 .

The matrices Q(k) and R(k) are real symmetric and positive, then

‖Q(k)‖ ≤ E[|u(k)|2] ≤ n‖Q(k)‖
‖R(k + 1)‖ ≤ E[|w(k + 1)|2] ≤ m‖R(k + 1)‖
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It follows that

E[|V (k + 1)|2]1/2 ≤ λE[|V (k)|2]1/2 + λ(
√
γn

α2

α1

+
√
η1m

β2Θ

α1

) . (1.45)

Iterating this inequality from 0 to k we get

E[|V (k)|2]1/2 ≤ λkE[|V (0)|2]1/2 + C
λ(1 − λk)

1 − λ

≤ λkE[|V (0)|2]1/2 + C
λ

1 − λ
(1.46)

where

C =
√
γn

α2

α1
+
√
η1m

β2Θ

α1
.

The constants C and λ depend heavily on the functions f , h and their Jacobian
matrices, and on the covariance noises matrices Q and R. The algorithm forgot
exponentially its initialization since λkE[|V (0)|2]1/2 → 0 as k → ∞. The expression
of the constant C shows that this upper bound is sensitive to the dimensions of
the state and the observation spaces. Finally, smaller are the numbers λ, C and
E[|V (0)|2] better are the approximations.
To summarize we have proved the following Theorem

Theorem 1.2.6 (On the convergence of the EKF).
The EKF error is εk = E[(x(k) − x̂(k|k))(x(k) − x̂(k|k))T ]1/2.
Suppose that the conditions of Proposition 1.2.3 hold. Let us consider

λ =
θ − 1

α1 θ
(< 1) , Θ = θβ1η2γ and C =

√
γn

α2

α1

+
√
η1m

β2Θ

α1

.

If 0 ≤ ‖P (0|0)‖ ≤ (θ−1)γ
α2

1
, then

εk ≤ λkε0 +
λ

1 − λ
C .

Example 1.2.7 (Convergence of the EKF). Consider the following model:

2-dim. state equation x(k + 1) = f(x(k)) + u(k)

1-dim. measurement equation z(k) = h(x(k)) + w(k)

where

• x(0) =

[
0
0

]

• for all x =

[
x1

x2

]

∈ R2,

– f(x) =

[
x1/2 + cos(x2/(2π))
x2/2 + sin(x1/(2π))

]



24 1.2. THE DISCRETE EXTENDED KALMAN FILTER

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

1.5

2.0

2.5
First component of the state

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Second component of the state

PSfrag replacements

x1(k)
x̂1(k|k)

x2(k)
x̂2(k|k)

Figure 1.3: The EKF estimate of a path of the state process x.

– h(x) = 2(1 + x2
1 + x2

2)
1/2

The Gaussian noises {u(k)}k and {w(k)}k are independent with covariance matrices
given by

Q(k) = Q =

[
5 × 10−3 0

0 5 × 10−3

]

and R(k) = R = 100 .

The Jacobian matrices of the functions f and h are given by

Dxf(x) =
1

2π

[
π − sin(x2/(2π))

cos(x1/(2π)) π

]

,

Dxh(x) = 2
[
x1/h(x) x2/h(x)

]
.

In particular,

1. ‖Dxf‖ ≤ α1 = 0.7421, ‖Dxh‖ ≤ β1 = 2 and α2 = β2 = 1

2. ‖Q‖ ≤ γ = 5 × 10−3, ‖R‖ = 100 ≤ η1 = 100 and ‖R−1‖ = 10−2 ≤ η2 = 10−2

Then, β2
1η2γ < 1. The conditions of Proposition 1.2.3 hold for θ = 2.6. In particular,

λ =
θ − 1

α1θ
= 0.8292 , C = 0.08571 and

λ

1 − λ
× C = 0.416124 .
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Figure 1.4: EKF Upbound error: E[V (k)TV (k)]1/2 ≤ λkε0 + λC(1 − λ)−1.

We initialize the EKF algorithm with

x̂(0|0) =

[
π/6
π/8

]

,

P (0|0) = 10−2

[
1.4 0
0 1

]

.

Figure 1.3: The EKF estimate of the first and the second component of the state

vector x. The bars ”
∣
∣
∣” in the two plots represent the EKF errors, ie.

√

P (k|k)1,1

and
√

P (k|k)2,2.
Figure 1.4: Since ‖P (0|0)‖ ≤ γ(θ − 1)/α2

1 = 0.0145266, then Theorem 1.2.6 says
that

εk = E[|x(k) − x̂(k|k)|2]1/2 ≤ λkε0 + Cλ/(1 − λ)

Example 1.2.8 (non convergent EKF algorithm). One example of non linear system
for which an EKF algorithm may fail to converge is

State equation: x(k + 1) = x(k)(1 − x(k)2) + u(k) and x(0) = 0.05

Measurement equation: z(k) = x(k)2 − x(k)/2 + w(k)

where
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Figure 1.5: The EKF may fail.

• The processes u and w are Gaussian independent

• For all k ≥ 0, E[u(k)2] = Q = 0.005 and E[w(k)2] = 1

This system is of high nonlinearity because of the presence of high degree polynomial
terms. In particular, the hypothesis of Theorem 1.2.6 are not satisfied indeed the
derivatives are non bounded.
We applied the EKF algorithm with the following initialization:

x̂(0|0) = 0.05 and P (0|0) = 1 .

Figure 1.5: Even a long time simulation (N = 500), the EKF path do not converge
to the true one.
Figure 1.6:

• x̂(k|k) approximates E[x(k)|Zk]

• P (k|k) approximates E[(x(k) − E[x(k)|Zk])
2|Zk]

Then, E[(x(k) − x̂(k|k))2] and E[P (k|k)] are both approximations to E[(x(k) −
E[x(k)|Zk])

2].
If the EKF gives good approximations, then E[(x(k) − x̂(k|k))2] − E[P (k|k)] con-
verges to zero or at least becomes small.
We simulate 100 paths of the EKF estimation to calculate E[P (k|k)] and E[(x(k)−
x̂(k|k))2]. The two trajectories fail to become close one to the other.
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Chapter 2

Particle Filter Methods

2.1 Introduction

The stochastic filtering problem deals with the estimation of the current state of a
process X, called the signal or the state process, based on measurements supplied by
an associate process Z, called the observation process. In the Bayesian framework,
see Appendix C.1, a stochastic dynamical equation provides the prior distribution
of the state process and an observation equation gives rise to the likelihood of the
observation, and all relevant information on the stateXk are included in the posterior
distribution P (Xk ∈ A

∣
∣Z0, . . . , Zj). This problem is known as the Bayesian filtering

also called the optimal filtering problem. Often the observations or measurements
arrive sequentially in time, and one is interested in estimating recursively in time the
evolving posterior distribution. The posterior distribution only admits an analytical
expression for few special models including linear Gaussian models, in that case one
derives an exact analytical recursion expression for the posterior called the Kalman
filter, see Chapter 1. However, in many realistic problems real data involve elements
of non linearity, non Gaussianity and high dimensionality which preclude analytical
solutions. For over 3 decades several approximation strategies to the optimal filter
were been proposed, for example:

• The extended Kalman filter, see Section 1.2

• The unscented filter [41, 42]

• Approximations by Gaussian sums [4, 74]

• Approximations using deterministic numerical integration methods [13]

These methods have numerous drawbacks, they depend on the dimension of the
system, they are numerically expensive and they use mainly Gaussian distributions.
Only in the past few years with the advance of computational power the Monte Carlo
method, see Appendix C.3, has gained the full status of a numerical method capa-
ble of addressing many complex applications. The sequential Monte Carlo methods,
also called particle filter methods, have been developed to address the Bayesian fil-
tering problem. These methods are very flexible, often easy to implement, and have
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the advantage of not being subject to any linearity, Gaussianity or dimensionality
hypothesis on the models.
The aim of this chapter is to present a unified general framework on particle filter
methods. We simplify some approaches for proving the validity of these numerical
methods using some different techniques to those appeared in literature, this make
them comprehensible and applicable. Also, some original developments and new
results are presented. Our work is essentially based on the works of Doucet [22, 23],
Liu and Chen [62], Crisan and Doucet [20], Doucet, Godsill and Andrieu [24], Crisan
[17], Crisan, Del Moral and Lyons [19], Arulampalam, Maskell, Gordon and Clapp
[3] and Kong, Liu and Wong [51].
The rest of the chapter is organized as follows. In Section 2.2 we apply a classical
Monte Carlo method to resolve the filtering problem. This method is only idealis-
tic since it requires the possibility of sampling from multivariate and non standard
distributions. In Section 2.3, we consider a rather general model and we prove a re-
cursion relation for the optimal filtering problem. This recursion represents the basis
for the numerical algorithms and enable us to design iterative schemes, called par-
ticle filter methods or sequential Monte Carlo methods. In Section 2.4 we present
the original particle filter algorithm and its drawbacks including the degeneracy
phenomenon. The use of importance sampling functions and branching mechanisms
allow us to surmount this degeneracy phenomenon and permit us to give a very
general particle filter algorithm. Section 2.5 deals with the almost sure convergence
of these algorithms. We prove convergence results for generic models that we apply
to particle filter algorithms. In Section 2.6, we prove the mean square convergence
and we give a rate of convergence. In Section 2.7 strategies of selection of impor-
tance sampling functions are discussed. In Section 2.8 we give a large family of
correlated and independent branching mechanisms. Examples are studied through
the Chapter supplied with comparison of different particle filter methods. In in the
remainder of this Section, we recall some properties of Markov processes and their
transition kernels.
The transition kernels of an Rn-valued Markov process X = {Xk}k are the functions
(Kk(·, ·))k defined on Rn × B(Rn) by

Kk(x,A) := P (Xk+1 ∈ A
∣
∣Xk = x) .

We make the following assumption

Assumption 2.1. All probability distributions and all kernels in this Chapter are
supposed to have a density function.

Then, for all A ∈ B(Rn),

Kk(x,A) = P (Xk+1 ∈ A
∣
∣Xk = x) =

∫

A

p(xk+1|xk = x)dxk+1 ,

Kk(x, dxk+1) = p(xk+1|xk = x)dxk+1 .

If Xi:j = (Xi, . . . , Xj) and P x
i:j is the law of Xi:j on (Rn)j−i+1, the Chapman-

Kolmogorov equation gives

P x
0:k(dx0:k) = π0(dx0)Π

k
j=1Kj(xj−1, dxj) . (2.1)
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The Remark B.1.2 affirms that we can choose the kernels Kk(·, ·) to be regular. That
is, for every (k, x, A) ∈ N × Rn × B(Rn)

- Kk(x, ·) is a probability measure on Rn

- Kk(·, A) is bounded Borel function

For every µ ∈ MF (Rn) and every k ∈ N, the measure µKk(·) is defined by

µKk(A) =

∫

Rn

Kk(x,A)µ(dx) , ∀A ∈ B(Rn)

In particular, µKk(·) ∈ MF (Rn) .
For every ϕ ∈ B(Rn), let Kkϕ be the bounded Borel function defined on R

n by

Kkϕ(x) =

∫

Rn

ϕ(y)Kk(x, dy) , ∀x ∈ R
n .

Then,

µKkϕ =

∫

Rn

ϕ(y)Kk(x, dy)µ(dx) .

The Markov process X has a Feller transition kernel if for every ϕ ∈ Cb(R
n),

Kkϕ ∈ Cb(R
n) .

If Fx
k = σ{Xj , 0 ≤ j ≤ k}, the Markov property implies that

E[ϕ(Xk+1)|Fx
k ] = E[ϕ(Xk+1)|Xk] = Kkϕ(Xk) , ∀ϕ ∈ B(Rn) .

2.2 Perfect Monte Carlo sampling

Let us consider the following model:

1. The state X = {Xk}k is a Markov process of initial distribution π0 and a
transition kernel Kk(xk−1, dxk) = p(xk|xk−1) dxk

2. The observation process Z = {Zk}k is conditionally independent given the
process X, of marginal distribution with probability density function p(zk|xk)

Let us denote by X0:k = (X0, . . . , Xk) and by Z0:k = (Z0, . . . , Zk).

Aim: Estimate recursively p(x0:k|z0:k) and essentially its associated feature p(xk|z0:k)

Using Bayes’ rule, we get the following recursive formula

p(x0:k+1|z0:k+1) = p(x0:k|z0:k) ×
p(zk+1|xk+1)p(xk+1|xk))

p(zk+1|z0:k)
.

This recursion is only academic in the sense that we cannot compute the densi-
ties p(x0:k+1|z0:k+1) and its marginal and we can not evaluate the associated high-
dimensional integrals.
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Suppose that we are able to simulate N i.i.d. random samples {X (i)
0:k , 1 ≤ i ≤ N}

according to p(x0:k|z0:k), then an empirical estimate of this distribution is given by

π0:k|k(dx0:k) =
1

N

N∑

i=1

δ{X(i)
0:k}

(dx0:k) .

The rate of convergence of this method is of order greater or equal to N 1/2 and it is
independent of the dimension k × n, see appendix C.3. Unfortunately, it is usually
impossible to sample efficiently from the posterior distribution p(x0:k|z0:k) at any
time k, since it is multivariate, non standard and only known up to a proportional
constant.

2.3 Bayesian model to the filtering problem

The state process: An Rn-valued Markov process {Xk , k ∈ N} with a Feller
transition kernel Kk(x, dy)

The observation process: An Rm-valued stochastic process {Zk , k ∈ N} such
that

Zk = hk(Xk,Wk) , k ≥ 1 ; Z0 = 0 . (2.2)

The function h : N × R
n × R

m → R
m is a Borel measurable function such that:

1. For all k ∈ N, the function hk(·, ·) is continuous on R
n × R

m.
2. For all (k, x) ∈ N × Rn, hk(x, ·) is a C1-diffeomorphism of Rm. We
denote h−1

k (x, ·) its inverse.
3. For all (k, x) ∈ N × Rn,

Φk(x, z) = | det(
∂

∂z
h−1

k (x, z))| > 0 , ∀ z ∈ R
m .

4. For all (k, z) ∈ N × Rm, Φk(·, z) is bounded continuous.

The random vectors Wk : Ω → Rm are independent, independent of the process
X with laws absolutely continuous w.r.t. the Lebesgue measure on Rm and the
densities gk(·) of Wk are bounded and continuous.

Remark 2.3.1. If the noise in the observation process is simply additive, ie. Zk =
hk(Xk) +Wk, then 2., 3. and 4. hold and Φk(x, z) = 1 for all z ∈ Rm.

Let 0 ≤ i ≤ j < ∞, denoting by Xi:j = (Xi, . . . , Xj), Zi:j = (Zi, . . . , Zj), P
x
i:j

the law of Xi:j on (Rn)j−i+1 and P z
i:j the law of Zi:j on (Rm)j−i+1. The filtering

problem consists of computing the conditional distribution of the state given the
observations from time 0 to the current time k, denoted by πk|k, that is

πk|k(A) = P (Xk ∈ A
∣
∣Z0:k = z0:k) , ∀A ∈ B(Rn)

πk|kϕ = E[ϕ(Xk)
∣
∣Z0:k = z0:k] , ∀ϕ ∈ B(Rn)



2.3. BAYESIAN MODEL TO THE FILTERING PROBLEM 33

where z0:k = (z0, . . . , zk) ∈ (Rm)k+1 is a generic path in the space of paths of the
observation process from time 0 to time k. The predicted conditional probability
measure πk|k−1 is

πk|k−1(A) = P (Xk ∈ A
∣
∣Z0:k−1 = z0:k−1) ,

πk|k−1ϕ = E[ϕ(Xk)|Z0:k−1 = z0:k−1] .

The main result of this Section is a recursion relation satisfied by πk|k and πk|k−1.
It represents the basis for the optimal Bayesian solution of the filtering problem.

Theorem 2.3.2. For a fixed path of the observation process from time 0 to time k,
Z0:k = z0:k ∈ (Rm)k+1, we have

Prediction

πk+1|k = πk|kKk (2.3)

Update
dπk+1|k+1

dπk+1|k
=

g̃k+1
∫

Rn g̃k+1(x)πk+1|k(dx)
(2.4)

where the function g̃k ∈ Cb(R
n) defined by g̃k(·) = gk(h

−1
k (·, zk))Φk(·, zk).

Remark 2.3.3. 1. Since Z0 = 0 then π0|0 = π0, where π0 is the law of X0.
2. It is easy to see that for any measurable function ϕ : Rn → R, the recursion
relations (2.3) and (2.4) imply

(
πk+1|k, ϕ

)
=

(
πk|k, Kkϕ

)
Prediction . (2.5)

(
πk|k, ϕ

)
=

(
πk|k−1, g̃k

)−1(
πk|k−1, g̃kϕ

)
Update . (2.6)

For the proof of Theorem 2.3.2 we need the following Lemma. Let λ the Lebesgue
measure on (Rm)j−i+1, then

Lemma 2.3.4. P z
i:j is absolutely continuous w.r.t. λ and its Radon-Nikodym deriva-

tive is given by

dP z
i:j

dλ
(zi:j) =

∫

(Rn)j−i+1

Πj
k=i gk(h

−1
k (xk, zk))Φk(xk, zk)P

x
i:j(dxi:j) . (2.7)

where dxi:j = dxi × · · · × dxj.

Proof. Let Ci:j = Ci × · · ·×Cj, where Ci, . . . , Cj are arbitrary in B(Rm). Using the
property (B.1) of the conditional expectation, we get

P z
i:j(Ci:j) = P ({Zi:j ∈ Ci:j})

=

∫

(Rn)j−i+1

P (Zi:j ∈ Ci:j

∣
∣Xi:j = xi:j)P

x
i:j(dxi:j) . (2.8)
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But the processes X and W are independent and the Wk’s are independent, then

P (Zi:j ∈ Ci:j

∣
∣Xi:j = xi:j) = E[Πj

k=iICk
(hk(Xk,Wk))

∣
∣Xi:j = xi:j]

= E[Πj
k=iICk

(hk(xk,Wk))]

= Πj
k=iE[ICk

(hk(xk,Wk))]

= Πj
k=i

∫

Ck

gk(h
−1
k (xk, zk))Φk(xk, zk)dzk . (2.9)

where IC is the characteristic function of the Borel set C. The equality (2.9) is
obtained by a direct application of Theorem 2.2.7. in [40].
We substitute (2.9) and (2.8) and we apply Fubini’s theorem we obtain (2.7).

Proof. of Theorem 2.3.2
Since X0:k+1 and W0:k are independent, then for all ϕ ∈ B(Rn):

Kkϕ(Xk) = E[ϕ(Xk+1)
∣
∣Fx

k ] = E[ϕ(Xk+1)
∣
∣σ(Fx

k , σ(W0:k))] .

But Z0:k is σ(Fx
k , σ(W0:k))-measurable, then

E[ϕ(Xk+1)
∣
∣Z0:k] = E

[
E[ϕ(Xk+1)

∣
∣σ(Fx

k , σ(W0:k)]
∣
∣Z0:k

]

= E[Kkϕ(Xk)
∣
∣Z0:k]

which implies the first equality (2.3).
Using Lemma 2.3.4, we obtain the second equality (2.4) if we prove that for all
A ∈ B(Rn)

πk|k(A) =

∫

A
g̃k(xk)πk|k−1(dxk)

∫

Rn g̃k(x)πk|k−1(dx)
P z

0:k-a.s. (2.10)

Let C0:k = C0 × · · · × Ck, where C0, . . . , Ck are arbitrary in B(Rm). The property
(B.1) of the conditional probability implies

∫

C0:k

πk|k(A)P z
0:k(dz0:k) =

∫

C0:k

P
(
Xk ∈ A

∣
∣Z0:k = z0:k

)
P z

0:k(dz0:k)

= P
(
{Xk ∈ A} ∩ {Z0:k ∈ C0:k}) . (2.11)

Then, it is sufficient to prove the following:

∫

C0:k

∫

A
g̃k(xk)πk|k−1(dxk)

∫

Rn g̃k(x)πk|k−1(dx)
P z

0:k(dz0:k) = P ({Xk ∈ A} ∩ {Z0:k ∈ C0:k}) . (2.12)

Let us denote by P x,z
k,0:k−1(dxkdz0:k−1) the joint pdf of Xk and Z0:k−1. We claim the

following identities:

a. P
(
Zk ∈ Ck

∣
∣Xk = xk, Z0:k−1 = z0:k−1

)
=

∫

Ck
g̃k(xk)dzk

b. P x,z
k,0:k−1(dxkdz0:k−1) = πk|k−1(dxk)P

z
0:k−1(dz0:k−1)

c. P z
0:k(dz0:k) =

∫

Rn g̃k(xk)πk|k−1(dxk)dzkP
z
0:k−1(dz0:k−1)
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These equalities will be proved here later on.
Let us denote

∆ =

∫

C0:k

∫

A
g̃k(xk)πk|k−1(dxk)

∫

Rn g̃k(x)πk|k−1(dx)
P z

0:k(dz0:k) .

If we use together the identities a., b. and c. we get

∆ =

∫

C0:k

∫

A

g̃k(xk)πk|k−1(dxk)dzkP
z
0:k−1(dz0:k−1)

=

∫

A×C0:k−1

(
∫

Ck

g̃k(xk)dzk

)
πk|k−1(dxk)P

z
0:k−1(dz0:k−1)

=

∫

A×C0:k−1

P
(
Zk ∈ Ck|Xk = xk, Z0:k−1 = z0k−1

)
P x,z

k,0:k−1(dxkdz0:k−1)

= P ({Xk ∈ A} ∩ {Z0:k ∈ C0:k}) .
Finally, let us show the identities a., b. and c.
Since σ(Xk, Z0:k−1 ⊂ σ(X0:k,W0:k−1), we obtain

P
(
Zk ∈ Ck

∣
∣Xk, Z0:k−1

)
= E[ICk

(Zk)
∣
∣Xk, Z0:k−1]

= E
[
P (Zk ∈ Ck

∣
∣X0:k, W0:k−1)

∣
∣Xk, Z0:k−1

]
. (2.13)

But Zk and W0:k−1 are independent, then

P
(
Zk ∈ Ck

∣
∣X0:k, W0:k−1

)
= P

(
Zk ∈ Ck

∣
∣X0:k

)

= P
(
Z0:k ∈ (Rm)k × Ck

∣
∣X0:k

)

=

∫

Ck

g̃k(Xk)dzk . (2.14)

From (2.13) and (2.14) we derive

P
(
Zk ∈ Ck

∣
∣Xk, Z0:k−1

)
=

∫

Ck

g̃k(Xk)dzk .

This proves a.
For all A ∈ B(Rn), let us denote Ψ(A) = P

(
(Xk, Z0:k−1) ∈ A× C0:k−1

)
. Then,

Ψ(A) =

∫

C0:k−1

P
(
Xk ∈ A

∣
∣Z0:k−1 = z0:k−1

)
P z

0:k−1(dz0:k−1)

=

∫

A×C0:k−1

πk|k−1(dxk)P
z
0:k−1(dz0:k−1) ,

This gives the equality b.
We use equality b. to prove the equality c. In fact, we have

P z
0:k(C0:k) = P ({Zk ∈ Ck} ∩ {Xk ∈ R

n} ∩ {Z0:k−1 ∈ C0:k−1})
=

∫

P
(
Zk ∈ Ck

∣
∣Xk = xk, Z0:k−1 = z0:k−1

)
P x,z

k/0:k−1(dxkdz0:k−1)

=

∫

Rn×C0:k−1

∫

Ck

g̃k(xk)dzkπk|k−1(dxk)P
z
0:k−1(dz0:k−1)

=

∫

C0:k

∫

Rn

g̃k(xk)πk|k−1(dxk)dzkP
z
0:k−1(dz0:k−1) . (2.15)
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The equality c. is expressed by (2.15).

Remark 2.3.5. Similar results and proofs was given in [1] in the case of additive
noise in the observation equation.

2.4 Particle filter methods

Computation of the posterior density πk|k(dxk) is in general an exercise in high
dimension numerical integration and it seems better to design iterative schemes
imitating the exact one, see Theorem 2.3.2. The particle filter methods proceed
in this manner. These methods are very flexible, easy to implement, parallelizable
and applicable in very general setting. More precisely, a particle filter method is a
recursive algorithm based on the equations (2.3) and (2.4) that produces, at each
time k, a cloud of particles. The empirical measure associated to these particles
converges in some sense to the distribution πk|k as the number of particles growths.

At time k, the algorithm generates N particles {X (i)
k }1≤i≤N with an associated

empirical measure

πN
k|k(dxk) =

1

N

N∑

i=1

δ{X(i)
k

}(dxk)

where δ{x}(dxk) denotes the delta-Dirac measure at the point x.

The algorithm is recursive in the sense that {X (i)
k }1≤i≤N are produced using the

observation at time k and the particles {X (i)
k−1}1≤i≤N produced at time k−1. Recall

that Theorem 2.3.2 states that

Prediction

πk|k−1 = πk−1|k−1Kk−1 (2.16)

Update
dπk|k
dπk|k−1

=
g̃k

∫

Rn g̃k(x)πk|k−1(dx)
(2.17)

Then, intuitively we follow these recursions. Suppose that a set of particles {X (i)
k−1}1≤i≤N

distributed approximately according to πk−1|k−1(dxk−1) is given, then the associated
empirical measure

πN
k−1|k−1(dxk−1) =

1

N

N∑

i=1

δ{X(i)
k−1}

(dxk−1) .

is an approximation to πk−1|k−1. In the prediction stage, we sample N particles:

X̃
(i)
k ∼ Kk−1(X

(i)
k−1, dxk) , 1 ≤ i ≤ N . (2.18)
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Remark 2.4.1. In the prediction stage, instead of sampling from Kk−1(X
(i)
k−1, dxk),

Crisan and Doucet in [2] propose to sample from

Kk−1π
N
k−1|k−1(dxk) =

1

N

N∑

j=1

Kk−1(X
(j)
k−1, dxk) .

The new particles {X̃(i)
k }1≤i≤N approximate πk|k−1(dxk) ie. the associated em-

pirical distribution

πN
k|k−1(dxk) =

1

N

N∑

i=1

δ{X̃(i)
k

}(dxk) (2.19)

is an approximation to πk|k−1. Updating means that one plugs the measure (2.19) in
the Update stage equation (2.17) to get π̃N

k|k(dxk) the Monte Carlo approximation

of πk|k(dxk−1), then

π̃N
k|k(dxk) =

g̃k(xk)π
N
k|k−1(dxk)

∫

Rn g̃k(xk)π
N
k|k−1(dxk)

=

∑N
i=1 g̃k(X̃

(i)
k )δ{X̃(i)

k
}(dxk)

∑N
i=1 g̃k(X̃

(i)
k )

=

N∑

i=1

w
∗(i)
k δ{X̃(i)

k
}(dxk)

where w
∗(i)
k =

g̃k(X̃
(i)
k

)
∑N

i=1 g̃k(X̃
(i)
k

)
∝ g̃k(X̃

(i)
k ) are the so-called importance weights. The

measure π̃N
k|k is a weighted empirical measure approximation of πk|k. The aim of a

particle filter method is to obtain an unweighted empirical measure approximation
of the form

πN
k|k(dxk) =

1

N

N∑

i=1

δ{X(i)
k

}(dxk) . (2.20)

A resampling stage is used for duplicating the particles X̃
(i)
k having high weights

and discarding the others to focus on the zones of high posterior probabilities. This
is can be achieved for example by sampling N times from the weighted empir-
ical measure π̃N

k|k(dxk). In fact, it generates N
(i)
k copies of the ith particle and

the N
(i)
k ’s are distributed according to a multinomial distribution with parameters

(N ;w
∗(1)
k , . . . , w

∗(N)
k ). Consequently, the total number of particles alive during the

system evolution don’t change from a generation to another. Moreover,

E[N
(i)
k ] = Nw

∗(i)
k and var(N

(i)
k ) = Nw

∗(i)
k (1 − w

∗(i)
k ) . (2.21)

The variances var(N
(i)
k )’s are referred to us as the Monte Carlo variations of the

resampling stage. We summarize with the particle filter algorithm
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Particle Filter Algorithm

Initialization stage: Sample N0 particles X
(i)
0 ∼ π0 = π0|0.

πN
0|0(dx0) =

1

N0

N0∑

i=1

δ{X(i)
0 }(dx0) .

Prediction stage: At time k−1 (k ≥ 1), SampleN particles X̃
(i)
k ∼ Kk−1(X

(i)
k−1, dxk)

to get an approximation to πk|k−1

π̃N
k|k−1(dxk) =

1

Nk−1

Nk−1∑

i=1

δ{X̃(i)
k

}(dxk) .

Update stage: For 1 ≤ i ≤ N calculating the weights w
∗(i)
k ∝ g̃k(X̃

(i)
k ). The

weighted empirical distribution approximation to πk|k is

π̃N
k|k(dxk) =

N∑

i=1

w
∗(i)
k δ{X̃(i)

k
}(dxk) .

Resampling stage: Sample N particles X
(i)
k ∼ π̃N

k|k. The unweighted empirical
distribution approximation to πk|k is

πN
k|k(dxk) = 1

Nk

∑Nk

i=1 δ{X(i)
k

}(dxk) .

Example 2.4.2. Let us consider the following nonlinear model [23, 49]:

State: Xk+1 = 1
2
Xk + 25Xk/(1 +X2

k) + 8 cos(1.2k) + Uk

Observation: Zk = X2
k/20 +Wk

where X0 ∼ N(0, 10), Uk ∼ N(0, 10) and Wk ∼ N(0, 1).
Figure 2.1: We use the particle filter (PF) method with 60 particles to estimate a
path of the process X. The PF estimate is better than the EKF estimate.
Figure 2.2: A particle filter method provides estimations of the posterior filtered
distribution p(X(k)|Z(0 : k)). This can be not given by the EKF method for such
nonlinear system.

The particle filter algorithm is very intuitive and easy to implement, but unfor-
tunately suffers from numerous drawbacks:

1. In the prediction stage: Some times it is difficult or impossible to sample
efficiently from the density Kk(x, dx) in (2.18)
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Figure 2.1: A comparison between the EKF and the PF methods in estimating a
path of a process X.

2. In the update stage: The degeneracy phenomenon that comes up in practice.
Since the weights w

∗(i)
k ∝ g̃k(X̃

(i)
k ), this phenomenon happen when the function

g̃k generates all but few importance weights very close to zero, see figure 2.3.
Then, essentially only few particles will be duplicated and the others discarded
and we have no diversity in the next generations

3. In the resampling stage: A multinomial branching mechanism is used. This
can introduce a large Monte Carlo variation, see (2.21)

To avoid the problem of sampling directly from Kk−1(xk−1, dxk) in (2.18) and

reduce the degeneracy phenomenon we sample the particles X̃
(i)
k from a new kernel

K̃k−1(X
(i)
k−1, dxk) instead of Kk−1(X

(i)
k−1, dxk).

In the resampling stage, others branching mechanisms will be proposed. These
mechanisms perform lowers variances, see (2.21), and reduce the degeneracy phe-
nomenon. A branching mechanism depends on the weight of each particle and on
the past trajectories of all the particles. This causes the total number of particles
N to be time dependent, ie. N = Nk.
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Figure 2.2: The Posterior distribution p(Xk|Z0:k) using 160 particles

New prediction stage: Let us denote

F̃k−1 = σ{N0 , . . . , Nk−1 ;

k−1⋃

j=0

{X (i)
j }1≤i≤Nj

;

k−1⋃

j=1

{X̃(i)
j }1≤i≤Nj

} . (2.22)

We sample N = Nk−1 independent particles {X̃(i)
k }i given F̃k−1 as

X̃
(i)
k ∼ K̃k−1(X

(i)
k−1, dxk) , 1 ≤ i ≤ N . (2.23)

In particular, for all ϕ ∈ B(Rn),

E[ϕ(X̃
(i)
k )

∣
∣F̃k−1] =

∫

Rn

ϕ(xk)K̃k−1(X
(i)
k−1, dxk) . (2.24)

The new transition kernels (K̃k)k are chosen such that:

i. We can easily sample from K̃k−1(xk−1, dxk) for all xk−1 ∈ Rn.
ii. The new weights produced by the new kernels have better properties.

Remark 2.4.3. Under general conditions, several choices on the kernels (K̃k)k will
be discussed in the Section 2.2.

We denote by π̃N
k|k−1 the empirical measure associated with the particles {X̃(i)

k }, ie.

π̃N
k|k−1(dxk) =

1

N

N∑

i=1

δ{X̃(i)
k

}(dxk) (2.25)

π̃N
k|k−1 is an approximation to πk−1|k−1K̃k−1.
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(6)
k X̃

(7)
k

w
∗(i)
k ∝ g̃k(X̃

(i)
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Figure 2.3: X̃
(4)
k has a high weight while the other have weights close to zero.

New update stage: Let ϕ ∈ B(Rn). The two equations (2.16) and (2.17) give us
the following:
First,

(
πk|k, ϕ

)
=

∫

Rn

ϕ(xt)πk|k(dxk)

=

∫

Rn ϕ(xt)g̃k(xk)πk|k−1(dxk)
∫

Rn g̃k(xk)πk|k−1(dxk)
(2.26)

Second, if we denote by I = intRnϕ(xt)g̃k(xk)πk|k−1(dxk), then

I =

∫

Rn

ϕ(xt)g̃k(xk)

∫

Rn

Kk−1(xk−1, dxk)πk−1|k−1(dxk−1)

=

∫

Rn

ϕ(xt)

∫

Rn

g̃k(xk)Kk−1(xk−1, dxk)

K̃k−1(xk−1, dxk)
K̃k−1(xk−1, dxk)πk−1|k−1(dxk−1)

=

∫

(Rn)2
ϕ(xt)w̃k(xk−1, xk)K̃k−1(xk−1, dxk)πk−1|k−1(dxk−1) (2.27)

where

w̃k(xk−1, xk) =
g̃k(xk)Kk−1(xk−1, dxk)

K̃k−1(xk−1, dxk)
. (2.28)

The kernel function K̃k−1 may depend on the observations Z0:k, but not on the Zi’s
for i > k. Moreover, using Assumption 2.1,

K̃k−1(xk−1, dxk) = p̃(xk|xk−1, z0:k)dxk .
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The functions {p̃(xk|xk−1, z0:k)}k are called importance sampling functions. Choos-
ing a kernel K̃k−1 is equivalent to choose an importance function p̃(xk|xk−1, z0:k). In
particular,

w̃k(xk−1, xk) =
g̃k(xk)p(xk|xk−1)

p̃(xk|xk−1, z0:k)
. (2.29)

Plugging (2.27) in (2.26) where we take ϕ ≡ 1 for the inverse term in (2.26). Then,
an approximation to

(
πk|k, ϕ

)
is given by

(
πk|k, ϕ

)
≈

N∑

i=1

w
(i)
k ϕ(X̃

(i)
k )

where, for all 1 ≤ i ≤ N , w
(i)
k is the normalized weight of the particle X̃

(i)
k given by

w
(i)
k =

w̃k(X
(i)
k−1, X̃

(i)
k )

∑N
j=1 w̃k(X

(j)
k−1, X̃

(j)
k )

. (2.30)

An approximation to πk|k is given by

π̃N
k|k(dxk) =

N∑

i=1

w
(i)
k δ{X̃(i)

k
}(dxk) . (2.31)

New resampling stage: Let us denote by

Fk−1 = σ{N0 , . . . , Nk−1 ;
k−1⋃

j=0

{X (i)
j }1≤i≤Nj

;
k⋃

j=1

{X̃(i)
j }1≤i≤Nj

} (2.32)

If N
(i)
k is the number of offsprings of the particle X̃

(i)
k , the branching mechanism is

generally chosen such that for some constant C > 0 and for all ϕ ∈ Cb(R
n)

E[N
(i)
k |Fk−1] = w

(i)
k Nk−1 , (2.33)

E[
∣
∣

Nk−1∑

i=1

N
(i)
k ϕ(X̃

(i)
k ) −Nk−1

(
π̃

Nk−1

k|k , ϕ
)∣
∣
2∣
∣Fk−1] ≤ CNk−1‖ϕ‖2 (2.34)

At the end of this stage, we obtain Nk =
∑Nk−1

i=1 N
(i)
k particles {X (i)

k } indexed as
follows

X
(i)
k = X̃

(j)
k , 1 ≤ j ≤ Nk−1 , 1 +

j−1
∑

l=1

N
(l)
k ≤ i ≤

j
∑

l=1

N
(l)
k . (2.35)

In Section 2.8, we will give several branching mechanisms.
Next, we give three properties of the evolution of the number of particles

Proposition 2.4.4. For every k ∈ N, there exist a constant C = C(k) ≥ 0 such
that
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1. E[Nk] = N0

2. P (Nk = 0) ≤ C(k)N−1
0

3. E[
∣
∣Nk

N0
− 1

∣
∣2] ≤ C(k)N−1

0

Proof. We have the following two properties:

i. Nk−1 is Fk−1-measurable.

ii.Nk =
∑Nk−1

i=1 N
(i)
k on {Nk−1 6= 0}.

If I{Nk−1 6=0} the indicator function of the set {Nk−1 6= 0}, then

E[Nk|Fk−1] = I{Nk−1 6=0}

Nk−1∑

i=1

E[N
(i)
k |Fk−1]

= I{Nk−1 6=0}

Nk−1∑

i=1

w
(i)
k Nk−1

= Nk−1 .

Then, Nk is an Fk -martingale and E[Nk] = E[N0] = N0. This proves 1.
Now, we suppose that 3. holds. For every ε > 0, we have

P (Nk = 0) ≤ P (Nk ≤ εN0)

≤ P (N0 −Nk ≥ (1 − ε)N0)

≤ 1

(1 − ε)2
E[|Nk

N0
− 1|2] (2.36)

≤ C(k)N0

(1 − ε)2N2
0

(2.37)

where we have applied Doob’s inequality in (2.36). This proves 2.
To prove 3., we take the expectation in both side in inequality (2.34) with ϕ ≡ 1,
we get

E[|Nk −Nk−1|2] ≤ CE[Nk−1] = CN0 . (2.38)

In particular,
E[|N1 −N0|2] ≤ CN0 .

The property holds for k = 1. By induction, suppose that there exists a positive
constant C(k − 1) > 0 such that

E[|Nk−1 −N0|2] ≤ C(k − 1)N0 .

This implies that

E[|Nk −N0|2] ≤ 2{E[|Nk −Nk−1|2] + E[|Nk−1 −N0|2]}
≤ 2{CE[Nk−1] + C(k − 1)N0}
≤ 2(C + C(k − 1))N0 .

It is sufficient to take C(k) = 2(C + C(k − 1)). The proof is complete.

To finish this section, we give in the next a generic and very general algorithm
for the filtering problem.



44 2.5. GENERIC MODEL AND CONVERGENCE RESULTS

General Particle Filter Algorithm

Initialization stage: Sample N0 particles X
(i)
0 ∼ π0 = π0|0.

πN
0|0(dx0) =

1

N0

N0∑

i=1

δ{X(i)
0 }(dx0) .

Prediction stage: At time k−1 (k ≥ 1), SampleNk−1 particles x̃
(i)
k ∼ πN

k−1|k−1K̃k−1(dxk)

according to (2.23) to get an approximation to πk−1|k−1K̃k−1

π̃N
k|k−1(dxk) =

1

Nk−1

Nk−1∑

i=1

δ{X̃(i)
k

}(dxk) .

Update stage For 1 ≤ i ≤ Nk−1 calculating the weights w
(i)
k ∝ w̃(X

(i)
k−1, X̃

(i)
k )

w.r.t. (2.28). The weighted empirical distribution approximation to πk|k is

π̃N
k|k(dxk) =

N∑

i=1

w
(i)
k δ{X̃(i)

k
}(dxk) .

Resampling stage: A fixed branching mechanism is applied to each particle X̃
(i)
k ,

which gives N
(i)
k offsprings. If Nk =

∑Nk−1

i=1 N
(i)
k , one get by (2.35) a new set of

particles {X (i)
k }1≤i≤Nk

. The unweighted empirical distribution approximation
to πk|k is

πN
k|k(dxk) = 1

Nk

∑Nk

i=1 δ{X(i)
k

}(dxk) .

2.5 Generic model and convergence results

Denoting by P(Rn) the space of probability measures on Rn and by MF (Rn) the
space of finite measures on Rn. It is clear that P(Rn) ⊂ MF (Rn).
The weak convergence on MF (Rn) is defined by

{µN → µ in MF (Rn)} ⇐⇒ {(µN , ϕ) → (µ, ϕ) , ∀ ϕ ∈ Cb(R
n)} ,

The weak convergence is defined similarly on P(Rn).
Let us consider a countable family {ϕk}k≥1 ⊂ Cb(R

n) which is convergence deter-
mining, see [26], in MF (Rn). That is,

{µN → µ in MF (Rn)} ⇐⇒ {(µN , ϕk) → (µ, ϕk) , ∀ k} ,

This allow us to define the distance d(·, ·) by

d(ν, µ) =
∞∑

k=1

2−k |(ν, ϕk) − (µ, ϕk)|
‖ϕk‖

,
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The topology generated by this distance is called the weak topology. Its restriction
on P(Rn) gives the weak topology on P(Rn). In particular, for any measure µ and
sequence {µN} in MF (Rn) (or in P(Rn))

µN → µ⇐⇒ d(µN , µ) → 0 .

A random measure is a random variable with values in MF (Rn). A sequence {µN,w}
of random measures is said to be convergent to the random measure µω in MF (Rn)
a.s. if for almost every w ∈ Ω

(µN,w, ϕ) → (µω, ϕ) as N → ∞ , ∀ ϕ ∈ Cb(R
n)

or, equivalently
d(µN,w, µω) → 0 as N → ∞ a.s.

2.5.1 Prediction-Update

Consider a kernel K(·, ·) on Rn ×B(Rn) satisfying the following properties:

Properties 2.5.1. i. For all x ∈ Rn, K(x, ·) ∈ P(Rn)

ii. For all A ∈ B(Rn), K(·, A) is a bounded Borel function

iii. For all ϕ ∈ Cb(R
n), Kϕ ∈ Cb(R

n)
where Kϕ(x) =

∫

Rn ϕ(y)K(x, dy)

Let us fix a probability measure µ ∈ P(Rn). We define the probability ν on Rn

by

(ν, ϕ) =

∫

Rn×Rn

ϕ(x)K(y, dx)µ(dy) , ∀ϕ ∈ Cb(R
n) .

Suppose that there exists a sequence of random vectors, not necessarily indepen-
dents, Ui : Ω → Rn, i ≥ 1, such that the associated empirical measure µN(dx) =
1
N

∑N
i=1 δ{Ui}(dx) converges to µ in P(Rn) for almost every w ∈ Ω. That is,

µN,w =
1

N

N∑

i=1

δ{Ui(w)} −→ µ in P(Rn) for almost all ω .

We fix a realization {ui}i≥1 of the sequence {Ui}, i.e. ui = Ui(w) for some w ∈ Ω,
such that

µN =
1

N

N∑

i=1

δ{ui} → µ in P(Rn) . (2.39)

Let Vi : Ω → Rn , i ≥ 1 be a sequence of i.i.d. random vectors such that

Vi ∼ K(ui, dx) , for all i ≥ 1 . (2.40)

We denote by νN the empirical measure associated with the Vi’s, ie.

νN (dx) =
1

N

N∑

i=1

δ{Vi}(dx) .
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Remark 2.5.2. The measure µ will play the role of πk−1|k−1, the kernel K the role of

the kernel K̃k−1 and ν of πk−1|k−1K̃k−1. The corresponding approximations µN and
νN are successively associated to πN

k−1|k−1 and π̃N
k|k−1.

Let W : Rn × Rn → R be a continuous, bounded and strictly positive function.
Define the probability measure λ on Rn by

(λ, ϕ) =

∫

Rn×Rn ϕ(x)W (y, x)K(y, dx)µ(dy)
∫

Rn×Rn W (y, x)K(y, dx)µ(dy)
, ∀ϕ ∈ Cb(R

n) . (2.41)

Also, we define the random weighted empirical measure λN,· on R
n by

λN,·(dx) =

N∑

i=1

W
(i)
N δ{Vi}(dx) ,

where

W
(i)
N =

W (ui, Vi)
∑N

j=1W (uj, Vj)
.

Remark 2.5.3. The measure λ is associated to the measure πk|k, t he function W (·, ·)
is associated to the function w̃(·, ·), and the approximation λN to π̃k|k.

Theorem 2.5.4. For almost every w ∈ Ω

λN,w =
N∑

i=1

W
(i)
N (w)δ{Vi(w)} −→ λ in P(Rn) . (2.42)

For the proof of this Theorem we need the following Lemma:

Lemma 2.5.5. The empirical measure associated to the set {(Vi, ui) ; 1 ≤ i ≤ N}
converges weakly almost surely to the probability measure defined on Rn × Rn by
K(y, dx)µ(dy), ie. ∀ ψ(·, ·) ∈ Cb(R

n × Rn)

1

N

N∑

i=1

ψ(Vi(w), ui) −→
∫

(Rn)2
ψ(x, y)K(y, dx)µ(dy) as N → ∞ ,

for almost all w in Ω.

Proof. Let ψ(·, ·) ∈ Cb(R
n × Rn). If α(dxdy) = K(y, dx)µ(dy) and αN,w(dxdy) =

1
N

∑N
i=1 δ{Vi(w),ui}(dxdy), we need to prove that

(αN,ω, ψ) − (α, ψ) → 0 as N → ∞.

We define the function ϕ ∈ Cb(R
n) by

ϕ(y) =

∫

Rn

ψ(x, y)K(y, dx) , ∀y ∈ R
n .
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Then, (α, ψ) = (µ, ϕ) and

(αN,ω, ψ) − (α, ψ) = (αN,ω, ψ) − (µN , ϕ) + (µN , ϕ) − (µ, ϕ) .

Since (µN , ϕ) −→ (µ, ϕ) = (α, ψ) as N → ∞, it remains to prove that

(αN,ω, ψ) − (µN , ϕ) −→ 0 as N → ∞ a.s. . (2.43)

First, we have

(µN , ϕ) =
1

N

N∑

i=1

ϕ(ui) =
1

N

N∑

i=1

∫

Rn

ψ(x, ui)K(ui, dx) .

Second, from (2.40) we get

E[ψ(Vi, ui)] =

∫

Rn

ψ(x, ui)K(ui, dx) . (2.44)

We conclude that

(αN,ω, ψ) − (µN , ϕ) =
1

N

N∑

i=1

(

ψ(Vi, ui) −
∫

Rn

ψ(x, ui)K(ui, dx)
)

For simplicity we denote for all 1 ≤ i ≤ N

∆iψ = ψ(Vi, ui) −
∫

Rn

ψ(x, ui)K(ui, dx) .

In particular, for all 1 ≤ i ≤ N ,
∣
∣∆i

∣
∣ ≤ 2‖ψ‖. Using the independency of the Vi’s

and the identity (2.44), we get

E[
(
(µN , ϕ) − (αN,ω, ψ)

)4
] =

1

N4
E[

(
N∑

i=1

∆iψ
)4

]

=
1

N4

N∑

i=1

E[
(
∆iψ

)4
] +

6

N4

∑

1≤i1 6=i2≤N

E[
(
∆i1ψ

)2(
∆i2ψ

)2
]

≤ 1

N4
24(N + 6N(N − 1))‖ψ‖4

≤ 6 × 24

N2
‖ψ‖4

This implies that

E[

∞∑

N=1

(
(µN , ϕ) − (αN,ω, ψ)

)4
] <∞ .

Then,
∑∞

N=1

(
(µN , ϕ) − (αN,ω, ψ)

)4
<∞ a.s. and for almost all ω

(µN , ϕ) − (αN,ω, ψ) −→ 0 as N → ∞ .

which proves (2.43) and the proof is complete.
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Proof. (Theorem 2.5.4)
We apply Lemma 2.5.5 successively for ψ(x, y) = ϕ(x)W (y, x) and ψ(x, y) = W (y, x),
we get almost surely as N → ∞,

1

N

N∑

i=1

ϕ(Vi)W (ui, Vi) −→
∫

Rn×Rn

ϕ(x)W (y, x)K(y, dx)µ(dy) , (2.45)

1

N

N∑

i=1

W (ui, Vi) −→
∫

Rn×Rn

W (y, x)K(y, dx)µ(dy) . (2.46)

Since the function W is strictly positive, then for all ϕ ∈ Cb(R
n)

1
N

∑N
i=1 ϕ(Vi)W (ui, Vi)

1
N

∑N
i=1W (ui, Vi)

−→
∫

(Rn)2
ϕ(x)W (y, x)K(y, dx)µ(dy)

∫

(Rn)2
W (y, x)K(y, dx)µ(dy)

. (2.47)

This complete the proof.

2.5.2 Resampling

Definition 2.5.6. A probability measure ν ∈ P(Rn) satisfies the branch property
if for any integer valued random variable Ñ satisfying

E[Ñ ] = N ≥ 1 , P (Ñ = 0) ≤ CN−1 and E[|Ñ
N

− 1|α] ≤ CN−1 , (2.48)

where C > 0, there exists a sequence of random variables ξj : Ω −→ Rn, j ≥ 1,
identically distributed w.r.t. ν, but not necessarily independent, such that for all
ϕ ∈ Cb(R

n):

E[
∑Ñ

j=1 ϕ(ξj)] = N
(
ν, ϕ

)
,

E[
∣
∣
∑Ñ

j=1 ϕ(ξj) − Ñ
(
ν, ϕ

)∣
∣2] ≤ CN‖ϕ‖2 .

(2.49)

We correspond to the pair (ν,N) the random measure ν̃N,w defined by

ν̃N,ω(dx) = 1
Ñ(ω)

∑Ñ(ω)
j=1 δ{ξj (ω)}(dx) if ω /∈ {Ñ = 0} ,

ν̃N,w = 0 if ω ∈ {Ñ = 0} .
The random measure ν̃N,w is almost surely a probability measure.
Let us fix a probability measure ν and consider a sequence {νl}l≥1 converging to ν
in P(Rn). Suppose that the both ν and {νl}l satisfy the branch property uniformly,
ie. for the same constant C.
We denote by ν̃N,ω

l the corresponding measure to the pair(νl, N).

Theorem 2.5.7. Let {Nk}k≥0 a sequence of strictly positive integers such that

∞∑

k=1

1

Nk

<∞ . (2.50)

Then, for almost all ω ∈ Ω and for all ϕ ∈ Cb(R
n),

(ν̃Nk ,ω
l , ϕ) −→ (ν, ϕ) as k, l → ∞ . (2.51)
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Proof. Since
(
νl, ϕ

)
→

(
ν, ϕ

)
, it is sufficient to prove that for every l ≥ 1

(ν̃Nk ,ω
l , ϕ) − (νl, ϕ) −→ 0 as k → ∞ .

We write Ω = Ωk ∪ Ω̄k where Ωk = {Ñk 6= 0}. From (2.48) we get

P (Ñk = 0) = P (Ω̄k) ≤ Cl
1

Nk
and P (Ωk) ≥ 1 − Cl

1

Nk
.

Then,

E[
∣
∣(ν̃Nk ,·

l , ϕ) − (νl, ϕ)
∣
∣
2
] ≤

∫

Ωk

∣
∣

1

Ñk(ω)

Ñk(ω)
∑

j=1

ϕ(ξl,j) − (νl, ϕ)
∣
∣
2
dP (ω)

+C‖ϕ‖2N−1
k . (2.52)

We decompose the integral term in (2.52) as
∫

Ωk

| . . . |2dP =

∫

Ω1
k

| . . . |2dP +

∫

Ω2
k

| . . . |2dP = ∆1 + ∆2 ,

where Ωk = Ω1
k ∪ Ω2

k, Ω1
k = {ω ∈ Ωk , |Ñk(ω) −Nk| ≤ Nk

2
} and Ω2

k = Ωk \ Ω1
k. Since

E[( Ñk

Nk
− 1)2] ≤ CN−1

k , see (2.48), we obtain

P (Ω2
k) ≤ P ({ω , |Ñk(ω) −N | > Nk

2
})

≤ N2
k

(Nk

2
)2
E[|Ñk

Nk
− 1|2]

≤ 22ClN
−1
k (2.53)

The first term ∆1: For all ω ∈ Ω1
N we have 1

N i(ω)
≤ 2

N
, then

∆1 ≤ (
2

Nk

)2E[
∣
∣

Ñk∑

j=1

ϕ(ξl,j) − Ñk

(
ν, ϕ

)∣
∣2]

≤ (
2

Nk

)2 × CNk‖ϕ‖2

≤ 22Cl‖ϕ‖2N−1
k , (2.54)

The second term ∆2: If we use (2.53), we get

∆2 =

∫

Ω2
k

| 1

Ñk(ω)

Ñk(ω)
∑

j=1

ϕ(ξl,j) − (νl, ϕ)|2dP (ω)

≤
∫

Ω2
k

( 1

Ñk(ω)

Ñk(ω)
∑

j=1

‖ϕ‖ + ‖ϕ‖)
)2
dP (ω)

≤ 24Cl‖ϕ‖2N−1
k , (2.55)
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Taking together (2.52), (2.54) and (2.55) we obtain a constant Γ = Γ(l, ϕ) such that

E[|(ν̃Nk,·
l , ϕ) − (νl, ϕ)|2] ≤ ΓN−1

k . (2.56)

It follows that

E[

∞∑

k=1

|(ν̃Nk ,·
l , ϕ) − (νl, ϕ)|2] ≤ Γ

∞∑

k=1

N−1
k <∞ .

and hence almost surely

∞∑

k=1

|(ν̃Nk,·
l , ϕ) − (νl, ϕ)|2 <∞ .

which implies that (ν̃Nk,·
l , ϕ) − (νl, ϕ) → 0 as k → ∞. This complete the proof

2.5.3 Application to the particle filter: almost sure convergence

We will apply Theorem 2.5.4 and Theorem 2.5.7 to obtain the almost sure conver-
gence of the particle filter algorithm.
In the Prediction-Update stage we suppose that for all k ≥ 1:

i. The new transition kernel K̃k(·, ·) satisfies the conditions of properties 2.5.1

ii. The weight function w̃k(·, ·), see (2.28), is bounded, continuous and strictly
positive

Then, an application of theorem 2.5.4 gives

Proposition 2.5.8. The sequence π̃N
k|k given in (2.31) converges to πk|k as the num-

ber of particles N → ∞ almost surely.

For every k ≥ 0, π̃N
k|k is a weighted empirical measure. The resampling stage

gives an unweighted empirical measure πN
k|k. The resampling stage satisfies the

conditions in Proposition 2.4.4, then the branch property holds. An application of
Theorem 2.5.7 gives

Proposition 2.5.9. Let us consider a sequence {N j
0}j≥1 of strictly positive integers

such that
∞∑

j=1

1

N j
0

<∞ .

If the branching mechanism satisfies the conditions (2.33) and (2.34), then for all
k ≥ 0

π
Nj

k

k|k → πk|k as j → ∞ a.s.

Remark 2.5.10. We will see in Section 2.8 that such branching mechanisms exist.
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2.6 Mean square convergence of the particle filter

2.6.1 Convergence results

We still suppose that

i. The kernels {K̃k(·, ·)}k satisfy the conditions of Properties 2.5.1

ii. The weight functions w̃k(·, ·) are bounded, continuous and strictly positive

iii. The branching mechanism satisfies the conditions (2.33) and (2.34)

The Proposition 2.5.8 and Proposition 2.5.9 show that the measure πNk

k|k converges
weakly to the measure πk|k. Although the measures defined by the particle filter
algorithm converge weakly to the right measure, we have no idea about the rate of
the convergence. To this end we use the mean square convergence instead of the
weak convergence.
A sequence of random measures {µN,ω}N converges in mean square to the random
measure µω in MF (Rn) (or in P(Rn)) if

lim
N→∞

E[
(
(µN,·, ϕ) − (µ·, ϕ)

)2
] = 0 , ∀ ϕ ∈ B(Rn) .

For this mode of convergence we will show that, for every k ≥ 0, the sequence of
measures πNk

k|k converges to the measure πk|k as the initial number of particles N0

grows to infinity and we obtain a rate of convergence proportional to 1/N0. In
particular, this convergence is independent of the state and the observation space
dimensions.
The following two Propositions state that a mean square error proportional to 1/N0

is propagated while time evolves.

Proposition 2.6.1. [Prediction-Update stage] Let us assume that there exist a con-
stant ∆k−1 ≥ 0 such that for any ϕ ∈ B(Rn)

E[
(
(π

Nk−1

k−1|k−1, ϕ) − (πk−1|k−1, ϕ)
)2

] ≤ ∆k−1
‖ϕ‖2

N0
. (2.57)

Then, there exist a constant ∆̃k ≥ 0 such that for any ϕ ∈ B(Rn)

E[
(
(π̃Ñk

k|k, ϕ) − (πk|k, ϕ)
)2

] ≤ ∆̃k
‖ϕ‖2

N0
.

During the Prediction-Update stage the number of particles don’t change, ie. Ñk =
Nk−1.

Proposition 2.6.2. [the Resampling stage] Let us assume that there exist a constant
∆̃k ≥ 0 such that for any ϕ ∈ B(Rn)

E[
(
(π̃

Nk−1

k|k , ϕ) − (πk|k, ϕ)
)2

] ≤ ∆̃k
‖ϕ‖2

N0

. (2.58)

Then, there exist a constant ∆k ≥ 0 such that for any ϕ ∈ B(Rn)

E[
(
(πNk

k|k, ϕ) − (πk|k, ϕ)
)2

] ≤ ∆k
‖ϕ‖2

N0
. (2.59)
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2.6.2 Proofs of Propositions 2.6.1 and 2.6.2

The Prediction-Update Stage: The number of particles Ñk = Nk−1 don’t
change, for simplicity we denote it by N .
Let us consider the measures πk−1:k|k and πN

k−1:k|k on (Rn)2 such that for all φ ∈
B(Rn × Rn):

(πk−1:k|k, φ) =

∫

Rn×Rn

φ(xk, xk−1)K̃k(xk−1, dxk)πk−1|k−1(dxk−1)

(πN
k−1:k|k, φ) =

{
1
N

∑N
i=1 φ(X̃

(i)
k , X

(i)
k−1) on {N > 0}

0 on {N = 0}

In particular, we have

(πk|k, ϕ) =
(πk−1:k|k, ϕw̃k)

(πk−1:k|k, w̃k)
(2.60)

(π̃N
k|k, ϕ) =

(πN
k−1:k|k, ϕw̃k)

(πN
k−1:k|k, w̃k)

, on {N > 0} . (2.61)

We claim the following Lemma that we prove later on.

Lemma 2.6.3. If the condition (2.57) holds, then there exists a constant ∆̂k ≥ 0
such that for all φ ∈ B(Rn × R

n)

E[
(
(πk−1:k|k, φ) − (πN

k−1:k|k, φ)
)2

] ≤ ∆̂k
‖φ‖2

N0

.

proof of Proposition 2.6.1: For all ϕ ∈ B(Rn), we have

(πk|k, ϕ) − (π̃N
k|k, ϕ) =

(πk−1:k|k, ϕw̃k)

(πk−1:k|k, w̃k)
−

(πN
k−1:k|k, ϕw̃k)

(πN
k−1:k|k, w̃k)

=
(πk−1:k|k, ϕw̃k)

(πk−1:k|k, w̃k)
−

(πN
k−1:k|k, ϕw̃k)

(πk−1:k|k, w̃k)
+

(πN
k−1:k|k, ϕw̃k)

(πk−1:k|k, w̃k)

−
(πN

k−1:k|k, ϕw̃k)

(πN
k−1:k|k, w̃k)

=
1

(πk−1:k|k, w̃k)

(
(πk−1:k|k, ϕw̃k) − (πN

k−1:k|k, ϕw̃k)
)

+
(πN

k−1:k|k, ϕw̃k)

(πk−1:k|k, w̃k)(πN
k−1:k|k, w̃k)

(
(πk−1:k|k, w̃k) − (πN

k−1:k|k, w̃k)
)
.

Then,

|(πk|k, ϕ) − (π̃N
k|k, ϕ)| ≤ 1

(πk−1:k|k, w̃k)
|(πk−1:k|k, ϕw̃k) − (πN

k−1:k|k, ϕw̃k)|

+
‖ϕ‖

(πk−1:k|k, w̃k)
|(πk−1:k|k, w̃k) − (πN

k−1:k|k, w̃k)| .
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If we denote by E = E[
(
(πk|k, ϕ) − (π̃N

k|k, ϕ)
)2

]1/2 and we use Lemma 2.6.3, we get

E ≤ 1

(πk−1:k|k, w̃k)
E[

(
(πk−1:k|k, ϕw̃k) − (πN

k−1:k|k, ϕw̃k)
)2

]1/2

+
‖ϕ‖

(πk−1:k|k, w̃k)
E[

(
(πk−1:k|k, w̃k) − (πN

k−1:k|k, w̃k)
)2

]1/2

≤ 2

√

∆̂k‖ϕ‖ × ‖w̃k‖
(πk−1:k|k, w̃k)

√
N0

.

The result follows by taking

∆̃k = 4
∆̂k‖w̃k‖2

(πk−1:k|k, w̃k)2
.

The resampling stage:
The branching mechanism:

• Each particle X̃
(i)
k branches to give birth to N

(i)
k offsprings

• There exists a constant C > 0 such that for every ϕ ∈ Cb(R
n):

i E[N
(i)
k |Fk−1] = w

(i)
k Nk−1

ii E[
∣
∣
∑Nk−1

i=1 N
(i)
k ϕ(x̃

(i)
k ) −Nk−1

(
π̃

Nk−1

k|k , ϕ
)∣
∣
2|Fk−1] ≤ CNk−1‖ϕ‖2

where Fk−1 = σ{N0, . . . , Nk−1 ;
⋃k−1

j=0{X
(i)
j }1≤i≤Nj

;
⋃k

j=1{X̃
(i)
j }1≤i≤Nj

}

• At the end of this stage, we obtain the set {X (i)
k } consisting ofNk =

∑Nk−1

i=1 N
(i)
k

particles indexed as follows

X
(i)
k = X̃

(j)
k , 1 ≤ j ≤ Nk−1 , 1 +

j−1∑

l=1

N
(l)
k ≤ i ≤

j∑

l=1

N
(l)
k

Remark 2.6.4. From Proposition 2.4.4 we deduce that for every k ≥ 0

E[
∣
∣Nk+1 −Nk

∣
∣
2
] ≤ Γ1(k + 1)N0 and E[N2

k ] ≤ Γ2(k)N
2
0 , (2.62)

where Γ1(k + 1) = 22(C(k + 1) + C(k)) and Γ2(k) = 22(C(k) + 1).

proof of Proposition 2.6.2. On the event {Nk > 0} we have

πNk

k|k(dxk) =
1

Nk

Nk∑

i=1

δ
x
(i)
k

(dxk) =
1

Nk

Nk−1∑

i=1

N
(i)
k δ

x̃
(i)
k

(dxk) .
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We write Ω = Ω̄k∪Ω1
k∪Ω2

k where Ω̄N = Ω\(Ω1
k∪Ω2

k) = {Nk = 0}, Ω1
k = {|Nk−N0| ≤

N0

2
} and Ω2

k = {|Nk−N0| > N0

2
}. Then, from Proposition 2.4.4 and inequality (2.53)

we get
P (Ω̄k) ≤ C(k)N−1

0 and P (Ω2
k) ≤ 22C(k)N−1

0 .

Since, by hypothesis, inequality (2.58) holds, it is sufficient to prove that there exist
a constant ∆′

k such that

E[
(
(πNk

k|k, ϕ) − (π̃
Nk−1

k|k , ϕ)
)2

] ≤ ∆′
k

N0
‖ϕ‖2 . (2.63)

In that case, we take ∆k = 2(∆′
k + ∆̃k) to get the inequality (2.59).

Let us prove (2.63). For all ϕ ∈ B(Rn) we denote

Sϕ
Nk−1

=

Nk−1∑

i=1

N
(i)
k ϕ(X̃

(i)
k ) −Nk(π̃

Nk−1

k|k , ϕ) .

Then,

E[
(
(πNk

k|k, ϕ) − (π̃
Nk−1

k|k , ϕ)
)2

] = ‖ϕ‖2P (Ω̄k) + E[I{Nk>0}
1

N2
k

(
Sϕ

Nk−1
)
)2

]

≤ ‖ϕ‖2C(k)N−1
0 + E[IΩ1

k
∪Ω2

k

1

N2
k

(
Sϕ

Nk−1

)2
]

≤ ‖ϕ‖2C(k)N−1
0 + E[IΩ1

k

1

N2
k

(
Sϕ

Nk−1

)2
] + 22‖ϕ‖2P (Ω2

k)

≤ C(k)

N0
‖ϕ‖2 + E[IΩ1

k

1

N2
k

(
Sϕ

Nk−1

)2
] +

24C(k)

N0
‖ϕ‖2(2.64)

It remains the expectation term in (2.64). On Ω1
k we have 1

Nk
≤ 2

N0
, then

E[IΩ1
k

1

N2
k

(
Sϕ

Nk−1

)2
] ≤ (

2

N0

)2E[
(
Sϕ

Nk−1

)2
]

≤ 8

N2
0

E[
(
Sϕ

Nk−1

)2
] +

8

N2
0

‖ϕ‖2E[(Nk −Nk−1)
2] (2.65)

The definition of the branching mechanism implies that

E[
(
Sϕ

Nk−1

)2
] = E[E[

(
Sϕ

Nk−1

)2|Fk−1]]

≤ E[C‖ϕ‖2Nk−1] = C‖ϕ‖2N0 . (2.66)

Also, from (2.62) we have

E[(Nk −Nk−1)
2] ≤ Γ1(k)N0 . (2.67)

Using (2.66) together with (2.67) in (2.65), we obtain the constant Γ(k) = 8(Γ1(k)+
C) such that

E[IΩ1
k

1

N2
k

(
Nk−1∑

i=1

N
(i)
k ϕ(X̃

(i)
k ) −Nk(π̃

Nk−1

k|k , ϕ)
)2

] ≤ Γ(k)

N0

‖ϕ‖2 (2.68)

Finally, we substitute this inequality in (2.64) we get (2.63) for ∆′
k = (1+24)C(k)+

Γ(k). The proof is complete.
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Proof of Lemma 2.6.3:

Proof. Let us denote

1. Eφ
k−1:k|k = E[

(
(πN

k−1:k|k, φ) − (πk−1:k|k, φ)
)2

]

2. Υk
i (Φ) = φ(X̃

(i)
k , X

(i)
k−1) − (πk−1:k|k, φ), for all 1 ≤ i ≤ N

Then,

Eφ
k−1:k|k = E[I{N=0}

(
(πk−1:k|k, φ)

)2
] + E[I{N>0}

1

N2

(
N∑

i=1

Υk
i (Φ)

)2
] (2.69)

= E[I{N=0}
(
(πk−1:k|k, φ)

)2
] + E[I{N>0}

1

N2

N∑

i=1

(
Υk

i (Φ)
)2

]

+E[I{N>0}
1

N2

∑

1≤i6=j≤N

Υk
i (Φ)Υk

j (Φ)]

= E0,φ
k−1:k|k + E1,φ

k−1:k|k + E2,φ
k−1:k|k (2.70)

We examine the three terms E i,φ
k−1:k|k, i ∈ {0, 1, 2}.

The first term: E1,φ
k−1:k|k = E[I{N=0}

(
(πk−1:k|k, φ)

)2
].

The Proposition 2.4.4 implies that

E0,φ
k−1:k|k ≤ ‖φ‖2P ({N = 0}) ≤ ‖φ‖2C(k)

N0

. (2.71)

The second term: E0,φ
k−1:k|k = E[I{N>0}

1
N2

∑N
i=1

(
Υk

i (Φ)
)2

].
In one hand, we have

E[I{N>0}
1

N2

N∑

i=1

(
Υk

i (Φ)
)2

] ≤ 4‖φ‖2E[I{N>0}
1

N
]

In the other hand, if we use (2.53) we get

E[I{N>0}
1

N
] = E[I{N>0}I{|N−N0|≤N0/2}

1

N
] + E[I{N>0}I{|N−N0|>N0/2}

1

N
]

≤ 2

N0
+ P (|N −N0| > N0/2)

≤ 2 + 4C(k)

N0
. (2.72)

Then,

E0,φ
k−1:k|k = E[I{N>0}

1

N2

N∑

i=1

(
Υk

i (Φ)
)2

] ≤ 8 + 24C(k)

N0
‖φ‖2 . (2.73)
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The third term: E2,φ
k−1:k|k = E[I{N>0}

1
N2

∑

1≤i6=j≤N Υk
i (Φ)Υk

j (Φ)].

Since N = Nk−1 is F̃k−1-measurable and the particles {X̃(i)
k }i are independent given

F̃k−1, see (2.22) and (2.23), then

E2,φ
k−1:k|k = E

[
I{N>0}

1

N2

∑

1≤i6=j≤N

E[Υk
i (Φ)Υk

j (Φ)|F̃k−1]
]

= E
[
I{N>0}

1

N2

∑

1≤i6=j≤N

E[Υk
i (Φ)|F̃k−1] × E[Υk

j (Φ)|F̃k−1]
]
.

Using (2.24), we get for all 1 ≤ i 6= j ≤ N

E[Υk
i (Φ)|F̃k−1] = E[φ(X̃

(i)
k , X

(i)
k−1)|F̃k−1] − (πk−1:k|k, φ)

=

∫

Rn

φ(xk, X
(i)
k−1)K̃k−1(X

(i)
k−1, dxk) − (πk−1:k|k, φ)

Let us denote ϕ(xk−1) =
∫

Rn φ(xk−1, xk)K̃k−1(xk−1, dxk). In particular, ϕ ∈ B(Rn)
and (πk−1|k−1, ϕ) = (πk−1:k|k, φ). Moreover,

i. E[Υk
i (Φ)|F̃k−1] = ϕ(X

(i)
k−1) − (πk−1|k−1, ϕ)

ii. (πN
k−1|k−1, ϕ) = 1

N

∑N
i=1 ϕ(X

(i)
k−1)

Then,

1

N2

∑

i6=j

E[Υk
i (Φ)|F̃k−1]E[Υk

j (Φ)|F̃k−1] =
1

N2

( ∑

1≤i≤N

(
ϕ(X

(i)
k−1) − (πk−1|k−1, ϕ)

))2

− 1

N2

∑

1≤i≤N

(
ϕ(X

(i)
k−1) − (πk−1|k−1, ϕ)

)2

=
(
(πN

k−1|k−1, ϕ) − (πN
k−1|k−1, ϕ)

)2

− 1

N2

∑

1≤i≤N

(
ϕ(X

(i)
k−1) − (πk−1|k−1, ϕ)

)2
.

Using (2.57) and (2.72), we get

E2,φ
k−1:k|k ≤ 4‖Φ‖2E

[
I{N>0}

1

N
] + E[

(
(πN

k−1|k−1, ϕ) − (πN
k−1|k−1, ϕ)

)2
]

≤ ∆k−1

N0
‖Φ‖2 +

8 + 24C(k)

N0
‖φ‖2

≤ 8 + 24C(k) + ∆k−1

N0

‖φ‖2 . (2.74)

Taking together (2.71), (2.73) and (2.74) we get a constant ∆̂k > 0 such that

E[
(
(πN

k−1:k|k, φ) − (πk−1:k|k, φ)
)2

] ≤ ∆̂k

N0

‖φ‖2 . (2.75)

The proof is complete.
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2.7 Selection of the importance function

The importance sampling strategy is used to limit and to reduce the degener-
acy phenomenon, see figure 2.3. By considering a family of density functions
{p̃(xk|xk−1, z0:k)}k, called importance sample functions, the new weights of the par-
ticles are given by

w
(i)
k ∝ w̃k(X

(i)
k−1, X̃

(i)
k ) =

g̃k(X̃
(i)
k )p(X̃

(i)
k |X(i)

k−1)

p̃(X̃
(i)
k |X(i)

k−1, z0:k)
. (2.76)

The idea is to choose the importance function which minimizes the variance of
the importance weights given the simulated trajectory and given the observations.
Recall that

F̃k−1 = σ{N0 , . . . , Nk−1 ;

k−1⋃

j=0

{X (i)
j }1≤i≤Nj

;

k−1⋃

j=1

{X̃(i)
j }1≤i≤Nj

}

2.7.1 Optimal importance function

Optimal importance function

Proposition 2.7.1. The conditional pdf p(xk|xk−1, zk) of the state Xk given the
observation Zk and the state Xk−1 is the importance function that minimizes the

variance of the importance weight w
(i)
k given F̃k−1. This function is called the opti-

mal importance function.

Proof. We begin by the following two observations:

i. The Theorem 2.2.7. in [40] implies that

p(zk|xk) = g̃k(xk) (2.77)

ii. Baye’s rule allows us to write

p(xk|xk−1, zk) =
p(xk)p(xk−1, zk|xk)

p(xk−1, zk)

=
p(xk)p(zk|xk−1, xk)p(xk−1|xk)

p(zk|xk−1)p(xk−1)

=
p(xk|xk−1)p(zk|xk)

p(zk|xk−1)
(2.78)

Using together (2.76), (2.77) and (2.78) we get

Ep(xk|xk−1,zk)[w̃k(xk−1, xk)] =

∫

w̃k(xk−1, xk)p(xk|xk−1, zk)dxk

=

∫

p(zk|xk)p(xk|xk−1)dxk

= p(zk|xk−1) .
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Using again (2.78) we get

varp(xk|xk−1,zk)(w̃k(xk−1, xk)) = Ep(xk|xk−1,zk)

[(
w̃k(xk−1, xk) − p(zk|xk−1)

)2]

=

∫

Rn

(w̃k(xk−1, xk))
2p(xk|xk−1, zk)dxk − p2(zk|xk−1)

=

∫
p2(zk|xk)p

2(xk|xk−1)

p(xk|xk−1, zk)
dxk − p2(zk|xk−1)

= p(zk|xk−1)

∫

p(zk|xk)p(xk|xk−1)dxk − p2(zk|xk−1)

= 0 .

The optimal importance function p(xk|xk−1, zk) gives the weights

w
(i)
k ∝ w̃k(X

(i)
k−1, X̃

(i)
k )) =

p(zk|X̃(i)
k )p(X̃

(i)
k |X(i)

k−1)

p(X̃
(i)
k |X(i)

k−1, zk)

= p(zk|X(i)
k−1) .

The weight w
(i)
k do not depend on the X̃

(j)
k ’s, this allows parallelization of the sim-

ulation of the X̃
(j)
k ’s and the evaluation of the w

(j)
k ’s.

To use the optimal importance function we have to be able to sample from p(xk|X(i)
k−1, zk)

and to evaluate, up to a proportional constant, the integral

p(zk|X(i)
k−1) =

∫

p(zk|xk)p(xk|X(i)
k−1)dxk . (2.79)

This can be done for the following class of models.

Example 2.7.2 (Partial Gaussian state space models).
n-dimensional state equation: Xk+1 = fk(Xk) + Uk

m-dimensional observation equation: Zk = CkXk +Wk

i. The processes X0, Uk and Wk are mutually independent for all k ≥ 0

ii. The processes {Uk}k and {Wk}k are Gaussian and

Uk ∼ N (0,Σu) , Σu > 0 and Wk ∼ N (0,Σw) , Σw > 0 . (2.80)

iii. For all k ≥ 0, Ck is an m × n real matrix and the function fk : R
n → R

n is
Borel measurable

We obtain

1. Xk|Xk−1, Zk ∼ N (mk,Σk)

2. p(z|Xk−1) ∝ exp
(

− 1
2

(
z−Ckfk(Xk−1)

)T (
Σu +CkΣwC

T
k

)−1(
z−Ckfk(Xk−1)

))
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where

Σ−1
k = Σ−1

u + CT
k Σ−1

w Ck

mk = Σk(Σ
−1
u fk(Xk−1) + CT

k Σ−1
w Zk)

The optimality of the Kalman filter for linear Gaussian systems allow us to
compare the optimal particle filter algorithm to the original one.

Example 2.7.3. Let us consider the following 1-dimensional linear Gaussian system,

Xk+1 = Xk + Uk , X0 ∼ N(0, 10) , Uk ∼ N(0, 10) ,
Zk = Xk +Wk , Wk ∼ N(0, 1) .

We apply the particle filter algorithms, optimal and original, using 60 particles and
using a multinomial branching mechanism, to estimate the expectation and the vari-
ance. We compare these two algorithms relatively to the Kalman filter algorithm.
The results are given in the following table:

Kalman Alg. Opt. Part. filter Part. filter
k Expect.. Var. Expect. Var. Expect. Var.
10 - 6.66 0.91 - 6.53 0.86 - 6.84 0.83
25 - 5.89 0.91 - 6.14 0.92 - 5.43 1.29
50 - 33.57 0.91 - 33.30 0.58 - 31.02 0.04
100 - 0.46 0.91 - 0.40 0.98 - 0.50 1.11
150 0.481 0.91 0.59 0.65 0.21 0.65
200 - 21.08 0.91 - 21.23 0.91 - 21.11 0.76
250 - 9.00 0.91 - 8.98 0.87 - 8.92 1.36
300 - 21.64 0.91 - 21.71 0.62 - 22.09 0.77
400 - 31.66 0.91 - 31.52 1.00 - 31.97 0.29

The optimal importance function gives better results.

For many other models, such evaluations are impossible. One idea is to approx-
imate the optimal importance function.

Approximation by local linearization

The idea is to linearize locally the observation equation to obtain an importance
function that approximates the optimal one. Let us consider the system:

Xk+1 = fk(Xk) + Uk , k ≥ 0 , (2.81)

Zk = hk(Xk) +Wk , k ≥ 0 . (2.82)

i The processes Uk and Wk are Gaussian with non singular covariance matrices

ii The processes X0, Uk and Wk are mutually independent

iii The function fk : Rn → Rn is a Borel measurable function
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iv The function hk : R
n → R

m is supposed two-times differentiable

A Taylor expansion up to the first order of the observation equation (2.82) gives

Zk ≈ hk(fk(Xk−1)) + Ck(Xk − fk(Xk−1)) +Wk

≈ CkXk + Fk(Xk−1) +Wk , (2.83)

where Ck = ∂hk(x)
∂x

∣
∣
x=f(Xk−1)

and Fk(Xk−1) = hk(fk(Xk−1)) − Ckfk(Xk−1).

Equations (2.81) and (2.83) define a new model. The observation is linear and
Gaussian. Similar calculations to that in Example 2.7.2 suggest us to choose the
importance function p̃(xk|xk−1, zk) to be the density of N (mk,Σk), where

Σ−1
k = Σ−1

u + CT
k Σ−1

w Ck ,

mk = Σk{Σ−1
u fk(Xk−1) + CT

k Σ−1
w (Zk − Fk(Xk−1))} .

The associated weights are computing using (2.76).

Monte Carlo approximations

Assume that we can not evaluate analytically p(zk|X(i)
k−1) and (or) we can not sample

from p(xk|X(i)
k−1, zk). Since the functions gk are strictly positive and bounded and

the kernels are Feller. Then, p(zk|xk) and p(xk|xk−1) are bounded, see (2.5.1) and

(2.77). In particular, from (2.78) we deduce that the ratio p(xk|X(i)
k−1, zk)/p(xk|X(i)

k−1)

is bounded say by Mk. It is possible then to sample from p(xk|X(i)
k−1, zk) using the

Accept-Reject method, see [72].

1. Generate yk ∼ p(xk|X(i)
k−1), u ∼ U[0,1].

2. Accept X̃
(i)
k = yk if u ≤ p(yk|X(i)

k−1, zk)/Mkp(yk|X(i)
k−1).

3. Return to 1. otherwise.

For each 1 ≤ i ≤ N , we use a Monte Carlo step to approximate p(zk|X(i)
k−1) =

∫
p(zk|xk)p(xk|X(i)

k−1)dxk. This can be done by sampling N ′ i.i.d. random variables

{X (i,j)
k , 1 ≤ j ≤ N ′} according to p(xk|X(i)

k−1). Then,

p(zk|X(i)
k−1) ≈ p̄(zk|X(i)

k−1) =
1

N ′

N ′

∑

j=1

p(zk|X(i,j)
k ) .

We use the particles {X (i,j)
k , 1 ≤ j ≤ N ′} to approximate the measure p(xk|zk, X

(i)
k−1) dxk:

p(xk|zk, X
(i)
k−1)dxk ≈

N ′

∑

j=1

αi,jδX(i,j)
k

(dxk) ,
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where

αi,j =
1

N ′
p(zk|X(i,j)

k )

p̄(zk|X(i)
k−1)

.

Such approximations have numerous drawbacks. Using the Accept-Reject Method
requires a random number of iterations and in an online framework this strategy is
avoided. Also, the Monte Carlo approximations are valid when N ′ → ∞ and this
can be computationally expensive.

2.7.2 Prior importance function

A simple choice is to take as importance function the transition probability density
function of the Markov process {Xk}k, that is

p̃(xk|zk, xk−1) = p(xk|xk−1) .

This yields to

w
(i)
k ∝ p(zk|X̃(i)

k ) .

This method is very sensitive to the observations. If non sufficient knowledge about
the observations are available this method can be inefficient.

2.7.3 Fixed importance function

Another simple choice is to select an importance function independently from the
simulated trajectories and from the observations. In such case,

p̃(xk|zk, xk−1) = p̃(xk) .

and the weights are given by

w
(i)
k ∝ p(zk|X̃(i)

k )p(X̃
(i)
k |X(i)

k−1)

p̃(X̃
(i)
k )

.

This choice don’t take in account the dynamic of the model and can leads to un-
bounded weights.

2.7.4 Rao-Blackwellisation

The Rao-Blackwellisation technique improves the accuracy of the particle filter, it
reduces the variance of the weights, by analytically marginalizing some components
of the state and only sampling from the remainders.
If we decompose the state process Xk = (X1

k , X
2
k) ∈ Rn = Rn1 × Rn2 , then

p(xk)dxk = p(x1
k, x

2
k)dx

1
kdx

2
k = p(x2

k|x1
k)p(x

1
k)dx

1
kdx

2
k . (2.84)

where p(x2
k|x1

k) is the conditional pdf of X2
k given X1

k . Moreover, Bayes rule implies
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1. For any ϕ ∈ Cb(R
n),

(πk|k, ϕ) =

∫

Rn

ϕ(Xk)p(xk|z0:k)dxk =

∫

Rn1
ϕ̃(x1

k)p(x
1
k)dx

1
k

∫

Rn1
p(z0:k|x1

k)p(x
1
k)dx

1
k

where

ϕ̃(x1
k) =

∫

Rn2

ϕ(x1
k, x

2
k)p(z0:k|x1

k, x
2
k)p(x

2
k|x1

k)dx
2
k (2.85)

p(z0:k|x1
k) =

∫

R
n2

p(z0:k|x1
k, x

2
k)p(x

2
k|x1

k)dx
2
k (2.86)

2. p(z0:k|x1
k)p(x

1
k) = p(z0:k)p(x

1
k|z0:k)

If we denote by

φ(x1
k) =

ϕ̃(x1
k)

p(z0:k|x1
k)

=

∫

Rn2
ϕ(x1

k, x
2
k)p(z0:k|x1

k, x
2
k)p(x

2
k|x1

k)dx
2
k

∫

Rn2
p(z0:k|x1

k, x
2
k)p(x

2
k|x1

k)dx
2
k

.

Then,

(πk|k, ϕ) =

∫

Rn1
φ(x1

k)p(x
1
k|z0:k)dx1

k
∫

Rn1
p(x1

k|z0:k)dx1
k

. (2.87)

The Rao-Blackwellisation technique is based on the following assumption

Assumption 2.2. Given a realization x1
k of X1

k , we can evaluate analytically ϕ̃(x1
k)

and p(z0:k|x1
k) as a function of x1

k.

Rao-Blackwellisation: we integrate out analytically x2
k in (2.85) and (2.86) and

we use a particle filter method to estimate
∫

Rn1
φ(x1

k)p(x
1
k|z0:k)dx1

k and
∫

Rn1
p(x1

k|z0:k)dx1
k.

We filter the state X1
k based on the observations z0:k.

The importance sampling functions are {p̃(x1
k|xk−1, z0:k)}k. In particular, p̃(x1

k|xk−1, z0:k) =
∫

Rn2
p̃(x1

k, x
2
k|xk−1, z0:k)dx

2
k and the estimate to (πk|k, ϕ) is

(π∗N
k|k , ϕ) =

∑N
i=1 w

∗(i)
k φ(X̃

1,(i)
k )

∑N
i=1 w

∗(i)
k

(2.88)

where

w
∗(i)
k =

p(X̃
1,(i)
k |z0:k)

p̃(X̃
1,(i)
k |X(i)

k−1, z0:k)
and X̃

(i)
k = (X̃

1,(i)
k , X̃

2,(i)
k ) . (2.89)

The Rao-Blackwellisation reduces the variance of the weights. In fact, if we denote
by

wk(xk) =
p(xk|z0:k)

p̃(xk|xk−1, z0:k)
=

p(x1
k, x

2
k|z0:k)

p̃(x1
k, x

2
k|xk−1, z0:k)

and by

w∗
k(X

1
k) =

p(x1
k|z0:k)

p̃(x1
k|xk−1, z0:k)

.

Then,
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Proposition 2.7.4.

varp̃(x1
k
|xk−1,z0:k)

(
w∗

k(X
1
k)

)
≤ varp̃(xk |xk−1,z0:k)

(
wk(Xk)

)
. (2.90)

Proof. Let us consider three random vectors X 1, X 2 and Y and suppose that X =
(X 1,X 2). The associated conditional probability density functions satisfy

p(x|y) = p(x1, x2|y) = p(x2|x1, y)p(x1|y) .

If w(x) is any Borel measurable function, then

Ep(x|y)[w(X )] =

∫

w(x)p(x|y)dx

=

∫

w(x1, x2)p(x2|x1, y)p(x1|y)dx1dx2

=

∫
(
∫

w(x1, x2)p(x2|x1, y)dx2
)
p(x1|y)dx1

= Ep(x1|y)

[
Ep(x2|x1,y)[w(X 1,X 2)

∣
∣X 1]

]
. (2.91)

Using the equality (2.91) for the functions w and w2 we get the following decompo-
sition of the conditional variance varp(x|y)(w(X ))

varp(x|y)(w(X )) = Ep(x|y)[w(X )2] − (Ep(x|y)[w(X )])2

= Ep(x|y)[w(X )2] −
(
Ep(x1|y)

[
Ep(x2|x1,y)[w(X 1,X 2)

∣
∣X 1]

])2

= Ep(x|y)[w(X )2] − Ep(x1|y)

[
(Ep(x2|x1,y)[w(X 1,X 2)

∣
∣X 1])2

]

+Ep(x1|y)

[
(Ep(x2|x1,y)[w(X 1,X 2)

∣
∣X 1])2

]

−(Ep(x1|y)

[
Ep(x2|x1,y)[w(X 1,X 2)

∣
∣X 1]

]
)2

= Ep(x1|y)[varp(x2|x1,y)(w(X 1,X 2)
∣
∣X1)]

+varp(x1|y)

(
Ep(x2|x1,y)[w(X 1,X 2)

∣
∣X 1]

)
. (2.92)

To apply the decomposition (2.92) to our case it is sufficient to see that

Ep̃(x2
k
|x1

k
,xk−1,z0:k)[wk(X

1
k , X

2
k)|X1

k ] =

∫
p(x1

k, x
2
k|z0:k)

p̃(x1
k, x

2
k|xk−1, z0:k)p̃(x2

k|x1
k, xk−1, z0:k)

dx2
k

=

∫
p(x1

k, x
2
k|z0:k)p̃(x2

k|x1
k, z0:k)

p̃(x2
k|x1

k, xk−1, z0:k)p̃(x
1
k|xk−1, z0:k)

dx2
k

=

∫
p(x1

k, x
2
k|z0:k)

p̃(x1
k|xk−1, z0:k)

dx2
k

= w∗
k(X

1
k) . (2.93)

Then, taking X = Xk, Y = (Xk−1, Z0:k) and p(x|y) = p̃(xk|xk−1, z0:k) we get

varp̃(xk |xk−1,z0:k)

(
wk(Xk)

)
= varp̃(x1

k
|xk−1,z0:k)

(
w∗

k(X
1
k)

)

+Ep̃(x1
k
|xk−1,z0:k)

[
varp̃(x2

k
|x1

k
,xk−1,z0:k)

(
wk(Xk)

∣
∣X1

k

)]

The proof is complete.
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Remark 2.7.5. The optimal importance function for the Rao-Blackwellisation is
the conditional pdf p̃(x1

k|xk−1, z0:k) = p(x1
k|x1

k−1, zk) and the associated importance
weights are w∗

k(x
1
k) = p(zk|z0:k−1, x

1
k−1).

Example 2.7.6 (Conditionally Linear Gaussian State Space Model). Suppose that
X1

k is a Markov process, denoting p(x1
k|x1

k−1) its transition pdf. The process X2
k is

supposed to be linear Gaussian conditionally upon X1
k . More precisely, we suppose

that
X2

k = Ak

(
X1

k

)
X2

k−1 +Bk

(
X1

k

)
Uk , (2.94)

where Ak : R
n1 → R

n2×n2, Bk : R
n1 → R

n2×p and Uk ∼ N (0, Ip).
The observations are given by

Zk = Ck

(
X1

k

)
X2

k +Dk

(
X1

k

)
Wk , (2.95)

where Ck : Rn1 → Rm×n2 , Dk : Rn1 → Rm×r and Wk ∼ N (0, Ir). If one is interested
in estimating p(x1

k|z0:k), E[X2
k |z0:k] and E[X2

k(X2
k)T |z0:k]. The Rao-Blackwellisation

method can be applied here, by using a particle filter method to approximate
p(x1

k|z0:k), based on this estimate a Kalman filter is clearly optimal to integrat-
ing out x2

k.

Remark 2.7.7. As applications to this example are the RSA (Random Sampling
Algorithm) introduced by Akashi and Kumamoto in [2] and the algorithm for blind
deconvolution introduced by Liu et al. in [61].

2.8 Selection of the branching mechanism

We initialize the particle filter algorithm by sampling N0 > 0 independent particles
according to π0. At the end of each Update-Prediction stage we apply a branching
mechanism.
At time k − 1 the system consists of Nk−1 particles. If we denote by

Fk−1 = σ{N0 , . . . , Nk−1 ;

k−1⋃

j=0

{X (i)
j }1≤i≤Nj

;

k⋃

j=1

{X̃(i)
j }1≤i≤Nj

} (2.96)

and by N
(i)
k the number of offsprings of the particle X̃

(i)
k , then there exists a constant

C > 0 such that for all ϕ ∈ Cb(R
n)

E[N
(i)
k |Fk−1] = w

(i)
k Nk−1 , (2.97)

E[
∣
∣

Nk−1∑

i=1

N
(i)
k ϕ(X̃

(i)
k ) −Nk−1

(
π̃

Nk−1

k|k , ϕ
)∣
∣
2|Fk−1] ≤ CNk−1‖ϕ‖2 . (2.98)

At the end of this stage, we obtain the set {X (i)
k } consisting of Nk =

∑Nk−1

i=1 N
(i)
k

particles indexed as follows

X
(i)
k = X̃

(j)
k , 1 ≤ j ≤ Nk−1 , 1 +

j−1
∑

l=1

N
(l)
k ≤ i ≤

j
∑

l=1

N
(l)
k .
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The property (2.97) ensures that the estimator is unbiased, ie.

E[πk|k|Fk−1] = π̃k|k .

This expresses that the averaged estimate coincides with the desired result.
The condition (2.98) is related to the deviation of the estimate. It ensures that
after branching the obtained approximation is not far from the Updated-Predicted
approximation. An unbiased branching is better if its deviation is smaller.
The Proposition 2.4.4 and its proof ensure that for all k ≥ 0:

- The integer valued random variable Nk is an Fk-martingale
- E[Nk] = N0, P (Nk = 0) ≤ C(k)Nβ−α

0 and E[|Nk

N0
− 1|α] ≤ C(k)Nβ−α

0

The property E[Nk] = N0 > 0 means that the system never dies.

Remark 2.8.1. If the numbers of offsprings N
(i)
k , 1 ≤ i ≤ Nk−1 are conditionally

independent given Fk−1, then condition (2.98) is equivalent to

Nk−1∑

i=1

E[
(
N

(i)
k −Nk−1w

(i)
k

)2|Fk−1] ≤ CNk−1 . (2.99)

2.8.1 Independent branching numbers

Suppose that the integer valued random variables {N (i)
k , 1 ≤ i ≤ Nk−1} are condi-

tionally independent given Fk−1.

Bernoulli branching numbers

The Bernouilli branching numbers are defined by

P (N
(i)
k = j|Fk−1) =

{

ε(Nk−1w
(i)
k ) if j = [Nk−1w

(i)
k ] + 1 ,

1 − ε(Nk−1w
(i)
k ) if j = [Nk−1w

(i)
k ] ,

where [a] is the largest integer less than a and ε(a) = a− [a]. In this case

i E[N
(i)
k |Fk−1] = Nk−1w

(i)
k

ii E
[(
N

(i)
k −Nk−1w

(i)
k

)2∣
∣Fk−1

]
= ε(Nk−1w

(i)
k )(1 − ε(Nk−1w

(i)
k )) ∈ [0, 1/4]

The condition (2.99) is satisfied for C = 1/4.

Binomial branching numbers

The Binomial branching numbers are defined by

P (N
(i)
k = j|Fk−1) =

(
j

Nk−1

)

(w
(i)
k )j(1 − w

(i)
k )Nk−1−j .

Then,

i E[N
(i)
k |Fk−1] = Nk−1w

(i)
k

ii E
[(
N

(i)
k −Nk−1w

(i)
k

)2∣∣Fk−1

]
= Nk−1w

(i)
k (1 − w

(i)
k )

Hence, (2.99) is satisfied for C = 1.
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Negative binomial branching numbers

Suppose that for all 1 ≤ i ≤ Nk−1,

pi =
w

(i)
k

1+w
(i)
k

P (N
(i)
k = j|Fk−1) =

(
Nk−1 − 1

Nk−1 + j − 1

)

pj
i (1 − pi)

Nk−1 .

Then,

i E[N
(i)
k |Fk−1] = Nk−1w

(i)
k

ii E
[(
N

(i)
k −Nk−1w

(i)
k

)2∣
∣Fk−1

]
= Nk−1w

(i)
k (1 + w

(i)
k )

It is clear that (2.99) is satisfied for C = 2.

Poisson branching numbers

For all k ≥ 0 and 1 ≤ i ≤ Nk−1, the Poisson branching numbers is defined by

P (N
(i)
k = j|Fk−1) = exp(−Nk−1w

(i)
k )

(Nk−1w
(i)
k )j

j!
(2.100)

In this case,

E[N
(i)
k |Fk−1] = E

[(
N

(i)
k −Nk−1w

(i)
k

)2∣∣Fk−1

]
= Nk−1w

(i)
k .

Hence (2.99) is satisfied for C = 1.

2.8.2 Negative correlated branching numbers

Multinomial branching mechanism

The multinomial branching mechanism, denoted by Multinomial(Nk−1, w
(1)
k , . . . , w

(Nk−1)
k ),

is defined by

P
(
N

(i)
k = αi; 1 ≤ i ≤ N0

)
=

{
N0!

α1!···αN0
!
Πiw

(i)
k if

∑

i αi = N0 ,

0 otherwise.

In this case the total number of particles remains unchanged.
For all 1 ≤ i 6= j ≤ N0,

i E[N
(i)
k

∣
∣Fk−1] = N0w

(i)
k

ii E
[(
N

(i)
k −N0w

(i)
k

)2∣∣Fk−1

]
= N0w

(i)
k (1 − w

(i)
k )

iii E
[(
N

(i)
k −N0w

(i)
k

)(
N

(j)
k −N0w

(j)
k

)∣
∣Fk−1

]
= −N0w

(i)
k w

(j)
k
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Moreover, for any ϕ ∈ Cb(R
n),

E
[ ∣

∣

N0∑

i=1

N
(i)
k ϕ(X̃

(i)
k ) −N0

(
π̃N0

k|k, ϕ
)∣
∣2

∣
∣Fk−1

]
= N0{(π̃N0

k|k, ϕ
2) −

(
(π̃N0

k|k, ϕ)
)2}

≤ N0(π̃
N0

k|k, ϕ
2)

≤ N0‖ϕ‖2 .

Hence, (2.98) is satisfied for C = 1 .

Residual multinomial branching mechanism

Instead of using a multinomial mechanism with parameters

(Nk−1, w
(1)
k , . . . , w

(Nk−1)
k ), we define the numbers of offsprings N

(i)
k for 1 ≤ i ≤ Nk−1

by
N

(i)
k = [Nk−1w

(i)
k ] +X

(i)
k .

The integer valued random variables X
(1)
k , . . . , X

(Nk−1)
k are given by

(X
(1)
k , . . . , X

(Nk−1)
k ) = Multinomial(Mk, q

(1)
k , . . . , q

(Nk−1)
k )

where

Mk = Nk−1 −
Nk−1∑

j=1

[Nk−1w
(j)
k ] and q

(i)
k =

ε(Nk−1w
(i)
k )

∑Nk−1

j=1 ε(Nk−1w
(j)
k )

.

where [a] is the largest integer less than a and ε(a) = a − [a]. In this case one has
also Nk = Nk−1 = N0 and the total number of particles remains unchanged. In
addition, for all 1 ≤ i ≤ N0, one has

E[N
(i)
k

∣
∣Fk−1] = N0w

(i)
k .

For every ϕ ∈ Cb(R
n), one has

E
[ ∣

∣

Nk−1∑

i=1

N
(i)
k ϕ(X̃

(i)
k ) −N0

(
π̃N0

k|k, ϕ
)∣
∣2

∣
∣Fk−1

]
≤Mk‖ϕ‖2 ≤ N0‖ϕ‖2 .

This mechanism can perform better than the multinomial branching mechanism in
the case when Mk is close to 0. In such case, we get a smaller conditional variance
and smaller time computation !!.

Example 2.8.2. In this example, we compare several branching mechanisms. We
take the 1-dimensional linear system of Example 2.7.3, that is

{
Xk+1 = Xk + Uk , X0 ∼ N(0, 10) , Uk ∼ N(0, 10) ,
Zk = Xk +Wk , Wk ∼ N(0, 1) .

We apply the Kalman algorithm for a reference comparison and the particle filter
algorithm with three different branching mechanisms, the multinomial, the residual
multinomial and the Bernouilli schemes successively. For this model, see Figure 2.4,
the Bernouilli performs better than the negative correlated branching mechanisms.
It is also clear, that the residual multinomial scheme is at least better than the
multinomial scheme.
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Figure 2.4: Posterior distribution estimations using 100 particles



Chapter 3

Vehicle Tracking Example

3.1 Vehicle dynamics equation

3.1.1 Introduction

In handling vehicle dynamics, see [63, 68, 75], two families of forces are considered.
The first are the forces controlling the acceleration and the velocity of the car:
tractive force, wheel force, braking force, rolling resistance, drag (= air resistance),
etc. The second are those allowing the car to turn: friction of the wheels, angular
moments, torque, etc.
Let us consider a car which descends a circular slope of radius R, see Figure 3.1.
The angle between the weight vector Fg and the heading direction vector u of the
car is denoted by θ. We take into account three of these forces mentioned above: the
tractive force, the aerodynamic drag, the rolling resistance consisting of the friction
rubber-road and the weight, and we add a noisy term = error in modeling + other
friction forces. For simplicity, we suppose that all the forces act through the center
of gravity of the car CG.
Tractive force: It is the force delivered by the engine via the rear wheels. The

engine turns the wheels forward, the wheels push backwards on the road surface
and, in reaction, the road surface pushes back in a forward direction. The engine
only generates force and hence acceleration. The tractive force is

Ft =
ΓGg

r
u,

where

- u is the unit vector direction of car’s heading
- Γ is the torque function of the engine in (Nm)
- G = 3.545 is the final drive ratio
- g is the gear ratio and r = 0.3266m is the radius of tire

We suppose that during the tracking this force is of constant magnitude

∣
∣Ft

∣
∣ = 1200 N . (3.1)
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Aerodynamic drag: The air resistance force acts on the front of the car when the
car sifts through the air,

Fd = −Cdrag × |v| × v, (3.2)

where

- v is the velocity vector and |v| the speed
- Cdrag = 0.5 × ρ× A× Cd ≈ 0.4257 where

- Cd ≈ 0.3 is the coefficient of the friction
- ρ = 1.29 kg/m3 is the air density
- A ≈ 2.2m2 is the frontal area of the car

Rolling resistances:

1. Friction between the rubber and road surface as the wheels roll:

Frr = −Crr × v , (3.3)

where Crr = 12.8Ns/m is the coefficient of friction

2. The weight Fg = M g of the vehicle acts through its center of gravity and
either pulls it back or forward, depending on the angle θ between the weight
vector and the forward direction:

F 1
g = M cos(θ)

∣
∣g

∣
∣ u , (3.4)

where M = 1200 kg is the mass of the car and |g| = 9.81m/s2 is the gravita-
tional acceleration
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3.1.2 Vehicle dynamics equation

Newton’s second law: The acceleration a of the car is proportional in magnitude
and direction to the net force F = Ft +Fd + Frr + F 1

g and inversely proportional to
its mass M = 1200 kg. That is,

a =
F

M
.

In addition, dv = a dt and dp = v dt where p is the car position and dt is the time
increment.
Parameterizing the position of the car by s(t) =

∫ t

0
|v(u)|du, we get

1. ṡ(t) = ds
dt

(t) = |v(t)| is the speed of the car at time t

2. s̈(t) = d2s
dt2

(t) = <v(t),a(t)>
|v(t)| is the orthogonal projection of the acceleration on

the axle directed by the vector u

Let us denote by F‖ the orthogonal projection of the net force F on the axle directed
by the vector u, then

s̈ =
F‖
M

=
1200 +M |g| cos(θ0 + s/R) − Crrṡ− Cdragṡ

2

M
= 1 + 9.8 cos(θ0 + s/R) − 1.06 × 10−2 ṡ− 3.54 × 10−4 ṡ2 ,

where θ0 is the angle between the weight vector and the initial direction heading of
the car. Since the speed of the car takes only nonnegative values, then

s̈(t) = 1 + 9.8 cos(θ0 + s(t)/R) − 1.06 × 10−2ṡ(t) − 3.54 × 10−4ṡ2(t)I{ṡ≥0} . (3.5)

The indicator function I{ṡ≥0} is introduced for technical considerations needed in
next subsections.
This modeling supposes that the engine generates a constant force, gives constant
values to the friction coefficients Cdrag and Crr, and doesn’t take into account other
frictions. We introduce, then, a noisy term increasing with the speed of the form
(
α+ βṡ(t)

)
W2(t), where W2 is a standard 1-dimensional white noise.

Aim: Estimating the position and the speed of the car.

If x1(t) = s(t) and x2(t) = ṡ(t), then the state vector is x(t) =

[
x1(t)
x2(t)

]

In addition,






dx1(t) = x2(t) dt

dx2(t) = {a0 + |g| cos(θ0 + x1(t)
R

) − a1x2(t) − a2x2(t)
2I{x2(t)≥0}}dt

+{α+ βx2(t)}du2(t)

(3.6)

where

- (a0, a1, a2) = (1, 1.06 × 10−2, 3.54 × 10−4)
- (α, β) = (0, 2 × 10−2)
- u2 is a standard Brownian motion
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The state equation: dx(t) = b(x(t))dt + σ(x(t))du(t) , (3.7)

where for all x =

[
x1

x2

]

∈ R2,

1. b(x) =

[
x2

a0 + |g| cos(θ0 + x1

R
) − a1x2 − a2x

2
2I{x2≥0}

]

2. σ(x) =

[
0 0
0 βx2

]

3. u(t) =

[
u1(t)
u2(t)

]

The random variable u1 is a standard 1-dimensional Brownian motion independent
with u2.

3.2 Observations

We aim to estimate the position x1(t) and the speed x2(t) of the car. Suppose that
we can only preform measurements on the position of the form h(x(t)) = h(x1(t)),
where h is a known function. These measurements suffers of errors due to such
things as instrumental errors. We introduce informally a noise term of the form
ξ(x1(t), x2(t))W (t), where W is a standard 1-dimensional white noise and ξ is known
function.
Since W (t) is the derivative in distribution of a 1-dimensional Brownian motion w(t)
and since is equivalent to observe {Z(s) , 0 ≤ s ≤ t} or {

∫ s

0
Z(u)du , 0 ≤ s ≤ t},

see [69], then
Observation equation: z(t) =

∫ t

0
h(x(s))ds+

∫ t

0
ξ(x(s))dw(s),

where w(t) is a 1-dimensional standard Brownian motion independent of the state
noise u(t). The observer is at the initial position x1(0) and he measures the distance
Z(t) from his position to the current position of the car x1(t), see Figure 3.2. This
means that the function h is given by

h(x) = 2R sin(
x

2R
) , ∀ x ∈ R .

Moreover, suppose that the function ξ is of the form

ξ(x1, x2) = ξ0 + ξ1x1 + ξ2x2 .

where ξi , i ∈ {1, 2, 3} are some known non negative real numbers. Then,

z(t) = 2R

∫ t

0

sin(
x1(s)

2R
)ds+

∫ t

0

(
ξ0 + ξ1x1(s) + ξ2x2(s)

)
dw(s) . (3.8)
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3.3 Discretization of the system

The state equation (3.7) is a 2-dimensional SDE which can be written as dx1(t)
′ =

F (x1(t), x1(t)
′)dt+G(x1(t), x1(t))du2(t), where x1(t)

′ denotes the sample path deriva-
tive of the process x1(t). Following the terminology in [12] and [31], a process sat-
isfying such an equation is called a second order Ito process (SOIP).
The coefficients of the state equation (3.7) do not satisfy the classical conditions of
the existence and uniqueness Theorem, since the drift term contains a second order
polynomial term. In particular, we note that the conditions of the convergence of
the Euler discretization in Appendix B.4 are not satisfied.
In this section we prove the existence and the uniqueness of the solution to the SDE
(3.7) and we prove that the Euler discretization converges strongly to this solution
with the same order of convergence, ie. γ = 1/2.
The discretization of the observation will be easily deduced since the coefficients of
the observation equation (3.8) are Lipschitz.

3.3.1 The solution of the state equation (3.7)

Although the Lipschitz and the linear growth conditions are not satisfied for the
SDE (3.6), the drift coefficient of the second component of contains a square order
term x2

2I{x2≥0}, we prove existence and uniqueness of a strong solution.
In fact, we prove existence and uniqueness for a family of SDE’s with non Lipschitz
conditions and non linear growth bounds then deduce existence and uniqueness for
the SDE (3.6).
Let us consider a second order Ito process Xt = (X1

t , X
2
t ) such that for all t ≥ 0,

{
dX1

t = X2
t dt

dX2
t = {ϕ(X1

t , X
2
t ) + η1X

2
t − η2(X

2
t )2I{X2

t ≥0}}dt+ {σ1 + σ2X
2
t }dU2

t
(3.9)
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where

1. X0 = (a, b) ∈ R
2, where a, b ≥ 0

2. ϕ : R × R → R is Lipschitz, continuous and admit linear growth bound

3. (η1, η2) ∈ R2 is such that ηi > 0 , i = 1, 2 and (σ1, σ2) ∈ R2 is such that σ2 6= 0

4. Ut =
(
U i

t

)

i=1,2
is a 2-dimensional standard Brownian motion

The equation (3.9) can also be written in the following form:

dXt = b(Xt)dt+ σ(Xt)dUt , (3.10)

where b(x) =

[
x2

ϕ(x1, x2) + η1x2 − η2x
2
2I{x2≥0}

]

and σ(x) =

[
0 0
0 σ1 + σ2x2

]

.

Remark 3.3.1. a. A reference filtration {Ft}t≥0 is a complete filtration generated by
a given Brownian motion on Ω

b. The pathwise uniqueness of solutions of (3.10) holds if whenever X and Y are two
weak solutions defined on the same probability space and with the same reference
family {Ft}t≥0 and the same Ft-Brownian motion such that X0 = Y0 = (a1, a2),
then for all t ≥ 0 we get Xt = Yt a.s

c. The strong uniqueness holds when given an initial condition X0 = (a1, a2) and an
Ft-Brownian motion (Ũt), there exists one and only one continuous Ft-adapted
process (Xt) satisfying (3.11)

The stochastic differential equation (3.11) is time homogeneous since the func-
tions b and σ are time independent and the initial condition X0 = (a, b) is non
random. In addition, the functions b and σ are continuous. Theorem 4.2.3 in
[35] secures, up to an explosion time e, the existence of a weak solution. That is,
given a reference filtration {Ft}t≥0 on a probability space (Ω,F , P ) there exists an
Ft-Brownian motion (Ũt) and a continuous Ft-adapted process (Xt) such that for
almost all ω ∈ Ω and all t ∈ [0, e(ω)):

Xt(ω) = X0 +

∫ t

0

b(Xs(ω))ds+

∫ t

0

σ(Xs(ω))dŨs(ω) . (3.11)

However, the functions b and σ are continuous and locally Lipschitz, then by The-
orem 4.3.1. in [35] the pathwise uniqueness holds and hence it has a unique strong
solution by Theorem 4.1.1. in [35].
It remains to prove the global existence of the weak solution, i.e. e = ∞ a.s.
We apply the method of transformation of drift, see for example [35] pp. 190-197.
Denoting by for all x ∈ R2,

i. ϕ̃(x) = ϕ(x) − σ1η2

σ2
x2I{x2<0} − σ1

σ2
(η1 + σ1η2

σ2
)

ii. α1 = 1
σ2

(η1 + σ1η2

σ2
) and α2 = − η2

σ2
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iii. γ(x) =

[
0

α1 + α2x2I{x2≥0}

]

Then, for all x = (x1, x2) ∈ R2,

b(x) = b̃(x) + σ(x)γ(x) ,

where b̃(x) =

[
x2

ϕ̃(x)

]

. The functions ϕ̃ and b̃ are continuous and Lipschitz.

Let us consider an Ft-Brownian motion (Ut)t≥0 and the stochastic differential equa-
tion

dXt = b̃(Xt)dt+ σ(Xt)dUt , X0 = (a, b) ∈ R
2
+ . (3.12)

It is a classical result that the equation (3.12) has a unique strong solution, then
there exists a continuous Ft-adapted process Xt such that

Xt = X0 +

∫ t

0

b̃(Xs)ds+

∫ t

0

σ(Xs)dUs . (3.13)

Moreover, E[sup0≤s≤t |Xs|2p] <∞ for every t ≥ 0 and p ≥ 1.
Let us define the following two processes:

Mt = exp{−1

2

∫ t

0

|γ(Xs)|2ds+

∫ t

0

γ(Xs)dUs} (3.14)

Ũt = Ut −
∫ t

0

γ(Xs)ds

If we prove that the process Mt is a martingale, then by Theorem 4.4.1. and its
corollary in [35] the process (Ũt)t≥0 is an Ft-Brownian motion and the process (Xt)t

is a solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dŨt

Lemma 3.3.2. The process (Mt)t≥0 is an Ft-martingale.

Proof. The process Yt =
∫ t

0
γ(Xs)dUs is a square integrable Ft-martingale, so by

Theorem 3.5.2. in [35] the process Mt is an Ft-supermartingale. It is martingale if
its expectation is equal to one.
Let us prove that for all T > 0

E[Mt] = 1 , ∀ t ∈ [0, T ] .

We check first that there exists a constant C <∞ such that

E[Mt|Xt|2] < C , ∀t ∈ [0, T ] . (3.15)

Ito’s formula gives us the following equalities:

1. d|Xt|2 = 2XT
t (b̃ dt+ σ dUt) + tr(σσT )dt)
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2. dMt|Xt|2 =
(
Mt|Xt|2γT + 2MtX

Tσ
)
dUt +Mt

(
2XT

t b̃+ tr(σσT ) +XT
t σγ

)
dt

3. For ε > 0, we take V (t, x) = V (x) = x
1+εx

, then

d
Mt|Xt|2

1 + εMt|Xt|2
=

1

(1 + εMt|Xt|2)2
(Mt|Xt|2γT + 2MtX

T
t σ)dUt

+
[ Mt

(1 + εMt|Xt|2)2
(2XT

t b̃+ tr(σσT ) +XT
t σγ)

− ε

(1 + εMt|Xt|2)3
|2MtX

T
t σ +Mt|Xt|2γT |2

]
dt

Integrating from 0 to t and taking the expectation, we see that the first term is zero,
then taking the derivative w.r.t. t we get

d

dt
E[

Mt|Xt|2
1 + εMt|Xt|2

] ≤ E[
Mt

(1 + εMt|Xt|2)2
(2XT

t b̃+ tr(σσT ) +XT
t σγ)]

−E[
ε

(1 + εMt|Xt|2)3
|2MtX

T
t σ +Mt|Xt|2γT |2]

The second term is negative, then

d

dt
E[

Mt|Xt|2
1 + εMt|Xt|2

] ≤ E[
Mt

(1 + εMt|Xt|2)2
(2XT

t b̃ + tr(σσT ) +XT
t σγ))]

Moreover,

XT
t σγ = [X1

t X
2
t ]

[
0 0
0 σ1 + σ2X

2
t

] [
0

α1 + α2X
2
t I{X2

t ≥0}

]

= X2
t (σ1 + σ2X

2
t )(α1 + α2X

2
t I{X2

t ≥0})

Since σ1α2 + α1σ2 = η1 > 0 and σ2α2 < 0, then σ2α2(X
2
t )3I{X2

t ≥0} ≤ 0 and there
exists a constant K > 0 such that

XT
t σγ ≤ K(1 + (X2

t )2) ≤ K(1 + |Xt|2) .

The functions b̃ and σ admit linear growth bounds, then there exists a constant
K ′ > 0

|XT
t b̃(Xt)| ≤ K ′(1 + |Xt|2)

|tr(σσT )| ≤ K ′(1 + |Xt|2)

Let K̃ = 3K ′ +K, K̃ is independent from ε, we deduce that

d

dt
E[

Mt|Xt|2
1 + εM(t)|Xt|2

] ≤ K̃E[
Mt(1 + |Mt|2)

(1 + εMt|Xt|2)2
]

≤ K̃(E[
Mt|Xt|2

1 + εMt|Xt|2
] + E[

Mt

1 + εMt|Xt|2
])

≤ K̃(E[
Mt|Xt|2

1 + εMt|Xt|2
] + 1)



3.3. DISCRETIZATION OF THE SYSTEM 77

In the last inequality we use the fact that E[Mt] ≤ 1 since Mt is a supermartingale
and that M0 = 1.
We apply Gronwall’s inequality, see Appendix A.2, we obtain a constant C > 0
independent of ε such that

E[
Mt|Xt|2

1 + εMt|Xt|2
] ≤ C

Taking ε→ 0, Fatou’s Lemma gives (3.15), ie E[Mt|Xt|2] < C, for all t ∈ [0, T ].
We use Ito’s formula to obtain

d
Mt

1 + εMt

=
Mtγ(Xt)

TdUt

(1 + εMt)2
− εM2

t |γ(Xt)|2dt
(1 + εMt)3

.

Integrating from 0 to t and taking the expectation, we get

E[
Mt

1 + εMt
] =

1

1 + ε
− εE[

∫ t

0

M2
s |γ(xs)|2ds

(1 + εMs)3
]. (3.16)

The integrand term M2
s |γ(xs)|2ds
(1+εMs)3

in (3.16) is bounded by DMt(|Xt|2 + 1), for some

constant D. This term is integrable by (3.15). Since E[ Mt

1+εMt
] ≤ E[Mt] ≤ 1,

Lebesgue’s theorem gives that

E[
Mt

1 + εMt
] → E[Mt] .

The result follows by taking ε to 0 in (3.16).

To conclude, we have proved the following Theorem

Theorem 3.3.3. For every (a, b) ∈ R2
+, the stochastic differential equation (3.10)

admits one and only one strong solution (Xt)t≥0 with X0 = (a, b). The solution is
called a second order Ito process.

Corollary 3.3.4. For every (a, b) ∈ R2
+, the stochastic differential equation (3.7)

or also the stochastic differential system (3.6) admits one and only one strong and
pathwise solution x such that x(0) = (a, b).

3.3.2 Discretization of the state equation (3.7)

The speed of a car can not exceed a maximum speed that we denote Mc. We
will prove the strong convergence of the Euler-Maruyama discretization of the state
process {x(t)}t on a sufficient large subset ΩT,Bc

of Ω, the subset ΩT,Bc
depends on

Mc and the time tracking duration T .
Suppose that Y = (Yt)t≥0 and Z = (Zt)t≥0 are two continuous Ft-adapted processes
with values in R

p, for some p ≥ 1, that are the unique pathwise solutions of the
following SDE’s

dYt = F1(Yt)dt+G1(Yt)dWt (3.17)

dZt = F2(Zt)dt+G2(Zt)dWt (3.18)



78 3.3. DISCRETIZATION OF THE SYSTEM

where (Wt)t is a q-dimensional Ft-Brownian motion and the vector function Fi and
the matrix function Gi are locally Lipschitz for i = 1, 2.
Let T > 0 and B ∈ B(Rp) be closed and define ΩT,B ⊂ Ω by

ΩT,B = {ω ∈ Ω , Yt(ω), Zt(ω) ∈ B , ∀ t ∈ [0, T ]} .
Lemma 3.3.5. Suppose that Y0 = Z0 ∈ Rp, non random.
If for almost all ω ∈ ΩT,B and for all t ∈ [0, T ]

F1(Yt(ω)) = F2(Yt(ω)) and G1(Yt(ω)) = G2(Yt(ω)) ,

then for almost all ω ∈ ΩT,B and for all t ∈ [0, T ]

Yt(ω) = Zt(ω) .

Proof. Let {Bk}k≥0 be an increasing sequence of compacts in Rp such that

Bk ↗ B as k → ∞ .

Denoting by ΩT,Bk
= {ω ∈ Ω , Yt(ω), Zt(ω) ∈ Bk , ∀ t ∈ [0, T ]}. Then,

i. ΩT,Bk
↗ ΩT,B as k → ∞

ii. For almost all ω ∈ ΩT,Bk
and for all t ∈ [0, T ],

F1(Yt(ω)) = F2(Yt(ω)) and G1(Yt(ω)) = G2(Yt(ω))

It is sufficient to prove the result on ΩT,Bk
for every k ≥ 0.

Let k ≥ 0 be arbitrary fixed, since Bk is a compact and the functions Fi, Gi, i = 1, 2,
are locally Lipschitz then there exists a constant Ck > 0 such that for i = 1, 2 and
for all y, z ∈ Bk

|Fi(y) − Fi(z)| ≤ Ck|y − z|
‖Gi(y) −Gi(z)‖ ≤ Ck|y − z|

In addition, almost surely on ΩT,Bk
we have

Yt − Zt =

∫ t

0

(F2(Ys) − F2(Zs))ds+

∫ t

0

(G2(Ys) −G2(Zs))dWs

Then, using that (a + b)2 ≤ 2(a2 + b2) and Ito’s isometry we get

E[IΩT,Bk
|Yt − Zt|2] ≤ 2T

∫ t

0

E[IΩT,Bk
|F2(Ys) − F2(Zs)|2]ds

+2

∫ t

0

E[IΩT,Bk
‖G2(Ys) −G2(Zs)‖2]ds

≤ 2(T + 1)C2
k

∫ t

0

E[IΩT,Bk
|Ys − Zs|2]ds

where IΩT,Bk
is the indicator function of ΩT,Bk

.

Gronwall’s inequality implies that E[IΩT,Bk
|Yt − Zt|2] = 0, then IΩT,Bk

|Yt − Zt|2 = 0
almost surely.
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Let T > 0 be the tracking duration and Mc > 0 be a high speed that can not be

attained by a car. Let b̃ : R
2 → R

2 such that for all x =

[
x1

x2

]

∈ R
2,

b̃(x) =

[
x2

a0 + g cos(θ0 + x1

R
) − a1x2 − Φ(x2)

]

where for all y ∈ R,

Φ(y) =

{
a2y

2I{y≥0} if y ≤Mc

a2M
2
c if not

(3.19)

It is clear that the function Φ is continuous, Lipschitz and admit a linear growth
bound then it is also the case of the function b̃.
Let (x̃(t))t the unique pathwise solution of the following SDE

{
x̃(0) = x(0) ∈ (R+)2

dx̃(t) = b̃(x̃(t))dt + σ(x̃(t))dUt
(3.20)

We define the subspace ΩT,Bc
of Ω by

ΩT,Bc
= {x(t), x̃(t) ∈ Bc , ∀t ∈ [0, T ]} ,

where Bc = R × (−∞,Mc].

Lemma 3.3.6. For all t ∈ [0, T ],

x(t) = x̃(t) a.s.onΩT,Bc
.

Proof. It is clear that:

i. b(x(t)) = b̃(x(t)) almost surely in ΩT,Bc
and for all t ∈ [0, T ]

ii. The diffusion coefficients of the two processes x(t) and x̃(t) are the same

The Lemma 3.3.5 implies the result.

Let N ≥ 1 be an integer such that T
N
< 1 and Y δ = (Y δ

t )0≤t≤T be the Euler-
Maruyama time discretization process associated to the process {x̃(t)}0≤t≤T . Then,

{
Y δ

0 = x(0) ,

Y δ
t = Y δ

k + (t− τk)b̃(Y
δ
k ) + σ(Y δ

k )(Ut − Uk) , if t ∈ [τk, τk+1] ,
(3.21)

where

- Y δ
k = Y δ

τk
and Uk = Uτk

- τk = kδ and δ = T
N

In particular, if we denote ∆kU = Uk+1 − Uk, then

Y δ
k+1 = Y δ

k + δb̃(Y δ
k ) + σ(Y δ

k )∆kU , for every k ∈ {0, 1, . . . , N − 1} .
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Proposition 3.3.7. The Euler-Maruyama time discretization process Y δ converges
strongly with an order 1/2to the process x on ΩT,Bc

. That is, for some constant
C > 0 independent of δ

E[ IΩT,Bc

∣
∣x(T ) − Y δ

T

∣
∣ ] ≤ C δ1/2 .

Proof. The functions g̃ and σ are Lipschitz, admits growth bound and are time
independent, then the functions g̃ and σ satisfy the conditions of the Appendix B.4.
In addition, Y δ

0 = x̃(0) = x(0). This implies that the time discretization process Y δ

converges strongly to (x̃(t))t with an order 1/2 ie. there exists a constant C > 0
independent of δ such that

E[
∣
∣x̃(T ) − Y δ

T

∣
∣ ] ≤ C δ1/2 .

In the other hand, since IΩT,B
≤ 1 we get

E[ IΩT,B

∣
∣x(T ) − Y δ

T

∣
∣ ] = E[ IΩT,B

∣
∣x̃(T ) − Y δ

T

∣
∣ ]

≤ E[
∣
∣x̃(T ) − Y δ

T

∣
∣ ]

≤ C δ1/2 .

This proves the result.

Remark 3.3.8. There exists a subsequence δk → 0 as k → ∞ such that Y δk

T → x̃(T )
almost surely. In particular, Y δk

T → x(T ) almost surely on ΩT,B.

The Proposition 3.3.7 is almost useless if we have no knowledge about the con-
stant C. We will give next an upper bound on C, this will permit us the control of
the error of the convergence.
It is sufficient to find an explicit constant C ′ = C ′(T, b̃, σ, ε) such that E[

∣
∣x̃(T ) −

Y δ
T

∣
∣ ] ≤ C ′ δ1/2 for δ ≤ ε for some fixed ε ∈ (0, 1).

We need the following two Lemmas:

Lemma 3.3.9. For all (x, y) ∈ R2, the functions b̃ and σ satisfy the following
inequalities

i. |σ(x) − σ(y)| ≤ β|x− y|

ii. < x− y , b̃(x) − b̃(y) >≤ ∆1|x− y|2

iii. |b̃(x) − b̃(y)|2 ≤ ∆2|x− y|2

iv. |b̃(x)| ≤ A1 + A2|x|

where ∆1 = 1/2 + g/2R, ∆2 = 1 + g/R + a1 + 2a2Mc, A1 = a0 + g and A2 =
√

1 + a2
1 + a2Mc.

Proof. Based on the expressions of the functions b̃ and σ it is not difficult to verify
the inequalities of the present Lemma.
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Lemma 3.3.10. The process Y δ given in (3.21) satisfies

sup
0≤k≤N

E[ |Y δ
k |2 ] ≤ 2A2

1

c

(
exp((1 + c)T ) − 1

)
+ exp((1 + c)T )|x(0)|2 .

where c = β2 + 2(
√

1 + a2
1 + a2Mc)

2.

Proof. Let k ∈ {0, . . . , N − 1}. Ito’s formula gives us, for all t ∈ [τk, τk+1],

d|Y δ
t |2 = {2 < Y δ

t , b̃(Y
δ
k ) > +|σ(Y δ

k )|2} dt+ 2 < Y δ
t , σ(Y δ

k ) > dut .

We integrate d|Y δ
t |2 from τk to t and we take the expectation we get

E[ |Y δ
t |2 ] = E[ |Y δ

k |2 ] + δE[ |σ(Y δ
k )|2 ] + 2

∫ t

τk

E[< Y δ
s , b̃(Y

δ
k ) >]ds .

Using Lemma 3.3.9 and the fact that 2 < x, y > ≤ |x|2 + |y|2 we get

E[ |Y δ
t |2 ] ≤ 2A2

1δ +
(
1 + (β2 + 2A2

2)δ
)
E[ |Y δ

k |2 ] +

∫ t

τk

E[ |Y δ
s |2 ] ds .

If we denote by c = β2 + 2A2
2, then Gronwall inequality implies

E[ |Y δ
t |2 ] ≤ exp(δ)

(
2A2

1δ + (1 + c δ)E[ |Y δ
k |2 ]

)
, ∀t ∈ [τk, τk+1] .

In particular, for t = τk+1 we have

E[ |Y δ
k+1|2 ] ≤ exp(δ)

(
2A2

1δ + (1 + c δ)E[ |Y δ
k |2 ]

)
.

Recall that E[ |Y δ
0 |2 ] = |x(0)|2. We deduce by induction that

E[ |Y δ
k+1|2 ] ≤ 2A2

1δ{
k∑

j=1

(1 + cδj−1) exp(jδ)} + exp(kδ)(1 + c δ)k|x(0)|2 . (3.22)

Finally, the following two observations give us the result:

1. Since (1 + cδ)k ≤ (1 + c T
N

)N ≤ exp(cT ) and c δ exp(δ) ≤ (1 + c δ) exp(δ) − 1,

k∑

j=1

(1 + c δ)j−1 exp(jδ) = exp(δ)
(1 + c δ)k exp(kδ) − 1

(1 + c δ) exp(δ) − 1

≤ 1

c δ
(exp((1 + c)T ) − 1)

2. exp(kδ)(1 + cδ)k|x(0)|2 ≤ exp((1 + c)T )|x(0)|2
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Let ε ∈ (0, 1), we define Γε by

Γε = (1 + ∆2){2εA2
1T +B} (3.23)

where

- B =
(
2εTA2

2 + Tβ2
)
{2A2

1

c
(exp((1 + c)T ) − 1) + exp((1 + c)T )|x(0)|2}

- c = β2 + 2(
√

1 + a2
1 + a2Mc)

2

Theorem 3.3.11. If δ ≤ ε, then

E[
∣
∣x̃(T ) − Y δ

T

∣
∣2 ] ≤ δ Γε exp((1 + 2(∆1 + β2))T ) . (3.24)

Before proving the Theorem, let us define the process X δ = {Xδ
t , t ∈ [0, T ]} by

Xδ
t =

N−1∑

k=0

Y δ
k I[τk,τk+1)(t) + Y δ

T I{T}(t) . (3.25)

In particular, for all t ∈ [0, T ]

Y δ
t = x(0) +

∫ t

0

b̃(Xδ
s )ds+

∫ t

0

σ(Xδ
s )dus . (3.26)

Moreover, for all t ∈ [0, T ]

E[|Y δ
s −Xδ

s |2] ≤ 2δ2A2
1 + (2δ2A2

2 + δβ2) sup
0≤k≤N

E[ |Y δ
k |2 ] (3.27)

In fact, for k ∈ {0, . . . , N − 1} and for s ∈ [τk, τk+1) we have

|Y δ
s −Xδ

s |2 = |(s− τk)b̃(Y
δ
k ) + σ(Y δ

k )(us − uk)|2
= (s− τk)

2|b̃(Y δ
k )|2 + |σ(Y δ

k )(us − uk)|2
+2(s− τk) < b̃(Y δ

k ) , σ(Y δ
k )(us − uk) > .

Since us − uk and Y δ
k are independent, E[us − uk] = 0, E[|us − uk|2] ≤ δ, then

Fubini’s Theorem, Lemma 3.3.9 and Lemma 3.3.10 gives the inequality (3.27).

Proof. (Theorem 3.3.11)
For all t ∈ [0, T ], we denote et = x̃(t) − Y δ

t , then

et =

∫ t

0

(b̃(x̃(s)) − b̃(Xδ
s ))ds+

∫ t

0

(σ(x̃(s)) − σ(Xδ
s ))dus . (3.28)

Applying the Ito formula to |et|2 we get

d|et|2 = {2 < et, b̃(x̃(t)) − b̃(Xδ
t ) > +|σ(x̃(t)) − σ(Xδ

t )|2}dt
+2 < et, σ(x̃(t)) − σ(Xδ

t ) > dut
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Integrating form 0 to t and taking the expectation we get

E[ |et|2 ] = 2E[

∫ t

0

< es, b̃(x̃(s)) − b̃(Xδ
s ) > ds]

+E[

∫ t

0

|σ(x̃(s)) − σ(Xδ
s )|2}ds] (3.29)

Let us examine the two expectations of the right hand term in equality (3.29).
First term: Using Lemma 3.3.9 we get

2E[

∫ t

0

< es, b̃(x̃(s)) − b̃(Xδ
s ) > ds] = 2E[

∫ t

0

< es, b̃(x̃(s)) − b̃(Y δ
s ) > ds]

+2E[

∫ t

0

< es, b̃(Y
δ
s ) − b̃(Xδ

s ) > ds]

≤ (2∆1 + 1)E[

∫ t

0

|es|2ds]

+∆2E[

∫ t

0

|Y δ
s −Xδ

s |2ds] (3.30)

where we use that 2 < x, y >≤ |x|2 + |y|2 , ∀x, y ∈ R2.
Second term:

E[

∫ t

0

|σ(x̃(s)) − σ(Xδ
s )|2}ds] ≤ 2β2{E[

∫ t

0

|es|2}ds] + E[

∫ t

0

|Y δ
s −Xδ

s |2}ds]} .(3.31)

Now, using (3.27), (3.30) and (3.31) in (3.29) we get

E[ |et|2 ] ≤ Λ + (1 + 2∆1 + 2β2)

∫ t

0

E[|es|2]ds

where Λ = (1 + ∆2){2δ2A2
1T + (2δ2TA2

2 + Tδβ2) sup0≤k≤N E[|Y δ
k |2]}.

The Gronwall inequality implies that

E[ |et|2 ] ≤ Λ exp((1 + 2∆1 + 2β2)t) .

Finally, from Lemma 3.3.10 we get Λ ≤ δΓε.

Corollary 3.3.12. If C ′ =
√

Γε exp((1/2 + ∆1 + β2)T ), then

E[ IΩT,B

∣
∣x(T ) − Y δ

T

∣
∣ ] ≤ C ′δ1/2 . (3.32)

If T = 1, R = 100, x(0) = 0, Mc = 150 and ε = 0.01, then C ′ ≈ 34.254.

3.3.3 Discretization of the observation equation (3.8)

Let us first recall that the measurement equation is

z(t) =

∫ t

0

h(x(s))ds+

∫ t

0

ξ(x(s))dw(s) . (3.33)

where h(x) = 2R sin(x1/2R), ξ(x) = ξ0 + ξ1x1 + ξ2x2 and ξi, i ∈ {1, 2, 3}, are known
non negative real numbers.
We define the process Zδ on [0, T ] by
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i. Zδ
0 = 0

ii. Zδ
t = Zδ

k + (t− τk)h(Y
δ
k ) + ξ(Y δ

k )(w(t) − wk), for all t ∈ [τk, τk+1]

In particular, for all t ∈ [0, T ]

Zδ
t =

∫ t

0

h(Xδ
s )ds+

∫ t

0

ξ(Xδ
s )dws (3.34)

where the process Xδ was defined by the equation (3.25).

Lemma 3.3.13. The process Zδ converges strongly with order 1/2 to the process z̃
given by

z̃(t) =

∫ t

0

h(x̃(s))ds+

∫ t

0

ξ(x̃(s))dw(s) .

That is, there exists a constant C̃ independent of δ such that

E[
∣
∣z̃(T ) − Zδ

T

∣
∣ ] ≤ C̃δ1/2 .

Proof. The Theorem 3.3.11 and the inequality (3.27) state that there exists a con-
stant C independent of δ such that

E[
∣
∣x̃(t) −Xδ

t

∣
∣2 ] ≤ Cδ , ∀ t ∈ [0, T ] . (3.35)

In addition, the functions h and ξ are Lipschitz:

|h(x) − h(y)| ≤ |x− y|
|ξ(x) − ξ(y)| ≤ (ξ1 + ξ2)|x− y|

Then, if we use successively that (a + b)2 ≤ 2(a2 + b2), the Cauchy-Schwartz in-
equality, the Ito isometry, the Fubini Theorem and the Lipschitz property of the
functions h and ξ, we get

E[
∣
∣z̃(T ) − Zδ

T

∣
∣2 ] ≤ 2TE[

∫ t

0

|h(x̃(s)) − h(Xδ
s )|2ds]

+2E[

∫ t

0

|ξ(x̃(s)) − ξ(Xδ
s )|2ds]

≤ (2T + ξ1 + ξ2)

∫ t

0

E[|x̃(s) −Xδ
s |2]ds

≤ (2T + ξ1 + ξ2)TCδ .

It is sufficient to take
C̃ =

√

(2T + ξ1 + ξ2)TC . (3.36)

Remark 3.3.14. With the aid of Theorem 3.3.11, inequalities (3.27) and (3.36) it is
not difficult to get an explicit expression for the constant C̃ = C̃(ε, b̃, σ, T ).
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Theorem 3.3.15. The time discretization process Zδ converges strongly to the pro-
cess {z(t)}0≤t≤T with an order 1/2 on ΩT,Bc

. That is, for some constant C > 0
independent of δ

E[ IΩT,Bc

∣
∣z(T ) − Zδ

T

∣
∣ ] ≤ C δ1/2 .

Proof. Recall that ΩT,Bc
= {x(t), x̃(t) ∈ Bc = R × (−∞,Mc] , ∀t ∈ [0, T ]}.

For all t ∈ [0, T ]:

i. x(t) = x̃(t) a.s. on ΩT,B

ii. z̃(t) =
∫ t

0
h(x̃(s))ds+

∫ t

0
ξ(x̃(s))dw(s) a.s. on ΩT,B

Then, for all t ∈ [0, T ]
z(t) = z̃(t) a.s. on ΩT,Bc

.

We use Lemma 3.3.13 to conclude:

E[ IΩT,B

∣
∣z(T ) − Zδ

T

∣
∣ ] = E[ IΩT,B

∣
∣z̃(T ) − Zδ

T

∣
∣ ]

≤ E[
∣
∣z̃(T ) − Zδ

T

∣
∣ ]

≤ C̃δ1/2 .

We get the result by taking C = C̃.

The time discretization process Zδ satisfies

Zδ
0 = 0

Zδ
k+1 = Zδ

k + δh(Y δ
k ) + ξ(Y δ

k )∆kw , for all k ∈ {0, . . . , N − 1}
where ∆kw = wk+1 − wk. Let us define the discrete process {ζδ(k)}0≤k≤N by

ζδ(0) = 0

ζδ(k + 1) = h(Y δ
k ) + ξ(Y δ

k )wδ(k) , for all k ∈ {0, . . . , N − 1}
where wδ(k) = δ−1∆kw. The process {wδ} is a 1-dimensional standard white process
and for all k ∈ {1, . . . , N}

Zδ
k = δ

k∑

j=0

ζδ(j) . (3.37)

In particular,

• For all 0 ≤ k ≤ N , σ{Zδ
j , 0 ≤ j ≤ k} = σ{ζδ(j), 0 ≤ j ≤ k}.

• To calculate Zδ
k we have to store the ζδ(j)’s for 0 ≤ j ≤ k − 1.

The filtering algorithms are recursive. That’s means that we need only to keep the
new information, represented here by ζδ(k + 1).
But at time k+1, the observation ζ δ(k+1) seems to be a measurement on the state at
time k rather a measurement at time k+1 and just the noise wδ(k) = δ−1(wk+1−wk)
depends on the point time k + 1.
It is more appropriate to take as observation the process zδ defined by

zδ(k) = h(Y δ
k ) + ξ(Y δ

k )wδ(k − 1) ∀k ∈ {0, . . . , N} . (3.38)

Still the question of the validity of these observations.
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Figure 3.3: The particle filter and the EKF estimates of the position and the speed
of the car.

Proposition 3.3.16.

1. For all 0 ≤ k ≤ N , σ{ζδ(j) , 0 ≤ j ≤ k} = σ{zδ(j) , 0 ≤ j ≤ k}

2. There exists a constant ∆ independent of δ such that for all k ∈ {0, . . . , N}

E[ |ζδ(k) − zδ(k)| ] ≤ ∆ δ .

Proof. Let k ∈ {0, . . . , N − 1}, then

|ζδ(k + 1) − zδ(k + 1)| ≤ |h(Y δ
k ) − h(Y δ

k+1)| + |ξ(Y δ
k ) − ξ(Y δ

k+1)||̇wδ(k)|
≤ |Y δ

k − Y δ
k+1|{1 + (ξ1 + ξ2)|wδ(k)|} .
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Figure 3.4: Branching mechanisms comparison: Multinomial/Bernouilli

Since the processes wδ and Y δ are independent and E[|wδ(k)|] ≤ δ then using (3.27)
and Lemma 3.3.10 we get

E[|ζδ(k + 1) − zδ(k + 1)|] ≤
(
1 + (ξ1 + ξ2)δ

)
E[ |Y δ

k − Y δ
k+1|2 ] .

≤ δ
(
1 + δ(ξ1 + ξ2)

)(
2δA2

1 + (2δA2
2 + β2) sup

k
E[ |Y δ

k |2 ]
)
.

It is sufficient to take ∆ = (1 + ξ1 + ξ2){2A2
1 + (2A2

2 + β2) supk E[ |Y δ
k |2 ]}.

3.4 Estimations of the position and the speed

The discrete time model, equation (3.21) and equation (3.38), approximate the
continuous time model, equation (3.7) and equation (3.8).
Let us fix δ, we denote x(k) = Y δ

k and z(k) = zδ(k), then
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The state equation: x(k + 1) = f(x(k)) + σ(x(k))u(k)

The observation equation: z(k) = h(x(k)) + ξ(x(k))w(k)

where

• The functions σ, h and ξ are defined previously

• For all y ∈ R,

Ψ(y) =

{
a2y

2I{y≥0} if y ≤Mc ,
a2M

2
c if not .

• For all x =

[
x1

x2

]

∈ R2,

f(x) =

[
x1 + δx2

x2 + δ{a0 + g cos(θ0 + x1

R
) − a1x2 − Ψ(x2)}

]

• {u(k)}k is a 2-dimensional standard white process independent with the 1-
dimensional standard white process {w(k)}k

Aim: Approximate the state vector x(k) given the observations {z(0), . . . , z(k)} up
to time k.
For simulations proposes we fix the constants of the system: T = 10, N = 4000,
Mc = 150, θ0 = π/6, R = 200, (ξ0, ξ1, ξ2) = (1, 0.5, 0.05) and x(0) = (0, 25).
We approximate the position and the speed of the car using successively the EKF
algorithm and two particle filter methods using 160 particles. We use a multinomial
and a Bernouilli branching mechanisms, respectively.
The initialization of the state for the different approximation methods coincide with
the true initial state, ie.

x̂(0|0) =

[
0
25

]

.

Figure 3.3: We approximate the position and the speed of the car using the EKF
and the particle filter with a Bernouilli mechanism, respectively. It is clear that the
particle filter performs better and gives better approximations.
Figure 3.4: We compare the Bernouilli and the multinomial branching mechanisms
and we plot the square of the difference to the true paths. A Bernouilli resampling
scheme performs better.



Chapter 4

Zakai Equation with an
Ornstein-Uhlenbeck Noise Type

4.1 Introduction

The filtering problem consists of estimating the statistics of a partially observed pro-
cess X, called the signal process, based on observations or measurements corrupted
by noises. The measurements are supplied by a process Z called the observation
process:

Zt =

∫ t

0

h(Xs, s)ds+Nt .

The conditional probability πt(ϕ) = E[ϕ(Xt, t)
∣
∣{Zs, 0 ≤ s ≤ t}], where ϕ is a

bounded Borel function, gives the minimum variance estimate of ϕ(Xt, t) based on
the observations {Zs, 0 ≤ s ≤ t}.
Many interests was developed to describe the nonlinear filtering with the help of
stochastic partial differential equations. This connections make it possible to apply
Monte Carlo and probabilistic methods for partial differential equations to filtering.
The case when the noise N is a Brownian motion was extensively studied, see
[7, 54, 57, 69]. Under some regularity conditions, πt satisfies a measure valued
nonlinear stochastic partial differential equation, called the Kushner-Stratonovitch
equation.
In his famous paper [77], M. Zakai uses the Kallianpur-Striebel formula:

πt(ϕ) =
pt(ϕ)

pt(1)
,

where pt(ϕ) is called the unnormalized conditional expectation, and he character-
izes pt(ϕ) as the solution of a linear stochastic partial differential equation, called
the Zakai equation. The linearity of the Zakai equation makes it simpler and more
attractive for numerical methods than the Kushner-Stratonovitch equation.
Bensoussan [7] has established that pt is the unique solution of the Zakai equation
when the observation function h has linear growth bound.
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Recently, interest has developed when the noise is an Ornstein-Uhlenbeck or a gen-
eral Gaussian process [9, 10, 56, 65]. A. Bhatt et al. [10], study the case of Ornstein-
Uhlenbeck noise. They derived an analogous to the Zakai equation and they prove
existence and uniqueness results for 1-dimensional processes and bounded observa-
tion function h.
This chapter represents a generalization of the work of Bensoussan [7] and of Bhatt
et al. [10]. We consider a multi-dimensional dynamical system such that

• The noise N is of Ornstein-Uhlenbeck type

• The observation function h has a linear growth bound

We prove that the unnormalized conditional expectation pt(ϕ) is a solution of the
Zakai equation and we give uniqueness result. Then, we construct a sequence of
particle measures that converges to the solution of the Zakai equation. We precise
the rate of convergence and we establish an implementation scheme.
In the section 4.2 we describe in details the filtering problem under consideration.
In section 4.3 we transform the observation process and the probability measure
to obtain the (analogous) Zakai equation and under some additional assumptions
we prove the existence and uniqueness of the solution. Finally, in section 4.4 we
approximate the solution of the Zakai equation by a sequence of weighted empir-
ical measures, we give a rate of convergence, an implementation scheme and an
illustrative example.

4.2 The filtering problem

Let (Ω, A, P ) be a probability space equipped with a complete filtration {Ft}t≥0.
Let us consider

1. Two independent standard Ft-Brownian motions W = {Wt}t≥0 and G =
{Gt}t≥0 with values respectively in Rn and in Rm

2. An F0-measurable Rn-valued random variable ξ independent of W and G such
that

E[|ξ|2] =

∫

|x|2π0(dx) <∞ . (4.1)

where π0 is the probability density of ξ

3. Two Borel functions g(·, ·) : Rn × [0,∞) → Rn and σ(·, ·) : Rn × [0,∞) →
Mn(R) such that
Global linear growth bounds: There exists a constant K > 0 such that
for all t ≥ 0 and x ∈ Rn we have

max( |g(x, t)| , ||σ(x, t)|| ) ≤ K (1 + |x|) (4.2)

Locally Lipschitz: For every T > 0, there exists a constant KT > 0 such
that for all t ∈ [0, T ] and x, y ∈ R

n we have

max( |g(x, t)− g(y, t)| , ||σ(x, t) − σ(y, t)|| ) ≤ KT |x− y| (4.3)
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4. A jointly continuous Borel function h(·, ·) : R
n × [0,∞) → R

m satisfying for
all t ≥ 0 and x ∈ Rn

|h(x, t)| ≤ K(1 + |x|) (4.4)

We consider the following model

The signal process:

dXt = g(Xt, t)dt+ σ(Xt, t)dWt ; X0 = ξ (4.5)

The observation process:

dZt = h(Xt, t)dt+ dNt ; Z0 = 0 (4.6)

The noise process N = {Nt}t≥0 is the unique continuous square integrable process
satisfying the SDE

dNt = α(Nt, t) dt+ βt dGt ; N0 = 0 . (4.7)

The functions α and β are non random and satisfy:

i. (z, t) ∈ Rm × [0,∞) −→ α(z, t) = −A−1
t A′

tz − A−1
t B′

t ∈ Rm,
where

• The functions A. ∈ C1
(
[0,∞), GLm(R)

)
and B. ∈ C1([0,∞),Rm)

• A′
t = dAt/dt and B′

t = dBt/dt

In particular, A−1
. ∈ C1

(
[0,∞), GLm(R)

)

ii. t ∈ [0,∞) −→ βt ∈ GLm(R) is continuous

For all t ≥ 0, we define the bijective affine transformation Lt of Rm by

Lt(z) = At z +Bt , ∀ z ∈ R
m . (4.8)

Remark 4.2.1. 1. The conditions on the coefficients of the SDE (4.7) determine
uniquely (strongly and path-wise) the process N . We take a continuous square
integrable measurable version for the process N

2. We say that the process N is an Ornstein-Uhlenbeck type process because if
At = exp(tA), A is a negative definite matrix of order m, Bt = B a constant
vector in Rm and βt = Γ a constant matrix of order m, the process N is an
Ornstein-Uhlenbeck process

The conditions (4.2) and (4.3) implies that the SDE equation (4.5) admit a
unique strong solution. Moreover,

1. For all T > 0, X ∈ L2(Ω,A, P, C(0, T ; Rn)), i.e.

E[ sup
0≤t≤T

|Xt|2] <∞ , ∀ T > 0 (4.9)
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2. For every k ≥ 1 such that E[|ξ|2k] <∞,

E[|Xt|2k] ≤ (1 + E[|ξ|2n]) exp (Ct)
E[|Xt − ξ|2k] ≤ D(1 + E[|ξ|2k])tk exp (Ct)

(4.10)

where 0 ≤ t ≤ T < ∞, C = 2k(2k + 1)K2
T and D is a positive constant

depending only on k, KT and T

3. For every k ≥ 1 such that E[|ξ|2k] <∞,

E[sup0≤t≤T |Xt|2k] ≤ D̃{E[|ξ|2n] + T k(1 + E[|ξ|2n]) exp(CT )}
E[sup0≤t≤T |Xt − ξ|2k] ≤ D̃T k(1 + E[|ξ|2k]) exp (CT )

(4.11)

where T < ∞, and C and D̃ are positive constants depending only on k, K,
KT and T

Remark 4.2.2. In [50] one can find the proofs of the existence and the uniqueness
of the solutions of the equations (4.5) and (4.7), their mentioned properties and the
proofs of the inequalities (4.9), (4.10) and (4.11).

Given the observations {Zs , 0 ≤ s ≤ t}, what is the best L2-estimate X̂t of the
state Xt, based on these observations ?
Let us denote Zt = σ(Zs, 0 ≤ s ≤ t)∗ ⊂ Ft, where ∗ denote the augmentation of a
σ-algebra by the P -null sets.

a. The estimate X̂t is based on the observations {Zs , 0 ≤ s ≤ t} if X̂t is Zt-
measurable

b. X̂t is the best L2-estimate if
∫

Ω

|Xt − X̂t|2dP = E[ |Xt − X̂t|2 ] = inf{E[ |Xt − Y |2 ] , Y ∈ Kt}

where Kt = K(Z, t) = L2(Ω,Zt, P ; Rn) = {Y ∈= L2(Ω, P ; Rn) , Y is Zt-adapted}
Lemma 4.2.3. Let H ⊂ A be a σ-algebra with H∗ = H and X ∈ L2(P ) be A-
measurable. Put N = L2(Ω,H, P ) and denote by PN the orthogonal projection from
the Hilbert space L2(P ) into its closed subspace N . Then,

PN (X) = E[X
∣
∣H ] , a.s. .

Proof. E[X
∣
∣H] is by definition the P -a.s. unique function: Ω → R

n such that

• E[X
∣
∣H] is H-measurable

• For all A ∈ H,
∫

A
E[X

∣
∣H]dP =

∫

A
XdP

However, PN (X) is H-measurable and for all Y ∈ N ,
∫

Ω
Y (X − PN (X))dP = 0

In particular, for all A ∈ H the choice Y = 1A gives
∫

A

(X − PN (X))dP = 0 .
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Theorem 4.2.4. X̂t = PKt
(Xt) = E[Xt

∣
∣Zt ].

The filtering problem: For any arbitrary fixed positive number T , estimate the
conditional expectation

πt(ϕ) = E[ϕ(Xt, t)|Zt] , ∀t ∈ [0, T ] ,

where ϕ is a bounded Borel function on Rn × [0,∞). Clearly,

π0(ϕ) =

∫

Rn

ϕ(x)π0(dx) .

4.3 The Zakai equation

Following the work of Bhatt et al. in [10], we apply an affine transformation to
the observation equation to obtain a new observation equation. This will allow us,
after a change of the probability measure, to obtain an evolution equation of the
unnormalized conditional probability. We call this evolution equation the Zakai
equation. Under some additional assumptions we will show that this unnormalized
conditional probability is the unique solution of the Zakai equation.

4.3.1 Change of the probability measure

To derive the Zakai equation we will transform the observation equation (4.6) to
obtain a new observation process Y . The process Y will be a continuous square
integrable Ft-martingale, independent of the signal process X in the probability
space (Ω, A) endowed by a new probability measure P̃ obtained by

dP̃

dP

∣
∣
∣
Ft

= ρt .

Let us define properly the processes Y and ρ.
First, let T be an arbitrary fixed positive real number. We define

1. The function H on C(0, T ; Rn) × [0, T ] by

(x, t) −→ H(x, t) =
d

dt

[
At

∫ t

0

h(x(s), s)ds
]
∈ R

m . (4.12)

2. The process M by Mt = Lt(Nt), then

Mt =

∫ t

0

As βs dGs , ∀t ∈ [0, T ] . (4.13)

3. The process Y by Yt = Lt(Zt), then

Yt =

∫ t

0

H(X., s) ds+Mt , ∀ t ∈ [0, T ] . (4.14)
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4. The process ρ = {ρt}0≤t≤T such that

dρt = −ρtH
T (X., t)R

−1
t dMt , ρ0 = 1 .

where Rs = (Asβs)(Asβs)
T . The matrix Rs is symmetric positive definite

We have the following properties

i. The matrices At and A′
t are continuous on [0, T ], then there exists a constant

aT > 0 such that max
(
‖At‖, ‖A′

t‖
)
≤ aT for all t ∈ [0, T ]. This implies that for

all (x, t) ∈ C(0, T ; Rn) × [0, T ]:

|H(x, t)| ≤ aTK(1 + |x(t)| +
∫ t

0
(1 + |x(s)|)ds)

|H(x, t)| ≤ K̃T

(
1 + sup0≤s≤t |x(s)|

) (4.15)

where K̃T = aTK(1 + T )

ii. The process M = {Mt}0≤t≤T is a centered continuous square integrable FG
t -

martingale, independent of the Brownian motion W , where FG
t = σ{Gs , 0 ≤

s ≤ t}∗. Its quadratic variation is given by

〈M〉t =

∫ t

0

Rs ds , ∀t ∈ [0, T ] . (4.16)

iii. Since Lt is a bijective deterministic affine transformation of Rm and Yt = Lt(Zt),
then for all t ∈ [0, T ] we have

Zt = Yt , (4.17)

where Yt = σ{Ys , 0 ≤ s ≤ t}∗. In particular, E[ ·
∣
∣Zt] = E[ ·

∣
∣Yt]

iv. The process ρ is explicitly given by

ρt = exp{−
∫ t

0

HT (X., s)R
−1
s dMs −

1

2

∫ t

0

HT (X., s)R
−1
s H(X., s) ds } (4.18)

The measure P̃ is a probability if we show that the process ρ is a martingale.
Let us consider the process MX

t = −
∫ t

0
HT (X., s)R

−1
s dMs, t ∈ [0, T ]. Since R−1

s is
nonrandom and continuous and H(X., t) is square integrable, see (4.9) and (4.15)
and Ft-adapted, then the Proposition 2.2.2. in [35] ensures that the process MX

t

is an Ft-martingale. Its quadratic variation is 〈MX〉t =
∫ t

0
HT (X., s)R

−1
s H(X., s)ds

for all t ∈ [0, T ]. Moreover,

ρt = exp(MX
t − 1

2
〈MX〉t) .

The Theorem 3.5.2 in [35] implies that the process ρ is an Ft-super-martingale and
E[ρt] ≤ 1. It is a martingale if E[ρt] = 1 for all t ∈ [0, T ].
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Lemma 4.3.1. For all t ∈ [0, T ], we have

E[ρt] = 1 .

Proof. We check first that there exists a constant L1 <∞ such that

E[ρt|Xt|2] < L1 , ∀t ∈ [0, T ] . (4.19)

Let us denote for simplicity g(Xt, t), σ(Xt, t) andH(X., t) by g, σ andH respectively.
The Ito formula gives

1. d|Xt|2 = {2XT
t g + tr(σσT )}dt+ 2XT

t σ dWt

2. dρt|Xt|2 = ρt{2XT
t g + tr(σσT )}dt− ρt|Xt|2HTR−1dMt + 2ρtX

T
t σdWt

3. Taking U(t, x) = U(x) = x/(1 + εx) for ε > 0,

dU(t, Xt) = d
ρt|Xt|2

1 + ερt|Xt|2

=
ρt

(1 + ερt|Xt|2)2
(−|Xt|2HTR−1dMt + 2XT

t σdWt)

+{ ρt

(1 + ερt|Xt|2)2
(2XT

t g + tr(σσT ))

− ερ2
t

(1 + ερt|Xt|2)3
(|Xt|4HTR−1H + 4XT

t σσ
TXt)}dt .

We integrate dU(t, Xt) from 0 to t, then we take the expectation, we see that the
expectation of first term is zero. The derivative w.r.t. t gives

d

dt
E[

ρ(t)|Xt|2
1 + ερt|Xt|2

] ≤ E[
ρt

(1 + ερt|Xt|2)2
(2XT

t g + tr(σσT ))]

−E[
ερ2

t

(1 + ερt|Xt|2)3
(|Xt|4HTR−1H + 4XT

t σσ
TXt)]

The last term of this last inequality is negative, then

d

dt
E[

ρt|Xt|2
1 + ερt|Xt|2

] ≤ E[
ρt

(1 + ερt|Xt|2)2
{2XT

t g + tr(σσT )}]

≤ E[
ρt

1 + ερt|Xt|2
{2XT

t g + tr(σσT )}]

The linear growth bound property (4.2) of g and σ, implies

|xTg(x, t)| ≤ K|x|(1 + |x|) ≤ 2K(1 + |x|2)
|tr(σ(x, t)σ(x, t)T )| ≤ 2nK2(1 + |x|2) , ∀(x, t) ∈ R

n × [0, T ] . (4.20)

Then, using the fact that ρt/(1 + ερt|Xt|2) ≤ ρt and that E[ρt] ≤ 1, we get

d

dt
E[

ρt|Xt|2
1 + ερt|Xt|2

] ≤ K̃E[
ρt(1 + |Xt|2)
1 + ερt|Xt|2

]

≤ K̃(1 + E[
ρt|Xt|2

1 + ερt|Xt|2
])
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where K̃ = 2(K + nK2). The Gronwall inequality implies that

E[
ρt|xt|2

1 + ερt|xt|2
] ≤ L1

where L1 =
∫ T

0

(
K̃ + K̃2

∫ t

0
exp (K̃(t− s))ds

)
dt. The constant L1 is independent

from ε. If we apply Fatou’s Lemma ε→ 0 we get (4.19).
Next, we prove that there exists a constant L2 <∞ such that

E[ρt

∫ t

0

|Xs|2ds] < L2 , ∀t ∈ [0, T ] . (4.21)

Using the Fubini Theorem, that the process ρ is an Ft-super-martingale, ie. for all
0 ≤ s ≤ t E[ρt

∣
∣Fs] ≤ ρs, and that the processXt is Ft-measurable we get

E[ρt

∫ t

0

|Xs|2ds] =

∫ t

0

E[ρt|Xs|2]ds

=

∫ t

0

E
[
E[ρt|Xs|2

∣
∣Fs]

]
ds

=

∫ t

0

E
[
E[ρt

∣
∣Fs]|Xs|2

]
ds

≤
∫ t

0

E[ρs|Xs|2]ds ≤ L2 = TL1

which proves (4.21).
Finally, Ito’s formula gives us

d
ρt

1 + ερt
= −ρtH

TR−1dMt

(1 + ερt)2
− ερ2

tH
TR−1

t Hdt

(1 + ερt)3

Then,

E[
ρt

1 + ερt
] =

1

1 + ε
− E[

∫ t

0

ερ2
sH

T (X., s)R
−1
s H(X., s)ds

(1 + ερs)3
]. (4.22)

The integrand part in the second hand term of equation (4.22) converges pointwise to
0 as ε→ 0. In addition, the inequalities in (4.15) and the fact that ερ2

t /(1+ερt)
3 ≤ ρt

implies that there exists a constant L independent of ε such that

ερ2
sH

T (X., s)R
−1
s H(X., s)ds

(1 + ερs)3
≤ Lρs(1 + |Xs|2 +

∫ s

0

|Xr|2dr) ,

This quantity is integrable by (4.19) and (4.21), then the Lebesgue theorem implies
that

E[

∫ t

0

ερ2
sH

T (X., s)R
−1
s H(X., s)ds

(1 + ερs)3
] =⇒ε→0 0 .

In addition, we have E[ρt] ≤ 1, then

E[
ρt

1 + ερt
] −→ E[ρt] .

The claim follows by taking ε to 0 in (4.22).
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Lemma 4.3.1 shows that ρt is an integrable Ft-martingale, then by Propositions
8.1.1. and 8.1.3. in [71] we can define a new probability measure P̃ � P such that
the Radon-Nykodym derivative of P̃ with respect to P on Ft is

dP̃

dP

∣
∣
∣
Ft

= ρt , ∀t ∈ [0, T ] .

If we denote by Ẽ the expectation w.r.t P̃ , then for all integrable and Ft-measurable
random variable ζ : Ω → Rd we have

Ẽ[ζ] = E[ρtζ] (4.23)

Ẽ[ζ
∣
∣Fs] = ρ−1

s E[ρt ζ
∣
∣Fs] , ∀0 ≤ s ≤ t (4.24)

Proposition 4.3.2. On the probability space (Ω,A, P̃ , (Ft)t∈[0,T ]) we have:

1. The process Y is a continuous square integrable Ft-martingale

2. The law of the process X remains unchanged under P̃ and the processes X
and Y are independent

3. The law of the process Y under P̃ coincide with that of the process M under
P . In particular, for all t ∈ [0, T ] we have

〈Y 〉t = 〈M〉t

Proof. The process MX
t = −

∫ t

0
H(Xs, s)R

−1
s dMs is a martingale and its quadratic

variation is

〈MX〉t =

∫ t

0

HT (Xs, s)R
−1
s H(Xs, s)ds .

Then, the Theorem 4.4.1. in [35] implies that the process Ỹt = Mt − 〈M,MX〉t is a
continuous square integrable local-martingale and for all t ∈ [0, T ],

〈Ỹ 〉t = 〈M〉t .

from the equality (4.16) we get

〈M,MX〉t = −
∫ t

0

H(Xs, s)R
−1
s d〈M〉s = −

∫ t

0

H(Xs, s)ds (4.25)

This implies that for all t ∈ [0, T ], Ỹt = Yt almost surely, see (4.14).
The process Y is a martingale: It is sufficient to prove that

E[ sup
0≤t≤T

|Yt| ] <∞ .

In fact, suppose that E[ sup0≤t≤T |Yt| ] <∞, then we can apply Ito’s formula:

d(ρtYt) = d{ρt(Mt − 〈M,MX〉t}
= Ytdρt + ρtdMt − ρtd〈M,MX〉t + dρtdMt

= Ytdρt + ρtdMt
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Since dρtdMt = −ρtH
T (Xt, t)dt = ρtd〈M,MX〉t, see (4.16), we get ρtYt is an Ft-

martingale on (Ω , P ) and for all 0 ≤ s ≤ t ≤ T

Ẽ[Yt

∣
∣Fs] = ρ−1

s E[ρtYt

∣
∣Fs] = Ys .

Let us show that E[ sup0≤t≤T |Yt| ] <∞. We have

i. sup0≤t≤T |Yt|2 ≤ 4t2K̃2
T (1 + sup0≤s≤t |Xs|2) + 2t sup0≤s≤t |Ms|2

ii. E[ sup0≤s≤t |Xs|2] <∞

iii. M is a square integrable martingale

iv. The Doob inequality:

E[ sup
0≤s≤t

|Ms|2] ≤ 4E[Mt|2] <∞

We deduce the result by using that E[ sup0≤t≤T |Yt|]2 ≤ E[ sup0≤t≤T |Yt|2].
The law of the process X remains unchanged and the processes X and
Y are independent: It is sufficient to prove that the law of (X, Y ) under the
probability P̃ is law of (X,M) under the probability P . We use characteristic
functionals. Let u ∈ L∞([0, T ],Rn) and v ∈ L∞([0, T ],Rm), then

F̃X,Y (u, v) = Ẽ[exp (i

∫ t

0

uT (s)dXs + i

∫ t

0

vT (s)dYs)]

= E[ρt exp (i

∫ t

0

uT (s)dXs + i

∫ t

0

vT (s)dYs)] (4.26)

= E[exp (i

∫ t

0

uT (s)dXs) exp(

∫ t

0

(−HTR−1
s + iv(s)T )dMs)

exp (

∫ t

0

(−1

2
HTR−1

s H + iv(s)TH)ds] (4.27)

where we have replaced ρt by its expression in (4.26) and we have denoted H(Xs, s)
simply by H.
Let F ξ,W

t = σ{ξ;Ws, 0 ≤ s ≤ t}∗. It is clear that Xt is F ξ,w
t -measurable. We see that

given F ξ,W
t the process M ξ,W

t =
∫ t

0
(−HT (Xs, s)R

−1
s + iv(s)TRs)dMs is a martingale

with quadratic variation

〈M ξ,W 〉t =

∫ t

0

(−HTR−1
s + iv(s)T )Rs(−HTR−1

s + iv(s)T )Tds (4.28)

We claim that

E[exp (M ξ,W
t )|F ξ,W

t ] = exp(
1

2
〈M ξ,W 〉t) . (4.29)
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We will show this equality later in the proof.
If we use the equalities (4.28) and (4.29) in the equation (4.27), we get

F̃X,Y (u, v) = E
[
E[exp(i

∫ t

0

uT (s)dXs) × exp(M ξ,W
t )

exp(

∫ t

0

(−1

2
HTR−1

s H(Xs, s) + iv(s)TH)ds
∣
∣F ξ,W

t ]
]

= E
[
exp (i

∫ t

0

uT (s)dXs)E[exp(M ξ,W
t )|F ξ,w

t ]

exp (

∫ t

0

(−1

2
HR−1

s H + iv(s)TH)ds)
]

= E[exp(i

∫ t

0

uT (s)dXs) exp(−1

2

∫ t

0

vT (s)Rsv(s))ds)] (4.30)

Given F ξ,W
t , the process i

∫ t

0
vT (s)dMs is a martingale and its quadratic variation is

〈i
∫ t

0

vT (s)dMs)〉t = −
∫ t

0

vT (s)Rsv(s)ds .

We deduce that

E[exp(i

∫ t

0

vT (s)dMs)|F ξ,w
t ] = exp(−1

2

∫ t

0

vT (s)Rsv(s)ds) . (4.31)

Finally, we use together (4.31) in (4.30) to get the result, that is

F̃X,Y (u, v) = E[exp(i

∫ t

0

uT (s)dXs + i

∫ t

0

vT (s)dMs)] = FX,M(u, v) .

Then, the law of the martingale M under P is equal to the law of the martingale Y
under P̃ . In particular, M and Y have the same quadratic variation.
To finish the proof we prove the equality (4.29), that is

E[exp (M ξ,W
t )|F ξ,W

t ] = exp(
1

2
〈M ξ,W 〉t) .

Recall that F ξ,W
t = σ{ξ;Ws, 0 ≤ s ≤ t}∗ and Xt is F ξ,w

t -measurable. The equality
(4.13) implies that dMt = AsβsdGs, G is a standard BM.
We write the process M ξ,W

t as a sum of two integrals

M ξ,W
t = i

∫ t

0

v(s)TQ1
sdGs−

∫ t

0

H(Xs, s)
TQ2

sdGs

= i I1(t) − I2(t) ,

where Q1
s = Asβs and Q2

s = R−1
s Asβs.

Given F ξ,W
t , the two integrals I1 and I2 are jointly Gaussian.

Let us denote I =

[
I1
I2

]

and Π = E[ I(t)I(t)T
∣
∣F ξ,W

t ], then
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a. E[ I(t)
∣
∣F ξ,W

t ] =

[
0
0

]

b. Π =

[ ∫ t

0
vT (s)Rsv(s)ds

∫ t

0
HTv(s)ds

∫ t

0
HTv(s)ds

∫ t

0
HTR−1

s Hds

]

Let us denote E = E[exp (
∫ t

0
(−HTR−1

s + iv(s)T )dMs)|F ξ,W
t ], then

E = E[exp
( [

i
−1

]T

I(t)
)

|F ξ,W
t ]

= exp
(1

2

[
i
−1

]T

Π

[
i
−1

]
)

= exp
(1

2

∫ t

0

HTR−1
s Hds− 1

2

∫ t

0

vT (s)Rsv(s)ds− i

∫ t

0

HTv(s)ds
)

= exp(
1

2
〈M ξ,W 〉t) .

That is, E[exp(M ξ,W )|F ξ,W
t ] = exp(1

2
〈M ξ,W 〉t) and the proof is complete.

Definition 4.3.3. For all bounded Borel function ϕ on Rn × [0, T ] and for all
t ∈ [0, T ]

1. ηt = ρ−1
t = exp{

∫ t

0
HT (X., s)R

−1
s dMs + 1

2

∫ t

0
HT (X., s)R

−1
s H(X., s) ds }

2. pt(ϕ) = Ẽ[ϕ(Xt, t) ηt

∣
∣Zt]

Lemma 4.3.4 (The Kallianpur-Striebel formula). For any bounded Borel function
ϕ on Rn × [0, T ] and for all t ∈ [0, T ] we have

πt(ϕ) =
pt(ϕ)

pt(1)
. (4.32)

Proof. Let ζ be any Zt-measurable and bounded random variable. One has

E[ζ πt(ϕ)] = E[ζ ϕ(Xt, t)] .

Then,

Ẽ[ζ πt(ϕ)ηt] = Ẽ[ζ ϕ(Xt, t)ηt] .

This implies

Ẽ[ζ πt(ϕ)Ẽ[ηt|Zt]] = Ẽ
[
ζ Ẽ[ϕ(Xt, t)ηt

∣
∣Zt]

]
.

This gives the result.

Before establishing the Zakai equation we give a Proposition that enables us to
give a suitable space where the operator p.(·) will act and where we will prove the
uniqueness of the solution of the Zakai equation.
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Proposition 4.3.5. Let ψ : R
n× [0, T ] → R be a Borel function. Suppose that there

exists a constant κ > 0 such that for all x ∈ C([0, T ],Rn) we have

|ψ(x(t), t)| ≤ κ(1 + |x(t)|2 +

∫ t

0

|x(s)|2ds) . (4.33)

Then, for almost all t ∈ [0, T ]

i. pt(ψ) = Ẽ[ψ(Xt, t)ηt

∣
∣Zt] ∈ L1(Ω,Zt, P̃ )

ii. Ẽ[
∫ T

0
pt(ψ)dt] <∞

Proof. Since E[sup0≤t≤T |Xt|2] <∞, we get

Ẽ[|ψ(Xt, t)|ηt] = E[|ψ(Xt, t)|]

≤ κE[(1 + |Xt|2 +

∫ t

0

|Xs|2ds)]
< ∞ .

Then, we can define Ẽ[ψ(Xt, t)ηt

∣
∣Zt] as the unique element of L1(Ω,Zt, P̃ ) satisfying

Ẽ[γẼ[ψ(Xt, t)ηt

∣
∣Zt]] = Ẽ[γψ(Xt, t)ηt] ∀ γ ∈ L∞(Ω,Zt, P̃ ) .

The Fubini Theorem implies

Ẽ[

∫ T

0

|ψ(Xt, t)|ηtdt] = E[

∫ T

0

|ψ(Xt, t)|dt]

≤ κE[

∫ T

0

(1 + |Xt|2 +

∫ t

0

|Xs|2ds)dt]

< ∞ . (4.34)

Since ψ = ψ+ − ψ−, we suppose that ψ ≥ 0. Let us consider

ψk
t =

kψ(Xt, t)ηt

k + ψ(Xt, t)
∧ k ∈ L2((0, T ) × Ω; dt⊗ P̃ ) .

If we denote ψ̂k
t = Ẽ[ψk

t

∣
∣Zt], then for almost all t, ψ̂k

t ∈ L2(Ω,Zt, P̃ ) and ψ̂k
t ↑ pt(ψ)

a.s.. In addition,

Ẽ[

∫ T

0

|ψ̂k
t |dt] = Ẽ[

∫ T

0

ψ̂k
t sign(ψ̂k

t )dt]

= Ẽ[

∫ T

0

ψk
t sign(ψ̂k

t )dt]

≤ Ẽ[

∫ T

0

|ψ(Xt, t)|ηtdt] (4.35)

The inequality (4.35) and Lebesgue’s Theorem imply the result.
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The Proposition 4.3.5 enables us to define the space where we will find solutions
of the Zakai equation. Let us consider the space

BT = {ψ : R
n × [0, T ] → R Borel function satisfying (4.33)} . (4.36)

We define the space of linear operators L̃1
Z(0, T ) by

q.(·) ∈ L̃1
Z(0, T ) ⇔

{
q.(ψ) ∈ L1((0, T ) × Ω; dt⊗ P̃ ) ∀ψ ∈ BT

qt(ψ) ∈ L1(Ω,Zt, P̃ ) for almost all t in [0, T ]
(4.37)

In particular, we have

- C2,1
b (Rn × [0, T ]; R) ⊂ BT

- The linear operator p.(·) belongs to the space L̃1
Z(0, T )

4.3.2 The Zakai equation

We begin by a useful Lemma. For any bounded Borel function β : [0, T ] → Rm, let
us define

θt = exp(i

∫ t

0

βT
s R

−1
s dYs +

1

2

∫ t

0

βT
s R

−1
s βsds) . (4.38)

Then, θ0 = 1 and dθt = iθtβ
T
t R

−1
t dYt, 0 ≤ t ≤ T . In addition, the process θt is a

C-valued Zt-martingale.

Lemma 4.3.6. Let ζ be a Zt-measurable and P̃ -integrable complex valued random
variable. If Ẽ[ζ θt] = 0 for all bounded Borel function β : [0, T ] → Rm, then

ζ = 0 a.s.

Proof. The proof is similar to that of Lemma 4.1.4 in [7].

From now we suppose that

E[ sup
0≤t≤T

|Xt|3] <∞ . (4.39)

A sufficient condition for which (4.39) holds is that E[|ξ|6] <∞, see (4.11).
Let us consider

• The matrix a(x, t) = 1
2
σ(x, t)σ(x, t)T =

(
aij(x, t)

)

1≤i,j≤n

• The second order differential operatorA = −∑

1≤i≤n gi
∂

∂xi
−∑

1≤i,j≤n aij
∂2

∂xi∂xj

Theorem 4.3.7 (Zakai equation). For every ϕ ∈ C2,1
b (Rn × [0, T ]; R) we have

pt(ϕ) = π0(ϕ) +

∫ t

0

ps

(
(
∂

∂s
− A)ϕ

)
ds+

∫ t

0

ps(ϕH
T )R−1dYs . (4.40)
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Remark 4.3.8. The strategy of the following proofs is instead of proving properties
for unbounded quantities we prove the same properties for bounded ones which
depends on parameters like ε and λ and then taking the limit to zero to get the
results for the unbounded cases. This permit us to give an elementary proof.

Proof. For every ε > 0, we define

ηε
t =

ηt

1 + εηt

. (4.41)

In particular, ηε
t −→ ηt as ε→ 0 a.s.

We will prove in Proposition 4.3.10 that for every ϕ ∈ C2
b (R

n; R)

Ẽ[ηε
tϕ(Xt, t)

∣
∣Zt] =

π0(ϕ)

1 + ε
+

∫ t

0

Ẽ[ηε
s(
∂

∂s
− A)ϕ(Xs, s)

∣
∣Zs]ds

−
∫ t

0

Ẽ[
εη2

s

(1 + εηs)3
ϕ(Xs, s)H

TR−1H
∣
∣Zs]ds

+

∫ t

0

Ẽ[
ηs

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]R

−1dYs (4.42)

We obtain the Zakai equation if we can take the limit ε→ 0 in the equality (4.42).
It is clear that we can take the limit ε → 0 in the left-hand side of the equality
(4.42), then

Ẽ[ηε
tϕ(Xt, t)

∣
∣Zt] −→ Ẽ[ηtϕ(Xt, t)

∣
∣Zt] .

It remain the three terms of the right-hand side of the equality (4.42):
First term: We have

• Ẽ[ηε
t(

∂
∂t
− A)ϕ(Xt, t)

∣
∣Zt] −→ Ẽ[ηt(

∂
∂t
− A)ϕ(Xt, t)

∣
∣Zt] as ε→ 0 a.s.

• Ẽ[ηt(
∂
∂t
− A)ϕ(Xt, t)

∣
∣Zt] ≤ Ẽ[ηt|( ∂

∂t
− A)ϕ(Xt, t)|

∣
∣Zt]

• Proposition 4.3.5 implies that Ẽ[ηt|( ∂
∂t
−A)ϕ(Xt, t)|

∣
∣Zt] is integrable on [0, T ]

Then,

∫ t

0

Ẽ[ηε
s(
∂

∂s
− A)ϕ(Xs, s)

∣
∣Zs]ds −→ε→0

∫ t

0

Ẽ[ηs(
∂

∂s
− A)ϕ(Xs, s)

∣
∣Zs]ds .

Second term: The function ϕ is bounded and the function H satisfies the
inequalities(4.15), then there exists a constant L > 0 such that

∣
∣

∫ t

0

Ẽ[
εη2

s

(1 + εηs)3
ϕ(Xs, s)H

TR−1H
∣
∣Zs]ds

∣
∣ ≤ L

∫ t

0

Ẽ[(1 + |Xt|2 +

∫ s

0

|Xu|2du)
∣
∣Zs]ds .

In addition,

• Ẽ[ εη2
s

(1+εηs)3
ϕ(Xs, s)H

TR−1H
∣
∣Zs] −→ 0 as ε→ 0

•
∫ t

0
Ẽ[(1 + |Xt|2 +

∫ s

0
|Xu|2du)

∣
∣Zs]ds <∞ a.s.
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Then,
∫ t

0

Ẽ[
εη2

s

(1 + εηs)3
ϕ(Xs, s)H

TR−1H
∣
∣Zs]ds −→ 0 as ε→ 0 a.s.

Third term: Let us denote

• αε
t =

∫ t

0
Ẽ[ ηs

(1+εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]R

−1dYs

• αt =
∫ t

0
Ẽ[ηsϕ(Xs, s)H

T
∣
∣Zs]R

−1dYs

In particular, αε
t − αt =

∫ t

0
Ẽ[ εη2

s(2+εηs)
(1+εηs)2

ϕ(Xs, s)H
T
∣
∣Zs]R

−1dYs.
We check first that

αε
t −→ αt as ε→ 0 in probability. (4.43)

From Theorem 2.3.4. in [55], we obtain (4.43) if we prove that
∫ t

0

∣
∣Ẽ[

εη2
s(2 + εηs)

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]

∣
∣2ds −→ 0 as ε→ 0 a.s. (4.44)

The function ϕ is bounded and the function H satisfies the inequalities (4.15), then
there exists a constant L′ > 0 such that

∣
∣Ẽ[

εη2
s(2 + εηs)

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]

∣
∣
2

≤ L′∣∣Ẽ[
εη2

s(2 + εηs)

(1 + εηs)2

(
(1 + |Xs|2)1/2 +

∫ s

0

|Xu|du
)
HT

∣
∣Zs]

∣
∣
2
.

Using the Fubini-Lebesgue Theorem (Theorem 1.8.5. in [64]), we get

Ẽ
[
∫ T

0

Ẽ[
εη2

s(2 + εηs)

(1 + εηs)2

(
(1 + |Xs|2)1/2 +

∫ s

0

|Xu|du
)
HT

∣
∣Zs]ds

]

= Ẽ[

∫ T

0

εη2
s(2 + εηs)

(1 + εηs)2

(
(1 + |Xs|2)1/2 +

∫ s

0

|Xu|du
)
HTds] −→ε→0 0

Then, there exists a subsequence such that dt⊗ P̃ -a.s. we have

Ẽ[
εη2

s(2 + εηs)

(1 + εηs)2

(
(1 + |Xs|2)1/2 +

∫ s

0

|Xu|du
)
HT

∣
∣Zs] → 0 .

Moreover, using that εη2
t (2 + εηt)(1 + εηt)

−2 ≤ 2ηt we get

∣
∣Ẽ[

εη2
s(2 + εηs)

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]

∣
∣
2 ≤ 4L′∣∣Ẽ[ηs

(
(1 + |Xs|2)1/2 +

∫ s

0

|Xu|du
)∣
∣Zs]

∣
∣
2

In Lemma 4.3.14 and Lemma 4.3.15 we will prove that

Ẽ[ηs

(
(1 + |Xs|2)1/2 +

∫ s

0

|Xu|du
)∣
∣Zs] ∈ L∞(0, T ) (4.45)

We apply Lebesgue’s Theorem to (4.44) we get (4.43) for the above subsequence.
Now taking the ”subsequence” limit in (4.42) we get (4.40) almost surely.
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Corollary 4.3.9. For every θ as defined in (4.38) we have

Ẽ[θtpt(ϕ)] = π0(ϕ) + Ẽ
[
∫ t

0

θsps

(
(
∂

∂s
− A)ϕ+ iϕHTR−1β

)
ds

]
(4.46)

Proof. We have

∣
∣

εη2
t θt

(1 + εηt)3
ϕHTR−1H

∣
∣ ≤ Cηt(1 + sup

0≤s≤t
|Xs|2)

Since Ẽ[ηt(1+sup0≤s≤t |Xs|2)] = E[1+sup0≤s≤t |Xs|2] <∞, we take the limit ε→ 0
in (4.47) and with the Fubini-Lebesgue Theorem, Theorem 1.8.5. in [64], we deduce
the result.

Let ϕ be a function in C2,1
b (Rn × [0, T ]; R), then Ito’s formula yields to

d(θtη
ε
tϕ(Xt, t)) =

[ iηtθt

(1 + εηt)2
ϕHTR−1β + θtη

ε
t(
∂

∂t
− A)ϕ

− εη2
t θt

(1 + εηt)3
ϕHTR−1H

]
dt

+[
ηtθt

(1 + εηt)2
ϕH tR−1 + iθtη

ε
tϕR

−1]dYt

+θtη
ε
tDϕ

Tσ(Xt, t)dWt

If we integrate d(θtη
ε
tϕ(Xt, t)) from 0 to t and we take the expectation w.r.t. P̃ , we

get

Ẽ[θtη
ε
tϕ(Xt, t)] =

π0(ϕ)

1 + ε
+ Ẽ

[
∫ t

0

θs
iηs

(1 + εηs)2
ϕ(Xs, s)H

TR−1βds
]

+Ẽ
[
∫ t

0

θsη
ε
s(
∂

∂s
− A)ϕ(Xs, s)ds

]

−Ẽ
[
∫ t

0

θs
εη2

s

(1 + εηs)3
ϕ(Xs, s)H

TR−1Hds
]

(4.47)

Proposition 4.3.10. For every ϕ ∈ C2,1
b (Rn × [0, T ]; R) and every ε > 0 we have

Ẽ[ηε
tϕ(Xt, t)

∣
∣Zt] =

π0(ϕ)

1 + ε
+

∫ t

0

Ẽ[ηε
s(
∂

∂s
− A)ϕ(Xs, s)

∣
∣Zs]ds

−
∫ t

0

Ẽ[
εη2

s

(1 + εηs)3
ϕ(Xs, s)H

TR−1H
∣
∣Zs]ds

+

∫ t

0

Ẽ[
ηs

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]R

−1dYs (4.48)

For the proof of Proposition 4.3.10 we need the following Lemma

Lemma 4.3.11. i. Ẽ[θtη
ε
tϕ(Xt, t)] = Ẽ[θtẼ[ηε

tϕ(Xt, t)
∣
∣Zt]]
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ii. Ẽ
[ ∫ t

0

(
θsη

ε
s(

∂
∂s

− A)ϕ+ εθsη
2
s(1 + εηs)

−3ϕHTR−1H
)
ds

]

= Ẽ
[
θt

∫ t

0
Ẽ[ηε

s(
∂
∂s

− A)ϕ+ εη2
s(1 + εηs)

−3ϕHTR−1H
∣
∣Zs]ds

]

iii. Ẽ
[ ∫ t

0
iθsηs(1 + εηs)

−2ϕ(Xs, s)H
TR−1βds

]

= Ẽ
[
θt

∫ t

0
Ẽ[ηs(1 + εηs)

−2ϕ(Xs, s)H
T
∣
∣Zs]R

−1dYs

]

Proof. The first equality: Since θt is Zt-measurable, we obtain the equality.
The second equality: The inequalities (4.15) and (4.19) imply that

θtη
ε
t(
∂

∂t
− A)ϕ(Xt, t) +

θtεη
2
tϕ(Xt, t)

(1 + εηt)3
HTR−1H ∈ L1((0, T ) × Ω; dt⊗ dP̃ ) .

Then, The Fubini-Lebesgue Theorem (Theorem 1.8.5. in [64]) yields to

Ẽ
[
∫ t

0

(
θsη

ε
s(
∂

∂s
− A)ϕ(Xs, s) + θs

εη2
s

(1 + εηs)3
ϕ(Xs, s)H

TR−1H
)
ds

]

=

∫ t

0

Ẽ
[
θsη

ε
s(
∂

∂s
− A)ϕ(Xs, s) + θs

εη2
s

(1 + εηs)3
ϕ(Xs, s)H

TR−1H
]
ds .

In the other hand, using that θs = Ẽ[θt

∣
∣Zs] we get

Ẽ
[
θsη

ε
s(
∂

∂t
− A)ϕ(Xs, s) + θs

εη2
s

(1 + εηs)3
ϕ(Xs, s)H

TR−1H
]

= Ẽ
[
θsẼ[ηε

s(
∂

∂t
− A)ϕ(Xs, s) +

εη2
sϕ(Xs, s)

(1 + εηs)3
HTR−1H

∣
∣Zs]

]

= Ẽ
[
θtẼ[ηε

s(
∂

∂t
− A)ϕ(Xs, s) +

εη2
sϕ(Xs, s)

(1 + εηs)3
HTR−1H

∣
∣Zs]

]

The third equality: for similar arguments as for the second equality we get

Ẽ
[
∫ t

0

θs
iηs

(1 + εηs)2
ϕ(Xs, s)H

TR−1βds
]

= Ẽ
[
∫ t

0

θsẼ[
iηs

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]R

−1βds
]

Let us define the process Ỹt =
∫ t

0
Ẽ[ ηs

(1+εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]R

−1dYs, the Ito formula
gives

d(θtỸt) = {θt Ẽ[
ηtϕ(Xs, s)

(1 + εηs)2
HT

∣
∣Zs] + i Ỹtθtβ

T}R−1dYt

+θtẼ[
iηt

(1 + εηt)2
ϕ(Xt, t)H

T
∣
∣Zt]R

−1βdt .

We integrate d(θtỸt) from 0 to t and we take the expectation, we get

Ẽ[θt Ỹt] = Ẽ[

∫ t

0

θsẼ[
iηs

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]R

−1βds] .
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Then,

Ẽ
[
∫ t

0

θs
iηs

(1 + εηs)2
ϕ(Xs, s)H

TR−1βds
]

= Ẽ[θt

∫ t

0

Ẽ[
ηs

(1 + εηs)2
ϕ(Xs, s)H

T
∣
∣Zs]R

−1dYs] .

Proof. (Proposition 4.3.10) The use of Lemma 4.3.11 in the equality (4.47) and of
the density of the θ’s in the way of Lemma 4.3.6 give the result.

Let us define the following processes

i. X̃t =
∫ t

0
|Xs|ds

ii. For all λ > 0, X̃λ
t = X̃t(1 + λX̃t)

−1

Remark 4.3.12. If we apply Ito’s formula to the product θtη
ε
tX̃

λ
t then we integrate

from 0 to t and finally we take the expectation w.r.t. P̃ we get

Ẽ[θtη
ε
tX̃

λ
t ] = Ẽ

[
∫ t

0

( iηsθs

(1 + εηs)2
X̃λ

sH
TR−1β +

θsη
ε
s|Xs|

(1 + λX̃s)2

− εη2
sθs

(1 + εηs)3
X̃λ

sH
TR−1H

)
ds

]
.

Proposition 4.3.13.

Ẽ[ηε
tX̃

λ
t

∣
∣Zt] =

∫ t

0

Ẽ[
ηs

(1 + εηs)2
X̃λ

sH
T
∣
∣Zs]R

−1dYs

+

∫ t

0

Ẽ[
ηε

s|Xs|
(1 + λX̃s)2

− εη2
s

(1 + εηs)3
X̃λ

sH
TR−1H

∣
∣Zs]ds . (4.49)

Proof. Like the proof of Proposition 4.3.10, we need to show that:

1. Ẽ[θtη
ε
tX̃

λ
t ] = Ẽ[θtẼ[ηε

tX̃
λ
t )

∣
∣Zt]]

2. Ẽ
[ ∫ t

0

( θsηε
s|Xs|

(1+λX̃s)2
− εη2

sθs

(1+εηs)3
X̃λ

sH
TR−1H

)
ds

]

= Ẽ
[
θt

∫ t

0
Ẽ[ ηε

s|Xs|
(1+λX̃s)2

− εη2
s

(1+εηs)3
X̃λ

sH
TR−1H

∣
∣Zs]ds

]

3. Ẽ
[ ∫ t

0
iηsθs

(1+εηs)2
X̃λ

sH
TR−1βds

]
= Ẽ

[
θt

∫ t

0
Ẽ[ ηs

(1+εηs)2
X̃λ

sH
T
∣
∣Zs]R

−1dYs

]

The first equality: the process θt is Zt-measurable, then we obtain the equality.
The second equality: We have

θtη
ε
t |Xt|

(1 + λX̃t)2
− εη2

t θs

(1 + εηt)3
X̃λ

t H
TR−1H ∈ L1((0, T ) × Ω; dt⊗ dP̃ ) .
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Then, we obtain easily the second equality.
The third equality: First, we have

Ẽ
[
∫ t

0

iηsθs

(1 + εηs)2
X̃λ

sH
TR−1βds

]

= Ẽ
[
∫ t

0

θsE[
iηs

(1 + εηs)2
X̃λ

sH
TR−1β

∣
∣Zs]ds

]

Then, if we consider the process Ỹt =
∫ t

0
Ẽ[ ηs

(1+εηs)2
X̃λ

sH
T
∣
∣Zs]R

−1dYs and we write

the Ito formula for the product θtỸt then we integrate from 0 to t and we take the
expectation w.r.t P̃ we get the result.

The following two Lemmas proves (4.45). That is,

Ẽ[ηs

(
(1 + |Xs|2)1/2 +

∫ s

0

|Xu|du
)∣
∣Zs] ∈ L∞(0, T )

Let us denote, for all x ∈ Rn and λ > 0,

• ∆(x) = (1 + |x|2)1/2

• ∆λ(x) =
( 1+|x|2

1+λ|x|2
)1/2

• ∆λ(x) −→ ∆(x) = (1 + |x|2)1/2 as λ→ 0

Lemma 4.3.14.

t −→ Ẽ[ηt∆(Xt)
∣
∣Zt](ω) ∈ L∞(0, T ) P̃ -a.s. (4.50)

Proof. For any λ > 0, ∆λ ∈ C2
b (R

n; R). Then, the equality (4.48) applies to ϕ = ∆λ.
In addition,

∣
∣
∣Ẽ[

ηs

(1 + εηs)2
∆λ(Xs)H

T
∣
∣Zs]

∣
∣
∣ ≤ CεE[1 + sup

0≤s≤t
|Xs|2] ≤ C ′

ε,T

Then,

i. Ẽ[ηs(1 + εηs)
−2∆λ(Xs)H

T
∣
∣Zs] −→ Ẽ[ηs(1 + εηs)

−2∆(Xs)H
T
∣
∣Zs] as λ→ 0

ii. Ẽ[ηs(1 + εηs)
−2∆(Xs)H

T
∣
∣Zs] ∈ L2((0, T ) × Ω; dt⊗ dP̃ )

We conclude that the equality (4.48) apply also to ∆. In particular, the process

M ε
t =

∫ t

0

Ẽ[
ηs

(1 + εηs)2
∆(Xs)H

T
∣
∣Zs]R

−1dYs

is a square integrable Zt-martingale and Ẽ[M ε
t ] = 0. Moreover,

M ε
t = Ẽ[ηε

t∆(Xt)
∣
∣Zt] −

π0(∆)

1 + ε
−

∫ t

0

Ẽ[ηε
s(
∂

∂s
− A)∆(Xs)

+
εη2

s

(1 + εηs)3
∆(Xt)H

TR−1H
∣
∣Zs]ds (4.51)
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In other hand, for all (x, t) ∈ R
n × [0, T ]

A∆(x) =
xTa(x, t)x

(1 + |x|2)3/2
− xT g(x, t) + tr(a(x, t))

(1 + |x|2)1/2
.

Then, there exists a constant DT > 0 such that

∣
∣A∆(x)

∣
∣ ≤ DT ∆(x) ∀ (x, t) ∈ R

n × [0, T ] .

In addition, using the inequalities (4.15) and the fact that εη2
t /(1 + εηt)

3 ≤ ηt we
can find a constant D′

T > 0 such that

εη2
t

(1 + εηt)3
∆(Xt)H

TR−1H ≤ D′
T (1 + sup

0≤s≤t
|Xs|3)

Then, Lebesgue’s Theorem implies that M ε
t converges as ε→ 0 to a process Mt.

In addition,

• The process Mt is a Zt-martingale

• Ẽ[Mt] = 0

• Mt = Ẽ[ηt∆(Xt)
∣
∣Zt] − π0(∆) −

∫ t

0
Ẽ[ηs(

∂
∂s

− A)∆(Xs)
∣
∣Zs]ds

Since Ẽ[Mt] = 0, then the martingale Mt has a modification such that its sample
paths are right continuous with left hand limits a.s., see Theorem 1.2.2 in [55]. We
can assume that Mt has a.s. right continuous sample paths with left hand limits
which implies that the paths are bounded on the compact [0, T ]. This proves the
Lemma.

Lemma 4.3.15.

t −→ Ẽ[ηt

∫ t

0

|Xs|ds
∣
∣Zt](ω) ∈ L∞(0, T ) P̃ -a.s. (4.52)

Proof. Recall first that for all λ > 0, X̃λ
t = X̃t(1 + λX̃t)

−1. We have

• For all x ∈ C([0, T ],Rn) and t ∈ [0, T ]

∫ t

0
|x(s)|ds

1 + λ
∫ t

0
|x(s)|ds

−→
∫ t

0

|x(s)|ds as λ→ 0 .

•
∣
∣Ẽ[ηs(1 + εηs)

−2X̃λ
sH

T
∣
∣Zs]

∣
∣ ≤ CεE[1 + sup0≤s≤t |Xs|2] ≤ C ′

ε,T

Then, we have the following convergence in L2((0, T ) × Ω; dt⊗ dP̃ ):

Ẽ[ηs(1 + εηs)
−2X̃λ

sH
T
∣
∣Zs] −→ Ẽ[ηs(1 + εηs)

−2X̃tH
T
∣
∣Zs] as λ→ 0 .
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We conclude that we can replace X̃λ
t by X̃t in equation (4.49). That is,

Ẽ[ηε
tX̃t

∣
∣Zt] =

∫ t

0

Ẽ[
ηs

(1 + εηs)2
X̃sH

T
∣
∣Zs]R

−1dYs

+

∫ t

0

Ẽ[ ηε
s|Xs| −

εη2
s

(1 + εηs)3
X̃sH

TR−1H
∣
∣Zs]ds .

Moreover, let us denote the process M ε
t =

∫ t

0
Ẽ[ ηs

(1+εηs)2
X̃sH

T
∣
∣Zs]R

−1dYs, then

• M ε
t is a square integrable martingale

• Ẽ[M ε
t ] = 0

• M ε
t = Ẽ[ηε

tX̃t

∣
∣Zt] −

∫ t

0
Ẽ[ηε

s|Xs| − εη2
s

(1+εηs)3
X̃sH

TR−1H
∣
∣Zs]ds

Since ηε
t |Xt| ≤ ηt|Xt| and

εη2
t

(1+εηt)3
X̃tH

TR−1H ≤ CT (1+sup0≤s≤T |Xt|3), then Lebesgue’s
Theorem permit us to deduce that M ε

t converges as ε → 0 and the limit Mt is a
Zt-martingale with Ẽ[Mt] = 0. Moreover,

Mt = Ẽ
[
ηt

∫ t

0

|Xs|ds
∣
∣Zt

]
−

∫ t

0

Ẽ[ ηε
s|Xs|

∣
∣Zs]ds .

Since Ẽ[Mt] = 0 then the martingale Mt has a modification such that its sample
paths are right continuous with left hand limits a.s., see Theorem 1.2.2 in [55]. We
can assume that Mt has a.s. right continuous sample paths with left hand limits
which implies that the paths are bounded on the compact [0, T ]. This proves the
Lemma.

4.3.3 Uniqueness of the solution to the Zakai equation

From now we suppose that the following assumptions hold:

Assumption 4.1. The initial condition of the state is deterministic, ie. there exist
x ∈ Rn such that X0 = ξ = x.

Assumption 4.2. The functions g and σ are C3-class in x and C1-class in t.

Assumption 4.3. The function h(x, t) is C1-class in x and t.

We denote the solution of the state equation (4.5) by Xx = {Xx
t }t. The solution

Φt(x) = Xx
t has a modification that is almost surely a C2-class diffeomorphism in

the variable x, see Theorem 2.3. in [54]. That is, for all t ∈ [0, T ] we have almost
surely

Φt : R
n → R

n is a C2-class diffeomorphism . (4.53)

Denoting f(x, t, ω) = H(Xx
. (ω), t) then for almost all ω in Ω we have

H(Xx
. (ω), t) = H̃(Xx

t (ω), t, ω) , (4.54)

where for all y ∈ Rn, H̃(y, t, ω) = f(Φ−1
t (y), t, ω).
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i. For almost all ω, H̃(·, ·, ω) is a jointly measurable function on R
n × [0, T ]

ii. For all x ∈ Rn, the process {H̃(x, t, ·)}t is Wt = σ{Ws , 0 ≤ s ≤ t}∗ adapted

iii. For almost all ω and for all t ∈ [0, T ] the function x→ H̃(x, t, ω) is C2-class

Let us consider a subspace Ω′ in Ω such that P̃ (Ω′) = 1 and on which both (4.53)
and (4.54) hold for all ω ∈ Ω′.
We fix ω in Ω′ and t in (0, T ], and we simply write H̃(x, s) for H̃(x, s, ω). We
consider the following partial differential equation:

{
( ∂

∂s
− A)ψ(x, s) + iψ(x, s)H̃(x, s)TR−1

s βs = 0 , 0 ≤ s ≤ t
ψ(x, t) = ϕ(x, t)

(4.55)

Assumption 4.4. For all ω ∈ Ω′, the partial differential equation (4.55) has at
least one solution Ψ = Ψω ∈ C2,1(Rn × [0, T ]; C) such that its first derivative w.r.t.
x has at most a polynomial growth.

We consider a standard Rn-valued Ft-Brownian motion W̃ independent with the
process Y on the space (Ω, P̃ ) and we denote by ξx

s,r the solution of the SDE (4.5)

on [s, t]driven by the noise W̃ in the place of the noise W such that ξx
s,s = x. That

is, for all r ∈ [s, t]

ξx
s,r = x+

∫ r

s

g(ξx
s,u, u)du+

∫ r

s

σ(ξx
s,u, u)dW̃u .

Let us define for all s ∈ [0, t]

Υω(x, s) = Υ(x, s) = Ẽ[ϕ(ξx
s,t, t) Ex

s,t] , (4.56)

where Ex
s,t = exp

(
i
∫ t

s
H̃(ξx

s,r, r)
TR−1

r βrdr
)
. Then,

• Υ ∈ C2,1(Rn × [0, t]; C) and supx,s

∣
∣Υ(x, s)

∣
∣ ≤ ‖ϕ‖

• dEx
s,t = iEx

s,tH̃(ξx
s,t, t)

TR−1
t βtdt and Ex

s,s = 1

Proposition 4.3.16. Under the Assumption 4.4, the partial differential equation
(4.55) has only one solution. This solution is bounded and coincide with Υ defined
in (4.56).

Proof. Let Ψ ∈ C2,1(Rn×[0, t]; C) a solution of (4.55), in particular Ψ(x, t) = ϕ(x, t).
We apply the Ito formula to the product Gs,r(x) = Ψ(ξx

s,r, r)Ex
s,r we get

dGs,r(x) = Ex
s,r{(

∂

∂r
− A)Ψ(ξx

s,r, r) + iH̃(ξx
s,r, r)

TR−1
r βr}dr

+Ex
s,rDΨ(ξx

s,r, r)
Tσ(ξx

s,r, r)dW̃r .

Integrating from s to t and taking the expectation w.r.t. P̃ we get

Ẽ[ϕ(ξx
s,t, t)Ex

s,t] − Ψ(x, s) = 0 .

This proves the Proposition.



112 4.3. THE ZAKAI EQUATION

Definition 4.3.17. For every t ∈ [0, T ], we define the family Pt as the set of
stochastic processes {Φ(x, s) = Φ(x, s, ω)}0≤s≤t, x ∈ Rn, satisfying

i. For each s ∈ [0, t], the function Φ(·, s) is a bounded C2-class function on Rn a.s.

ii. For each x ∈ Rn, the process Φ(x, ·) is Fs adapted and has C1-class paths on
[0, t] a.s.

iii. For each (x, s) ∈ Rn × [0, t],

Φ(x, s) = Φ(x, 0) +

∫ s

0

{AΦ(x, r) − iΨ(x, r)H̃(x, r)TR−1
r βr}dr a.s. (4.57)

Remark 4.3.18. The solution Ψ given in (4.56) of the partial differential equation
(4.55) belongs to the space Pt.

The Ito formula for the composition of processes, see Theorem 1.1. in [53], applies
to the processes in Pt and for all Φ ∈ Pt

dΦ(Xx
s , s) = (

∂

∂s
− A)Φ(Xx

s , s)ds+DΦ(Xx
s , s)

Tσ(Xx
s , s)dWs a.s.

We prove next that elements of Pt satisfies the Zakai equation

Proposition 4.3.19. For every Φ ∈ Pt and s ∈ [0, t] we have

ps(Φ) = π0(Φ) +

∫ s

0

pr

(
(
∂

∂r
− A)Φ

)
dr +

∫ t

0

pr

(
ΦHT

)
dYr . (4.58)

Proof. The proof is similar to that of Theorem 4.3.7, the only difference is that the
function Φ is bounded but not necessarily its first derivatives w.r.t. t and x and its
second derivatives w.r.t x.
The process Φ satisfies the equation (4.57) P̃ -a.s. and P -a.s., then

(
∂

∂s
− A)Φ(Xx

s , s) = Φ(Xx
s , s)H(Xx

. , s)
TR−1

s βs , a.s. (4.59)

In addition, we have

• E[sup0≤t≤T |Xt|2] <∞

• |H(x, t)| ≤ aTK(1 + |x(t)| +
∫ t

0
(1 + |x(s)|)ds)

• |H(x, t)| ≤ K̃T

(
1 + sup0≤s≤t |x(s)|

)
, where K̃T = aTK(1 + T )

Together with Proposition 4.3.5, we get

1. ( ∂
∂s

− A)Φ(Xx
s , s) ∈ L1((0, t) × Ω; ds⊗ dP̃ )

2.
∫ t

0
Ẽ[ηs|( ∂

∂s
− A)Φ(Xx

s , s)|
∣
∣Zs]ds <∞
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Then, in one hand the process Φ satisfies the equation (4.48) and in the other hand
we can take the limit ε→ 0 in this identity to get the Zakai equation.

Remark 4.3.20. The equality (4.46) is valid for the function Φ and for every θ as
defined in (4.38) and every s ∈ [0, t]

Ẽ[θsps(Φ)] = π0(Φ) + Ẽ
[
∫ s

0

θrpr

(
(
∂

∂r
− A)Φ + iΦHTR−1β

)
dr

]

= π0(Φ) .

Now we are ready to prove the uniqueness of the solution to the Zakai equation.
Let us first note that the Zakai equation (4.40) and the equality (4.46) still hold for
complex values functions ϕ ∈ C2,1

b (Rn × [0, T ]; C). Then, we define Bc
T

Bc
T = {ψ : R

n × [0, T ] → C Borel function satisfying (4.33)} .
In particular, C2,1

b (Rn × [0, T ]; C) ⊂ Bc
T .

The linear operator p.(·) extends naturally to belong to the space L̃1
Z(0, T ; C) defined

by

q.(·) ∈ L̃1
Z(0, T ; C) ⇐⇒

{
q.(ψ) ∈ L1((0, T ) × Ω; dt⊗ P̃ ) , ∀ψ ∈ Bc

T

qt(ψ) ∈ L1(Ω,Zt, P̃ ) , for almost all t in [0, T ]

Theorem 4.3.21 (Uniqueness). Let q.(·) ∈ L̃1
Z(0, T ; C) such that for all t ∈ [0, T ]

and for all Φ ∈ C2,1
b (Rn × [0, T ]; C)

⋃Pt we have

qs(Φ) = π0(Φ) +

∫ s

0

qr
(
(
∂

∂r
− A)Φ

)
dr +

∫ t

0

qr
(
ΦHT

)
dYr , a.s. (4.60)

Then, for all t ∈ [0, T ] and for every real valued bounded Borel function ϕ on
Rn × [0, T ] we have

qt(ϕ) = Ẽ[ηtϕ(Xx
t , t)

∣
∣Zt] .

Remark 4.3.22. π0(Φ) = Φ(x, 0).

Proof. Let t ∈ [0, T ] and ϕ ∈ C2,1
b (Rn × [0, T ]; R). We denote by Ψ the solution

of the associated partial differential equation (4.55) with the terminal condition
Ψ(x, t) = ϕ(x, t) a.s.
The function (process) Ψ is an element of Pt, then from Remark 4.3.20 we have

Ẽ[θsps(Ψ)] = π0(Ψ) = Ẽ[θsqs(Ψ)] , ∀ s ∈ [0, t] .

In particular, for s = t we have for every θ as in (4.38)

Ẽ[θtpt(ϕ)] = Ẽ[θtqs(ϕ)] .

Using Lemma 4.3.6 we get, for all t ∈ [0, T ] and for all ϕ ∈ C2,1
b (Rn × [0, T ]; R), that

pt(ϕ) = qs(ϕ) .

Since every bounded Borel function on Rn×[0, T ] can be approximated with elements
of C2,1

b (Rn × [0, T ]; R), we get the result.
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4.4 Particle approximation method

In our formulation, the filtering problem consists of computing

πt(ϕ) = E[ϕ(Xt, t)|Zt], ∀t ∈ [0, T ]

where ϕ is a bounded Borel function on R
n×[0, T ] and Zt = σ{Zs, 0 ≤ s ≤ t}∗ ⊂ Ft.

The process X = {Xt}0≤t≤T is the signal, given by (4.5). The process Z = {Zt}0≤t≤T

is the observation, given by (4.6).
After an affine transformation of the observation equation (Z → Y ) and a change of
the probability measure (P → P̃ ), the process Y becomes a martingale independent
of the process X whose law remains unchanged under the new probability measure.
In addition,

• The Kallianpur-Striebel formula: πt(ϕ) = pt(1)−1pt(ϕ)

• pt(ϕ) = Ẽ[ϕ(Xt, t)ηt|Zt]

• ηt = exp (
∫ t

0
HT (X., s)R

−1
s dYs − 1

2

∫ t

0
HT (X., s)R

−1
s H(X., s)ds)

If we suppose that the functions σ, g ∈ C3,1(Rn × [0, T ]) and h ∈ C1,1(Rn × [0, T ]),
and that the initial state X0 = x ∈ Rn, then p.(·) is the unique solution of the Zakai
equation. That is, if

• a(x, t) = 1
2
σ(x, t)σT (x, t)

• A = −∑

i gi
∂

∂xi
− ∑

i,j aij
∂2

∂xi∂xj

Then, for all t ∈ [0, T ] and all ϕ ∈ C2,1
b (Rn × [0, T ])

pt(ϕ) = ϕ(x, 0) +

∫ t

0

ps(
∂ϕ

∂s
− Aϕ)ds+

∫ t

0

ps(ϕH
T )R−1

s dYs a.s. (4.61)

Definition 4.4.1. A set of weighted particles is a system of the form

PN = {(Xi, wi) , 1 ≤ i ≤ N} ,

where N ≥ 1 , Xi ∈ R
n and wi ≥ 0.

The set of particles PN approximates the finite measure λ ∈ MF (Rn) if the weighted
empirical measure

λN(dx) =

N∑

i=1

wiδ{Xi}(dx)

converges to λ as N −→ ∞. The system PN is unweighted if wi = 1/N for all i.

Because of the linearity of the Zakai equation, much interest was given to char-
acterize the solution of the filtering problem as the solution of the Zakai equation
via the Kallianpur-Striebel formula, [7, 9, 54, 56, 57, 65, 69]. Crisan [16, 18] and
Crisan et al. [21] approximate the solution of the Zakai equation using branching
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particle methods. This method offers an algorithm that begins with N particles
then produces N generations. Each particle has a weight equal to 1/N , lives a time
length equal to 1/N and gives a number of offsprings depending on its trajectory.
The number of particles may change from one generation to another. In [18], Crisan
uses a particle approximation method. He attaches a time dependant weight to each
of the N particles. The particles moves independently w.r.t. the law of the state
process. He gives also a comparison with the branching particle methods. Other
methods based on the Galerkin approximation or based on the Cameron-Martin
version of the chaos decomposition can be found in [1, 38, 66].
We approximate the solution to the Zakai equation using a particle approximation
method. We avoid the use of a branching particle method because of the presence
of the integral H(X., s) in the expression of the martingale µt. It is not evident to
express the process µt as a product of terms that are dependent on pairwise disjoint
portions of the trajectory of the process X.
We will construct a sequence of weighted empirical measures UN of the form

UN(t) =
1

N

N∑

i=1

µi
tδ{V i

t }

weakly convergent to the solution of the Zakai equation and we give the rate of
convergence (Theorem 4.4.6). This will enable us to numerically solve the filtering
problem via the Kallianpur-Strieble formula.
We first make two assumptions. The first assumption will allow us to consider
many independent processes, all of law of the process X. We will need the second
assumption to prove the main result of the next Section, (Theorem 4.4.6).

Assumption 4.5. We suppose that on the probability space (Ω, P̃ ) we can con-
sider many infinite independent Rn-valued Brownian motions all independent of the
process Y .

Assumption 4.6.

∆T
H = Ẽ

[
exp

(
2

∫ T

0

HT (Xx
. , t)R

−1
t H(Xx

. , t)dt
)]
<∞ . (4.62)

In particular, if the function h is bounded then Assumption 4.6 holds.

Remark 4.4.2. From now we work under the probability measure P̃ .

4.4.1 Particle approximation

Let us consider, for any integer N ≥ 2, V 1
t , V

2
t , . . . , V

N
t be N independent realiza-

tions of the signal Xx that are in addition independent of the process Y . Those
random vectors are called particles. For each particle V i

t we attach a weight µi
t

given by

µi
t = exp

(
∫ t

0

H(V i
. , s)

TR−1
s dYs −

1

2

∫ t

0

H(V i
. , s)

TR−1
s H(V i

. , s)ds
)
. (4.63)
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Let us consider the associated weighted empirical measure

UN(t) =
1

N

N∑

i=1

µi
tδ{V i

t } .

We fix an integer number N ≥ 2, then there exists N independent Brownian motions
{W i

t ; i = 1, . . . , N} on (Ω, P̃ ) such that

• For all 1 ≤ i ≤ N and t ∈ [0, T ],

V i
t = x +

∫ t

0

g(V i
s , s)ds+

∫ t

0

σ(V i
s , s)dW

i
s (4.64)

µi
t = 1 +

∫ t

0

µi
sH(V i

. , s)
TR−1

s dYs

• For all ϕ ∈ C2,1(Rn × [0, T ]; R),

d(µi
tϕ(V i

t , t)) = µi
t(
∂

∂t
− A)ϕ(V i

t , t)dt+ µi
tϕ(V i

t , t)H(V i
. , t)

TR−1
t dYt

+µi
tDϕ(V i

t , t)
Tσ(V i

t , t)dW
i
t (4.65)

Remark 4.4.3. The law of each particle coincide with the law of the process Xx

under P̃ , since the law of the process Xx remains unchanged after the change of
probability: P −→ P̃ .

Lemma 4.4.4. For all 1 ≤ i ≤ N , t ∈ [0, T ] and ϕ ∈ B(Rn × [0, T ]; R)

pt(ϕ) = Ẽ[µi
tϕ(V i

t , t)
∣
∣Zt] ,

Ẽ
[(
µi

tϕ(V i
t , t)

)2]
= Ẽ

[
ϕ(V i

t , t)
2 exp(

∫ t

0

HTR−1
s H(V i

. , s)ds)
]
.

Proof. The first equality: The equality follows from the fact that each V i has the
law of the process X.
The second equality: We have

(µi
t)

2 = νi
t × exp(

∫ t

0

HTR−1
s HT (V i

. , s)ds) ,

where νi
t = exp(

∫ t

0
2H(V i

. , s)
TR−1

s dYs − 1
2

∫ t

0
4HTR−1

s H(V i
. , s)ds).

From Assumption 4.6 we deduce that the Novikov condition is satisfied, see Theorem
3.5.3 in [35], then the process νi

t is an Yt = σ{Ys ; 0 ≤ s ≤ t}-martingale. Moreover,
Ẽ[νi

t

∣
∣Y0] = 1. In addition, the processes Y and V i are independent, then

Ẽ
[(
µi

tϕ(V i
t , t)

)2]
= Ẽ

[
Ẽ[

(
µi

tϕ(V i
t , t)

)2∣∣Y0]
]

= Ẽ
[
ϕ(V i

t , t)
2 exp(

∫ t

0

HTR−1
s H(V i

. , s)ds)Ẽ[νi
t

∣
∣Y0]

]

= Ẽ
[
ϕ(V i

t , t)
2 exp(

∫ t

0

HTR−1
s H(V i

. , s)ds)
]



4.4. PARTICLE APPROXIMATION METHOD 117

Remark 4.4.5. If the function ϕ ≡ 1, then

Ẽ
[(
µi

t)
2
]

= Ẽ
[
exp(

∫ t

0

HTR−1
s H(V i

. , s)ds)
]
≤

√

∆T
H .

Denoting by MF (Rn) the space of finite measures on Rn endowed with the weak
convergence topology. That is,

{µN → µ in MF (Rn)} ⇐⇒ {(µN , ϕ) → (µ, ϕ) , ∀ ϕ ∈ Cb(R
n × [0, T ])} .

The weak topology on this space is metrizable. The distance d(·, ·) given by

d(ν, µ) =

∞∑

k=1

2−k |(ν, ϕk) − (µ, ϕk)|
‖ϕk‖

,

where the sequence {ϕk}k≥1 ⊂ Cb(R
n × [0, T ]) is convergent determining, generates

the weak topology. Then,

µN → µ⇐⇒ d(µN , µ) → 0 .

A sequence {µN,w} of random measures converges to the random measure µω a.s. if
for all ϕ ∈ Cb(R

n × [0, T ]) and for almost every w ∈ Ω we have

d(µN,·, µ·) → 0 as N → ∞ a.s.

A sequence {µN,w} of random measures on (Ω, P̃ ) is weakly convergent to µω in
MF (Rn × [0, T ]) if

Ẽ
[
d(µN,·, µ·)

]
→ 0 as N → ∞ .

In the next Theorem we prove that the sequence UN converges weakly to the measure
pt with a rate of convergence proportional to N−1/2.

Theorem 4.4.6. 1. For all t ∈ [0, T ] and ϕ ∈ B(Rn × [0, T ]; R) we have

Ẽ
[(

(UN(t), ϕ) − pt(ϕ)
)2] ≤

√

∆T
H

N
‖ϕ‖2 .

2. For all t ∈ [0, T ]

Ẽ
[
d(UN(t), pt)

]
≤ 2(∆T

H)1/4

√
N

.

Proof. 1. The particles are independent; the equalities of Lemma 4.4.4) and As-
sumption 4.6 imply that for all t ∈ [0, T ] and all ϕ ∈ B(Rn × [0, T ]; R) we
have

Ẽ
[(

(UN(t), ϕ) − pt(ϕ)
)2]

= Ẽ
[( 1

N

N∑

i=1

µi
tϕ(V i

t , t) − pt(ϕ)
)2]

=
1

N2

N∑

i=1

Ẽ
[(
µi

tϕ(V i
t , t) − pt(ϕ)

)2]

≤ 1

N2

N∑

i=1

Ẽ
[(
µi

tϕ(V i
t , t)

)2]

≤ ‖ϕ‖2
√

∆T
H

N
.
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2. For all k ≥ 0,

Ẽ[
|(UN(t), ϕk) − (pt, ϕk)|

2k||ϕk||
] ≤ Ẽ[

∣
∣(UN(t), ϕk) − (pt, ϕk)

∣
∣
2
]1/2

2k||ϕk||

≤ (∆T
H)1/4

N1/22k

Since
∑

k 2−k <∞, then Fubini’s Theorem implies

Ẽ[d(UN(t), pt)] = Ẽ[

∞∑

k=0

|(UN(t), ϕk) − (pt, ϕk)|
2k||ϕk||

]

=
∞∑

k=0

Ẽ[
|(UN(t), ϕk) − (pt, ϕk)|

2k||ϕk||
]

≤
∞∑

k=0

Ẽ[|(UN(t), ϕk) − (pt, ϕk)|2]1/2

2k||ϕk||

≤ 2(∆T
H)1/4

√
N

.

This proves the Theorem.

4.4.2 Implementation

The numerical implementation of the empirical measure UN (t) needs the simulation
of the particles (V i

t )i and the evaluation (approximation) of the weights (µi
t)i.

We approximate the true trajectory Vt of each particle on the interval [0, T ] with
a trajectory Ṽt based on a discretization of the SDE (4.64). Depending on the
smoothness of the functions g and σ, we can use one of the two strong scheme
time discretizations: the Euler-Maruyama scheme or the Milstein scheme. The
Euler-Maruayma scheme is implementable in our setting if, in addition to the linear
growth bounds on g and σ see (4.2), we replace the local Lipschitz condition on
g and σ w.r.t. x, see (4.3), by a global Lipschitz condition w.r.t. x and t, see
Appendix B.4.

Assumption 4.7. For all x, y ∈ Rn and s, t ∈ [0, T ],

max{|g(x, s) − g(y, t)|, ‖σ(x, s)− σ(y, t)‖} ≤ K(|x− y| + |s− t|) . (4.66)

Let Vt be the trajectory of a generic particle. Then, there exists an Rn-Brownian
motion W̄ such that for all t ∈ [0, T ],

Vt = x +

∫ t

0

g(Vs, s)ds+

∫ t

0

σ(Vs, s)dW̄s .

Let M be a positive integer sufficiently large such that

δ = T/M < 1 .

The equidistant time discretization trajectory Ṽt of the generic trajectory Vt is:
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• Ṽ0 = x

• For all k ∈ {0, . . . ,M − 1} and t ∈ [τk, τk+1], where τk = kδ, we have

Ṽt = Ṽk + (t− τk)g(Ṽk, τk) + σ(Ṽk, τk)(W̄t − W̄τk
)

Let us denote ∆kW̄ = W̄τk+1
− W̄τk

, then

• Ṽ0 = x

• For all k ∈ {0, . . . ,M − 1},

Ṽk+1 = Ṽk + δg(Ṽk, τk) + σ(Ṽk, τk)∆kW̄

The process Ṽt converges strongly to the process Vt with order 1/2 and there exists
a constant C independent of M , see [73], such that

Ẽ[ sup
0≤t≤T

|Vt − Ṽt

∣
∣
2

] ≤ Cδ . (4.67)

Moreover, even if it means to take a greater C in (4.67) we have

Ẽ[ sup
0≤t≤T

|Ṽt

∣
∣
2

] ≤ C1 = CeC(1 + |x|2) . (4.68)

To approximate the weights µi
t we approximate the integrals in (4.63), we define the

following process

• Ĩ0 = 0

• For all k ∈ {1, . . . ,M},

Ĩk =
k−1∑

j=0

Hj(Ṽ., τj)
TR−1

τj
∆jY − δ

2

k−1∑

j=0

HT
j R

−1
τj
Hj(Ṽ., τj) (4.69)

• For all k ∈ {0, . . . ,M − 1} and all t ∈ [τk, τk+1)

Ĩt = Ĩk

where

– ∆jY = Yτj+1
− Yτj

– For all k ∈ {0, . . . ,M},

Hk(Ṽ., τk) = Aτk
h(Ṽk, τk) + δA′

τk

(
k−1∑

j=0

h(Ṽj, τj)
)
. (4.70)
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Then, eĨk approximate the generic weight µt.
The total number of time increments M is the same for both approximations. Both
Hk and Ik can be evaluated on-line since

• Hk(Ṽ., τk) = Aτk
h(Ṽk, τk) + δA′

τk
Sk where S0 = 0 and Sk+1 = Sk + h(Ṽk, τk)

• Ĩk+1 = Ĩk +Hk(Ṽ., τk)
TR−1

τk
∆kY − δ

2
HT

k R
−1
τk
Hj(Ṽ., τk)

Still the question of the validity of the approximation Ĩt in (4.69) to the integral

It =

∫ t

0

H(V i
. , s)

TR−1
s dYs −

1

2

∫ t

0

H(V i
. , s)

TR−1
s H(V i

. , s)ds .

We need to make two additional assumptions, one on the function h and one on the
matrix valued application s→ Rs.

Assumption 4.8. For all x, y ∈ Rn and s, t ∈ [0, T ]

|h(x, s) − h(y, t)| ≤ K(|x− y| + |s− t|) .

Assumption 4.9. For every T > 0, there exists a constant KT > 0 such that for
all s, t ∈ [0, T ],

sup
t∈[0,T ]

{‖Rt‖ , ‖R−1
t ‖} ≤ KT

max{‖Rs −Rt‖ , ‖R−1
s − R−1

t ‖} ≤ KT |s− t|1/2

Since the process It involves the function H then the following Lemma is of
utility

Lemma 4.4.7. There exists a positive constant K̄ such that for all x,y ∈ C([0, T ]; Rn)
and s, t ∈ [0, T ] we have

|H(x., s) −H(y., t)| ≤ K̄{‖x − y‖ + (1 + ‖x‖ + ‖y‖)|s− t|} . (4.71)

Proof. The inequalities (4.4) and (4.15) together with the Assumption 4.8 give easily
the result.

Proposition 4.4.8. There exists a constant C̃ > 0 independent of M such that

Ẽ[
∣
∣It − Ĩt

∣
∣ ] ≤ C̃δ1/2 for all t ∈ [0, T ] .

Proof. We fix M sufficiently large and we define the two processes N and Ñ such
that for all k ∈ {0, . . . ,M − 1} and t ∈ [τk, τk−1)

Nt =

∫ t

0

H(V., s)
TR−1

s dYs

Ñt =

k−1∑

j=0

Hj(Ṽ., τj)
TR−1

τj
∆jY
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The process Nt is clearly a square integrable martingale. The process Ñt is also
a square integrable martingale since the increments of the martingale Y are inde-
pendent and the function h and the process V satisfies successively the inequalities
(4.4) and (4.9). In particular, their quadratic variations are

〈N〉t =

∫ t

0

H(V., s)
TR−1

s H(V i
. , s)ds ,

〈Ñ〉t =
k−1∑

j=0

Hj(Ṽ., τj)
TR−1

τj

(
∫ τj+1

τj

Rsds
)
R−1

τj
Hj(Ṽ., τj) .

Then, we can write the process It − Ĩt as a sum of three terms:

It − Ĩt = T1 + T2 + T3 , (4.72)

where

• T1 = Nt − Ñt

• T2 = 1
2

(
〈N〉t − 〈Ñ〉t

)

• T3 = 1
2

(

〈Ñ〉t − δ
∑k−1

j=0 H
T
j R

−1
τj
Hj(Ṽ., τj)

)

We prove in three steps that

Ẽ[
∣
∣Ti

∣
∣] ≤ O(δ1/2) , i = 1, 2, 3 .

Step 1 We prove that for some constant ∆ > 0

Ẽ[
∣
∣Nt − Ñt

∣
∣2] ≤ ∆ δ , for all t ∈ [0, T ] . (4.73)

One has

Nt − Ñt =

∫ t

0

{H(V., s) −H(Ṽ., s)}TR−1
s dYs

+
(
∫ t

0

H(Ṽ., s)
TR−1

s dYs −
k−1∑

j=0

H(Ṽ., τj)
TR−1

τj
∆jY

)

+
k−1∑

j=0

{H(Ṽ., τj) −Hj(Ṽ., τj)}TR−1
τj

∆jY (4.74)

Denoting successively by S1, S2 and S3 the three terms in the right-hand side in
equality (4.74). Then, Ẽ[|Nt − Ñt|2] ≤ 3

∑3
i=1 Ẽ[|Si|2]. The idea is to found an

upper for each Ẽ[|Si|2].
First term

Ẽ[|S1|2] = Ẽ[

∫ t

0

{H(V., s) −H(Ṽ., s)}TR−1
s {H(V., s) −H(Ṽ., s)}ds]

≤ KT Ẽ[

∫ t

0

∣
∣H(V., s) −H(Ṽ., s)

∣
∣2ds]

≤ KTTK̄
2Ẽ[ sup

0≤t≤T
|Vt − Ṽt|2]

≤ KTTK̄
2Cδ = ∆1δ . (4.75)
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Second term

Ẽ[|S2|2] = Ẽ[
∣
∣

k−1∑

j=0

∫ τj+1

τj

{H(Ṽ., s)
TR−1

s −H(Ṽ., τj)
TR−1

τj
}dYs

∣
∣2] .

We have

H(Ṽ., s)
TR−1

s −H(Ṽ., τj)
TR−1

τj
= {H(Ṽ., s) −H(Ṽ., τj)}TR−1

s

+H(Ṽ., τj)
T{R−1

s − R−1
τj
} ,

Then,

Ẽ[|S2|2] ≤ 2KT Ẽ[
∣
∣

k−1∑

j=0

∫ τj+1

τj

∣
∣H(Ṽ., s) −H(Ṽ., τj)

∣
∣2ds]

+2Ẽ[
k−1∑

j=0

∫ τj+1

τj

H(Ṽ., τj)
T{R−1

s −R−1
τj
}Rs{R−1

s − R−1
τj
}H(Ṽ., τj)ds

∣
∣2]

= B1 +B2

In one hand,

B1 ≤ 2KT K̄
2Ẽ[T (1 + 2 sup

0≤t≤T
|Ṽt|)2δ2]

≤ 2KT K̄
2
(
2T + 4Ẽ[ sup

0≤t≤T
|Ṽt|2]

)
δ2

≤ ∆2δ
2 . (4.76)

where, ∆2 = 2KT K̄
2(2T + 4C1), see the inequality (4.68).

In the other hand, from the Assumption 4.9 we get

B2 ≤ 2KT Ẽ[

k−1∑

j=0

∫ τj+1

τj

|H(Ṽ., τj)|2‖R−1
s − R−1

τj
‖2ds]

≤ 2(K ′
T )3Ẽ[

k−1∑

j=0

∫ τj+1

τj

|H(Ṽ., τj)|2ds]δ

≤ 4K3
TT (1 + Ẽ[ sup

0≤t≤T
|Ṽt|2])δ

≤ ∆3δ (4.77)

where ∆3 = 4(K ′
T )3T (1 + C1).

Third term

Ẽ[|S3|2] = Ẽ[

k−1∑

j=0

∫ τj+1

τj

(H −Hj)(Ṽ., τj)
TR−1

τj
RsR

−1
τj

(H −Hj)(Ṽ., τj)ds]

≤ (K ′
T )3Ẽ[

k−1∑

j=0

∫ τj+1

τj

∣
∣H(Ṽ., τj) −Hj(Ṽ., τj)

∣
∣2ds]

≤ TK3
T max

j
Ẽ[

∣
∣H(Ṽ., τj) −Hj(Ṽ., τj)

∣
∣
2
] (4.78)
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From the Assumption 4.8, we have

|H(Ṽ., τk) −Hj(Ṽ., τk)
∣
∣ =

∣
∣A′

τj
{
∫ τk

0

h(Ṽs, s)ds− δ

k−1∑

j=0

h(Ṽj, τj)}
∣
∣

=
∣
∣A′

τj

k−1∑

j=0

∫ τj+1

τj

(
h(Ṽs, s) − h(Ṽj, τj)

)
ds

∣
∣

≤ aTK

k−1∑

j=0

∫ τj+1

τj

{|Ṽs − Ṽj| + |s− τj|}ds

≤ aTKTδ + aTKT max
j

sup
s∈[τj ,τj+1]

|Ṽs − Ṽj| (4.79)

We need to found an upper bound on Ẽ[sups∈[τj ,τj+1] |Ṽs − Ṽj|2].
From the definition of the process Ṽ , we have for all s ∈ [τj, τj+1]

|Ṽs − Ṽj|2 ≤ 2δ2|g(Ṽj, τj)|2 + 2‖σ(Ṽj, τj)‖2|Ws −Wτj
|2

≤ 4K2δ2(1 + |Ṽj|2) + 4K2(1 + |Ṽj|2)|Ws −Wτj
|2 .

Then,

sup
s∈[τj ,τj+1]

|Ṽs − Ṽj|2 ≤ 4K2δ2(1 + |Ṽj|2) + 4K2(1 + |Ṽj|2) sup
s∈[τj ,τj+1]

|Ws −Wτj
|2 .

The processes Ws −Wτj
and Ṽj are independent, then the Doob inequality and the

inequality (4.68) imply that

Ẽ[ sup
s∈[τj ,τj+1]

|Ṽs − Ṽj|2] ≤ 4K2Ẽ[1 + |Ṽj|2]Ẽ[ sup
s∈[τj ,τj+1]

|Ws −Wτj
|2]

+4K2δ2Ẽ[1 + |Ṽj|2]
≤ 16K2Ẽ[1 + |Ṽj|2]Ẽ[|Wτj+1

−Wτj
|2]

+4K2δ2Ẽ[1 + |Ṽj|2]
= 4K2δ2(1 + C1) + 16K2(1 + C1)δ

≤ 20K2(1 + C1)δ .

If we denote ∆4 = a2
TT

3K3
TK

2(2 + 40K2(1 + C1)), then

Ẽ[|S3|2] ≤ ∆4δ , (4.80)

Conclusion: If ∆ = 3
∑

1≤i≤4 ∆i, then

Ẽ[
∣
∣Nt − Ñt

∣
∣2 ] ≤ ∆ δ .

Step 2 We show that

Ẽ[
∣
∣〈N〉t − 〈Ñ〉t

∣
∣ ] = O(δ1/2) , for all t ∈ [0, T ] .
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Since 〈N, Ñ〉t ≤ 〈N〉1/2
t 〈Ñ〉1/2

t , see Theorem 2.2.13 in [55], then (〈N〉1/2
t −〈Ñ〉1/2

t )2 ≤
〈N − Ñ〉t. Using Schwartz’s inequality we get

Ẽ[
∣
∣〈N〉t − 〈Ñ〉t

∣
∣ ] = Ẽ[

∣
∣〈N〉1/2

t − 〈Ñ〉1/2
t

∣
∣
∣
∣〈N〉1/2

t + 〈Ñ〉1/2
t

∣
∣ ]

≤ Ẽ[
∣
∣〈N〉1/2

t − 〈Ñ〉1/2
t

∣
∣2]1/2Ẽ[

∣
∣〈N〉1/2

t + 〈Ñ〉1/2
t

∣
∣2 ]1/2

≤
√

2Ẽ[ 〈N − Ñ〉t]1/2Ẽ[ 〈N〉t + 〈Ñ〉t]1/2

=
√

2Ẽ[
∣
∣Nt − Ñt

∣
∣
2
]1/2Ẽ[ |Nt|2 + |Ñt|2]1/2 .

We denote by ΓT
H = Ẽ[〈N〉T |2] = Ẽ[|NT |2] <∞, then

• Ẽ[|Nt|2] ≤ ΓT
H for all t ∈ [0, T ]

• Ẽ[|Ñt|2] ≤ 2ΓT
H + 2Ẽ[|Nt − Ñt|2] for all t ∈ [0, T ]

We deduce that

Ẽ[
∣
∣〈N〉t − 〈Ñ〉t

∣
∣ ] ≤

√
2Ẽ[

∣
∣Nt − Ñt

∣
∣
2
]1/2(3ΓT

H + 2Ẽ[
∣
∣Nt − Ñt|2])1/2

≤ {
√

2
√

∆(3ΓT
H + 2∆)1/2}δ1/2 .

Step 3 Finally, we show that

Ẽ
[ ∣
∣〈Ñ〉t − δ

k−1∑

j=0

Hj(Ṽ., τj)
TR−1

τj
Hj(Ṽ., τj)

∣
∣
]

= O(δ1/2) .

Let us denote λt = δ
∑k−1

j=0 Hj(Ṽ., τj)
TR−1

τj
Hj(Ṽ., τj), then

〈Ñ〉t − λt =

k−1∑

j=0

Hj(Ṽ., τj)
TR−1

τj

(
∫ τj+1

τj

(Rs − Rτj
)ds

)
R−1

τj
Hj(Ṽ., τj) .

From Assumption 4.9 we get

Ẽ
[ ∣
∣〈Ñ〉t − λt

∣
∣
]
≤

k−1∑

j=0

K3
T δ

3/2Ẽ
[ ∣
∣Hj(Ṽ., τj)

∣
∣
2]

In addition, from the definition of the process Hj, see (4.70), we get

|Hj(Ṽ., τj)
∣
∣ ≤ aTK(1 + |Ṽj|) + aTKδ

j−1
∑

i=0

(1 + |Ṽj|)

≤ aTK(1 + sup
t

|Ṽt|) + aTKδ

N−1∑

i=0

(1 + sup
t

|Ṽt|)

≤ aTK(1 + T )(1 + sup
t

|Ṽt|)

This implies that there exist a constant Γ independent of M such that

Ẽ
[ ∣
∣Hj(Ṽ., τj)

∣
∣2

]
≤ Γ .

Then, we deduce that
Ẽ

[ ∣
∣〈Ñ〉t − λt

∣
∣
]
≤ K3

TTΓδ .

The proof is complete.
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4.4.3 Numerical example
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Figure 4.1: Conditional mean approximations

The signal process X:

• X0 = 1

• dXt = g(Xt, t)dt+ σ(Xt, t)dWt for all t ≥ 0

where

i. W = {Wt}t is a 1-dimensional standard Brownian motion

ii. g(x, t) = (1 + cos(t))x

iii. σ(x, t) =
√

2x

The functions g and σ are C∞-class, global Lipschitz w.r.t. (x, t) and admits a global
linear growth bounds w.r.t x. Moreover, for all λ > 0 we have

Aλ
t = E[(Xt)

λ] = exp
(
λ2t+ λ sin(t)

)
.

For all t ≥ 0, let us denote Bλ
t = exp

(
λ2t) and βλ

t = exp
(
− λ2t), then

Rλ
t = (Aλ

t β
λ
t )2 = exp(2λ sin(t)) .

The observation process: dZt = e−t/2 cos(π
2
−Xt)dt+ dNλ

t , t ≥ 0
where the process Nλ = {Nλ

t }t is given by
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• Nλ
0 = 0

• For all t ≥ 0

dNλ
t = {−(Aλ

t )
−1(Aλ

t )
′Nλ

t − (Aλ
t )

−1(Bλ
t )′}dt+ βλ

t dGt

= {(λ2 + λ cos(t))Nλ
t + λ2e−λ sin(t)}dt+ e−λ2tdGt

where G = {Gt}t is a 1-dimensional Brownian motion independent of W
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Figure 4.2: Conditional densities time evolution

We take ϕ(x) = sin(x). In figure 4.1, we plot the normalized expected mean of ϕ(Xt)
using the particle approximation method and the Kallianpur-Striebel formula. We
use 100, 200 and 300 particles successively. In figure 4.2, we plot the normalized
conditional densities of the signal at various times, using 100 particles.
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Appendix A

A.1 Pseudo-inverse of a matrix

Let A be a linear operator from R
n to R

m; n,m ≥ 1. Each of R
n and R

m is
equipped by its canonical inner product. The mapping W obtained by restricting
A to (ker(A))⊥ with range R(A) is one to one and onto, hence

W−1 : R(A) → (ker(A))⊥ is linear .

Denoting by A′ the orthogonal projection in Rm onto R(A).

Definition A.1.1. The pseudo-inverse A+ of A is defined by

A+ : R
m → R

n ; A+ = W−1 ◦ A′

Properties A.1.2. If AT is the transpose matrix of A then

1. A ◦ A+ = A′ , A+ ◦ A′ = A+

2. A ◦ A+ ◦ A = A , A+ ◦ A ◦ A+ = A+ , (A+)T = (AT )+

3. If A−1 exists, then A+ = A−1

4. A+ = AT ◦ (A ◦ AT )+ = (AT ◦ A)+ ◦ AT

5. If b ∈ Rm and x0 = A+b ∈ Rn then

||Ax0 − b|| ≤ ||Ax− b|| , ∀x ∈ R
n

Moreover, if b ∈ R(A) then Ax0 = b

Lemma A.1.3. Let D be the following diagonal matrix

D =








λ1

λ2 0
. . .

0 λn








= diag(λ1, λ2, . . . , λn)

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Then, if λp > 0 and λp+1 = 0, we have

D′ = diag(1, . . . , 1
︸ ︷︷ ︸

p

, 0, . . . , 0) and D+ = diag(λ−1
1 , . . . , λ−1

p , 0 . . . , 0) .
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Theorem A.1.4. [14] Let A be an n× n symmetric matrix and let D = U TAU be
its spectral decomposition, in particular U is unitary. Then,

A+ = UD+UT .

Remark A.1.5. Using together Properties A.1.2, Theorem A.1.4 and Lemma A.1.3
we get the pseudo-inverse of any real n× n matrix.

One application of the pseudo-inverse calculus is the following

Theorem A.1.6. Let {z1, z2, . . . , zk} be any family of vectors in Rn. For x ∈ Rn,
consider x̂ =

∑k
i=1 αizi its orthogonal projection onto span{z1, z2, . . . , zk}. Then,






α1
...
αn




 =






< z1, z1 > . . . < z1, zk >
...

...
< zk, z1 > . . . < zk, zk >






+ 




< z1, x >
...

< zn, x >




 .

A.2 Fatou Lemma and Gronwall Inequality

Fatou Lemma [11] If f1, f2, . . . is a sequence of nonnegative measurable functions
in a measure space X, then

∫

X

lim inf
n→∞

fn ≤ lim inf
n→∞

∫

X

fn .

Gronwall Inequality [15] Suppose α and β are Lebesgue integrable in [0, T ] for
some T ∈ (0,∞) and there exists a constant L > 0 such that

α(t) ≤ β(t) + L

∫ t

0

α(s)ds , for all t ∈ [0, T ] .

Then

α(t) ≤ β(t) + L

∫ t

0

exp (L(t− s))β(s)ds , for all t ∈ [0, T ] .



Appendix B

B.1 Conditional probability

Let (Ω,A, P ) be a probability space and G be a sub-σ-algebra of A. The conditional
expectation E[X|G] of an integrable random vector X given (or based on) G is the
integrable G-measurable random vector, which exists uniquely P -a.s., such that

∫

A

XdP =

∫

A

E[X|G]dP , ∀A ∈ G .

Properties of the conditional expectation, [76]

a) If α1, α2 ∈ R andX1, X2 are A-measurable, then E[α1X1+α2X2|G] = α1E[X1|G]+
α2E[X2|G], P -a.s.

b) If X is a positive random variable then E[X|G] ≥ 0, P -a.s.

c) If H is a sub-σ-algebra of G, then E[E[X|G]|H] = E[X|H]

d) If 0 ≤ Xn ↗ X, then E[Xn|G] ↗ E[X|G] P -a.s.

e) If X is G-measurable, then E[XY |G] = XE[Y |G] P -a.s.

f) If H is independent from σ(σ(X),G), then E[X|σ(H,G)] = E[X|G] P -a.s.

The conditional probability of A ∈ A given G is the random variable P (A|G) =
E[IA|G], where IA is the indicator function of A. In particular we have

P (A ∩B) =

∫

B

P (A|G)dP , ∀B ∈ G .

If Y1, . . . , Yk are A-measurable random variables, define the random vector Y by

Y =






Y1
...
Yk




 .

The conditional expectation E[X|Y ] of X given Y is given by

E[X|Y ] = E[X|σ(Y1, . . . , Yk)] .
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Definition B.1.1. The conditional distribution of X given Y is said to be regular
if there exists a function Q(·, ·) defined on Ω × B(Rn) such that

1. ∀ω ∈ Ω, Q(ω, ·) is a probability measure on (Rn,B(Rn))

2. ∀B ∈ B(Rn), Q(·, B) is σ(Y1, . . . , Yk) -measurable and Q(·, B) = P (X ∈
B|Y )(·) P-a.s.

Remark B.1.2. All the random elements in this thesis take values in Borel spaces of
the form (Rn,B(Rn)), then all conditional distributions/probabilities are chosen to
be regular (see [70], pp. 146-150).

The conditional expectation E[X|Y ] is σ(Y1, . . . , Yk)-measurable, then there ex-
ists a Borel measurable function m : R

k → R
n such that E[X|Y ] = m(Y ). We

denote, see [14], for every y ∈ Rk, m(y) by E[X|Y = y] the conditional expectation
of X given the event {Y = y}. If PY is the probability distribution of Y , then by
the formula of change of variable we get

∫

Y ∈A

XdP =

∫

A

m(y)PY (dy) =

∫

A

E[X|Y = y]PY (dy) , ∀A ∈ B(Rk) .

Suppose that X and Y are independent, then for any Borel measurable function g
and any measurable subset A of A

E[g(X, Y )|Y = y] = E[g(X, y)] PY -a.s.

P (A ∩ {Y ∈ B}) =

∫

B

P (A|Y = y)PY (dy), ∀B ∈ B(Rk) . (B.1)

The random vector X is said continuously distributed if PX � λn, where λn is the
Lebesgue measure on Rn. By the Radom-Nikodym theorem, there exists a Borel
measurable function pX , called the probability density function (pdf) of X, s.t.

PX(B) = P (X ∈ B) =

∫

B

pX(x)dλn(x) , ∀B ∈ B(Rn) .

dλn(x) is shortly denoted dx. In particular, for any Borel measurable function g we
have ∫

A

gdPX =

∫

A

gpXdλn , ∀A ∈ B(Rn) .

If pX is continuous a.e., then at every point (x1, . . . , xn) of continuity we have

pX(x1, . . . , xn) =
∂nFX

∂x1 . . . ∂xn

where FX is the distribution function of X.
If the Rp ×Rq-valued random vector X = (X1, X2) is continuously distributed, then
so are X1 and X2. In particular

pX1(x1) =

∫

pX(x1, x2)dx2 ,
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The random vectorsX1 andX2 are independent if and only if pX(x1, x2) = pX1(x1)pX2(x2).
Finally, we define the conditional density function pX1|X2

(x1|x2) ofX1 given the event
{X2 = x2} for all x1, x2 by

If pX2(x2) > 0 , then pX1|X2(x1|x2) = pX(x1, x2)/pX2(x2) ,
If pX2(x2) = 0 , then pX1|X2

(x1|x2) = 0 .

In particular, we have the Baye’s rule, that is

pX1|X2(x1|x2) =
pX2|X1(x2|x1)pX1(x1)

pX2(x2)
.

The conditional density function satisfies

E[g(X)|Y = y] =

∫

g(x)pX|Y (x, y)dx , ∀ g ∈ B(Rn).

In particular,

E[X|Y = y] =

∫

xpX|Y (x, y)dx

P (X|Y ) = E[(X − E[X|Y ])(X − E[X|Y ])T |Y ]

E[X|Y = y] is conditional mean and P (X|Y ) is the conditional covariance matrix.
One can see [40], pp. 36-42 for proofs.

B.2 The multivariate normal distribution

On the probability space (Ω,A, P ), consider the following two random vectors

X =






X1
...
Xn




 and Y =






Y1
...
Ym




 , n,m ≥ 1 .

If µX = E[X] and µY = E[Y ], then the covariance matrix of X and Y is given by

cov(X, Y ) = E[(X − µX)(Y − µY )T ] = (cov(Xi, Yj))i,j

If A and B are two constant matrices, then cov(AX,BY ) = Acov(X, Y )BT .
The matrix cov(X,X) is symmetric, positive and semi-definite.
The family {X1 − µX1, . . . , Xn − µXn

} is linearly independent in L2(P ) if and only
if the matrix cov(X,X) is symmetric, positive and definite.

Definition B.2.1. A random variable X is normally distributed with mean µ and
variance σ2, we write X ∼ N (µ, σ2), if X is continuously distributed w.r.t. the
Lebesgue measure on R and its probability density function pX is given by

pX(x) = (
√

2πσ)−1 exp
(
− (x− µ)2

2σ2

)
, ∀ x ∈ R .
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We have the following properties, [14, 34]:

1. If X ∼ N(0, 1), then E[exp (itX)] = exp (− 1
2
t2) , ∀t ∈ R

2. For all k ≥ 0,

E[X2k+1] = 0 and E[X2k] =
(2k)!

2kk!
(B.2)

3. If X ∼ N (µ, σ2), then ∀a, b ∈ R, aX + b ∼ N (aµ+ b, (aσ)2)

4. If X1, X2 are independent and Xi ∼ N (µi, σi) , 1 ≤ i, j ≤ 2, then

α1X1 + α2X2 ∼ N (α1µ1 + α2µ2, (α1σ2)
2 + (α2σ2)

2)

5. If X1, X2 are two independent random variables such that S = X1 + X2 is
normally distributed, then X1 and X2 are normally distributed.

Theorem B.2.2. [14] Let Γ = cov(Y, Y ) and µ = E[Y ]. Suppose that det(Γ) 6= 0
and that Yi ∼ N (µi, σi), 1 ≤ i ≤ m. Then,

1. The function

f(z) =
1

(2π)
m
2

√
det Γ

exp [− < Γ−1(z − µ), (z − µ) > /2] , ∀ z ∈ R
m (B.3)

is a pdf for Y and Y is multivariate normal distributed: Y ∼ N (µ,Γ)

2. There exists a matrix U ∈ Om(R) such that Z = UY has marginals that are
pairwise independent and normally distributed

Definition B.2.3. Let X = {Xλ} be a system of random variables. We say that X
is a Gaussian system if for any n ≥ 1 and any X1, . . . , Xn ∈ X, we have X1, . . . , Xn

are jointly distributed and their joint distribution is normal.

Proposition B.2.4. [34] Let X = {Xλ} be a system of random variables. Then,
X is a Gaussian system if and only if any finite affine combination of elements of
X is normally distributed. In that case, the linear subspace and the closed linear
subspace spanned by X in L2(P ) are Gaussian systems.

Remark B.2.5. A random vector Y is said Gaussian, if the system formed by its
components is Gaussian. In particular, for every k×m-matrix A and k-dimensional
vector b the vector AY + b is Gaussian.

Theorem B.2.6. [34] Let X = {Xλ}λ∈Λ be a finite Gaussian system. If X ′ =
{Xλ′}λ′∈Λ′ is a subsystem of X and B ′ = σ{Xλ′, λ′ ∈ Λ′}. Then, for all λ ∈ Λ,
E[Xλ|B′] is the orthogonal projection of Xλ onto span{Xλ′, λ′ ∈ Λ′} in L2(P ). In
particular, E[Xλ|B′] is normally distributed.

We finish this subsection by the following result.

Theorem B.2.7. [40] If X and Y are two multivariate normal distributed random
vectors such that X ∼ N (mX ,ΓX) and Y ∼ N (mY ,ΓY ). Then, if we denote
ΓX,Y = cov(X, Y ), we get

E[X|Y ] = mX + ΓX,Y Γ−1(Y −mY ) ,

X|Y ∼ N (mX + ΓX,Y Γ−1
Y (Y −mY ),ΓX − ΓX,Y Γ−1

Y ΓT
X,Y ) .
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B.3 Limit and asymptotic convergence theorems

Convergence criterions Two classes of convergence criterions are commonly
used. The first class contains three strong criterions of convergence and the sec-
ond one contains two weak criterions.
Suppose that {Xk}k≥1 and X are random vectors on a probability space (Ω,A, P )
with values in Rn. For all k ≥ 0, denoting by FX and FXk

the respective distribution
functions of X and Xk.
Strong criterions of convergence

1. Convergence with probability one (w.p.1), called also almost sure convergence:

P ({ω ∈ Ω , lim
k→∞

|Xk(ω) −X(ω)| = 0}) = 1 .

We write Xk → X, P -a.s.

2. Mean square convergence: If E[|X|2] <∞ and E[|Xk|2] <∞, ∀ k.

lim
k→∞

E[|Xk −X|2] = 0

3. Convergence in probability, called also stochastic convergence:

lim
k→∞

P ({ω , |Xk(ω) −X(ω)| > ε}) = 0 , ∀ ε > 0 .

equivalent to

lim
k→∞

E[
|Xk −X|

1 + |Xk −X| ] = 0

In particular, 1. ⇒ 3. and 2. ⇒ 3.
Also, 3. implies that Xk has a subsequence satisfying 1.
Weak criterions of convergence

1. Convergence in distribution, called also convergence in law:
For all continuity point x of FX , one has

lim
k→∞

FXk
(x) = FX(x) .

we write Xk →D X or Xk ⇒ X

2. Weak convergence: For all f ∈ Cb(R
n), one has

lim
k→∞

E[f(Xk)] = E[f(X)] .

we write Xk
w→ X

Convergence in probability implies the convergence in distribution. In the case that
X is non random, they are equivalent.
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Strong laws of large numbers (SLLN) Let X be a R
n-valued random vector.

If E[|X|2] <∞, we set σ2(X) = E[|X−E[X]|2]. Suppose that {Xk}k≥1 is a sequence
of Rn-valued random variables.

Theorem B.3.1 (Strong law of large numbers). Suppose that the Xk’s are inde-
pendent with finite expectations E[Xk] = µk. Set for all k ≥ 1, X̄k = 1

k

∑k
i=1Xi and

µ̄k = 1
k

∑k
i=1 µi. Then,

P ({ck|X̄k − µ̄k| → 0}) = 1

for every sequence {ck}k in R+ such that ck/k → 0 and
∑∞

k=1 k
−2c2kσ

2(Xk) <∞.

Corollary B.3.2. Suppose in addition the σ2(Xk)’s are uniformly bounded by c ∈
R+. Then,

P (kα|X̄k − µ̄k| → 0) = 1 , for every α < 1/2.

The next result removes the condition on the variance, but supposes that the
Xk’s are identically distributed.

Theorem B.3.3 (Kolmogorov law of large number). Let X1, X2, . . . are independent
identically distributed random vectors. If µ1 = E[X1] ∈ Rn, then

P ( lim
k→∞

1

k

k∑

i=1

Xi = µ1) = 1 .

Central limit theorem (CLT)

Theorem B.3.4 (Central Limit Theorem). Let {X1, X2, . . . } be a family of indepen-
dent identically distributed random vectors and denote Γ = cov(X1). If E[|X1|2] <
∞, then √

k(X̄k − µ1) →D U

where X̄k = 1/k
∑k

i=1Xi and U ∼ N (0,Γ).

We finish this subsection by a result on the asymptotic behavior of functions
of random vectors. Let {Zk}k be a sequence of n-dimensional random vectors such
that

bk(Zk − c) →D U .

where

1. U ∼ N (0,Γ), where Γ is a n× n-real matrix

2. {bk}k a sequence of real numbers such that bk → ∞

3. c ∈ Rn

Consider a Borel measurable transformation H : Rn → Rm, we have

Theorem B.3.5. If H has a differential D at the point c, then

bk(H(Zk) −H(c)) →D DU .

Remark B.3.6. For proofs see, for example, [27].
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B.4 The Euler-Maruyama discretization

Modeling a time varying physical quantity is of central importance in many scientific
areas. In many problems, this quantity satisfies a continuous time stochastic differ-
ential equation (SDE) and its solution gives information on this quantity. Generally,
solutions of a SDE are not analytically available. Even when such a solution can be
found, it may be to complicated to visualize or to evaluate numerically. Necessity
has thus lead to the development of methods for calculating numerical approxima-
tions to the solutions of a SDE.
The most widely applicable and commonly used of these are the time discretiza-
tion, also called time discrete approximation or difference methods, in which the
continuous time SDE is replaced by a discrete time stochastic difference equation
which evolves recursively in discrete time. One hopes that sufficiently small time
increments lead to more accuracy.
In the filtering problem context, strong convergence criterions called strong Taylor
approximations are used to discretize the equations of the system. Strong Taylor ap-
proximations are based on the Ito-Taylor expansions and on the Stratonovich-Taylor
expansions (Theorem 5.5.1 and Theorem 5.6.1 in [50]). We will present the Euler-
Maruyama scheme. This method attains an order of strong convergence γ = 0.5.
More accurate methods, like the Milstein scheme, can be found in [50].
First, let us consider the following R

d-valued SDE

Xt = Xt0 +

∫ t

t0

a(Xs, s) ds+

m∑

j=1

∫ t

t0

bj(Xs, s) dW
j
s , (B.4)

where t ∈ [t0, T ], W = (Wt)t∈[t0,T ] is an Rm-valued standard BM and

a = (ak)1≤k≤d : Rd × [0,∞) → Rd ,
b = (bk,j)1≤k≤d , 1≤j≤m : Rd × [0,∞) → Rd×m .

For each t ∈ [t0, T ], we set At = σ{Xt0 ; Ws , t0 ≤ s ≤ t}∗. If δ0 > 0 and δ ∈ (0, δ0),
then (τ)δ = {τn , n = 0, 1, 2, . . .} is a time discretization of [t0, T ] if :

i. t0 ≤ τ0 < τ1 < · · · < τn < · · · ≤ T

ii. sup(τn+1 − τn) ≤ δ

iii. nt = max(n ≥ 0 , τn ≤ t) <∞, ∀ t ∈ [t0, T )

iv. τn+1 is Aτn
-measurable

An Rd-valued continuous process Y = (Y (t))t∈[t0,T ] is a time discretization approxi-
mation of maximum step size δ based on (τ)δ of the process X if

1. Y (τn) is Aτn
-measurable

2. Y (τn+1) can be expressed as a function of Y (τ0), Y (τ1), . . . , Y (τn), τ0, . . . , τn, τn+1

and a finite number of Aτn+1-measurable random vectors which generate mainly
the noises
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In such a case the process Y is denoted by Y δ.
The process Y δ converges strongly with order γ > 0 at time T if there exists a
constant C, independent of δ, such that

ε(δ) = E[ |XT − Y δ(T )| ] ≤ Cδγ , for all δ ∈ (0, δ0) . (B.5)

Let (τ)δ = {t0 = τ0 < τ1 < · · · < τN = T} be a time discretization of [t0, T ]. The
nth time increment is ∆n := τn+1 − τn, the maximum step is δ = maxn ∆n.
We consider only equidistant time discretization, that is

τn = t0 + nδ , with δ = ∆n = ∆ = (T − t0)/N < 1 .

The Euler-Maruyama scheme is the simplest strong Taylor discretization. For every
k ∈ {1, . . . , d}, the kth component of the Euler-Maruyama scheme is

• Y k
n+1 = Y k

n + ak(Y k
n , τn)∆ +

∑m
j=1 b

k,j(Y k
n , τn)∆nW

j

• for all t ∈ [τn, τn+1),

Y k(t) = Y k
n + ak(Y k

n , τn)(t− τn) +
m∑

j=1

bk,j(Y k
n , τn)(W j

t −W j
τn

) (B.6)

where Y k
n = Y k(τn) and for all n ∈ {0, . . . , N − 1}, ∆nW

j = W j
τn+1

−W j
τn

.
For all n ∈ {0, . . . , N − 1}, ∆nW

1, . . . ,∆nW
m are independent Gaussian and for all

1 ≤ j ≤ m
E[∆nW

j] = 0 and E[(∆nW
j)2] = ∆ .

Suppose that there exist constants Ci , i ∈ {1, 2, 3, 4} independent of δ such that
for all s, t ∈ [t0, T ] and x, y ∈ Rd,

• E(|X0|2) <∞

• E(|X0 − Y0|2)1/2 ≤ C1δ
1/2

• |a(t, x) − a(t, y)| + |b(t, x) − b(t, y)| ≤ C2|x− y|

• |a(t, x)| + |b(t, y)| ≤ C3(1 + |x|)

• |a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| ≤ C4(1 + |x|)|s− t|1/2

Then, the Euler scheme converges strongly with an order γ = 1/2, i.e. for a constant
C independent of δ

E(|XT − Y (T )|) ≤ Cδ1/2 .



Appendix C

C.1 Bayesian Approach Estimation

In a purely statistical setup, computational difficulties occurs at the level of statis-
tical inference on a given probabilistic model (estimation, prediction, tests, variable
selection, etc.).
Some of the most applied statistical techniques are maximum likelihood and Bayesian
methods and the inferences that can be drawn from their use.
The maximum likelihood is associated with maximization problems, based on an
implicit definition of the estimators as solutions of maximization problems.
The Bayesian methods, in which we are concerned here, deals with integration prob-
lems and proceed to give an explicit representation of estimators as an integral.
Suppose that a density f(x, θ) involves all statistical information about some real
world situations, where the unknown parameter vector θ belongs to a Borel mea-
surable set Θ ⊂ Rn.
The aim is to estimate the true unknown parameter vector θ0 .
Suppose that prior information about θ ∈ Θ are available, this permit us to treat
θ as a random variable, usually square integrable. We can then represent all prior
information by a density function τ(θ), called prior density on θ .
Furthermore, suppose that we are able to sample from f(x|θ): the conditional den-
sity function given θ. Let X = (X1, . . . , Xk) be a sequence of samples from f(x|θ).
The function f(X|θ) is the conditional density of X = (X1, . . . , Xk) given θ.
Bayesian inference combine in some optimal way the prior information given by the
prior density with the data in order to improve the inference about θ.
Let us make some notations and definitions before conducting such inference about
θ in an optimal way.

- f(X|θ) is the conditional density of X = (X1, . . . , Xk) given θ.
- τ(θ) is the prior density on θ.
- g(X) is the marginal density of X, ie. g(X) =

∫

Θ
f(X|θ)τ(θ)dθ.

- h(θ|X) is the posterior density of θ given X = (X1, . . . , Xk).
- f(X, θ) is the joint density of θ and X = (X1, . . . , Xk).

In particular,

f(X, θ) = f(X|θ)τ(θ) = h(θ|X)g(X) .
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Then,

h(θ|X) =
f(X|θ)τ(θ)

g(X)
∝ f(X|θ)τ(θ) (C.1)

Let T : (Rm)k → Θ be a Borel measurable function. The function T is called the
estimator and T (X) = T (X1 . . . , Xk) is called an estimate of θ. For any realization
x = (x1, . . . , xk) of X = (X1 . . . , Xk), we call θ∗ = T (x1, . . . , xk) a point estimation
of θ.
A loss function L(θ, θ∗) is defined to be any non-negative function equal to zero if
the parameter and its estimator coincide, it measures the deficiency (loss) incurred
when taking θ∗ as a point estimation of θ.
We restrict our selves to the quadratic loss, called also the square error loss, that is

L(θ, θ∗) = ‖θ − θ∗‖2
Rn = ‖θ − θ∗‖2 .

The Bayesian risk r(τ, T ) of the estimator T with respect to the prior τ is

r(τ, T ) =

∫

Θ

∫

(Rm)k

L(θ, T (x))f(x|θ)τ(θ)dxdθ

=

∫

Θ

∫

(Rm)k

‖θ − T (x)‖2f(x|θ)τ(θ)dxdθ ,

where dx = dx1 . . . dxk. Loosely speaking r(τ, T ) measures the average over θ of
the average loss when we risk T as an estimator of a fixed θ. Finally, the Bayesian
estimator Tτ is defined by

r(τ, Tτ ) = inf
T
r(τ, T ) . (C.2)

This criterion gives the optimal estimator in the Bayesian framework:

Theorem C.1.1. For the square error loss L(θ, θ∗) = ‖θ − θ∗‖2, the Bayesian
estimator is given by

Tτ (X) = E[θ|X] =

∫

Θ

θh(θ|X)dθ : The posterior expectation.

Proof. see Theorem 4.1.1. and its corollaries in [58].

An important class of numerical problems that arise in statistical inference is
integration problems, which is generally associated with the Bayesian approach.
With the advanced of computers in the last years, simulations methods, as Monte
Carlo Methods, has proved a powerful performance and one can apply probabilistic
results as the Laws of Large Numbers or the Central Limit Theorem to obtain an
assessment of the convergence. These methods are essentially based on the possibil-
ity to generate random variables (usually i.i.d.) from distributions, not necessarily
explicitly known, with the computer, see Chapter 2 in [72].
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C.2 Minimum Variance Estimation (MVE)

Let us consider the n+1 random variable X, Y1, . . . , Yn in L2(Ω, P ) and Y be random
vector given by

Y =






Y1
...
Yn




 .

An estimator X̂ of X given Y is called minimum variance estimator (MVE) if for
all Borel function h such that ||h ◦ Y −X||2 =

∫

Ω
(h ◦ Y −X)2dP <∞ we have

||X̂ −X|| ≤ ||h ◦ Y −X|| . (C.3)

More generally, if A is a subspace of Borel measurable functions on Rn such that

i. ||f ◦ Y || <∞ for all f ∈ A

ii. M(A, Y ) = {f ◦ Y ; f ∈ A} is a closed subspace of L2(P )

we define the best A-MVE of X based on Y to be the orthogonal projection X̂ of
X onto M(A, Y ). The subspace M(A, Y ) is the set of A estimators based on Y .

1. If A = {g : Rn → R , g is a linear}, then M(A, Y ) is a finite dimensional
subspace of L2(Ω, P ) called set of linear estimators based on Y and X̂ is the
best linear minimum variance estimator (BLMVE) of X based on Y

2. If A is the set of affine transformations from Rn to R, then M(A, Y ) is a finite
dimensional subspace of L2(Ω, P ) and X̂ is the best affine minimum variance
estimator (BAMVE) of X based on Y

Remark C.2.1. These definitions extend to the case where X is a random vector.

Theorem C.2.2. The MVE X̂ of X based on Y is X̂ = E[X|Y ].

Proof. Let h be any Borel function such that ||h◦Y −X||2 =
∫

Ω
(h◦Y −X)2dP <∞,

we get the result using the orthogonality of X −E[X|Y ] and E[X|Y ]− h ◦Y . That
is,

‖X − h ◦ Y ‖2 = ‖X − E[X|Y ]‖2 + ‖E[X|Y ] − h ◦ Y ‖2 .

Remark C.2.3. The MVE X̂ of X based on Y can be seen as the Bayesian estimator
of X based on the observations Y1, · · · , Yn.

Let us now characterizes the BLMVE and BAMVE. The following Theorem shows
that’s in general such estimators don’t coincide and they are also different of the
MVE.

Theorem C.2.4. Consider two random vectors X and Y . Denote µx = E[X],
µy = E[Y ], Γ11 = cov(X,X), Γ12 = ΓT

21 = cov(X, Y ) and Γ22 = cov(Y, Y ). Then,



142 C.3. MONTE CARLO INTEGRATION

1. The BLMVE of X based on Y is given by

X̂ = KY , where K = E[XY T ]E[Y Y T ]+ .

Moreover, E[(X̂ −X)(X̂ −X)T ] = E[XXT ] −KE[Y XT ].

2. The BAMVE of X based on Y is given by

X̂ = HY + b , where H = Γ12Γ
+
22 and b = µx −Hµy .

Moreover, E[(X̂ −X)(X̂ −X)T ] = Γ11 −HΓ21 .

Remark C.2.5. The BLMVE of X − µx based on Y − µy is X̂ − µx, where X̂ is the
BAMVE of X based on Y .

The following Theorem gives a recursive linear Bayesian estimation. This result
has its application in the theory of Kalman filter.

Theorem C.2.6 (Static Updating Theorem-Bayesian Estimation).
Let X, Y1, Y2 and W be random vectors such that E[XW T ] = 0, E[Y1W

T ] = 0 and
Y2 = HX +W , where H ∈ Mm,n(R). We denote R = E[WW T ].

Suppose that X̂1 is the BLMVE of X based on Y1, where X̂1 and P1 = E[(X −
X̂1)(X − X̂1)

T ] are known. If

Y =

[
Y1

Y2

]

.

Then, the BLMVE X̂ of X based on Y and its error covariance P satisfy

1. X̂ = X̂1 + P1H
T [HP1H

t +R]+[Y2 −HX̂1]

2. P = E[(X − X̂)(X − X̂)T ] = P1 − P1H
T [HP1H

t +R]+HP1

Corollary C.2.7. If µw = E[W ] = 0, then the Theorem still hold if we replace
BLMVE by BAMVE.

We end this section by a result that makes the relation between the MVE and
the BAMVE.

Theorem C.2.8. If (X, Y ) is multivariate normal distributed then the MVE of X
based on Y coincide with the BAMVE.

C.3 Monte Carlo Integration

Looking at the generic problem of evaluating the finite integral

Ef [h(X)] =

∫

Rk

h(x)f(x)dx . (C.4)

For any function g, such that supp(f) ⊂ supp(g), we have

Ef [h(X)] =

∫

Rk

h(x)f(x)

g(x)
g(x)dx = Eg[

h(X)f(X)

g(X)
] . (C.5)
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If (X1, . . . , XN) are i.i.d. sampled from the function g, then the integral (C.5) is
approximated by

HN
g =

1

N

N∑

j=1

f(Xj)

g(Xj)
h(Xj) . (C.6)

Indeed, by the strong law of large numbers HN
g converges almost surely to Ef [h(X)].

In addition, if

∆g = varg(
h(X)f(X)

g(X)
) <∞ , (C.7)

or equivalently

Eg[h
2(X)

f 2(X)

g2(X)
] = Ef [h

2(X)
f(X)

g(X)
] =

∫

Rk

h2(x)
f 2(x)

g(x)
dx <∞ , (C.8)

the variance

varg(H
N
g ) = Eg[(H

N
g − Eg[H

N
g ])2] =

1

N
∆g (C.9)

can be estimated from the sample (X1, . . . , XN) through

∆N
g =

1

N2

N∑

j=1

(
f(Xj)

g(Xj)
h(Xj) −HN

g )2 .

The speed of convergence of HN
g can be assessed. In fact, from the central limit

theorem,
HN

g − Ef [h(X)]
√

∆N
g

is approximately distributed as a N (0, Ik) variable for large N . This leads to the
construction of a convergence test and confidence bounds on the approximation of
Ef [h(X)].
If f ≡ g, this method is called the classical or perfect Monte Carlo Method. The
instrumental function g, called the impotance function, is used to avoid a direct
simulation from f and to gain in the speed of the convergence. When taking any
importance function g such that f 6= g and supp(f) ⊂ supp(g), we talk about
Importance Sampling Method. This method is of considerable interest since it puts
little restrictions on the choice of the importance function g. The function g can
be chosen from distributions that are easy to simulate. Moreover, the same sample
generated from g can be used repeatedly, not only for different functions h but also
for different densities f .
Although the distribution g can be almost any density, there are some choices better
than others. It is natural to compare different distributions g for the evaluation of
(C.4).
While (C.6) converges almost surely to (C.4), we have no idea about the computation
time and the speed of the convergence and this can be determinant on the choice of
the importance function. It is natural to choose g among the distributions leading to
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finite variance of the estimator (C.6) or equivalently to one of the conditions (C.7)
and (C.8). Importance functions g with unbounded ratio f/g are not appropriate for
importance sampling because they leads to an infinite variance for many functions
h. In addition, if the ratio f/g is unbounded, the weights f(xj)/g(xj) will vary
widely, giving too much importance to a few values xj.
In [30], Geweke gives two types of sufficient conditions:

i. f(x)/g(x) < M ∀ x ∈ Rk and varf(h) <∞

ii. The support of the integrand functions h of interest are include in some fixed
compact K ⊂ Rk, and f(x) < F and g(x) > ε ∀ x ∈ K

Under one of those conditions and in view of (C.6), the distribution g leading to
smaller variance of the estimators performs better. That is, a reduction of the
variance accelerate the convergence.
Nevertheless, it is possible to exhibit the optimal distribution g corresponding to a
given function h and a fixed distribution f :

Theorem C.3.1. The choice of g that minimizes the variance of the estimator (C.6)
is

g∗(x) =
|h(x)|f(x)

∫

Rk |h(z)|f(z)dz
.

Proof. see [72].

This optimality is formal since, when h(x) > 0, the optimal choice g∗(x) requires
the knowledge of

∫
h(x)f(x)dx: the integral of interest!.

Remark C.3.2. From a practical point of view, Theorem C.3.1 suggests looking for
distributions g for which |h|f/g is almost constant with finite variance.
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