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Abstract

This thesis studies different aspects of the linear and the nonlinear stochastic filtering
problem. It consists of four chapters. In the first chapter we derive the Kalman
and the extended Kalman filter algorithms and we study some of their qualitative
properties. In the second chapter we present a unified general framework on particle
filter methods. In particular, we show how the particle filter methods surmount
the difficulties due to the Kalman approach to filtering and we compare different
particle filter algorithms. In the third chapter we study a real life example, tracking
the position and the speed of a car, then we compare the extended Kalman filter
and the particle filter methods. Finally, in the fourth chapter we generalize the
formulation of the filtering with the Zakai equation to the case of multidimensional
systems with unbounded observation functions and an Ornstein-Uhlenbech type
noise.

Zusammenfassung

Diese Dissertation studiert unterschiedliche Aspekte des linearen und nichtlinearen
stochastischen filternproblems. Sie besteht aus vier Kapiteln. Im ersten Kapitel
leiten wir den Kalman und den Extended Kalman Filteralgorithmen ab und wir
studieren einige ihrer qualitativen Eigenschaften. Im zweiten Kapitel stellen wir
einen vereinheitlichten allgemeinen Rahmen auf Partikelfiltermethoden dar. Ins-
besondere zeigen wir wie die Partikelfiltermethoden die Schwierigkeiten wegen Die
Extended kalman Annéherung iibersteigen und wir vergleichen unterschiedliche Par-
tikelfilteralgorithmen. Im dritten Kapitel studieren wir ein reales Lebenbeispiel,
schétzen die Position und die Geschwindigkeit eines Autos, dann vergleichen wir
den Extended Kalman Filter und die Partikelfiltermethoden. Schliefllich im vierten
Kapitel generalisieren wir die Formulierung der Filternproblems mit der Zakai Gle-
ichung zum Fall der mehrdimensionalen Systeme mit unbegrenzten Beobachtung
Funktionen und einer Ornstein-Uhlenbech Art Gerausche.

keywords: Stochactic differential equation, Kalman filter, Monte Carlo methods,
Zakai equation.
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Introduction

This thesis studies different aspects of the linear and the nonlinear stochastic filter-
ing problem. It gives an introduction to the stochastic filtering theory together with
new results, new proofs for classical results, and several examples and applications.
The stochastic filtering problem arises in many different areas of science including
tracking, automatic control, econometrics and others. It essentially deals with the
estimation of the present state of a process X = {X;}iercr, , called the signal or the
state process, based on measurements supplied by an associate process Z = {Z, }er,
called the observation process.

In the Bayesian framework, a stochastic dynamical equation that provides the prior
distribution of the state process and an observation equation that gives rise to the
likelihood of the observations are available and all relevant information on the state
X; are included in the posterior distribution P(X; € A|{Z,,s € T,s < t}). This is
known as the Bayesian filtering problem called also the optimal filtering problem.
We will study the discrete time and the continuous time stochastic filtering problem
ie. the cases T C N and T = [a, b] C R, respectively.

The discrete filtering problem: Often the observations or measurements arrive
sequentially in time, and one is interested in estimating recursively in time the evolv-
ing posterior distribution. In 1960, R.E. Kalman published his famous paper [43]
on recursive minimum variance estimation in linear Gaussian dynamical systems.
This paper introduces an algorithm known as the discrete Kalman filter. Since then,
qualitative properties, including controllability, stability and others, of the Kalman
filter were extensively studied [14, 39, 40, 45, 59].

However, in many realistic problems, dynamical systems involve elements of nonlin-
earity which exclude the use of the Kalman filter algorithm. One idea is to replace
the original equations of the system by a family of linear Gaussian ones and to apply
the Kalman algorithm, [40]. This method is known as the extended Kalman filter
(EKF). The EKF algorithm has numerous drawbacks and its performance heavily
depends on the system parameters behavior [8, 33, 52].

With the advance of computational power, sequential Monte Carlo methods, also
called particle filter methods, have been developed to address the Bayesian filtering
problem. Those methods are very flexible, often easy to implement. Moreover, these
methods do not suppose linear, Gaussian or dimensional hypothesis on the models.
Particle filter methods approximate the posterior distributions with empirical mea-
sures based on clouds of particles. The particles are sampled from appropriate
distributions. The convergence is obtained when the number of sampled particles
increases.



The continuous filtering problem: In the case of continuous time parameters,
the filtering problem consists of estimating the statistics of a partially observed
Markov process X = {X;}ieo,7), called the signal process, based on the observation
process Z; = fot h(Xs, s)ds + Ny, 0 <t < T, corrupted by a Gaussian noise process
N.

The conditional expectation m(¢) = Elp(X;,1)|{Z,,0 < s < t}], where ¢ is a
bounded Borel function, gives the minimum variance estimation of the random vari-
able p(X,1).

When the noise N is a Brownian motion, then under some regularity assumptions,
see [7, 54, 57, 69, 77], the measure 7; satisfies a measure valued nonlinear stochas-
tic partial differential equation (SPDE), called the Kushner-Stratonovitch equation.
Moreover, the Kallianpur-Strieble formula states that

_ pie(e)
t(p) = ()’

where p;(p) is the unnormalized conditional expectation. p;(y) is characterized as
the solution of a linear SPDE, called the Zakai equation.

Recently, interest has been developed when the noise is a Ornstein-Uhlenbeck or a
general Gaussian process [9, 10, 56, 65].

Bhatt et al. [10] studied the case of Ornstein-Uhlenbeck noise. They considered
1-dimensional processes and bounded observation function h, they derived an anal-
ogous to the Zakai equation and they proved existence and uniqueness results.

The linearity of the Zakai equation makes its numerical approximations attractive.
Crisan [16] and Crisan et al. [21] approximated the solution of the Zakai equation
using branching particle methods. In [18], Crisan used a particle approximation
method. A time dependent weight is attached to each particle. The particles move
independently w.r.t. the law of the state process. He also gives a comparison with
the branching particle methods.

Other methods using Galerkin approximation and Cameron-Martin version of the
chaos decomposition can be found in [1, 38, 66].

Summary and main results of the thesis

Appendices We recall in a series of appendices various notions and tools that one
will need. Specially, we present:

e The Euler-Maruyama discretization
e The Monte Carlo integration
e The Bayesian approach estimation

e The minimum variance estimation (MVE)

The best affine minimum variance estimation (BAMVE)

Errors and convergence criterions



Chapter 1 First section: We study linear systems that are not necessarily Gaus-
sian. Instead of calculating the (nonlinear) minimum variance estimation (MVE),
we derive a recursive algorithm for the best affine minimum variance estimation
(BAMVE). When the system is Gaussian then BAMVE = MVE.

D.E. Catlin [14] gave similar results for the best linear minimum variance estimation
(BLMVE) where its systems have no optional control inputs as ours.

We study then some qualitative properties of the Kalman filter. Firstly, we give
lower and upper bounds on the error covariance matrix. Those bounds are based
on stronger conditions than those of Jazwinski in [40] but much simpler to verify.
Secondly, using the technical Lemma 1.1.7, we give in Proposition 1.1.6 a new and
simple proof of the uniform asymptotic stability, see Definition 1.1.5, of the Kalman
filter. We end this section by an illustrative example.

Second Section: We derive the extended Kalman filter (EKF) algorithm for non-
linear models with Gaussian noises. Our main result, Theorem 1.2.6, gives an upper
bound on the error in the EKF algorithm for a class of nonlinear dynamical systems.
The results are illustrated by numerical examples.

Chapter 2 Based on previous work including [3, 17, 19, 20, 22, 23, 24, 51, 62], we
aim to present a unified general framework on particle filter methods.

We start with a general dynamical system and we simplify some essentially known
approaches for proving the validity of those numerical methods. Some original
developments are also presented. We first prove the almost sure or weak convergence
of the particle filter algorithm through a generic model. Although the measures,
defined by the particle filter algorithm, converge weakly to the right measure, one
has no idea about the rate of convergence. Using the mean square convergence,
we show that those measures converge with a rate proportional to 1/Ny, Ny is the
initial number of particles injected to the particle filter algorithm.

The particle filter algorithm essentially consists of three stages: prediction, update
and resampling. The importance sampling functions are tools to accomplish the
prediction and the update stages. We give:

e Strategies of selection of the importance sampling functions

e A collection of importance sampling functions

In the resampling stage, we use branching mechanisms to renew the generations of
the particles. We give:

e Strategies of selection of the branching mechanisms

e A collection of branching mechanisms

Several numerical and illustrative examples are provided.

Chapter 3 Tracking the position and the speed of an observed moving object has
received much of interest in many scientific areas, see for example [36, 37, 48]. This
Chapter deals with the estimation of the dynamics, position and speed, of a moving
vehicle.



Scenario: A rolling car and a fixed observer who measures on-line his distance to
the vehicle

We derive the car dynamical equation, state equation. The state equation is a 2-
dimensional stochastic differential equation (SDE) with non Lipschitz and non linear
growth bounded coefficients. We prove the existence and the uniqueness of solutions
of a family of SDE’s with non Lipschitz and non linear growth bounds conditions.
We apply the result to the state equation.

We discretize the state equation and we prove that the Euler-Maruyama discretiza-
tion converges strongly with order 1/2. A discretization to the observation equation
is deduced. A comparison of the EKF and the particle filter algorithms shows that
the latter one performs better.

Chapter 4 We present a generalization of both the work of Bensoussan in [7] and
the work of Bhatt et al. in [10]:

e Multi-dimensional dynamical systems
e An Ornstein-Uhlenbeck type noise
e An unbounded observation function that admits a linear growth bound

We prove that the unnormalized measure satisfies the Zakai equation and under
some additional assumptions:

1. We prove the existence and uniqueness of the solution of the Zakai equation

2. We construct a sequence of particle measures converging to the solution of the
Zakai equation

3. We give a rate of convergence
4. We establish an implementation scheme

This will permit us to solve numerically the filtering problem via a Kallianpur-
Striebel formula.

Computations are performed on a Pentium III, 730 MHz, with 256 Mb RAM under
a Linux system (Suse 9.2) with Matlab and Scilab/plotlib.



Chapter 1

The Discrete Kalman and
Extended Kalman Filter

Filtering is the problem of estimating the state of a system as a set of observations
becomes available on-line. In 1960, R.E. Kalman published his famous paper [43] on
recursive minimum variance estimation for linear Gaussian dynamical systems. The
paper introduces an algorithm known as the discrete Kalman filter. The Kalman
filter has been used in diverse areas including tracking, navigation, and guidance.
Since Kalman’s work, many papers and books appeared on the Kalman filter in-
cluding continuous time systems [29, 39, 40, 47, 59].

In many cases, dynamical systems are nonlinear or non Gaussian and computing
the minimum variance estimation, see appendix C.2, turns to be a difficult and
sometimes an impossible exercise. One idea is to extend the Kalman work to the
nonlinear and non Gaussian framework. This can be done by approximating the
system equations by linear Gaussian ones and apply the Kalman filter algorithm.
That gave birth to the extended Kalman Filter, [40, 67].

In this chapter we derive the Kalman and the extended Kalman filter algorithms,
and we study some of their qualitative properties.

In subsection 1.1.1, we consider linear systems that are not necessarily Gaussian,
then instead of calculating the minimum variance estimation (MVE), we give in The-
orem 1.1.1 an analytical recursive algorithm for the best affine minimum variance
estimation (BAMVE), see appendix C.2. If, in addition, the system is Gaussian then
the BAMVE coincide with the MVE, Corollary 1.1.2. In the book of D.E. Catlin
[14], one can find similar results for the best linear minimum variance estimation,
see appendix C.2, and for systems that have no optional control inputs as ours.

In [40], Jazwinski studied some qualitative properties of the Kalman filter. He
proved, under controllability and observability conditions [44], the uniform asymp-
totic stability of the filter and gave bounds on the error covariance matrix. In
subsection 1.1.2, we consider stronger conditions, Assumptions 1.1-1.4, than those
of Jazwinski, but they are much simpler to verify and allow us to give a lower and
upper bounds on the error covariance matrix, Proposition 1.1.4.

We give in Proposition 1.1.6 a simple proof of the uniform asymptotic stability of
the Kalman filter. In Corollary 1.1.8 we derive a result on the asymptotic behavior
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of the filter with respect to its initialization. We end the subsection with an illus-
trative example.

In subsection 1.2.1, we derive the extended Kalman filter (EKF) algorithm for non-
linear models with Gaussian noises. In subsection 1.2.2, we exploit the parameters
of the system to give an upper bound on the error in the EKF algorithm for a class
of nonlinear dynamical systems. Finally, we give two numerical examples: in the
first the errors remains bounded and in the second the errors are unbounded and
the EKF fails to give good results.

1.1 The discrete Kalman filter

1.1.1 Kalman filter algorithm

n-dimensional state equation:
Xpr1 = O(k) xi + V(k) a + A(k) ug, >0 (1.1)
o ¢(k), ¥(k) and A(k) are respectively nxn, nx [ and nxr known real matrices
e The optional control input a;, is a known [-dimensional discrete static process
e The process u is an r-dimensional white, called the state noise process

e The initial state x(0) is supposed to be a square integrable random variable

e Forall 0 <j <k,
Elug] = 0 and E[ukxjr] =0 (1.2)

e The matrix Q(k) = E[uzul] is known for all k>0
m-dimensional measurement equation:
z, = H(k) x¢ + (k) wi, £>0 (1.3)
e H(k) is a known m X n-real matrix, called the measurement matrix
e [I(k) is a known m X p-real matrix
e w, is a p-dimensional white process, called measurement noise
e Forall0 <7<k

Elw] =0, E[Wkujr] =0 and E[wkxjr] =0 (1.4)

e The matrix R(k) = E[wyw]] is known for all & > 0
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Denoting by %(k|j) the BAMVE, see Appendix C.2, of x; based on

Zy
yi=1: |- (1.5)
Zj
Thus, x(k|j) is the orthogonal projection onto the n-fold product of M; with it self,
M; being the affine span of the components of the vector y;.

If j =k, then x(k|k) is the filtered estimate.
If j < k, then X(k|j) is the predicted estimate.
If j > k, then X(k|j) is the smoothed estimate.
We define the n x n-matrix
P(k1j) = BI(R(k1)) — x)(X(E]7) — x)7]. (16)
P(k|j) is the error covariance matrix of the estimate x(k|j) to xj.

Theorem 1.1.1 (The Kalman Filter Algorithm). The BAMVE x(k|k) may be gen-
erated recursively according to the following two stages

1. Prediction

x(k+1k) = o(k)x(klk) + U(k)ay, (1.7)
P(k+1k) = o(k)P(k[k)¢(k)" + A(k)Q(k)A(K)T . (1.8)

2. Update
K(k+1) = Pk+1k)H"[HP(k+1k)H"
HI(k + 1) R(k + DIk +1)T] ",
x(k+1k+1) = x(k+1|k)+ K(k+ 1)[zg — Hx(E+ 1]k)], (1.9)
Pk+1k+1) = [I,— K(k+1)H|P(k+1|k). (1.10)

Where we have denoted simply H(k + 1) by H.
The matriz K(k + 1) is called the Kalman gain matriz.

Proof. 1f ju,(j) = Ely;], T'y(j) = cov(y;,y;), (k) = Elx] and Ty (K, j) = cov(xk, y5),
for every k, j > 0, then the BAMVE of x;, and x;1 based on y;, see Theorem C.2.4,
satisfies
CR(KE) = Ty (R R, (R) (s — py (R) + pa(R). i
x(k+1lk) = Tuy(k+1,E),(k)* (yp — py(k)) + pp(k+1).

Firstly, we prove the equality (1.7). From the properties (1.2) and (1.4) of the noises

we get
me(k+1) = (k)pa(k) + U(k)ay
yk — my(k) = H(F)(xk = pa(F)) + TI(k) Wy
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This implies that

Toy(k+1,k) = E[(Xpr1 — pa(k + 1)) (yx — py(K))"]
= El(¢(k)(xp — pra(k) + Ak)ue) (e — pry (k)]
$(k)Dyy (K, K (1.12)

Now, using together the equalities (1.11) and (1.12) we obtain the equality (1.7).
Secondly, we prove the equality (1.8). The equality (1.7) implies that

%(k+10k) — x01 = (k) &(k]K) — x1) — A(k)uy,

Since x(k|k) —xy, is orthogonal to y; — 1, (k), and uy, is uncorrelated with x(k|k) —x
and y — py (k), we deduce easily the result using the definition of P(k+1/k) in (1.6).
Finally, an application of Theorem C.2.6, 1., gives the equalities (1.9) and (1.10). O

e The process z(k + 1|k) = H(k + 1)x(k + 1|k) is called the predicted measure
e The process v(k + 1) = zg1 — z(k + 1]k) is called the innovation

o If X(k|k) and yi+1 are Gaussian, then x(k + 1|k + 1) is Gaussian too

Corollary 1.1.2. If the processes u; and wy are Gaussian and the process Xq is
either deterministic or Gaussian, then, see Theorem C.2.8, 2., the MVE is Gaussian
and satisfies the same relations in Theorem 1.1.1. Moreover,

X |y~ N(x(k[k), P(k|k)) (1.13)
Xpi1 |y~ N(x(k+ 1[k), P(k + 1]k)) (1.14)

Equations (1.8) and (1.10) of Theorem 1.1.1 taken together constitute a recursively
solvable matrix difference equation known as the discrete Riccati equation. These
matrices may be computed in advance. In particular, P(k|j) may be defined as the
conditional covariance matrix

P(k|j) = E[(x(k[7) — xx) (%(Elj) — xx)" |y;] -

The relations in Theorem 1.1.1 still true and P(k|j) = E[P(k|7)], see [40].

Remark 1.1.3. If a matrix A is symmetric positive definite we write A > 0 and if
A is symmetric positive semidefinite we write A > 0. Also, we write that A < B if
B—A>0and that A< Bif B—A>0.

For the remainder of this Chapter we suppose that the conditions of Corol-
lary 1.1.2 hold and that a; = 0, A(k) = I,, and II(k) = I,,,, for all k > 0.
Suppose that P(0[0) > 0 and for all k¥ > 1, Q(k) and R(k) are positive definite,
then [H (k)P (klk — 1)H (k)T + R(k)] ™" exists, P(k|k) is positive definite and

P(klk)™" = P(klk—1)""+ H(k)"R(k)""H(k), (1.15)
K(k) = P(klk)H(k)"R(k)™. (1.16)
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1.1.2 Bounds and stability of the Kalman filter

This subsection deals with some qualitative properties of the Kalman filter, namely
bounds, stability, convergence w.r.t. the initialization, and the propagation of errors.
Suppose that the coefficients of the system satisfy the following assumptions:

Assumption 1.1. The covariances matrices Q(k) and R(k) are symmetric definite
positive.

Assumption 1.2. The transition matrix ®(k) is invertible.
Assumption 1.3. P(0/0) > 0.

Let us define, for every integer k£ > 1, the following symmetric positive matrix

I(k) = ®(k)""H(k)"R(k)""H(k)®(k)™"
+H(k+1)"R(k+1)""H(k+ 1), (1.17)

where ®(k)™T = (®(k)~1)7T.

Assumption 1.4. The matrices Q(k) and I(k) are uniformly bounded. That is,
there exists two real numbers 0 < o < 3 such that

0<al, <Qk),I(k)<BIL,, Vk=>0.

Proposition 1.1.4. Under the Assumptions 1.1-1./, the error covariance matrices
{P(k|k)}r>1 are uniformly bounded. More precisely,

« Sl—i—aﬁ

I, < P(k|k I,, Vk>1. 1.18
e L < P (118

Proof. Let us prove first the second inequality, ie.

Pk|k) < 1+ap

I,, Vk>1. (1.19)

If we combine the equalities (1.7) and (1.9) we get
7, = H(k)®(k) 'x 11 — H(k)®(k) "uy, + wy, .
Let us define the process
x(k+1k+1)=I1(k) " H{ok) THE) " R(k) 'zp + Hk + 1)"R(k + 1) zp1} .
Then, using the expression of the matrix I(k) in (1.17), we obtain

x(k+ 1k +1) = I(k)"{I(k)xpr1 + @(k)" H(k) R(k)™ wy
+H(k+ DRk + 1) 'wypy
—®(k) THK)"R(E) " H(k)® (k) 'ug} .
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From which we deduce
Xpp1 —X(k+1k+1) = I(k)"H{ok) THE) " R(KE) " H(k)®(k) 'uy
—(®(k)"TH (k)" R(k) ™ Wy
+H(k+1)"R(k+1)"'wy1)} (1.20)
The process X(k + 1|k + 1) is, apriori, not the MVE, then
Pk+1k+1) < El(xpq1 — %(E+ 1|k + 1) (x4 —x(k+ 1|k +1))7].  (1.21)

Let us denote Ejy = E[(xpp1 — X(k + 1k + 1)) (xp1 — X(k + 1|k + 1))7], if we
use that ®(k)"TH (k)T R(k) ™ H(k)®(k)™! < I(k), see (1.17), then from the equality
(1.20) we get

Ep

I(k) ™ + cov(I(k) ' ®(k) " TH(k)"R(k) " H(k)®(k) tuy)
I(k)~" + Q(k)
(é +8) I,. (1.22)

It is clear that from the inequalities (1.21) and (1.22) we get the inequality (1.19).
Now, we prove the first inequality, ie.
a
1+ap

Consider the following system

IN

IN

I, < P(k+1k+1). (1.23)

X1 = O(k)X, + g,
Z, = Xp+Wg,

where ®(k) = ®(k)~T and 1y, and Wy, are independent Gaussian noises with covari-
ance matrices given by

Q(k) = Elmug] = &(k)"H(k)"R(k)" ' H(k)D(k)™
R(k) = Elwwg] = Q(k)™

We initialize the Kalman filter for this system by taking
P(0[0) = P(0]0)~* — H(0)"R(0)"*H(0).
Then, using the equalities (1.8) and (1.15) we get by induction:
P(klk) = P(k|k) ™ — H(k)"R(kK) 'H(k), VE>1.

In particular,
I(k) = ®(k)Q(k)®(k)" + Q(k + 1), Yk > 0.

Reasoning as for the first inequality, we get
P(klk) < I(k)™" + Q(k).
The definition of the matrix I, see (1.17), implies
P(klk)™ < I(k)™' +1(k)

Finally, since a I, < Q(k+1) < I(k) and I(k) < 31, then we deduce the inequality
(1.23). 0
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Consider the following r-dimensional linear system
Zk+1)="(k)Z(k), k=>0. (1.24)
For every 0 < k; < ko, let us define the matrix Y (kq, k1) = Y(k2) ... (k).

Definition 1.1.5. The system (1.24) is said to be uniformly asymptotically stable
if there exists two real constants C' > 0 and ~ > 0 such that

”T(kz, ]{]1)” S C’eXp (—"}/(kg — kl)) s sz Z kl (125)
where || - || = | - ||2 is the spectral norm.

A sufficient condition to get (1.25), see [45, 46], is to find scalar functions Vj, :
R" — R and \; : R — R, 1 <7 < 3 satistying the following conditions

1. )\; is continuous and A;(0) = 0 for 1 < i < 3, and A; and Ay are nondecreasing
2. M\(z) — 400 as x — +oo and A3(x) <0 for x # 0

3. Vi(0) =0 for all £ > 0, and for some integers 0 < N < M and for all k > M
such that Z(k) # 0,

0 <M([Z(R)I) < Vi(Z(F)) < M Z(K)) (1.26)

Vi(Z(k)) = Vien(Z(k = N)) < As([[Z(R)]) - (1.27)

The function V' is called a Lyapunov function for the system (1.24).
To prove the stability of the Kalman filter, we use equations (1.7) and (1.9) to write

x(k + 1|k + 1) = Y(k)%(k|k) + U(k)

where Y(k) = [I, — K(k+ 1)H(k + 1)]®(k) and U(k) = K(k 4 1)zg;;. The matrix
T is called the state transition matrix of the filter. using the equality (1.10), we get

Y (k)= P(k+ 1|k +1)P(k+ 1]k)"'®(k) .

Consider the linear system

A

Z(k+1) = YT(k)Z(k)
P(k+ 1|k +1)P(k + 1|k) '@ (k) Z (k) (1.28)

Proposition 1.1.6. The Kalman filter, ie. the linear system (1.28), is uniformly
asymptotically stable.

For the proof we need the following Lemma

Lemma 1.1.7. Suppose that P and R are two n X n—symmetric definite positive
matrices and suppose that

O<al,<P<pBIl, and 0< A, <R<yul,.
Then, there exists a real number ¢ > 0 such that

(P+R)™—P'<—cI,.
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Proof. For any n X n-matrix M, see [40] p.262, we have
(P '+M'RM) =P~ PM"(MPM" + R°H)'MP.
Taking M = P~ we get

(P+R)'—P*' = PY((P'+PRP)'-P)P!
= P'((P '+ P'RPH - P)P!
— _Pfl(Pfl 4 Rfl)flpfl
Denoting by v = inf{||P~'z||, ||z]| = 1}. Since P~! is continuous and invertible
and 0 ¢ {x € R", ||z|]| = 1} is a compact then v > 0. We deduce that
Yo
PP +RN)IPTI >4 I,
( * ) =T X+a
Then,
A
P+R)y'—P 1< n -
(P+F) =" Yta
It is sufficient to take ¢ = ~? )\’Ef‘ and the proof is complete. O

Proof. (Proposition 1.1.6.) It is sufficient to find the right Lyapunov function V for
the system (1.28). Let

Vi(Z(k)) = Z(k)" P(k|k) "' Z (k).
From Proposition 1.1.4 we have a/(1 + o) I, < P(k|k)™' < (14 af)/aI,, then

1+ ozﬁ 9
T 122
which proves (1.26). Now, we prove (1.27) for N = M = 1. Using (1.28), we get
Vier (Z(k + 1)) — Ve(Z(K) A
=Z2(k+1D)"Pk+1k+ 1) Z(k+1) = Z(k)"P(k|k) " Z(k)
Z(k)T[® (k) P(k + k)" P(k + 1|k + 1) P(k + 1/k) "' ® (k)
— P(k|k) ™2 (k) (1.29)

IZ(B)|I* < Vi(Z(k)) <

It is sufficient to show that the matrix in (1.29) is negative definite, ie. there exists
a real number ¢ > 0 such that

SR Pk +1|k) Pk + 1k +1)P(k + 1|k)'®(k) — P(klk) ™' < —c I,

From the equalities (1.8) and (1.15), we can write
®(k)'P(k+1|k) ' P(k + 1|k + )Pk + 1|k) ' ®(k)
:@@FP@+1mr%Pw+1mrl
H(k+1)R w+¢rwﬂk+nﬁﬂp%+um4@w)
()T (k + 1[k) " (k) (1.30)

(k)" (2(k)P(k|k)2(k)" + Q(k)) " @(k)

—( (klk) + (k)" Q(k) (k) ™) "
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In the inequality (1.30) we have used the fact that
Plk+1k) ' <Pk+1k) "'+ Hk+ DRk +1)"H(k+1)"
Then,

KT P(k+1|E) Pk 4+ 1k + 1)P(k + 1|k) " '®(k) — ( |k
< (P(klk) + (k) "' Q(k)®(k)™") " — P(k
)

Since the matrices P(k|k) and ®(k)™1Q(k)®(k)~T satisfy the conditions of the
Lemma 1.1.7, we deduce the result. O

)~
k)~

Corollary 1.1.8. If (x'(0[0), P*(0|0)) and (x*(0|0), P*(0]|0)) are two different ini-
tializations of the Kalman filter algorithm such that

P(0[0) >0<,, i€e{l,2}.
Then, there exists two constants C' > 0 and v > 0 such that
1P (K| k) — P*(k[k)[| < C'exp (—vk).
The effect of the initialization P(0|0) is exponentially forgotten with time. This
is important if P(0|0) is poorly known.

Proof. Let K'(k) and K?(k) be the Kalman gain matrices corresponding to P*(k|k)
and P?(k|k) respectively. From the equality (1.16) we obtain

PYk|k)H (k)" K?*(k)" = K*(k)H (k)P*(k|k) Yk
Denoting A(k) = P'(k|k) — P?(k|k), then

Ak+1) = P k+1k+1)(I, — K*(k+1)H(k+1))"
—(I,— K'(k+D)H(k+1)P*(k+ 1]k +1)"
= (P'(k+1k+1)— (I, — K'(k+1)H(k+1))Q(k))
x(I, - K*(k+ 1)H(k+1))" = (I, - K'(k+ 1)H(k + 1))
x(P*(k+ 1k +1) — Q(k)(I, — K*(k+ 1)H(k + 1))")
= (I, — K'(k+ 1)H(k +1))®(k)
xA(k)® (k) (I, — K*(k+ 1)H(k +1))". (1.31)

The matrices Y (k) = (I, — K'(k+1)H(k+1))®(k), i = 1,2, are uniformly asymp-
totically stable by Proposition 1.1.6.
If Ti(kg, kl) = Tl(kz) e Tl(k’l) for 0 S kl S ]i]2 and 7 = 1, 2, then

Ak+1) = THE)AMK) Y (k)T
= TYk,0)A(0)YT?(k,0)"

Finally, from the inequality (1.25) we get the result. O
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First component estimation

300
N
=4\ 1
2004\ X}
1\ — xu(k[k)
100 o
1 y1(klk)
a \\
07 S ——
| s/ N
4 - \\
_1002/ _—
T e —.e.———,—————————
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k
Second component estimation
307 /p\\
ZOt/ \\ l/' \\\\ Xi
/ \
07 ) — xo(klk)

0O 20 40 60 8 100 120 140 160 180 200

Figure 1.1: Two Kalman filter approximations of a path of the state x with two
different initializations x(0]0) and y(0]0).

Ezample 1.1.9 (Kalman filter). Consider the following linear dynamic system

1T

01 ]X”“’f

2-dim. state equation Xyl = [

1-dim. measurement equation z; = [ 10 }Xk + wy,

where xo € R? is an arbitrary fixed point, 7' = 0.1, and the processes (uy); and
(W), are independent and Gaussian with covariance matrices given respectively by
Q =Q(k) =1y and R = R(k) = 100.
The matrix (k) defined in (1.17) is given by
a2l 2 =T
I(k) =10 {—T T2 > 0.
In particular, \; [ < I(k) < Ay Iy where \; = 0.5(2+ T2 — /T*+4) > 0 and

A =05024T?+VT*+4)>0.
The Assumptions 1.1-1.4 hold and if the initialization of the Kalman algorithm is
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such that P(0/0) > 0, then the Proposition 1.1.4, the Proposition 1.1.6 and the
Corollary 1.1.8 say that

- The error covariance matrices { P(k|k)}) are uniformly bounded
- The filter is uniformly asymptotically stable
- The filter forgot exponentially its initialization

o~[4)-[2]

We apply the Kalman algorithm for two different initializations. Denoting x(k|k)

Suppose that

— (k)
—— Cexp(—7k)

Figure 1.2: Kalman error covariance behavior: d(k) = |[|[Pi(k|k) — Pa(klk)| <
Cexp(—vk).

and y(k|k) the two update estimates of the state x; relative to the following initial-
1zations:

1 x(0]0) = {m(om) ] B

2. 4(0]0) = [33228}8; ] = {31050} and P5(0[0) = { _62 _12} >0

Figure 1.1: k € {0,1,...,200}

{ —100

1 ] and P;(00) = { ! O} 0

01
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Up plot: A path of the first component x}, of the state and the two Kalman esti-
mates x1(k|k) and y;(k|k)

Down plot: A path of the first component x% of the state and the two Kalman
estimates xo(k|k) and yo(k|k)

Let d(k) = || Pi(k|k) — Py(k|k)||, there exists two constants C' and > 0 such that
(k) < Cexp(—vk).

Figure 1.2: We plot (k,0(k)), 0 < k < 120, against the function Cexp(—vk),
where C' = 6.7050 and v = 0.7741744.
The constants C' and v are obtained by a least squares fit of log(C') and .

1.2 The discrete extended Kalman filter

1.2.1 The extended Kalman filter algorithm
n-dimensional state equation x(k+1) = fr(x(k),u(k)), k >0

m~dimensional measurement equation z(k) = hy(x(k),w(k)), k>0

where
e u(k) is an r—dimensional Gaussian white process satisfying conditions (1.2)
e w(k) is an p—dimensional Gaussian white process, satisfying conditions (1.4)
e x(0) is either Gaussian or deterministic with mean o and covariance I'y

The filtering problem consists of calculating the minimum variance estimate (MVE)
of the state given measurements up to the time of interest. That is, if for every
J =0,

z(0)

(T : : (1.32)

z(j)
The MVE of state x(k) given y; is given by x(k|j) = E[x(k) | y;].
The estimate x(k|k) is called the filtered estimate of x(k). The estimate x(k|j) is

called the predicted estimate, when j < k, and the smoothed estimate, when j > k.
The error covariance matrix of the estimate x(k|j) to x(k) is

P(k|j) = E[(x(klj) — x(k)) Ge(klj) — x(k))"y,]. (1.33)

In many cases, dynamical systems are nonlinear or non Gaussian, and computing
the MVE turns to be a difficult and sometimes an impossible exercise. One idea is to
approximate the optimal solution (MVE) of the filter problem by approximating the
system’s dynamics. This can be done by replacing the original equations by a family
of linear Gaussian equations obtained by a first order Taylor expansions around a
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reference trajectory and apply the Kalman algorithm to the obtained linear system.
The validity of such approximations: How are good these linearizations, and
which reference trajectory should be chosen?

We start with a nominal reference trajectory:

e x*(0) fixed in R"
o x*(k+1) = fr(x*(k),0), for all £ > 0
Let us define the following two processes

5(k) = x(k) —x"(k), (1.34)
v(k) = (k) — he(x"(k),0). (1.35)

A first order of Taylor’s series expansion gives

fe(x(k),u(k)) ~ fu(x"(K),0) + Dafi(x*(F), 0)(x(k) — x*(k))

hi(x(k), w(k)) = hi(x"(k),0) + Dyhi(x"(k), 0)(x (k) — x*(k))
Dby (x*(k), 0)w(k) (1.37)

The functions f and h are supposed sufficiently regular and one can drop all higher
than first order terms in the Taylor expansions. We denote for all £ > 0,

CI)(k) = Dxfk(X*(k>> 0) ) A(k) = Duf(X*(k>> 0) )
H(k) = Duhu(x*(K),0),  TI(K) = Dyuhy(x*(k),0) .

Then,
0k+1) = x(k+1)—x"(k+1)
= Je(x(k), u(k)) — fe(x"(k), 0)
~ O(k)i(k) + A(k)u(k) (1.38)
Similarly,
v(k) ~ H(k)o(k) + II(k)w(k) . (1.39)

We apply the Kalman filter algorithm to the approzimate linear model (1.38) and
(1.39). We denote the state estimate by d(j|k) and the error covariance matrix by
P(j|k). A reasonable choice of estimates to x(k + 1) are

x(k+1k) = x*(k+1)+(k+ 1]k)
x(k+1lk+1) = x"(k+1)+6(k+1]k+1)
We come now to the choice of the reference trajectory (x*(k))g>o. In the extended
Kalman filter (EKF) setting, the reference trajectory {x*(k)}; is chosen on-line.

That is, the first order Taylor’s expansion (linearization) is made about the last
predicted or filtered estimate as the algorithm proceeds.

The Extended Kalman Filter Algorithm
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Initialization
%(00) = o, P(0]0) =Ty
Prediction
(k) = D, fo(x(k[k),0),  A(k) = Dy fr(x(k|k),0),
x(k + 1[k) = fr(x(k|k),0),
P(k+1lk) = ®(k)P(k|k)®(k)T + AK)Q(k)A(K)T .
Update

H(k+1) = Dyhyp(%(k + 1]k),0), H(k 4+ 1) = Dy,hi(X(k + 1]k),0),
Kk+1)=Plk+1kHE+DTHE+1)PE+1E)H(k+1)T
+II(k + 1)R(k + DIL(k + 1)7]F,
x(k+1lk+1)=x(k+1|k) + K(k+ 1)[z(k + 1) — hgi1 (X(k + 1]k),0)],
P(k+1lk+1) = P(k+1|k) — K(k+ 1)H(k + 1)P(k + 1|k) .

Remark 1.2.1 (Drawbacks of the EKF').

1. The derivation of the Jacobian matrices are non trivial in most applications
and often lead to significant implementation difficulties

2. Smoothness of the coefficients of a dynamical system may be not required
and even they are smooth, higher than the first order terms of the Taylor
expansions can not be neglected

3. The extended Kalman filter approximates the MVE’s by Gaussian estimates.
If they are non Gaussian, e.g. bimodal, then a Gaussian ones can never ap-
proximated it well.

1.2.2 On the convergence of the EKF

In general, the convergence of the EKF algorithm to the solution of the filtering
problem may not be obtained. It depends on how good the linearized system ap-
proximates the true one, see Remark 1.2.1. The performance of the EKF depends
on

e The regularity and the behavior of the functions f and h and their derivatives
e The noises and their covariances matrices () and R
e The initialization of the algorithm

Krener [52], and Guo and Zhu [33] gave convergence results for some classes of
deterministic nonlinear systems. They considered an EKF as an observer on the
system, ie. () and R are artificial inputs to control the quality of the convergence.

Bertsekas [8] provides a non-stochastic analysis of the convergence and he interpret
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the EKF as an incremental Gauss-Newton method and uses least squares methods.
Here, we exploit directly the EKF algorithm and we give a suitable upper bound
on the error for a class of nonlinear dynamical systems. This upper bound depends
heavily on the coefficients of the system and on the covariance matrices of the noises.
Let us consider Z(k) = o{z(i), 0 < i < k}. It is clear from the algorithm that
x(k|k) and x(k + 1|k) are Z(k)-measurable. We define the following two processes:

V() = x(k) —x(k|k)
V(k) = E[V(k)|Z(k)] = E[x(k)|Z(k)] — x(k[k)

We measure the performance of the EKF with the quantity e, = E[V (k)TV (k)]'/2.
In particular,

& = B[V (k)V (k)] < B[V (K)TV (k)] (1.40)

For a class of dynamical systems, we give an upper bound for €, see Theorem 1.2.6.
This upper bound depends on the initialization, on the regularity of the functions
of the system, and on the noises and their covariances.

Suppose that the functions f and h sufficiently smooth, we make for simplicity the
following notations:

e Forall X = (Xi,...,X,) € (R")" and v € R",

Da:fli (Xla u)
X (k) = z
Dy fi (Xn, u)

e Forallz €e R* and U = (Uy,...,U,) € (R")",

Dufl%(xa Ul)
A=Y(k) = :

Dy fii (z, Un)

o Forall X = (Xy,...,X,,) € (R")™ and w € R?,

D:vhl%; (Xh ’lU)
H*(k+1) = :
D h (X, w)

e Forall z € R" and W = (Xy,..., X,,) € (RP)™,

thllﬁ(l', Wl)
f[””’w(k +1)= :

Dyhi (2, W)
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e For any differentiable function F' : (z,y) € R™ x R™ — F(z,y) € R™ we
define
DmFl(xlay)

|| D F||| = sup I : I
(%15 ng,y) E(R™)"3 XR™2 D. ™3 (ZL' y)
z n3»

In particular, | D, F'(z,y)|| < |||D.F|||. we define similarly |||D,F |||
For every k > 0,
i. There exists Xyp = (Xjp,..., XFp) € [x(k),x(k|k)]" C (R*)" and Ujgyp =
(Ufg-- - Up) € [0,u(k)]™ C (R")"™ such that
Fr(x(k), u(k)) — fu(x(k|k), 0) = &%= ®) (k) (x(k) — x(K|k)) + AXEP U5 (k)u (k)
ii. There exists Xppr1 = (Xp 515> Xpps1) € [X(B41), %(k+1]EK)]™ and W joy1 =
(Wi si1s - With) € [0,w(k + 1)]™ such that if
Ahgir = hpp (x(k + 1), w(k + 1)) = by (xX(k + 1[k), 0) ,
then
Ahpyy = HXwrrrWED (4 1y (x(k 4+ 1) — %(k + 1]k))
+f[*(k+1|/f)vwh,k+1(k +Dw(k+1)
= AP D (1O 1) (x(F) — x(k]E)

L TTXCALR), W kg1 (k+1Dw(k+1)

It follows that

Vk+1) = [I, - K(k+ l)H(k + D]S(k)V (k)
+[I, — K(k + 1) H(k + 1)]A(k)u(k)
—K(k+ DIk + Dw(k +1). (1.41)
In particular,
ENV+DPY? < Bl — K(k+ DHK +1)}(k) V (k)]
+E[{L, — K(k+ 1) H(k + 1)}A(k)u(k)]?
+E[| K (k+ DIk + L)w(k + 1)|4V2. (1.42)
From now, we suppose that the following assumptions hold
Assumption 1.5. For all £ > 0, z € R", u € (R")™ and w € (RP)™,
o A™(E)Q(k)A™ (k)T and IT"%(k + 1) R(k)II™¥(k + 1)T are invertible

e There exists positive constants 7;, ¢ = 1,2 and ~ such that
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— QE)I, IA"*(R)Q(R)A™(&)T|| <~
= IRk, (1T (k + DR(E)E (k + 1)7) < g

~ ~ -1
= (I (k + DRI (k +1)T) | < my
Assumption 1.6. There exists positive constants «;, 3;, ¢ = 1,2 and 7 such that

H‘szk|||§0517 |||Dufk|||§a27

Assumption 1.7. 7 = B,y <l and a; < 1 —+/7T.
Assumption 1.8.  P(0/0) > 0.

Under the Assumption 1.5-1.8, we obtain

Pk+1k+1)"" = Pk+1k) ' +HE+ 1) RE+1)"HE+1),

Kk+1) = Pl+1lk+ )H(k+1)TR(k+ 1) (1.43)

Lemma 1.2.2. There exists a real number 68 > 1 such that

0—1
0*r <1 and a%<T(1—97’).

Proof. For every 6 € (1,/1/7) the first inequality of the Lemma is satisfied. For
the second inequality we consider the function g defined on the interval (0, /1/7)

> 0—1 1
g(0) = T(l —0r), Vle (O,F).

The functiong is C*-class on (0, \/1/7) and for all # € (0, =) we have

<

, 1 — 762
g'(0) = 7 > 0.

Then, The function g is a strictly increasing and from the Assumption 1. 7 a? <

VT = g(ﬁ) The two inequalities are satisfied for § in (max{1, g '(a?)}, v/ /7')

Proposition 1.2.3. Let us choose a real number 6 > 1 satisfying the Lemma 1.2.2.
If | P(0[0)]] < vy, then
1

0—1
IP(EIR)] < —

1

v, Vk>0.

Remark 1.2.4. e Since o < %2(1 — 67), we choose oy such that

0—1

g —
() <ai< Tlﬂ — 05in27) (1.44)



22 1.2. THE DISCRETE EXTENDED KALMAN FILTER

e For simplicity, we denote by

~

= Qk) = AR QA (K)T

R ) DR(K)I(k+1)7
Proof. Since || P(0]0)]
suppose that || P(k|k)

‘901;21% we prove the result by induction. Let £ > 0 and
ea;%l% then

Pk +1k) = ®(k)P(k|k)®(k)" + Q(k) .
Then,

1Pk +1[R)| < lR®)1PP KR+ Q)

-1
a2t : —
o

We denote by H = H(k + 1). From the equalities (1.43) we get

Pk+1k+1) = (I,— K(k+1)H)P(k+ 1]k)
= (I, =P+ 1k+1)H"R(k+1)""H)P(k + 1|k).
This leads to
IP(k+ 1k + 1)[|(1 — 667n2y) < 6y

From (1.44) we have 1 — 3%nyy > 0 and 179%%27 < %51y, Then,
1 1

0—1
a2

[1P(k+ 1]k + 1 <

O

Corollary 1.2.5. If A\ = (0 —1)/(c0) < 1 and © = 08112y, then for all k > 0 we
have

1 {I, — K(k + 1) H(k + 1) }@Xrem® (k)| < X

2. |1, — K(k + 1) HXnrowEHD (4 1)|| < A x 1/ay
3. |K(k+1)| <\ x 0/a

From the inequality (1.42) we conclude that

A O
2% pla) P + 22%2 g

aq aq

E[|V(k+DPY? < XB[IV (k)2 + [[w(k + 1)1

The matrices (k) and R(k) are real symmetric and positive, then

QI < Elu®)?] < «llQk)
IR(E+DI < Ellw(k+DP] < mlR(k+1)]|
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It follows that

BV (k+ DPI2 < ABIVIRPI + My 22+ v 22 (149
Iterating this inequality from 0 to k we get

VP < MEVOR2+ 2020
< MNE[V(0))Y? + C% (1.46)
where
5o

(&%)
C=\n — +
yn » mm 5

The constants C' and A\ depend heavily on the functions f, h and their Jacobian
matrices, and on the covariance noises matrices (Q and R. The algorithm forgot

exponentially its initialization since \*E[|V(0)]?]"/2

— 0 as k — oo. The expression

of the constant C' shows that this upper bound is sensitive to the dimensions of
the state and the observation spaces. Finally, smaller are the numbers A\, C' and

E[|V(0)]?] better are the approximations.
To summarize we have proved the following Theorem

Theorem 1.2.6 (On the convergence of the EKF).

The EKF error is ¢, = E[(x(k) — %(k|k))(x(k) — %(k|k))T]V/2.

Suppose that the conditions of Proposition 1.2.3 hold. Let us consider
01 3,0

0[10

A
0=1)v
170 < [|P(0[0)]] < Y22, then

A
€k S AkEO—f-ﬁC

Example 1.2.7 (Convergence of the EKF). Consider the following model:
2-dim. state equation x(k + 1) = f(x(k)) + u(k)
1-dim. measurement equation z(k) = h(x(k)) + w(k)

where

o forall z = |:$1:|€R27
L2

N x1/2 + cos(zy/(2m))
f(z) [x2/2+sin($1/(2ﬂ))

(<1), ©® =006y and C = \/yn %—l— mm .
1 1
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First component of the state

0 10 20 3 40 S0 60 70 8 90 100

Second component of the state

~ ~
/\“/\V}/\x«//\+\v/“~+«\//v#”\kﬂ +\/ x\#wkvf_\h/\//J”
‘ \
X2 (k)
— x2(k|k)
20 30 40 50 60 70 80 90 100

Figure 1.3: The EKF estimate of a path of the state process x.

= h(z) = 2(1 + 2} + 23)"/?

The Gaussian noises {u(k)}; and {w(k)}x are independent with covariance matrices
given by

-3
Q) =Q = [“&0 5><0103] and R(k) = R = 100,

The Jacobian matrices of the functions f and h are given by

1 T — Sin(l'g/(2ﬂ->>
D, f(z) o { cos(w1/(2m)) T |

D,h(z) = 2[ a1/h(x) x2/h(x) ] .
In particular,
L ||D.f]| < a; =0.7421, | Dbl < fy =2 and ay = B = 1
2. |QI £~v=5x1073, |R|]| = 100 <7 = 100 and [|[R7|| =10"2 <15y = 1072

Then, 5?1,y < 1. The conditions of Proposition 1.2.3 hold for # = 2.6. In particular,

A x C'=0.416124.

0—1 A
ar 0.8292, (C =0.08571 an T
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1.0\ - Neey + AC(1 =)t
\ — E[V(E)"V (k)]

o
e}
I I N B '

0 10 20 30 40 50 60 70 80 90 100

Figure 1.4: EKF Upbound error: E[V (k)TV (k)]*/? < Mgy + AC(1 — )7L

We initialize the EKF algorithm with

%(0/0) = [;;;g]

P(0j0) — 10—2{164 H

Figure 1.3: The EKF estimate of the first and the second component of the state

9 [

vector x. The bars in the two plots represent the EKF errors, ie. /P(k|k)11

and \/P(k?“ﬂ)g,g.
Figure 1.4: Since |P(0]0)| < ~(0 — 1)/a? = 0.0145266, then Theorem 1.2.6 says
that

er = E[|x(k) — %(k|k)|?]"? < Meg + CN/(1 = N)

Example 1.2.8 (non convergent EKF algorithm). One example of non linear system
for which an EKF algorithm may fail to converge is

State equation: x(k + 1) = x(k)(1 — x(k)?) + u(k) and x(0) = 0.05
Measurement equation: z(k) = x(k)? — x(k)/2 + w(k)

where
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0.4

0.34

0.2

0.1 4 v

0.0

-0.19

-0.4- — path of x
~ -~ a(klk)

I T I I T I T
0 50 100 150 200 250 300 350 400 450 500

Figure 1.5: The EKF may fail.

e The processes u and w are Gaussian independent
e For all k >0, Flu(k)?] = Q = 0.005 and E[w(k)*] =1

This system is of high nonlinearity because of the presence of high degree polynomial

terms. In particular, the hypothesis of Theorem 1.2.6 are not satisfied indeed the
derivatives are non bounded.

We applied the EKF algorithm with the following initialization:
x(0]0) = 0.05 and P(0[0) =1.

Figure 1.5: Even a long time simulation (N = 500), the EKF path do not converge
to the true one.

Figure 1.6:

e x(k|k) approximates E[x(k)|Z]

o P(k|k) approximates E[(x(k) — E[x(k)|Z1])?| 2]
Then, E[(x(k) — x(k|k))?] and E[P(k|k)] are both approximations to E[(x(k) —
Ex (k)| 2x])%].
If the EKF gives good approximations, then E[(x(k) — x(k|k))?] — E[P(k|k)] con-
verges to zero or at least becomes small.

We simulate 100 paths of the EKF estimation to calculate E[P(k|k)] and E[(x(k) —
x(k|k))?]. The two trajectories fail to become close one to the other.
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0 50 100 150 200 250 300 350 400 450 500

Figure 1.6: The two trajectories fail to become close one to the other.






Chapter 2

Particle Filter Methods

2.1 Introduction

The stochastic filtering problem deals with the estimation of the current state of a
process X, called the signal or the state process, based on measurements supplied by
an associate process Z, called the observation process. In the Bayesian framework,
see Appendix C.1, a stochastic dynamical equation provides the prior distribution
of the state process and an observation equation gives rise to the likelihood of the
observation, and all relevant information on the state X, are included in the posterior
distribution P(Xj, € A’ZO, ..., Zj). This problem is known as the Bayesian filtering
also called the optimal filtering problem. Often the observations or measurements
arrive sequentially in time, and one is interested in estimating recursively in time the
evolving posterior distribution. The posterior distribution only admits an analytical
expression for few special models including linear Gaussian models, in that case one
derives an exact analytical recursion expression for the posterior called the Kalman
filter, see Chapter 1. However, in many realistic problems real data involve elements
of non linearity, non Gaussianity and high dimensionality which preclude analytical
solutions. For over 3 decades several approximation strategies to the optimal filter
were been proposed, for example:

e The extended Kalman filter, see Section 1.2

e The unscented filter [41, 42]

e Approximations by Gaussian sums [4, 74]

e Approximations using deterministic numerical integration methods [13]

These methods have numerous drawbacks, they depend on the dimension of the
system, they are numerically expensive and they use mainly Gaussian distributions.
Only in the past few years with the advance of computational power the Monte Carlo
method, see Appendix C.3, has gained the full status of a numerical method capa-
ble of addressing many complex applications. The sequential Monte Carlo methods,
also called particle filter methods, have been developed to address the Bayesian fil-
tering problem. These methods are very flexible, often easy to implement, and have
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the advantage of not being subject to any linearity, Gaussianity or dimensionality
hypothesis on the models.

The aim of this chapter is to present a unified general framework on particle filter
methods. We simplify some approaches for proving the validity of these numerical
methods using some different techniques to those appeared in literature, this make
them comprehensible and applicable. Also, some original developments and new
results are presented. Our work is essentially based on the works of Doucet [22, 23],
Liu and Chen [62], Crisan and Doucet [20], Doucet, Godsill and Andrieu [24], Crisan
[17], Crisan, Del Moral and Lyons [19], Arulampalam, Maskell, Gordon and Clapp
[3] and Kong, Liu and Wong [51].

The rest of the chapter is organized as follows. In Section 2.2 we apply a classical
Monte Carlo method to resolve the filtering problem. This method is only idealis-
tic since it requires the possibility of sampling from multivariate and non standard
distributions. In Section 2.3, we consider a rather general model and we prove a re-
cursion relation for the optimal filtering problem. This recursion represents the basis
for the numerical algorithms and enable us to design iterative schemes, called par-
ticle filter methods or sequential Monte Carlo methods. In Section 2.4 we present
the original particle filter algorithm and its drawbacks including the degeneracy
phenomenon. The use of importance sampling functions and branching mechanisms
allow us to surmount this degeneracy phenomenon and permit us to give a very
general particle filter algorithm. Section 2.5 deals with the almost sure convergence
of these algorithms. We prove convergence results for generic models that we apply
to particle filter algorithms. In Section 2.6, we prove the mean square convergence
and we give a rate of convergence. In Section 2.7 strategies of selection of impor-
tance sampling functions are discussed. In Section 2.8 we give a large family of
correlated and independent branching mechanisms. Examples are studied through
the Chapter supplied with comparison of different particle filter methods. In in the
remainder of this Section, we recall some properties of Markov processes and their
transition kernels.

The transition kernels of an R"-valued Markov process X = { X}, are the functions
(Kk(+,-))x defined on R™ x B(R™) by

Ky(z, A) = P(X311 € A|X), = 2).
We make the following assumption

Assumption 2.1. All probability distributions and all kernels in this Chapter are
supposed to have a density function.

Then, for all A € B(R"),

Ki(x,A) = P(Xyy1 € A’Xk =1x) = /p(xk+1|xk = x)dry,
A

Ki(z,drgyr) = p(Thya|mp = 2)dwg .
If X;; = (Xi,...,X;) and P¢; is the law of X;; on (R")~“"!  the Chapman-

1]
Kolmogorov equation gives

Pozk(dl'()k) = Wo(d.l'o)H?:lKj(l'j,l, dl‘]) . (21)
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The Remark B.1.2 affirms that we can choose the kernels Kj(+,-) to be regular. That
is, for every (k,z, A) € N x R" x B(R")

- K (z,-) is a probability measure on R"
- Ki(-, A) is bounded Borel function

For every pn € Mp(R") and every k € N, the measure pKy(+) is defined by
pEu(A) = [ (e An(de), YA€ B
Rn

In particular, uK(-) € Mp(R") .
For every ¢ € B(R"), let K¢ be the bounded Borel function defined on R™ by

Kw@z/y@M@@%VMR”

Then,
pKpp = / o(y) Ki(z, dy)p(de) .
The Markov process X has a Feller transition kernel if for every ¢ € Cp(R™),
Krp € CG(R™) .
If 7 = o{X;, 0 <j <k}, the Markov property implies that

Elp(Xey )| Fi] = Elp(Xiy1)| Xa] = Kep(Xy), Vo € B(R™).

2.2 Perfect Monte Carlo sampling

Let us consider the following model:

1. The state X = {X3}, is a Markov process of initial distribution 7y and a
transition kernel Ky (zy_1,dxy) = p(zg|rr_1) dxy,

2. The observation process Z = {Z;}x is conditionally independent given the
process X, of marginal distribution with probability density function p(zx|z)

Let us denote by Xo.x = (Xo, ..., Xy) and by Zox = (Zo, ..., Zk)-
Aim: Estimate recursively p(zo.x|z0.x) and essentially its associated feature p(xg|zo.x)

Using Bayes’ rule, we get the following recursive formula

P(Zhg1|Thg1)D(Tpg1 | T1))
P(2rt1]20:)

p(lﬂo:k+1|2’0:k+1) = p(ﬂCo:k|ZO:k) X

This recursion is only academic in the sense that we cannot compute the densi-
ties p(xo.k+1|20.k41) and its marginal and we can not evaluate the associated high-
dimensional integrals.
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Suppose that we are able to simulate N i.i.d. random samples {XOk, 1 <i<N}
according to p(zo.x|z0.k), then an empirical estimate of this distribution is given by

Tokk(dTok) = 25{)( (dzox) -

The rate of convergence of this method is of order greater or equal to N%/? and it is
independent of the dimension k£ x n, see appendix C.3. Unfortunately, it is usually
impossible to sample efficiently from the posterior distribution p(zg.x|20.x) at any
time £, since it is multivariate, non standard and only known up to a proportional
constant.

2.3 Bayesian model to the filtering problem

The state process: An R"-valued Markov process {X, k € N} with a Feller
transition kernel Ky(z, dy)

The observation process: An R™-valued stochastic process {Zy, k € N} such
that

The function A : N x R™ x R™ — R™ is a Borel measurable function such that:

1. For all k € N, the function hy(-,-) is continuous on R™ x R™.

2. For all (k,z) € N x R™, hy(x,-) is a C!-diffeomorphism of R™. We
denote h; ' (x,-) its inverse.

3. For all (k,z) € N x R",

Oz, 2) = |det(aa hil(z,2))] >0, VzeR™.

4. For all (k,z) € N x R™, & (-, 2) is bounded continuous.

The random vectors Wy : 2 — R™ are independent, independent of the process
X with laws absolutely continuous w.r.t. the Lebesgue measure on R™ and the
densities gi(+) of W} are bounded and continuous.

Remark 2.3.1. If the noise in the observation process is simply additive, ie. Z; =
hi(X%) + Wi, then 2., 3. and 4. hold and ®x(z,z) =1 for all z € R™.

Let 0 <i < j < oo, denoting by X, = (Xi,...,Xj), Zij = (Zi,..., Z5), P
the law of X;; on (R")7=*! and P, the law of Z;; on (R™)7~**!. The filtering
problem consists of computing the conditional distribution of the state given the
observations from time 0 to the current time k, denoted by 7y, that is

7Tk|k(A) = P(Xk - A}ZO:k; = ZO:k) , VA e B(Rn)
TEkP = E[@(Xk)}zo;k = Zo;k] , Vo€ B(R")
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where 20 = (20,...,2¢) € (R™)*! is a generic path in the space of paths of the
observation process from time 0 to time k. The predicted conditional probability
measure Tyg_1 18

Tik-1(A) = P(Xy € A}ZO:k—l = 20:k-1)
k=1 = Elp(Xp)| Zor—1 = 20:6-1] -

The main result of this Section is a recursion relation satisfied by m, and mpp_1.
It represents the basis for the optimal Bayesian solution of the filtering problem.

Theorem 2.3.2. For a fized path of the observation process from time 0 to time k,
Zok = 200 € (R™)F1 we have

Prediction
Tk+1|k = 7Tk|kKk (2-3>
Update
d7Tk+1\k+1 _ Gk+1 (2.4)
A1)k Jan Gr1 (@) Ty (d)

where the function g, € Cy(R™) defined by Gi(-) = gr(hy (-, 2)) @k (-, 21).-

Remark 2.3.3. 1. Since Zy = 0 then myg = 7, where my is the law of Xj.
2. It is easy to see that for any measurable function ¢ : R® — R, the recursion
relations (2.3) and (2.4) imply

(Ths1i0) = (Thpe, Ki) Prediction . (2.5)
(Mo, ) = (M\k—l,§k)_1(ﬂk|k—1>§k<ﬂ) Update . (2.6)

For the proof of Theorem 2.3.2 we need the following Lemma. Let A the Lebesgue
measure on (R™)7~F! then

Lemma 2.3.4. P}, is absolutely continuous w.r.t. A and its Radon-Nikodym deriva-
tive 1s given by

Vi () = / T (b (e 5)) @, ) P (). (27)
dA (Rn)g—erl

where dx;; = dx; X -+ X dx;.

Proof. Let Cy.; = C; x - -- x C;, where Cj, ..., C; are arbitrary in B(R™). Using the
property (B.1) of the conditional expectation, we get

P:(Cij) = P({Zi; € Ciy})

= /( - P(ZZJ S Oi;j}Xi;j = .I'Z])F)Zx](dl'l]) . (28)



34 2.3. BAYESIAN MODEL TO THE FILTERING PROBLEM

But the processes X and W are independent and the Wy’s are independent, then

P(Z;; € Oi:j’Xi:j = Tiyy) = E[HiZiICk(hk(Xlﬁ W) ’XU = Tig]
= E[Hi:ilck(hk(l‘kawk))]
- Hi;:iE[Ick(hk(xkaWk))]
))®

where I is the characteristic function of the Borel set C. The equality (2.9) is
obtained by a direct application of Theorem 2.2.7. in [40].
We substitute (2.9) and (2.8) and we apply Fubini’s theorem we obtain (2.7). O

Proof. of Theorem 2.3.2
Since Xo.x11 and Wy are independent, then for all ¢ € B(R™):

Kyp(Xe) = Elp(Xi1)| Fi] = Elo(Xi)|o(Fir , o(Wou)] -
But Zyy, is o(Fy, 0(Wo.))-measurable, then

Ele(Xki1)| Zox] = E[Elp(Xe1)|o(Fi , o(Wour)]| Zowk)
EKrp(Xe)| Zox]

which implies the first equality (2.3).
Using Lemma 2.3.4, we obtain the second equality (2.4) if we prove that for all

A e B(R")
S 9k (@) -1 (day,)
Jan G (@) Thppe—1 (d)
Let Co.p = Cp X -+ x Cy, where Cy, ..., Cy are arbitrary in B(R™). The property
(B.1) of the conditional probability implies

Tre(A) = Py -as. (2.10)

/ ek (A) Fox(dzon) - = / P(Xy, € A|Zow = 20) Pi(dzo:r)
Co:k Co.x

= P({Xk € Ay N {Zox € Cox}). (2.11)
Then, it is sufficient to prove the following:

S G () Trpe—1 (dazy,)
Co: f]Rn gk(l')ﬂ-k\k:—l (dl')

P()Z:k(dZO;k) = P({Xk € A} N {Z();k € CO:k}) . (212)

Let us denote by 5, (dxrdzo..—1) the joint pdf of X and Zp, 1. We claim the
following identities:

a. P(Zy € Cp| Xy = an, Zo—1 = 20-1) = Jo, Gr(zr)dz
b. Plf,bz;kq(dxkd%:k—l) = Wk\kfl(dxk)Poz;kfl(dZO:k—l)

C. Pozzk(dZO:k) = fRn f]k(xk)ﬂ'k\k—l(dfk)dzkpoz;k_l(dzo:kfl)
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These equalities will be proved here later on.

Let us denote R
Ja G (en) Trgp— (dxy)

Coe Jn G (@) i1 (d)
If we use together the identities a., b. and c. we get

A = / /gk(xk)ﬂ-kk1(dxk)dzkpozzk—1(dzoikl)
Cox J A

A:

= / (/ G (@r)dz) g1 (d) Pg o1 (dzom—1)
AxCo:k—1 Ck

= / P(Zy, € Ci| Xy = ak, Zow—1 = ZOk—l)PIzbZ:k—l(dxdeO:k—l)
AxCo.p—1

= P({X), € A} n{Zox € Cou}).

Finally, let us show the identities a., b. and c.
Since o(X, Zo.x—1 C 0(Xo.k, Wo—1), we obtain

P(Zk = Ck’Xk’ Zozkfl) = E[Ick (Zk)’Xka ZO:kfl]
E[P(Zy € Ci| X0k, Won-1)| X Zow—1] - (2.13)

But Z, and Wy.,._, are independent, then
P(Zk € Ck’XO:ka Wo:kq) = P(Zk € Ck}Xo:k)
= P(Zow € R™)" x Ci|Xou)
Cr
From (2.13) and (2.14) we derive

P(Zy, € Cx| X, Zow-1) :/ Gr(Xk)dzy, .

Cy,
This proves a.
For all A € B(R"), let us denote W(A) = P((Xk, Zok—1) € A X Co:k,l). Then,

V(A) = /c P(Xy € A’ZO:kq = 2os—1) Pyp_1 (dzo.-1)
0:k—1

- / Trik—1(dk) Po g1 (dzo-1)
AxCo.—1

This gives the equality b.
We use equality b. to prove the equality c. In fact, we have

Pozk(O()k) = P({Zk € Ok} N {Xk; S Rn} N {ZO:k;—l S OO:k—l})
= /P(Zk S Ck}Xk = T, Zok—1 = ZO:kfl)P/f/’é:k_l(dxkdzo:kfﬁ

= / /§k($k)d2k7%k—1(d$k)PoZ:k—1(d20:k—1)
R xCp:p—1 J/ Cy,

= / / §k(xk)ﬂk|k_1(d:ck)dsz(ikfl(dzOZk,l) . (215)
C10:/@ n
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The equality c. is expressed by (2.15). O

Remark 2.3.5. Similar results and proofs was given in [1] in the case of additive
noise in the observation equation.

2.4 Particle filter methods

Computation of the posterior density my,(dz;) is in general an exercise in high
dimension numerical integration and it seems better to design iterative schemes
imitating the exact one, see Theorem 2.3.2. The particle filter methods proceed
in this manner. These methods are very flexible, easy to implement, parallelizable
and applicable in very general setting. More precisely, a particle filter method is a
recursive algorithm based on the equations (2.3) and (2.4) that produces, at each
time k, a cloud of particles. The empirical measure associated to these particles
converges in some sense to the distribution |, as the number of particles growths.
At time k, the algorithm generates N particles {Xlgi)}lgigj\[ with an associated
empirical measure

T (dwr) = N 25{)((2)} dzy,)

where 0,y (dxy) denotes the delta-Dirac measure at the point x.
The algorithm is recursive in the sense that {X ,Ef)}lgig n are produced using the

observation at time k& and the particles {X Igi_)l}lgig ~ produced at time k£ — 1. Recall
that Theorem 2.3.2 states that

Prediction
Thik—1 = Th—1|k—18k—1 (2.16)

Update
dmge i

A1 fgn Gr(2)Thp—1(d) (2.17)

Then, intuitively we follow these recursions. Suppose that a set of particles { X lg;i_)l}lgig N
distributed approximately according to mj_1jx—1(dzi—1) is given, then the associated
empirical measure

N
1
7Tk: 1k— (drp—y) = NZ (X (drg—1) .

is an approximation to m;_j;—1. In the prediction stage, we sample N particles:

X9~ K (X9, dxy), 1<i<N. (2.18)
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Remark 2.4.1. In the prediction stage, instead of sampling from Kk,l(X,gill, dxy),
Crisan and Doucet in [2] propose to sample from

K- 17Tk; 1k— 1 (doy) = k 1>d='75k)

”MZ

The new particles {)N(,gi)}lgigv approximate 7y ,—1(dzy) ie. the associated em-
pirical distribution

is an approximation to my;—1. Updating means that one plugs the measure (2.19) in
the Update stage equation (2.17) to get Wk‘k(dfk) the Monte Carlo approximation
of Tgk(dry—1), then

f]k(lfk)ﬂgk,l(d%)

~N
Toe(dey) = =
e Jan gk(xk)ﬂli\(kﬂ(dxk)
N ~ o (%
S (X8 g, (da)

SV (X

= Zwk (X9 (dxy,)
(i) _ (X))

where w, X gk(f( ,gz)) are the so-called importance weights. The

SN (X
~N . . . . . . .

measure ., is a weighted empirical measure approximation of ;. The aim of a

particle filter method is to obtain an unweighted empirical measure approximation

of the form

ik (day) = ~ Zé{xw} dxy,) . (2.20)

A resampling stage is used for duplicating the particles X (@) having high weights
and discarding the others to focus on the zones of high posterior probabilities. This
is can be achieved for example by sampling N times from the weighted empir-
ical measure ﬁ'é\(k(dfk). In fact, it generates N,gz) copies of the ith particle and

the Néi)’s are distributed according to a multinomial distribution with parameters

(N; wz(l), e ,wZ(N)). Consequently, the total number of particles alive during the

system evolution don’t change from a generation to another. Moreover,
E[N,ii)] = Nwz(i) and UCLT(N( )) ka( )(1 — wz(i)) : (2.21)

The variances var(N ,gi))’s are referred to us as the Monte Carlo variations of the
resampling stage. We summarize with the particle filter algorithm
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Particle Filter Algorithm

Initialization stage: Sample N, particles Xo(i) ~ Ty = To|o-

7T0‘0 (dzo) = 25 X(z)} (dxg) .

Prediction stage: At time k—1 (k > 1), Sample N particles X,gi) ~ Kk_l(Xlgizl, dxy,)
to get an approximation to 7x_1

N1
- 1
e (dzg) = o > Oz, (dar) .
o=l

Update stage: For 1 < ¢ < N calculating the weights wz(i) x gk(f(,f)). The
weighted empirical distribution approximation to 7y is

7rk|k (dzg) = Zwk (X0 dxk)

Resampling stage: Sample N particles X lii) ~ ﬁ,i\fk. The unweighted empirical

distribution approximation to my is

Wli\(k(dxw = NL,C Zi\fkl 5{)( }(dfk) .

Example 2.4.2. Let us consider the following nonlinear model [23, 49]:
State: Xj1 = $ X + 25X,/(1 + X?) + 8cos(1.2k) + Uy
Observation: Z;, = X?/20 + W,

where X, ~ N(0,10), U, ~ N(0,10) and W, ~ N(0,1).

Figure 2.1: We use the particle filter (PF) method with 60 particles to estimate a
path of the process X. The PF estimate is better than the EKF estimate.

Figure 2.2: A particle filter method provides estimations of the posterior filtered
distribution p(X(k)|Z(0 : k)). This can be not given by the EKF method for such
nonlinear system.

The particle filter algorithm is very intuitive and easy to implement, but unfor-

tunately suffers from numerous drawbacks:

1. In the prediction stage: Some times it is difficult or impossible to sample
efficiently from the density Kj(z,dx) in (2.18)
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30 T

path of X . I |

20| ——————— PF estimation

Figure 2.1: A comparison between the EKF and the PF methods in estimating a
path of a process X.

2. In the update stage: The degeneracy phenomenon that comes up in practice.
Since the weights w,:(z) o Gr(X ,gz)), this phenomenon happen when the function
Jr generates all but few importance weights very close to zero, see figure 2.3.
Then, essentially only few particles will be duplicated and the others discarded
and we have no diversity in the next generations

3. In the resampling stage: A multinomial branching mechanism is used. This
can introduce a large Monte Carlo variation, see (2.21)

To avoid the problem of sampling directly from Kj_i(xx_1,dxy) in (2.18) and

reduce the degeneracy phenomenon we sample the particles X ,gi) from a new kernel
f(k,l(X,gi_)l, dxy) instead of Kk,l(X,gi_)l, dxy).
In the resampling stage, others branching mechanisms will be proposed. These
mechanisms perform lowers variances, see (2.21), and reduce the degeneracy phe-
nomenon. A branching mechanism depends on the weight of each particle and on
the past trajectories of all the particles. This causes the total number of particles
N to be time dependent, ie. N = Nj.
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0.25

200

Figure 2.2: The Posterior distribution p(Xy|Zy.) using 160 particles

New prediction stage: Let us denote
k—1

k-1
Fro1=0{No,..., Np_1; U{X;Z)}lgigjvj ; U{X]('z)}lgiSNj} : (2.22)
j=1

§=0
We sample N = N,_; independent particles {X’ ,ff)}l given fk,l as

XY~ K (XY, dxy), 1<i<N. (2.23)
In particular, for all ¢ € B(R™),

Elp(X0)| o] = / p(an) Kir (XL, dy) (2.24)

The new transition kernels (K});, are chosen such that:

i. We can easily sample from f(k_l(xk_l, dzy) for all z;,_, € R™.
ii. The new weights produced by the new kernels have better properties.

Remark 2.4.3. Under general conditions, several choices on the kernels (K}); will
be discussed in the Section 2.2.

We denote by 7?,]:" x_, the empirical measure associated with the particles {X ,gi)}, ie.

N
- 1
=1

~N . . . -
Tjk—1 15 an approximation to m_jj—1 Kp_1.
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XOED 3O X X0 xOxO

Figure 2.3: X ,5;4) has a high weight while the other have weights close to zero.

New update stage: Let ¢ € B(R"). The two equations (2.16) and (2.17) give us
the following:
First,

(T ) = /Rw(xt)ﬂ'kk(dxk)

Jen (@) i (k) Thj—1 (dazy,)
Jan Gk (@r) Tpe—1 (dg)

(2.26)

Second, if we denote by I = intrnp(x;) i (k) Trp—1(dxy), then

I = /@(%)ﬁk(%) K1 (zp—1, dzg)mh—1jp—1(dri—1)
R" Rn
gr(Tp) Kp_1(xp_1,dxy) ~

= / 90(3%)/ il ~k) k-1t k)kal(xkfladxk)ﬂkfukfl(dxkfl)
n n kal(ﬂﬁkq,dxk)

= / 2<P(9€t)1l7k(9€k71,951{)[%1{71(3%71,dil?k)ﬂkfl\kfl(dfﬂkq) (2.27)
(R™)

where

(k) K1 (zg—1, dxy)
K1 (zp—1, dxy)

’Lbk(l'kfl,l'k) = (228)

The kernel function K r—1 may depend on the observations Z.,, but not on the Z;’s
for ¢ > k. Moreover, using Assumption 2.1,

K’kfl(xkfla dﬂ?k) = ]5($k|xk717 Zo:k)dfﬂk .
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The functions {p(zx|zk_1, z0.) }x are called importance sampling functions. Choos-

ing a kernel f(k_l is equivalent to choose an importance function p(zy|x,_1, 20.). In

particular,

r(@r)p (k| Tr—1)
P(wk|Tr-1, 20)

Plugging (2.27) in (2.26) where we take ¢ = 1 for the inverse term in (2.26). Then,

an approximation to (mﬂk, <p) is given by

7Tk;|k> E w

Wi (T—1, Tk) = (2.29)

where, forall 1 <i < N, w,(:) is the normalized weight of the particle X ,(:) given by

~ (1) ()
W — e X7 (2.30)
k‘ — N N N ~ 7. . .
Zj:l wk‘(X/gJ—)lv X/EJ))
An approximation to 7y, is given by
Wk‘k (dzy) = Zwk {X(z)}(dxk) . (2.31)
New resampling stage: Let us denote by
k—1 . koo
Fro1 = U{No yoeos Neo1s U{X](-Z)}lgz‘gzvj ) U{X;Z)}lgz‘gzvj} (2-32)
j=0 j=1

If Nk(f) is the number of offsprings of the particle X ,gi), the branching mechanism is
generally chosen such that for some constant C' > 0 and for all ¢ € C,(R")

EIN|Fi) = wi!Noy,  (233)
Ni—1
i v (i Np_1 2
E|| > NPo(XP) = Nea (7 0) ) Feca] < CONeallel? (2.34)
=1

At the end of this stage, we obtain Ny = ZZN:’T ! N,gi) particles {X ,ff)} indexed as

follows
j—1

J
X=X 1< N 1Y ND <i< YN (2.39)
=1 =
In Section 2.8, we will give several branching mechanisms.
Next, we give three properties of the evolution of the number of particles

Proposition 2.4.4. For every k € N, there exist a constant C = C(k) > 0 such
that
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1. E[Nk] = NO
2. P(Nj, = 0) < C(k)Ny"

3. Bl —1]") < C(k) N
Proof. We have the following two properties:
i. Np_1 is Fi_i-measurable.
1N, = SV N on {Ny_y # 0},
If Iyn, ,-0p the indicator function of the set {Ny_; # 0}, then

Nk_1

ENW|Fia] = Twiz0p Y BINY|Fici]

=1

Nk_1 A
= I{Nk—ﬁéo} Z wl(gZ)Nk—l
i=1

= Ng-1.

Then, Ny is an Fj, -martingale and E[Ny] = E[Ny] = Ny. This proves 1.
Now, we suppose that 3. holds. For every € > 0, we have

< P(No— Ny > (1— €)Ny)

< Gl -1 (2.36)
O(k) N

< T—o2N? (2.37)

where we have applied Doob’s inequality in (2.36). This proves 2.
To prove 3., we take the expectation in both side in inequality (2.34) with ¢ = 1,
we get

E[|Ny — Ny_1]*] < CE[N,_1] = CNy . (2.38)

In particular,

E[|N; — NoJ!] < CNp.

The property holds for £ = 1. By induction, suppose that there exists a positive
constant C'(k — 1) > 0 such that

E[|Np_1 — No|2] < C(k —1)Np.
This implies that

BNy = NoP] < 2{BlINe— Nys[F] + BN, — NoPl}
< 2{CE[Ng_1]+ C(k —1)No}
< 2(C+C(k—1))Ny.
It is sufficient to take C(k) = 2(C + C'(k — 1)). The proof is complete. O

To finish this section, we give in the next a generic and very general algorithm
for the filtering problem.
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General Particle Filter Algorithm

Initialization stage: Sample N, particles Xéi) ~ Ty = To|o-

7T0\0(053170 A Z(S{X (dxo) .

Prediction stage: At time k—1 (k > 1), Sample Nj_; particles 5:,(;) ~ W,iv_l‘k_lf%k,l(dxk)

according to (2.23) to get an approximation to ﬁk,l‘k,lkk,l
Ny
1 k—1

Pl (doe) = — > Oz, (day).
=1

Update stage For 1 < ¢ < Nj_; calculating the weights w,(j) x w(X,gill,)N(,gi))
w.r.t. (2.28). The weighted empirical distribution approximation to my, is

7rk|k (dzg) = Zw (X0 dxk)

Resampling stage: A fixed branching mechanism is applied to each particle X G )
(@) offsprings. If Ny = vakl ! N,E ) one get by (2.35) a new set of

particles {X }1<Z< ~,- The unweighted empirical distribution approximation
to Tk is

which gives NU k

ﬂ-l]c\(k(dxk) — N, Zf\fkl 5{)( (dmk)

2.5 Generic model and convergence results

Denoting by P(R™) the space of probability measures on R"™ and by Mg(R") the
space of finite measures on R™. It is clear that P(R") C Mp(R").
The weak convergence on M p(R") is defined by

{uy —p in Mp(R")} <= {(un,0) = (1,0), Ve Cp(R")},

The weak convergence is defined similarly on P(R").
Let us consider a countable family {¢}r>1 C Cp(R™) which is convergence deter-
mining, see [26], in Mp(R"). That is,

{uny — p in Mp(R")} <= {(un, o) = (1, 01), YV K},

This allow us to define the distance d(-,-) by

22 K| — (14, o)

||90k:||
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The topology generated by this distance is called the weak topology. Its restriction
on P(R") gives the weak topology on P(R™). In particular, for any measure p and
sequence {uy} in Mp(R"™) (or in P(R™))

pn — pp= d(pn, ) = 0.

A random measure is a random variable with values in M p(R"). A sequence {u"™*}

of random measures is said to be convergent to the random measure p* in Mpg(R")
a.s. if for almost every w € 2

(W, 0) = (u¥,9) as N —oo, VygeCGR"
or, equivalently
A ;) -0 as N — oo as.
2.5.1 Prediction-Update
Consider a kernel K(-,-) on R™ x B(R") satisfying the following properties:
Properties 2.5.1. i. For all z € R", K(z,-) € P(R")
ii. For all A € B(R"), K(-, A) is a bounded Borel function

iii. For all ¢ € C(R"), K¢ € Cy(R")
where Ko (z) = [p. o(y) K (z, dy)

Let us fix a probability measure p € P(R"™). We define the probability v on R”
by

)= [ @Koty Vo GE).

Suppose that there exists a sequence of random vectors, not necessarily indepen-
dents, U; : © — R™, i > 1, such that the associated empirical measure u(dz) =
* 2511 d¢u,y(dx) converges to p in P(R™) for almost every w € €. That is,

N
1
v = ~ Z Siu;wyy — 1 in P(R™)  for almost all w.

i=1

We fix a realization {u;};>1 of the sequence {U;}, i.e. u; = U;(w) for some w € €2,
such that

N
1
N = 5 ;‘ Susy — o in P(R™). (2.39)
Let V;: Q@ — R™, ¢ > 1 be a sequence of i.i.d. random vectors such that
Vi ~ K(u;,dx), foralli>1. (2.40)

We denote by vV the empirical measure associated with the V;’s, ie.

N
1
VN (dz) = ~ 2 Sy (dz) .
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Remark 2.5.2. The measure p will play the role of mj_1x—1, the kernel K the role of

the kernel K;_; and v of Th—1|k— 1Kk 1. The correspondmg approximations p” and

N
vV are successively associated to Wk_l‘k_l and Wk‘k_l

Let W : R™ x R" — R be a continuous, bounded and strictly positive function.
Define the probability measure A on R™ by

Jpnxmn (@)W (y, ) K (y, dz) p(dy)
Sz e Wy, ©) K (y, do)u(dy)

(A, ) = Vi € Cy(R™). (2.41)

Also, we define the random weighted empirical measure A on R™ by

N

M (da) = > Wb, (de),
=1

where

wo - W Vi)
N N :
Zj:l W (u;,Vj)

Remark 2.5.3. The measure A is associated to the measure 7y, t he function W (-, -)
is associated to the function (-, -), and the approximation AV to .

Theorem 2.5.4. For almost every w € 2
ZW W)y — A in P(R"). (2.42)

For the proof of this Theorem we need the following Lemma:

Lemma 2.5.5. The empirical measure associated to the set {(Vi,u;); 1 <i < N}
converges weakly almost surely to the probability measure defined on R™ x R™ by

K(y,dz)u(dy), ie. ¥V (-,-) € Cp(R" x R")

~ Zw ), u;) — (@, y) K (y, de)u(dy) as N — oo,

(Rm)2
for almost all w in €.

Proof. Let ¥(-,-) € Cp(R™ x R"). If a(dedy) = K(y,dx)u(dy) and o™¥¥(dzdy) =
* SV 04V, (w),us} (dxdy), we need to prove that

(™ ) — (a,90) = 0 as N — oo.

We define the function ¢ € Cy(R™) by

o(y) = . U(z,y)K (y,dx), Yy eR".
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Then, (a,v) = (u, p) and
(@™, ) = (o, ) = (@™, 9) — (1™, 9) + (1™, 9) — (1, ) -
Since (1, ) — (i, ) = (o, 1)) as N — oo, it remains to prove that
(™ ) — (uV, ) — 0 as N — 0o a.s. . (2.43)
First, we have
LN
=N ZZl<p(7,bz) = Z 1/1 x,uy) K (u;, dz) .
Second, from (2.40) we get
Ep(Vi,w)] = A oz, ui) K (ui, dz) . (2.44)

We conclude that

N
1
(@ 0) = (,9) = 3 3 (sWw) = [ wlo ) K o)
i=1 R®
For simplicity we denote for all 1 <i < N

Ay = (Vi u;) — . U(x,u;) K (u;, dz) .

In particular, for all 1 <7 < N, }Al} < 2||¥||. Using the independency of the V’s

and the identity (2.44), we get
El((n", ) — @, 0))"] = B3 dw)’

=1

- FLEE) g Y E(a) (Au)]

1<ii#ia <N

< Lot ey =)o

N4
< Oy
This implies that .
ED (1™, 0) — (@™, 9))"] < o0
N=1

Then, _ N o) — (o™ ! < 0 a.s. and for almost all w
N=1 \\# ¥
(N, @) — (@™ 1) — 0 as N — oo.

which proves (2.43) and the proof is complete.
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Proof. (Theorem 2.5.4)
We apply Lemma 2.5.5 successively for ¢(z,y) = ¢(x)W (y, z) and ¢ (z,y) = W(y, z),
we get almost surely as N — oo,

T AW V) — [ el WK ). (249
W) — [ WK (. doatd). (2.46)

Since the function W is strictly positive, then for all ¢ € Cy(R™)
¥ Zfil (Vi)W (u;, V;) . f(Rn)2 (@)W (y, ) K (y, dz)p(dy)
L3 W, Vi) Jogrye Wy, 2) K (y, da) u(dy)
This complete the proof. O

(2.47)

2.5.2 Resampling

Definition 2.5.6. A probability measure v € P(R") satisfies the branch property
if for any integer valued random variable N satisfying

E[NJ=N>1, P(N=0)<CN~! and E[|% —1]°] < CON7L, (2.48)

where C' > 0, there exists a sequence of random variables §; : @ — R", j > 1,
identically distributed w.r.t. v, but not necessarily independent, such that for all
p e Cb(]Rn)
E[L 0&)] = N(vy),
~ 2
E[| X 0&) = N(v,e)|[ 1< CNJlgl|?.

We correspond to the pair (v, N) the random measure 7V:* defined by

e (dr) = ﬁzﬁf)%w}(dfﬂ) it w¢ {N=0},

phw = 0 if we{N=0}.

(2.49)

The random measure 7™ is almost surely a probability measure.

Let us fix a probability measure v and consider a sequence {v;};>; converging to v
in P(R™). Suppose that the both v and {1}, satisfy the branch property uniformly,
ie. for the same constant C.

We denote by ﬂlN “ the corresponding measure to the pair(v;, N).

Theorem 2.5.7. Let { Ny }i>0 a sequence of strictly positive integers such that
— 1
E — < 0. (2.50)
Ny
k=1

Then, for almost all w € Q2 and for all ¢ € Cy(R™),

(5 ) — (v, ) as k,1 — oo. (2.51)
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Proof. Since (l/l, gp) — (1/, 90), it is sufficient to prove that for every [ > 1

(5 0) — (1, 0) — 0 as k — 00

We write Q = Q, U Q;, where Q;, = { N}, # 0}. From (2.48) we get

- _ 1 1
P(N,=0)=P(%) <Cj— and P(Q) >1—-C—
Nk Nk;

Then,

k(W)
2

(v, )| dP(w)

El[(7,¢) — (n,9)|]

7j=1
+CH@0H2Nk . (2.52)

We decompose the integral term in (2.52) as

|...|2dP:/ |...|2dP+/ |...|2dP = Ay + Ay,
Qe Qr Q2

where Q) = QLU O}, O = {w € Qy, [Ni(w) — Ny < fe} and QF = O \ Q. Since
E[(%—: —1)?] < CN;*, see (2.48), we obtain

~ N,
P) < P({w, INiw) - N> )
N N,
< L E|I= -1
< 2?°C)N;? (2.53)
The first term A;: For all w € QL we have N#(w) < % then
Ay < }Zw&J — Ni(v, )| ]
< <i>2 x CNlgl?
= 5
< 2°Clll*N; (2.54)
The second term A,: If we use (2.53), we get
1 Ny (w)
Ay = | (&) = (n,9)dP(w)
a2 Nj(w) ; ’
1 Ny (w) )
| ) dP(w)
o2 Ni(w)
< 2'CllelPN; T, (2.55)



50 2.5. GENERIC MODEL AND CONVERGENCE RESULTS

Taking together (2.52), (2.54) and (2.55) we obtain a constant I' = I'([, ¢) such that
B[\, ) — (u, )[)] < TN . (2.56)

It follows that

ER 1™ ¢) = @) ] ST Y N <oo.

k=1 k=1

and hence almost surely

ST 0) = () < 0.

00
k=1

which implies that (7%, ) — (1, ) — 0 as k — oo. This complete the proof [

2.5.3 Application to the particle filter: almost sure convergence

We will apply Theorem 2.5.4 and Theorem 2.5.7 to obtain the almost sure conver-
gence of the particle filter algorithm.
In the Prediction-Update stage we suppose that for all k£ > 1:

i. The new transition kernel Kj(-, ) satisfies the conditions of properties 2.5.1

ii. The weight function wg(,-), see (2.28), is bounded, continuous and strictly
positive

Then, an application of theorem 2.5.4 gives

Proposition 2.5.8. The sequence ﬁﬁk given in (2.31) converges to Ty as the num-
ber of particles N — oo almost surely.

For every k > 0, ﬁfc\fk is a weighted empirical measure. The resampling stage
gives an unweighted empirical measure 7Tl]€\|7k. The resampling stage satisfies the
conditions in Proposition 2.4.4, then the branch property holds. An application of
Theorem 2.5.7 gives

Proposition 2.5.9. Let us consider a sequence {Ng}jzl of strictly positive integers
such that

j=1

If the branching mechanism satisfies the conditions (2.33) and (2.34), then for all
k>0

N} .
Tk — Thlk S Jj — 00 @.s.

Remark 2.5.10. We will see in Section 2.8 that such branching mechanisms exist.
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2.6 Mean square convergence of the particle filter

2.6.1 Convergence results

We still suppose that
i. The kernels {K(-, )} satisfy the conditions of Properties 2.5.1

ii. The weight functions wg(-,-) are bounded, continuous and strictly positive

iii. The branching mechanism satisfies the conditions (2.33) and (2.34)

The Proposition 2.5.8 and Proposition 2.5.9 show that the measure ﬂﬁ,’; converges

weakly to the measure 7. Although the measures defined by the particle filter
algorithm converge weakly to the right measure, we have no idea about the rate of
the convergence. To this end we use the mean square convergence instead of the
weak convergence.

A sequence of random measures {u™“}y converges in mean square to the random
measure p¢ in Mp(R"™) (or in P(R"™)) if

Jim B[((1Y9) = (1,9))]=0, ¥ ¢ eBR".

For this mode of convergence we will show that, for every k£ > 0, the sequence of
measures W,i\(,’; converges to the measure ), as the initial number of particles N
grows to infinity and we obtain a rate of convergence proportional to 1/Ny. In
particular, this convergence is independent of the state and the observation space
dimensions.

The following two Propositions state that a mean square error proportional to 1/Ny

is propagated while time evolves.

Proposition 2.6.1. [Prediction-Update stage] Let us assume that there ezist a con-
stant Ap_1 > 0 such that for any ¢ € B(R™)

]l
Ny

Then, there exist a constant Ay, > 0 such that for any ¢ € B(R™)

E[((W/ivffﬁg_p ©) = (Th—1jk—1, @))2] < A (2.57)

El((75%,0) — (mw )] < A ”;@! |

During the Prediction-Update stage the number of particles don’t change, ie. Ny =
Ni_1.

Proposition 2.6.2. [the Resampling stage] Let us assume that there exist a constant
Ay > 0 such that for any ¢ € B(R™)

<N 2 o & el
Bl((Fi™ ) = (M )] < Aeo - (2.58)
Then, there ezist a constant A, > 0 such that for any ¢ € B(R™)
2
2 Y
E[((mrs 0) = (i, )] < AkH iy (2.59)

No
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2.6.2 Proofs of Propositions 2.6.1 and 2.6.2

The Prediction-Update Stage: The number of particles N, = Nj_; don’t
change, for simplicity we denote it by N.

Let us consider the measures mj_1., and ﬂ-/i‘v—l:k|k‘ on (R™)? such that for all ¢ €
B(R™ x R"):

(Th—1kfl, @) = / O(h, 1) K (h—1, dog) T 11 (dg—1)
R xR"™

1N (1) 3 (9)
(Wiiv—lzk\kaﬁb) = { NZi:l (b(g(k ’Xk_) SE g:;ig%

In particular, we have

(kalzk\ka Py,
Tk, = - 2.60
(ki #) (e 0m B0) (2.60)

(TR ko P0K)
(7N, 0) = 2 on {N>0}. (2.61)
e (W/iv—1:k|k>wk)

We claim the following Lemma that we prove later on.

Lemma 2.6.3. If the condition (2.57) holds, then there ezists a constant Ay, > 0
such that for all ¢ € B(R™ x R")

2 _ 2 LIl
E[((Wk—lzk\ka@ - (Wl]qvfl:mka(b)) ] < Ay Ny
proof of Proposition 2.6.1: For all ¢ € B(R"), we have
(e, @) — (7Y ) = (ks @01) (TR g 90k
Kk P) — ; = N =
l ik (kal:ldkawk) (W;iv,l;kwwk)
(Tk—1:k ks PWR) B (W/]cv—lzkw’(pwk) (W/]cv—hkma‘Pwk)
(kal:k|kau~}k) (kal:k|kau~}k) (kal:k|kau~}k)

(Wiiv—m\k’ piy)

GARTINTS)

1 7 ~
- m((ﬂkﬂ:kw’ pux) — (7T/]€V—1:k|ka Piy))
(TR Lok P 0k)

(7Tk—1:k|k7 wk)(”/]ﬁv—hkw W)

_|_

(ke 1ckpts k) = (TR g D)) -

Then,

_ 1 ~ ~
(T ) — (e )] < m\(ﬂk—l:kma k) — (T 1.y PO

ol o
+(7Tk71:k|k, wy,) | (The— 1kl Wre) — (g 1o W) -
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If we denote by € = E[((mkp, ¢) — (Tl @))2]1/2 and we use Lemma 2.6.3, we get

&£ < %E[((M1;kk790@k)—(71iv1;kk790@k))

2]1/2
(7Tk—1:k|ka Wy

ol o
—E L _ . /o
+(7Tk Lkl W) (ke n) (ﬂ-k—l.k\kawk)) ]

o V Arllpll x |||
(7Tk; 1kl Wi)V Ny

The result follows by taking

- Ayl |12
A g el
(kal:ldkawk)

The resampling stage:
The branching mechanism:

e Each particle X ,(j) branches to give birth to V. ,ii) offsprings
e There exists a constant C' > 0 such that for every ¢ € Cp(R"):
i BINY|F] :w,(j)z\f,H
N1 Ar(d) /=~ ~Ni_1 2 2
i B Y0 N e(@)) = Neo (75 9)| 1Pkl < CNea |l
here Fi_1 = o{No, .., Np_1; UZ{X P haien, s U {X e
where Fj,_1 = o{No, ..., Np_1; Uj:o{ j }1§z§N]-7 UJ:l{ j }1931\/,7-}

e At the end of this stage, we obtain the set {X,(j)} consisting of Nj, = ST N,ii)
particles indexed as follows

j-1 g
X,(f) :)N(lgj), 1 <7< Ny, 1+ZN1~EZ) <1< ZN’S)
1=1 =1

Remark 2.6.4. From Proposition 2.4.4 we deduce that for every £ > 0

E[|Ns1 — Ni|") <Ty(k+1)Ny and E[N7] < Ty(k)NZ, (2.62)
where I'y(k + 1) = 2*(C'(k+ 1) + C(k)) and Iy(k) = 2*(C(k) + 1).
proof of Proposition 2.6.2. On the event {N; > 0} we have

Ny, Ng—1

1 1
Wli\(]’:(dxk) Nk; ) (z)(dzk Nk Z N 5 7 (dzk)
=1

=1
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We write Q = Q,UQLUQ?Z where Qn = Q\ (QLUQZ) = {N,, = 0}, Q% = {|Np,—No| <
%0} and QF = {|Ny— No| > 22}, Then, from Proposition 2.4.4 and inequality (2.53)
we get ~

P(Q) < C(k)N; ' and P(Q3) < 22C(k)Ny*
Since, by hypothesis, inequality (2.58) holds, it is sufficient to prove that there exist
a constant A} such that

Bl((nl o) — (0] < Sl (269

In that case, we take Ay, = 2(AL + Ay) to get the inequality (2.59).
Let us prove (2.63). For all ¢ € B(R™) we denote

Nk_1

S5, = ZNIEW () = N(mgr ).
Then,
Bl 0) = Fk o)) = TP + Ellpon 3 (55,.,)
< [eIPCk)Ny' + Ellgyan ]\1,2<s;©“)21

1 2
< ellPCk)Ng ! + Ellgs — v (S5, T+ 22llell*P(2)

Ck) | : 240< )
< TOH olI* + Ellg: N2(S]ffk DT+ == llvllf2.64)
It remains the expectation term in (2.64). On Q} we have Nik < Vo’ then
1 2 2 2
E[Iﬂl N2 (S]ffk—l) ] < (FO)ZE[(Sﬁk—l) ]
8 2 8
< FgE[(Sﬁk,l) ]""F(?HSOHQE[(Nk — Ny1)?] (2.65)
The definition of the branching mechanism implies that
2 2
B[(S%,_,)71 = EIE(SK, ) [Fell
< E[C|l@l*Ny-1] = Cllel*No (2.66)

Also, from (2.62) we have
E[(Ny — Np_1)%] < Ty(k)Ng . (2.67)

Using (2.66) together with (2.67) in (2.65), we obtain the constant I'(k) = 8(I'y (k) +
(') such that

Nk_1
1 ; Ny, 2 (k)
Bllgy 3 ( 32 NOe(X0) = Nulmi )] < el (2.68)
ko i=1

Finally, we substitute this inequality in (2.64) we get (2.63) for A} = (1+24)C(k)+
['(k). The proof is complete. O
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Proof of Lemma 2.6.3:
Proof. Let us denote

L. 51? Lklk E[((Wii\ilzk\w@b)_(kal:klk’gb))z]

2. TH®) = p(X X)) — (Moo 0), forall 1 <i < N

Then,

& v = Blliveoy (M 0))7) + Bll ooy (o 1H®)Y - (2:69)

= By (me1a 0)) ] + E[I{N>O}% > (TE(@))?]

i=1
+E I{N>0} ;D YHO)TEH®)]
1<z;£]<N
_ o0 1,¢ 2,6
= &5 K|k Sk Lik|k Sk Lik|k (2.70)
We examine the three terms 527?1:k|k’ i€ {0,1,2}.

2
The first term: Sk ke = = Elinv—o (Te—1:kps, @) -
The Proposition 2.4.4 implies that

€94 < I6IPPUN = 0}) < [l6]? <’§) 2.11)

The second term: ngbl:k‘k = El{ns0p 55 Yois (Tf(@)f]
In one hand, we have

1 N

2 1
E[I{N>o}m Z (Tf(@)) ] < 4H¢HQE[I{N>O}N]
i=1
In the other hand, if we use (2.53) we get

1 1 1
E[I{N>O}N] = E[I{N>0}I{|N—NO|§N0/2}N]‘f‘E[I{N>0}I{\N—No\>NO/2}N]

2
~ T PN = No| > No/2)

IN

No
2+ 4C (k)
< -l .
< N (2.72)
Then,
0.6 1 o ko2, SH2CH)
5kl1:k|k = E[I{N>0} N2 E (T‘ (CD)) ] < 7“615“ (2.73)

=1
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The third term: Slff’l:k'k = E[I{N>0}ﬁ ZlSi#SN Tf(CD)Tf(@)]
Sjnce N = N,_; is ]—N"k,l—measurable and the particles {X ,EZ)}Z- are independent given
Fi—1, see (2.22) and (2.23), then

1 -
&l = Bllvsons D BITH@)TH(®)|Fi]]

1<i#j<N

Y E[H®)|Fra] x E[T(®)|Fpa]] -

1<i#j<N

1
= Elivs0 53

Using (2.24), we get for all 1 <i# j < N
E[Tf(@”ﬁk—l] = E[¢(X]£Z)7 Xlng)l)|ﬁk—1] - (Trkfl:k\lm ¢)
= oz, X,f_)l)l?k_l(X,f_)l, dzy) — (Te—1:kfk, @)

R

Let us denote ¢(zg_1) fRn Tp_1, Tk) Kk 1(zk—1,dzr). In particular, ¢ € B(R™)
and (7Tk71|k71>90) (- 1.k|ka¢) Moreover,

i B[TH®)|Fia] = o(X,2,) = (M1, )
i (T 0 0) = & D (X))

Then,
_ 1 ; 2
2 O EIXH(@)| BB (@)| ] = m( > (X)) — (meap9))
i] 1<i<N
—— Z X,i)l (Th—1jk— 1,<P)>2
1<z<N

= ((Wlf:v 1|k— 1790)_ (ﬂ-lf:v 1|k— 17@))2

-~ Z X,E 1 7Tk 1k— 1,<P)>2-

1<Z<N

Using (2.57) and (2.72), we get

1 2
5§f’1:k|k < 4||<D||2E[I{N>0}N] + E[((ﬂ-l]fvfl\kfla ®) — (Wli\iuk—la ©))]

A 8 +24C(k
< Sl + 7”||¢||2

8 + 24C(k) + Ay

<
= Ny

lo]*. (2.74)

Taking together (2.71), (2.73) and (2.74) we get a constant Aj > 0 such that

E[((m i 8) = (Trcrkies 0)) ] < %SII¢II2- (2.75)

The proof is complete. O
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2.7 Selection of the importance function

The importance sampling strategy is used to limit and to reduce the degener-
acy phenomenon, see figure 2.3. By considering a family of density functions
{p(zk|TK_1, 20.%) }&, called importance sample functions, the new weights of the par-
ticles are given by

(XX x 1)
XX Z0)

wi? oc (XY, X)) = (2.76)

The idea is to choose the importance function which minimizes the variance of
the importance weights given the simulated trajectory and given the observations.
Recall that

k—1 k—1
Fr1=0{No, ..., Np_1; U{X;Z)}lgz‘sz\@; U{X](Z)}lsigfvj}
j=0 J=1

2.7.1 Optimal importance function

Optimal importance function

Proposition 2.7.1. The conditional pdf p(xy|xk_1,2,) of the state Xy given the

observation Zy and the state Xj_1 1s the importance function that minimizes the

variance of the importance weight w,(f) given Fr_1. This function is called the opti-

mal importance function.
Proof. We begin by the following two observations:
i. The Theorem 2.2.7. in [40] implies that

p(zk|zr) = ge(xr) (2.77)

ii. Baye’s rule allows us to write

p(or)p(Tp—1, 2k|$k)
P(Th—1, 2k)
p(xk)P(Zk\ﬂckq, 961{)2?(1'1{71\961{)
p(zk‘xkfl)p(xkfl)
p(xk |$k71)P(2k\9€k)
el ) (2.78)

p($k|$k—1, Zk) =

Using together (2.76), (2.77) and (2.78) we get

Epaplzr 20 [Wk(Tr-1, 21)] = /’Jfk(xk1,9€k)2?($k\9€k1,2k)d37k

= /p(zk\xk)p(iﬁk|$k1)d$k

= P(Zk\xkq) .
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Using again (2.78) we get

~ ~ 2
Uarp(a:kh:k_l,zk)(wk(xk—la l’k)) - Ep(zk\zk_l,zk) [(wk‘(l‘k‘—la xk) - p(2k|$k—1)) }
= / (W (-1, 28))*p(T1|TR—1, 28 ) dg — D (23] K1)

/p2(2k|$k)192($k|$k—1)

p(il?k|33k717 Zk)

dxy, — pz(zk\xkq)
— plale) [ pelaplaloo)do 5 (alae)
= 0.
U
The optimal importance function p(xy|xg_1, zx) gives the weights
Pl 51X
(X1, )
= plalx).

w (X, X)) =

The weight w,ii) do not depend on the X ,ﬁj )’s, this allows parallelization of the sim-

ulation of the X ,f;j )’s and the evaluation of the w,gj ).

To use the optimal importance function we have to be able to sample from p(x;| X ,gz;)l, 21)
and to evaluate, up to a proportional constant, the integral

Pzl X)) = / p(eplzi)p(ae X O, )y (2.79)

This can be done for the following class of models.

Ezample 2.7.2 (Partial Gaussian state space models).
n-dimensional state equation: X, = fi(X%) + Uy
m-dimensional observation equation: 7, = C}. X, + W,

i. The processes X, U and W), are mutually independent for all k£ > 0

ii. The processes {Ux}r and {W}}, are Gaussian and

Uy ~N(0,5,), Sy >0 and Wy, ~N(0,5,), S, > 0. (2.80)

iii. For all £ > 0, (', is an m x n real matrix and the function f; : R — R" is
Borel measurable

We obtain

L. Xy Xyo1, Zy, ~ N (my, Bi)

2. p(z|Xg_1) x exp <—%(z—C’kfk(Xk_l))T(Eu—i—C’kEwC’kT)fl (z—C’kfk(Xk_l))>
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where

o= sl olsslo
me = Sp(E) fu(Xo1) + CFS, Z)

The optimality of the Kalman filter for linear Gaussian systems allow us to
compare the optimal particle filter algorithm to the original one.

Example 2.7.3. Let us consider the following 1-dimensional linear Gaussian system,

Xeyn = Xp+Us,  Xo~ N(0,10), Uy, ~ N(0,10),
Zy = Xp+ Wi, W, ~ N(0,1).

We apply the particle filter algorithms, optimal and original, using 60 particles and
using a multinomial branching mechanism, to estimate the expectation and the vari-
ance. We compare these two algorithms relatively to the Kalman filter algorithm.
The results are given in the following table:

Kalman Alg. | Opt. Part. filter | Part. filter
k | Expect.. | Var. | Expect. | Var. | Expect. | Var.
10 | -6.66 | 091 | -6.53 0.86 -6.84 | 0.83
25 -589 091 -6.14 0.92 -5.43 | 1.29
50 | -33.57 | 091 ] -33.30 | 0.58 | -31.02 | 0.04
100 | -046 |0.91 | -0.40 0.98 -0.50 | 1.11
150 | 0.481 | 0.91 0.59 0.65 0.21 0.65
200 | -21.08 {091 | -21.23 | 091 | -21.11 | 0.76
250 | -9.00 |0.91 ] -8.98 0.87 -892 | 1.36
300 | -21.64 | 091 | -21.71 | 0.62 | -22.09 |0.77
400 | -31.66 | 0.91 | -31.52 | 1.00 | -31.97 | 0.29

The optimal importance function gives better results.

For many other models, such evaluations are impossible. One idea is to approx-
imate the optimal importance function.

Approximation by local linearization

The idea is to linearize locally the observation equation to obtain an importance
function that approximates the optimal one. Let us consider the system:

X1 = fuXp)+ U, k>0, (2.81)
Zn = h(Xp)+ Wi, k>0. (2.82)

i The processes U, and W}, are Gaussian with non singular covariance matrices
ii. The processes Xy, Uy and W} are mutually independent

iii The function f; : R® — R" is a Borel measurable function



60 2.7. SELECTION OF THE IMPORTANCE FUNCTION

iv The function Ay : R™ — R™ is supposed two-times differentiable

A Taylor expansion up to the first order of the observation equation (2.82) gives

Zr = hp(fr(Xi—1)) + Cru(Xi — fi(Xi-1)) + Wi
~ Cka‘f‘Fk(Xk_l) + Wy, (283)

where C = 8h§x( )}z:f(Xk_ﬂ and Fk(Xk—l) = hk;(fk(Xk—l)) - Ckfk;(Xk;—l)
Equations (2.81) and (2.83) define a new model. The observation is linear and
Gaussian. Similar calculations to that in Example 2.7.2 suggest us to choose the
importance function p(zx|zr_1, 21) to be the density of N (my, X1), where

o= S+ Oie O,
my, = Se{S, fiu(Xio1) + CLELN (2 — Fu(Xi-1))} -

The associated weights are computing using (2.76).

Monte Carlo approximations

Assume that we can not evaluate analytically p(zy|X ,glll) and (or) we can not sample

from p(xp|X ,j 1 2K). Since the functions gj are strictly positive and bounded and
the kernels are Feller. Then, p(zx|zx) and p(zx|zg—1) are bounded, see (2.5.1) and
(2.77). In particular, from (2.78) we deduce that the ratio p(xk|Xk )1, zk)/p(xk|X 1)

is bounded say by M. It is possible then to sample from p(:vk|Xk71, 21) using the
Accept-Reject method, see [72].

1. Generate y;, ~ p(:Uk|X,gi_)1), U~ U[o,l]-
2. Accept )E’,gi) =y ifu < p(yk|X;£i,)1, Zk)/Mkp(yk\X;f,)ﬁ-

3. Return to 1. otherwise.

For each 1 <7 < N, we use a Monte Carlo step to approximate p(zk|X,(gi21) =
fp(zk|xk)p(mk|X,(;_)1)dxk. This can be done by sampling N’ i.i.d. random variables
{X,ff’j), 1 < j < N’} according to p(:ck\X,gz_)l). Then,

N/
1 g
Pl X(20) = P2l X)) = <5 D ol X))
j=1
We use the particles {Xlgi’j) , 1 <j < N’} to approximate the measure p(xy|zy, X,gill) dxy:

Pk 2k, X k 1 )y ~ ZOZH X0 (dzy),



2.7. SELECTION OF THE IMPORTANCE FUNCTION 61

where
UGB
Pl X7,
Such approximations have numerous drawbacks. Using the Accept-Reject Method
requires a random number of iterations and in an online framework this strategy is

avoided. Also, the Monte Carlo approximations are valid when N’ — oo and this
can be computationally expensive.

ivj _

2.7.2 Prior importance function

A simple choice is to take as importance function the transition probability density
function of the Markov process { X} }x, that is

Pk 2, Th—1) = p(ak|TE—1) -

This yields to ' ‘
w o plze| XY
This method is very sensitive to the observations. If non sufficient knowledge about

the observations are available this method can be inefficient.

2.7.3 Fixed importance function

Another simple choice is to select an importance function independently from the
simulated trajectories and from the observations. In such case,

Pl zr, vr—1) = plar) -
and the weights are given by
Pl X (X X2
BX)

This choice don’t take in account the dynamic of the model and can leads to un-
bounded weights.

2.7.4 Rao-Blackwellisation

The Rao-Blackwellisation technique improves the accuracy of the particle filter, it
reduces the variance of the weights, by analytically marginalizing some components
of the state and only sampling from the remainders.

If we decompose the state process X = (X}, X7) € R" = R™ x R"2, then

p(xe)dzy, = p(ay, v3)dardry = p(ag|oy)p(ey)dorday (2.84)

where p(z?|z}) is the conditional pdf of X7 given X}. Moreover, Bayes rule implies
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1. For any ¢ € Cy(R"™),

Jgns () p(ay)day,
(Thjke, / o(Xp)p(zk| 20k ) dy =
| » Jors ol 2))p(a )

where

al) = / ek, )p(zonleh, p(adlah)de?  (2.85)

peoxll) — / plaosleh, 22)p(a2|at)da? (2.56)
R"™2

2. p(zolzp)p(ry) = p(20)p ()| 200)
If we denote by

ety = ) Jows 2l D Cosle, rDp(atlo o
0 plaoalat) Jine PGokly, )p (gl ) do
Then,
fR”l :Ek‘ZOk)dxk

Tlky, Q) = 2.87
( K|k <P) fRnl Ik|2’0k d:zck ( )

The Rao-Blackwellisation technique is based on the following assumption

Assumption 2.2. Given a realization z}, of X}, we can evaluate analytically o(z})
and p(zo.x|71) as a function of z}.

Rao-Blackwellisation: we integrate out analytically z% in (2.85) and (2.86) and
we use a particle filter method to estimate [, ¢(z})p(xy|20.6)dy, and [g., p(x)]20. ) day..
We filter the state X ,}; based on the observations zg.j.
The importance sampling functions are {p(z}|xx_1, z0.x) }x. In particular, p(zi|xs_1, 20.6) =
fan (z}, T |Tk—1, zo)dx; and the estimate to (my, ) is

SN e (X W)
N
Zz 1 wk( )

(Thik ) = (2.88)

where

#(i) p(X ~1’(i)|20 k) > (4) S1,60) o2,0)
wy = <10 and X, = (X", X). (2.89)
p(X;, |Xk 1> Z0:k)
The Rao-Blackwellisation reduces the variance of the weights. In fact, if we denote

by

. p(il?k|20;k) . p(xiiaxazozk)
wy(wr) = = = Sl 2
p(Ik|$k—1>ZO:k) p($k>$k|$k—172’0:k)

and by
p(xi|20.8)
]5(517;“3319717 Zo;k)

wi(Xy) =

Then,
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Proposition 2.7.4.

Uarﬁ(xllc\ivk—hzo:k) (wZ(X]i)) < VAT p(ay |zk—1,70:) (wk(Xk)) : (290)

Proof. Let us consider three random vectors X!, X? and ) and suppose that X =
(X1, X?%). The associated conditional probability density functions satisfy

plaly) = p(a', 2%ly) = p(a®la’, y)p(a'ly) -

If w(z) is any Borel measurable function, then
Bpnlo@)] = [ wlalplaly)da
= [ ule 2l ot et
= /(/w(xl,xQ)p(x2\x1,y)d:UQ)p(xl\y)datl

= Epuipy [Eo@2laty) [w(X?, X2)\X1]]. (2.91)

p

Using the equality (2.91) for the functions w and w? we get the following decompo-
sition of the conditional variance vary gy (w(X))

Vary(ly) (W(X)) = Byapy [w(X)’] = (Bpaly[w(X)])?
= Epaly)[w(X)’] = (Bparjy) [ Epazlary [w(X', X2)|X1])
= Ep(xly)[w(x)2]_Ep(wl\y)[( (22| y)[w(Xl’X2)} 1])2]
+Epafy) [(Bpazjar ) [w(X XQ )X 1))
~(Bp(a1}y) [ Epazlar ) [w(X', X2)| 1] )?
= By [varyiz ) (w(X', X2)[2)]
Fvary () (Bpazlat g [w (X, X%)|X1) . (2.92)

2

To apply the decomposition (2.92) to our case it is sufficient to see that
1,2
E- Xl X2 Xl — / p(xk7xk“205k>
p(]}%‘ﬂ?}c,mk_l,;zo:k)[wk( k> k;)| k;] ﬁ(x]iaxﬂxkfl’ZO:k)ﬁ(xz‘x/I@xkflaZO:k)
_ / pxy, w7l 20.)P(7] %, 20:8) A
- S( 2] 1 =1 k
pxg| g, Tro1, 20)P(Tg | Te—1, 20:8)
_ / Np(:fllwxﬂz()!k) dlL‘z
Pl en—1, 208)
= wi(X}). (2.93)

2
dz;,

Then, taking X = Xy, Y = (Xx_1, Zox) and p(z|y) = p(zk|Tr—1, 20.6) We get

Uarﬁ(ka‘kflvzo:k) (wk (Xk)) = Uarﬁ(x}c\xk,l,zo;k) (wZ(X]i))

+E; P(ap|e—1,20:k) [Uarﬁ(xim}lcvxkflvzo:k) (wk(Xk) ’X;)}

The proof is complete. 0
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Remark 2.7.5. The optimal importance function for the Rao-Blackwellisation is
the conditional pdf p(zi|Ts_1,20.) = p(xr|zh_ 4, 21) and the associated importance
weights are wi(zi) = p(2x|20.6-1, Tp_1)-
Ezample 2.7.6 (Conditionally Linear Gaussian State Space Model). Suppose that
X} is a Markov process, denoting p(zi|z;_,) its transition pdf. The process X7 is
supposed to be linear Gaussian conditionally upon X}. More precisely, we suppose
that

Xp = A(X0) Xiy + Bi(X3) Uk, (2.94)

where A; : R™ — R™*™ By : R™ — R™*? and Uy ~ N (0, I,,).
The observations are given by

Zk = Cp (X)) Xi + Di(X) Wi, (2.95)

where Cj, : R™ — R™ "2 D : R™ — R™ " and W}, ~ N (0, 1,.). If one is interested
in estimating p(x}|z0.k), E[X?|20] and E[X2(X?)T|z0.1]. The Rao-Blackwellisation
method can be applied here, by using a particle filter method to approximate
p(7i]z0.6), based on this estimate a Kalman filter is clearly optimal to integrat-
ing out 3.

Remark 2.7.7. As applications to this example are the RSA (Random Sampling
Algorithm) introduced by Akashi and Kumamoto in [2] and the algorithm for blind
deconvolution introduced by Liu et al. in [61].

2.8 Selection of the branching mechanism

We initialize the particle filter algorithm by sampling Ny > 0 independent particles
according to my. At the end of each Update-Prediction stage we apply a branching
mechanism.

At time k£ — 1 the system consists of N,_; particles. If we denote by

k-1 k
Fr-1=0{No,..., Np_1; U{X;Z)hgigjvj ) U{XJ(Z)}ISZ'SN]'} (2.96)
j=0 J=1

)

and by V. k(f) the number of offsprings of the particle X ,Ef , then there exists a constant

C' > 0 such that for all ¢ € C,(R™)
EINP|Fiet) = wi' N, (2.97)

Ni_1
i) i Ny 2
Bl ST NPo(X) = N (7 @) [1Feca] < CNeallgl®. (2.98)
i=1
At the end of this stage, we obtain the set {X ,ff)} consisting of Nj, = SV N,gi)
particles indexed as follows

j—1 J

X0 = XD, 1<j< Ny, 143 NV <i< 3 N0
=1 =1
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The property (2.97) ensures that the estimator is unbiased, ie.
Emgp| Fr-1] = Tgje -

This expresses that the averaged estimate coincides with the desired result.

The condition (2.98) is related to the deviation of the estimate. It ensures that
after branching the obtained approximation is not far from the Updated-Predicted
approximation. An unbiased branching is better if its deviation is smaller.

The Proposition 2.4.4 and its proof ensure that for all £ > 0:

- The integer valued random variable N, is an Fj-martingale

- E[Ny] = Ny, P(N}, = 0) < C(k)N)~* and E[|3E — 1]°] < C(k)Nj ™
The property E[Ny| = Ny > 0 means that the system never dies.

Remark 2.8.1. If the numbers of offsprings Nk(f), 1 < i < Nj_; are conditionally
independent given Fj_1, then condition (2.98) is equivalent to

Ni—1

> B[N = Neoqw(?)*| Fia] < CNia (2.99)

2.8.1 Independent branching numbers

Suppose that the integer valued random variables { NV, ,f) , 1 <i < Ni_1} are condi-
tionally independent given Fj_;.

Bernoulli branching numbers

The Bernouilli branching numbers are defined by

e(Nk_lw,(:)) if j =[N, 1w +1

PN = j|Frr) = i y
(N [Fi) 1— e(Np_yw'™) if 5 =[Ny 1w,§>],

where [a] is the largest integer less than a and €(a) = a — [a]. In this case
i BIND|Fi] = Neyw!?
it B[(NY = Nyl Foa] = e(Nqwi) (1 = e(Ny_ywl)) € [0,1/4]
The condition (2.99) is satisfied for C' = 1/4.

Binomial branching numbers

The Binomial branching numbers are defined by

)2 N(i) — i F. ) = J (4)yj 1 — () Ng—1—J
0 =iz = () ) wlya-uf)
Then,

E[Nk(;l)‘fk,ﬂ = Nk,1W£i)

i BE[(NY = Ny_rwl)?|Fioa] = Nl (1 = w?)
Hence, (2.99) is satisfied for C' = 1.
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Negative binomial branching numbers
Suppose that for all 1 <i < Nj_q,

()

W

Pi=1"tn

1+w](€i)
i . N._, —1
PN = j|Fus) = ( et

Npg1+j—1 ) il = p).

Then,
i B[N |Fii] = Neow)!
i B[N, |Fr1] = Niqwy
. i i)\ 2 i i
i E[(N,i) — Nk_lw,g)) ’fk_l} = Nk_lw,g)(l + w,g))
It is clear that (2.99) is satisfied for C' = 2.
Poisson branching numbers
For all £ > 0 and 1 < i < N,_4, the Poisson branching numbers is defined by

(Nj_ywy)

PN = j|Fir) = exp(—Ni_qwy”) j (2.100)
In this case,

i i i)\ 2 i

EIND|Fia) = E[(NY = Nyl | Fia] = Nl

Hence (2.99) is satisfied for C' = 1.
2.8.2 Negative correlated branching numbers
Multinomial branching mechanism
The multinomial branching mechanism, denoted by Multinomial(Ny_1, w,(:), ce w,iN’“’l)),

is defined by

. No! o) -
PIND = a1 <i< Np) =4 a0 1 2. = No.
k 0 otherwise.

In this case the total number of particles remains unchanged.
For all 1 <7 # j < Ny,

i B[Ny | Fia] = Nowy?
i B[N — Now)?|Fit] = Now (1 — w)?)

i B[(N — Now) (N — Now?)| Fioa] = —Nowwy
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Moreover, for any ¢ € Cy(R™),

B[] NIe(X0) = No(@h 0) | Fe] = Nol(@l ) = (5 2)) )

S NO(%]]g\\[ia ()02)
< Nollgl*.
Hence, (2.98) is satisfied for C' =1 .

Residual multinomial branching mechanism

Instead of using a multinomial mechanism with parameters
(Ng—1, wy, ), . ,w,(gN’“_l)) we define the numbers of offsprings N @ for 1 < i< Ny,
by

N(i) _ [Nk 1w(1)] —|—X()

The integer valued random variables X, (1) Xy (New1) are given by
(X,(gl), o ,X,(gN’“‘l)) Multinomial ( My, qli - ,q,(g - 1))
where N
k—1 ()
€(Np1wy )
Mk:Nk,l—Z[Nk 1wk]andq = — — .
j=1 Z] ' G(Nkflwiij))
where [a] is the largest integer less than a and €(a) = a — [a]. In this case one has

also Ny = Ny_1 = Ny and the total number of particles remains unchanged. In
addition, for all 1 < i < Ny, one has

NO|Fioa] = Nowy .
For every ¢ € Cy(R"), one has

Nk_1

}ZN — No(7o,0)|” | Fict] < Milloll* < Nollell?

This mechanism can perform better than the multinomial branching mechanism in
the case when M}, is close to 0. In such case, we get a smaller conditional variance
and smaller time computation !!.

Example 2.8.2. In this example, we compare several branching mechanisms. We
take the 1-dimensional linear system of Example 2.7.3, that is

Xps1 = Xe+Us,  Xo~ N(0,10), U, ~ N(0,10),
Zr = X+ Wi, Wy ~ N(0,1).

We apply the Kalman algorithm for a reference comparison and the particle filter
algorithm with three different branching mechanisms, the multinomial, the residual
multinomial and the Bernouilli schemes successively. For this model, see Figure 2.4,
the Bernouilli performs better than the negative correlated branching mechanisms.
It is also clear, that the residual multinomial scheme is at least better than the
multinomial scheme.
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Chapter 3

Vehicle Tracking Example

3.1 Vehicle dynamics equation

3.1.1 Introduction

In handling vehicle dynamics, see [63, 68, 75], two families of forces are considered.
The first are the forces controlling the acceleration and the velocity of the car:
tractive force, wheel force, braking force, rolling resistance, drag (= air resistance),
etc. The second are those allowing the car to turn: friction of the wheels, angular
moments, torque, etc.

Let us consider a car which descends a circular slope of radius R, see Figure 3.1.
The angle between the weight vector F}, and the heading direction vector u of the
car is denoted by 6. We take into account three of these forces mentioned above: the
tractive force, the aerodynamic drag, the rolling resistance consisting of the friction
rubber-road and the weight, and we add a noisy term = error in modeling + other
friction forces. For simplicity, we suppose that all the forces act through the center
of gravity of the car CG.

Tractive force: It is the force delivered by the engine via the rear wheels. The
engine turns the wheels forward, the wheels push backwards on the road surface
and, in reaction, the road surface pushes back in a forward direction. The engine
only generates force and hence acceleration. The tractive force is

ra
Ft: —g u,
T

where

- u is the unit vector direction of car’s heading

- I' is the torque function of the engine in (Nm)

- G = 3.545 is the final drive ratio

- g is the gear ratio and r = 0.3266 m is the radius of tire

We suppose that during the tracking this force is of constant magnitude

|Fi| = 1200 N . (3.1)



70 3.1. VEHICLE DYNAMICS EQUATION

Figure 3.1: The car trajectory

Aerodynamic drag: The air resistance force acts on the front of the car when the
car sifts through the air,

Fd = —Cdmg X |U| X, (32)

where

- v is the velocity vector and |v| the speed
- Carag = 0.5 x p x A x Cg = 0.4257 where

- Cyq =~ 0.3 is the coefficient of the friction
- p=1.29kg/m? is the air density
- A~ 2.2m? is the frontal area of the car
Rolling resistances:
1. Friction between the rubber and road surface as the wheels roll:
F,.=-C., xv, (3.3)
where C, = 12.8 Ns/m is the coefficient of friction
2. The weight F, = M g of the vehicle acts through its center of gravity and
either pulls it back or forward, depending on the angle 6 between the weight
vector and the forward direction:

F) = M cos(f) 9| w, (3.4)

where M = 1200 kg is the mass of the car and |g| = 9.81m/s? is the gravita-
tional acceleration
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3.1.2 Vehicle dynamics equation

Newton’s second law: The acceleration a of the car is proportional in magnitude
and direction to the net force F = F, + F;+ F,, + F gl and inversely proportional to

its mass M = 1200 kg. That is,
F
a= 7
In addition, dv = adt and dp = v dt where p is the car position and dt is the time
increment.

Parameterizing the position of the car by s(t) = fot |v(u)|du, we get

1. 5(t) = %(t) = |v(t)| is the speed of the car at time ¢

2. 5(t) = %(t} = % is the orthogonal projection of the acceleration on

the axle directed by the vector u

Let us denote by Fj the orthogonal projection of the net force I on the axle directed
by the vector u, then

i
M
1200 + M|g| cos(p + s/R) — Cpr$ — Cupags®
M
= 1+9.8cos(fp+s/R)—1.06x 10725 —3.54 x 107*5?,

where 6 is the angle between the weight vector and the initial direction heading of
the car. Since the speed of the car takes only nonnegative values, then

5(t) = 1+ 9.8cos(fy + s(t)/R) — 1.06 x 10725(t) — 3.54 x 107*6* () z50y . (3.5)

The indicator function Iy;>gy is introduced for technical considerations needed in
next subsections.
This modeling supposes that the engine generates a constant force, gives constant
values to the friction coefficients Cy,qy and C,,, and doesn’t take into account other
frictions. We introduce, then, a noisy term increasing with the speed of the form
(av+ B5(t)) Wa(t), where W is a standard 1-dimensional white noise.
Aim: Estimating the position and the speed of the car.

. . t
If x1(t) = s(t) and xo(t) = 5(t), then the state vector is z(t) = [ ?8 }

2

In addition,

dz,(t) = To(t) dt
dxs(t) = {ao+ |g|cos(fy + xlTEt)) — a122(t) — asxo(t)*Liz, >0y Hdt (3.6)
+{a+ Bra(t) pdus(t)

where

- (ao,al,ag) = (]_, 1.06 x 1072, 3.54 x 1074)
- (a,8) = (0,2 x 1072)

- ug is a standard Brownian motion



72 3.2. OBSERVATIONS

The state equation: dxz(t) = b(z(t))dt + o(x(t))du(t) , (3.7)

where for all x = [ = } € R?,
T2

1. b(z) = l 2

ap + |g| cos(by + ) — arxs — asx31i,,>0)
0 O
2. o(x) = [ 0 By }

3. u(t) = [ w(t) ]

U9 (t)

The random variable u; is a standard 1-dimensional Brownian motion independent
with us.

3.2 Observations

We aim to estimate the position x1(¢) and the speed x5(t) of the car. Suppose that
we can only preform measurements on the position of the form h(x(t)) = h(x(t)),
where h is a known function. These measurements suffers of errors due to such
things as instrumental errors. We introduce informally a noise term of the form
E(xq(t), z2(t))W (), where W is a standard 1-dimensional white noise and ¢ is known
function.

Since W (t) is the derivative in distribution of a 1-dimensional Brownian motion w(t)
and since is equivalent to observe {Z(s), 0 < s < ¢} or { [ Z(u)du, 0 < s < t},
see [69], then

Observation equation: z(t) = [J h(x(s))ds + [, &(x(s))dw(s),

where w(t) is a 1-dimensional standard Brownian motion independent of the state
noise u(t). The observer is at the initial position z1(0) and he measures the distance
Z(t) from his position to the current position of the car z(t), see Figure 3.2. This
means that the function h is given by

h(z) = 2Rsin(%) , VzeR.

Moreover, suppose that the function ¢ is of the form

§(x1,m2) = o + &1 + S

where &, i € {1,2,3} are some known non negative real numbers. Then,

z(t) = ZR/O sin(%i? )ds + /o (fo + &xi(s) + fgxg(s))dw(s) . (3.8)
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Figure 3.2: Observations

3.3 Discretization of the system

The state equation (3.7) is a 2-dimensional SDE which can be written as dx;(t) =
F(z1(t), z1(t))dt+G(21(t), 1(t))dus(t), where z1 ()" denotes the sample path deriva-
tive of the process x1(t). Following the terminology in [12] and [31], a process sat-
isfying such an equation is called a second order Ito process (SOIP).

The coefficients of the state equation (3.7) do not satisfy the classical conditions of
the existence and uniqueness Theorem, since the drift term contains a second order
polynomial term. In particular, we note that the conditions of the convergence of
the Euler discretization in Appendix B.4 are not satisfied.

In this section we prove the existence and the uniqueness of the solution to the SDE
(3.7) and we prove that the Euler discretization converges strongly to this solution
with the same order of convergence, ie. v = 1/2.

The discretization of the observation will be easily deduced since the coefficients of
the observation equation (3.8) are Lipschitz.

3.3.1 The solution of the state equation (3.7)

Although the Lipschitz and the linear growth conditions are not satisfied for the
SDE (3.6), the drift coefficient of the second component of contains a square order
term :E%I{mzo}, we prove existence and uniqueness of a strong solution.

In fact, we prove existence and uniqueness for a family of SDE’s with non Lipschitz
conditions and non linear growth bounds then deduce existence and uniqueness for
the SDE (3.6).

Let us consider a second order Ito process X; = (X}, X?) such that for all ¢ > 0,

{dth = X2 dt

3.9
AXE = {p(X} X2) 4 mXE — (XD Tpxzsoy ot + (o0 + ouX2}avz P
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where
1. Xy = (a,b) € R? where a,b > 0
2. ¢ : R xR — R is Lipschitz, continuous and admit linear growth bound
3. (m1,m2) € R*issuch that n; > 0, i = 1,2 and (01, 0,) € R? is such that o9 # 0
4. U = (Uti)z‘:m is a 2-dimensional standard Brownian motion

The equation (3.9) can also be written in the following form:

) 0 0
here b(z) = d = )
where b(x) o(x1, x3) + Mg — 772!15%1{95220} ] and o(z) [ 0 o1+ 0219 ]

Remark 3.3.1. a. A reference filtration {F;}:>¢ is a complete filtration generated by
a given Brownian motion on 2

b. The pathwise uniqueness of solutions of (3.10) holds if whenever X and Y are two
weak solutions defined on the same probability space and with the same reference
family {F;}1>0 and the same F;-Brownian motion such that X, = Yy = (a1, ag),
then for all t > 0 we get X; =Y, a.s

c. The strong uniqueness holds when given an initial condition X = (a1, az) and an
Fi-Brownian motion (U;), there exists one and only one continuous F;-adapted
process (X;) satisfying (3.11)

The stochastic differential equation (3.11) is time homogeneous since the func-
tions b and o are time independent and the initial condition X, = (a,b) is non
random. In addition, the functions b and o are continuous. Theorem 4.2.3 in
[35] secures, up to an explosion time e, the existence of a weak solution. That is,
given a reference filtration {F;}+>0 on a probability space (2, F, P) there exists an
F,-Brownian motion (U;) and a continuous Fy-adapted process (X;) such that for
almost all w € Q and all ¢ € [0, e(w)):

X(w) = Xo + /0 b(X,(w))ds + /0 (X, (w))dU,(w) . (3.11)

However, the functions b and ¢ are continuous and locally Lipschitz, then by The-
orem 4.3.1. in [35] the pathwise uniqueness holds and hence it has a unique strong
solution by Theorem 4.1.1. in [35].

It remains to prove the global existence of the weak solution, i.e. e = 00 a.s.

We apply the method of transformation of drift, see for example [35] pp. 190-197.
Denoting by for all x € R?,

gimn2 M)

i p(x) = o) = LRl p,<0p — 2 (m + %]

_2

33 1 oin2 —
1. &1 = 0—2(7”]1 + 0—2) and Qg — oo
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i, 4(z) = l X }

a1 + aoraliz,>0)

Then, for all z = (11, 15) € R?,

b(x) = b(x) + o (z)y(x),

L2
p(x)
Let us consider an F;-Brownian motion (Uy):> and the stochastic differential equa-
tion

where b(z) = {

] . The functions ¢ and b are continuous and Lipschitz.

dX;, = b(X,)dt + o(X,)dU,, Xy = (a,b) € R, (3.12)

It is a classical result that the equation (3.12) has a unique strong solution, then
there exists a continuous F;-adapted process X; such that

t t
X, = Xo+ / B(X.)ds + / o (X.)dU, . (3.13)
0 0

Moreover, E[supg.,<, |X|*] < co for every ¢t > 0 and p > 1.
Let us define the following two processes:

M, = exp{——/ |y (X 2ds—i—/ v(Xs)dUs} (3.14)

Ut = Ut /’}/(Xs)ds
0

If we prove that the process M; is a martingale, then by Theorem 4.4.1. and its
corollary in [35] the process (U):>o is an Fi-Brownian motion and the process (X3),
is a solution of the SDE

dX, = b(X,)dt + o(X,)dU,
Lemma 3.3.2. The process (My)i>o is an Fy-martingale.

Proof. The process Y; = fo s)dUs is a square integrable Fi-martingale, so by
Theorem 3.5.2. in [35] the process M; is an Fi-supermartingale. It is martingale if
its expectation is equal to one.
Let us prove that for all 7" > 0

EM,] =1, VYtel[0,T].
We check first that there exists a constant C' < oo such that
E[M|X,’] < C, Vte[0,T]. (3.15)
Ito’s formula gives us the following equalities:

1. d|X,> = 2XT(bdt + o dU,) + tr(ooT)dt)
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2. dMy| Xi)? = (M| Xi 4" + 2M, X T0)dU; + M, (2XTb + tr(oo™) + X o) dt

3. For e > 0, we take V(¢,z) = V(x) = ==, then

MX2 1
L4+ eM| X2 (14 eMy|X,[2)?
M,
Hararxer
€

T 2. T2
“A T gy M o+ MIX T de

(M| X, >4 + 2M, X[ o) dU,

2XTb+tr(oo?) + XL o)

Integrating from 0 to ¢ and taking the expectation, we see that the first term is zero,
then taking the derivative w.r.t. t we get

d M| X, |2 < g M,

dt 1+€Mt‘Xt‘2 - (1+€Mt|Xt‘2>

€
—F
[(]_ + EMt|Xt|2)

5 (2XtTZ~9 +tr(co’) + XFoy)]

[2M X[ o + M| Xi 4" ]

The second term is negative, then

d M| X|? M,

Sp—t2t < g 2X[ b+ tr(oo”) + X[
_ 1+€Mt|Xt|2] < [(1—|—€Mt|Xt|2)2( t + T(O'O' )+ t O-/Y))]
Moreover,
T _ 1y | O 0 X
X oy = [X; X{] { 0 o1+ 02X} | | ou+ XPixsg

= th(O'l + O'QXE)(OQ + O[ZXtQI{XtQZO})

Since o1 + ajog = 1 > 0 and oyas < 0, then Jgag(Xf):SI{thZO} < 0 and there
exists a constant K > 0 such that

Xioy K1+ (XP)") < K(1+]X).

The functions b and o admit linear growth bounds, then there exists a constant
K' >0

XTb(X)| < K'(L+ X[
tr(oo®)] < K'(1+]X)

Let K = 3K’ + K, K is independent from €, we deduce that

4 g M| X, |? | < KE[Mt(1+\Mt\2)]
dt 1 + 6M(t)|Xt|2 - (1 + EMt|Xt|2)2
Q0 B Lo, Y S
- 1+€Mt|Xt|2 1+€Mt|Xt|2
~ M, | X,|?

1 +€Mt|Xt|2
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In the last inequality we use the fact that E[M;] < 1 since M, is a supermartingale
and that My = 1.

We apply Gronwall’s inequality, see Appendix A.2, we obtain a constant C' > 0
independent of e such that

2
]_ + EMt|Xt|2

Taking ¢ — 0, Fatou’s Lemma gives (3.15), ie E[M;|X;|?] < C, for all t € [0, T].
We use Ito’s formula to obtain

My My (X)TdU, — eMP|y(X,)[Pdt

1 + GMt - (1 + GMt)Q (1 —|— €Mt)3
Integrating from 0 to ¢ and taking the expectation, we get
M, 1 b M2y (x,)|?ds
E = —€eB| | —————]. 3.16
[1—|—eMt] 1te © | o (14 eMy)3 ] (3.16)

The integrand term % in (3.16) is bounded by DM;(|X;|* + 1), for some

constant D. This term is integrable by (3.15). Since E[lﬂfh] < E[M] < 1,
Lebesgue’s theorem gives that

M,
E
[1 + GMt

| = E[M,].

The result follows by taking € to 0 in (3.16). O
To conclude, we have proved the following Theorem

Theorem 3.3.3. For every (a,b) € R3, the stochastic differential equation (3.10)
admits one and only one strong solution (X;)i>o with Xo = (a,b). The solution is
called a second order Ito process.

Corollary 3.3.4. For every (a,b) € R%, the stochastic differential equation (3.7)
or also the stochastic differential system (3.6) admits one and only one strong and
pathwise solution x such that x(0) = (a,b).

3.3.2 Discretization of the state equation (3.7)

The speed of a car can not exceed a maximum speed that we denote M.. We
will prove the strong convergence of the Euler-Maruyama discretization of the state
process {z(t)}; on a sufficient large subset Qr g, of Q, the subset 1 5. depends on
M, and the time tracking duration 7.

Suppose that Y = (Y3)i>0 and Z = (Z;)>0 are two continuous Fi-adapted processes
with values in RP, for some p > 1, that are the unique pathwise solutions of the
following SDE’s

4y, = F(Ya)dt + Gy (Yy)dW, (3.17)
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where (W;); is a g-dimensional F;-Brownian motion and the vector function F; and
the matrix function G; are locally Lipschitz for ¢ =1, 2.
Let "> 0 and B € B(RRP) be closed and define Qp g C €2 by

QT,B = {w e, Yt(w),Zt(w) € B, Vte [O,T]}

Lemma 3.3.5. Suppose that Yy = Zy € RP, non random.
If for almost all w € Qq.p and for all t € [0,T]

AYiw) = BYG(W) and Gi(Yi(w)) = Ga(i(w)).
then for almost all w € Qr g and for all t € [0, T
Yi(w) = Zi(w) .
Proof. Let {By}r>0 be an increasing sequence of compacts in R? such that
B. /B as k— 0.
Denoting by Qrp, = {w € Q, Yi(w), Zy(w) € By, VYt € [0,7]}. Then,
i. Qrp, /" Qrpask — oo
ii. For almost all w € Qr p, and for all ¢ € [0, 77,
R(YVi(@) = BYG(w) and Gi(Yi(w)) = Ga(¥i(w))

It is sufficient to prove the result on Qr p, for every k& > 0.

Let k > 0 be arbitrary fixed, since By is a compact and the functions F;, G;, i = 1, 2,
are locally Lipschitz then there exists a constant C'y > 0 such that for ¢ = 1,2 and
for all y, z € By

|Fi(y) — Fi(2)]
1Gi(y) = Gi(2)]

< Cily — 2|
<

Crly — 2|

In addition, almost surely on €27 g, we have
Vim 2= [ (B0 - BZ))ds + [ (Gal¥) - GalZaw,
Then, using that (a + 0)? < 2(a® + b?) and Ito’s isometry we get
Blloy Ve~ 2 < 27 [ Ellay, [V - RAZ)Pds
2 [ Bllo,, 1600 - Gal )Pl
< 2T +1)C? /Ot Ellg, , Y — Z[*)ds
where Ig, , is the indicator function of Q7 p, .

Gronwall’s inequality implies that E[lo, , [Y; — Z:*] = 0, then o, , [Y; — Z;|* =0
almost surely. O
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Let T' > 0 be the tracking duration and M. > 0 be a high speed that can not be

attained by a car. Let b : R? — R? such that for all z = { il } € R?,
2

b(z) = )
)= ap + gcos(fp + F) — arwy — P(w2)

where for all y € R,

2 .
_ ) wylyse ity < M
y) = { ag M? if not (3.19)

It is clear that the function ® is continuous, Lipschitz and admit a linear growth
bound then it is also the case of the function b.
Let (Z(t)); the unique pathwise solution of the following SDE

2(0) = 2(0) € € (Ry)?
{ di(t) = b(a(t))dt + o (i(t))dU, (3.20)

We define the subspace 27 g, of €1 by
Qrp, = {x(t),2(t) € B, YVt €[0,T1},
where B, = R x (—o0, M,|.
Lemma 3.3.6. For allt € [0,T],
z(t) =2(t) a.s.onQrp, .

Proof. 1t is clear that:

i. b(z(t)) = b(z(t)) almost surely in Qg and for all ¢ € [0, T]

ii. The diffusion coefficients of the two processes z(t) and Z(t) are the same
The Lemma 3.3.5 implies the result. ]

Let N > 1 be an integer such that L < 1 and Y° = (Y,?)o<<r be the Euler-
Maruyama time discretization process associated to the process {Z(t)}o<i<r. Then,

Yy = =(0),

¥ . 3.21
{ Y = Y,f + (t — Tk)b(Y,f) + a(Y,f)(Ut —Uy), ifté€ [t a1, ( )

where

—Yk‘S:YT‘i and U, = U,
—Tk:kéandéz%

In particular, if we denote ApU = Uyy1 — Uy, then

Vo, =Y+ Sb(Y) + o(YO)ALU , for every k € {0,1,...,N —1}.
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Proposition 3.3.7. The Euler-Maruyama time discretization process Y converges
strongly with an order 1/2to the process x on Qrp,. That is, for some constant
C > 0 independent of 6

E[ 1o, |=(T)-YP| ] < C8'2.

Proof. The functions g and o are Lipschitz, admits growth bound and are time
independent, then the functions ¢ and o satisfy the conditions of the Appendix B.4.
In addition, Y¢ = #(0) = z(0). This implies that the time discretization process Y
converges strongly to (Z(t)); with an order 1/2 ie. there exists a constant C' > 0
independent of § such that

E[|#(T)-YP| ] < C8'/2.

In the other hand, since I, , <1 we get

E[IQT,B }"L‘(T) _Y’Z(“SH = E[IQT,B }:Z‘(T) - Y’Z(“S’ ]
< B[ |3(T)-Yp|]
< CoY2.
This proves the result. O

Remark 3.3.8. There exists a subsequence 8, — 0 as k — oo such that Y, — &(T)
almost surely. In particular, Y, 2* — x(T') almost surely on Qg p.

The Proposition 3.3.7 is almost useless if we have no knowledge about the con-
stant C'. We will give next an upper bound on C, this will permit us the control of
the error of the convergence.

It is sufficient to find an explicit constant C' = C'(T,b, 0, €) such that E] #(T) —
V2| ] < €642 for 6 < e for some fixed € € (0,1).
We need the following two Lemmas:

Lemma 3.3.9. For all (z,y) € R?, the functions b and o satisfy the following
inequalities

i. |lo(z) —o(y)| < Blz —y|

i. <x—1y, b(x) —bly) >< Aylr—yf
iii. |b(z) — b(y))? < Aglz — y|?
iv. |b(z)] < Ay + Ayl

where Ay = 1/2 + g/2R, Ay = 1+ g/R+ a1 + 2asM,., Ay = ag + g and Ay =

AV 1+ OJ% + CLQMC.

Proof. Based on the expressions of the functions b and o it is not difficult to verify
the inequalities of the present Lemma. O
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Lemma 3.3.10. The process Y given in (3.21) satisfies
2

0<k<N

where ¢ = 32 + 2(\/1 + a? + ayM,.)?.

Proof. Let k € {0,..., N — 1}. Ito’s formula gives us, for all ¢ € |1y, Tk11],

AV ={2 <Y, b(Y2) > +lo(YD)PPYdt +2 < Y?, o(YY) > duy .

We integrate d|Y?|? from 73 to t and we take the expectation we get

B IVAP) = BV ]+ 081 o0+ 2 [ Bl ¥ 50%) >Jds.

Using Lemma 3.3.9 and the fact that 2 < z,y > < |z|* + |y|* we get

t

E[ Y] < 2470+ (1+ (8* +2435)0) E| \Y;f\QH/ E[ Y]] ds.

T
If we denote by ¢ = 3% + 2A2, then Gronwall inequality implies
E[|Y?]?] < exp(6) (2476 + (1 + c&)E[ |YL*]), Vt € [h, Thra] -
In particular, for ¢t = 7,1 we have
BL[YE1P] < oxp(5) (2425 + (1 + ) B[ [VP]).
Recall that E[ |Y2|?] = |z(0)]?. We deduce by induction that

k
E[Y2al?] < 2A36{) (1 +c8") exp(jo)} + exp(kd)(1 + ¢6)"(0)].

j=1

Finally, the following two observations give us the result:

sup E[ [Y7*] < 2—1;11(@@((1 +¢)T) — 1) + exp((1 + ¢)T)[z(0)]*.

(3.22)

1. Since (1+cd)¥ < (1+ L)Y <exp(cT) and cdexp(d) < (1+ cd)exp(d) — 1,

(14 cd)*exp(kd) — 1
(14+cd)exp(d) —1

S (1 + syt exp(j) = exp(d)

j=1

< fexp((1+0T) - 1)

2. exp(kd)(1 + c0)*|2(0)|* < exp((1 + ¢)T)|z(0)]?
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Let € € (0,1), we define T'. by
Pe= (14 A9){2eAT + B} (3.23)

where

- B = (2eTA} + TﬁQ){ (eXp((l +¢)T) — 1) + exp((1 + ¢)T)|x(0)|?}

o= 3 +2(\/1+ a? + ayM,.)?

Theorem 3.3.11. If ) < ¢, then
E[|#(T) — Y2|*] < 6Tcexp((1 +2(A, + B2)T). (3.24)

Before proving the Theorem, let us define the process X° = {X?, t € [0,T]} by

Z Yk [Tk Tk+1 _'_ Y7 I{T}( ) : (325)
In particular, for all ¢ € [0, T]
¢ ¢
Y = 2(0) +/ b(X%)ds + / o(X%)dus . (3.26)
0 0
Moreover, for all t € [0, T
B — X2 < 2742 + (26242 + 66%) sup B[ [V} P?) (3.27)
0<k<N

In fact, for k € {0,..., N — 1} and for s € [, 7x11) we have

Y= X2 = (s — m)b(¥P) + o () (us — w)[?
= (s = )" p(YP)* + |0(Y6)(us ug)|?
+2(s — 1) < b(Y), o (V) (us — ug) > .
Since us — u and Y are independent, Efu, — ugz] = 0, Eflus — ux|?] < 0, then

Fubini’s Theorem, Lemma 3.3.9 and Lemma 3.3.10 gives the inequality (3.27).

Proof. (Theorem 3.3.11)
For all t € [0,T], we denote ¢; = Z(t) — Y?, then

t t
e = / (B(#(s)) — B(X?))ds + / (0(#(s)) — o (X?))du, (3.28)
0 0
Applying the Tto formula to |e;|* we get

dle* = {2 < e, b(@(t) — b(XT) > +o((t) — o(X))[*}dt
+2 < e, 0(2(t) — o(X?) > duy
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Integrating form 0 to ¢ and taking the expectation we get
t
Bllf] = 28[[ <enba(s) =B0XD) > ds
/ lo(2(s)) — o(X?)|*}ds] (3.29)

Let us examine the two expectations of the right hand term in equality (3.29).
First term: Using Lemma 3.3.9 we get

2E[/0 < €0, Bi(s)) = B(X?) > ds] = 2E[/0 < €0 B(i(s)) — B(Y?) > ds]
+2E[/t < es,b(Y?) = b(X?) > ds]
< (2, +1)E[/t|es|2ds]

t
+A2E / Y2 — X22ds] (3.30)
0

where we use that 2 < z,y > < |z|* + |y|*, Vz,y € R%
Second term:

/ 0(3(s)) — o(XP)}ds] < 252{15/ euP)ds] +E/ VP = XP2yds]} (3.31)
Now, using (3.27), (3.30) and (3.31) in (3.29) we get
BlIeP) < At (14280 +20) [ Bl Plds

where A = (1 4+ Ap){202AT + (20°T A3 + T65?) supo<i<n E[|Y ]}
The Gronwall inequality implies that

B[ |eg*] < Aexp((1+ 24, +26%)1).

Finally, from Lemma 3.3.10 we get A < 6I. 0
Corollary 3.3.12. If C" = /T exp((1/2 + Ay + )T, then
E[ 1o, |2(T) = Y2 ] < C'6"2. (3.32)

If T =1, R =100, 2(0) = 0, M, = 150 and € = 0.01, then C" ~ 34.254.

3.3.3 Discretization of the observation equation (3.8)

Let us first recall that the measurement equation is

At) = /0 h(x(s))ds + /0 £(a(s))duw(s) . (3.33)

where h(z) = 2Rsin(z1/2R), {(x) = o+ &121 + &m0 and &, @ € {1,2, 3}, are known
non negative real numbers.
We define the process Z° on [0, T by
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i. Z=0
ii. Z0 =70 + (t — ) (V) + E(Y2) (w(t) — wy), for all t € |14, Thi1]

In particular, for all ¢ € [0, T]

A /0 t h(X%)ds + /0 tf(Xf)dws (3.34)

where the process X° was defined by the equation (3.25).

Lemma 3.3.13. The process Z° converges strongly with order 1/2 to the process %

given by
t t
Z(t) = / h(Z(s))ds +/ £(z(s))dw(s
0 0
That is, there exists a constant C' independent of & such that
E[ |2(T) - Z§| 1 < Cs'/2.

Proof. The Theorem 3.3.11 and the inequality (3.27) state that there exists a con-
stant C' independent of ¢ such that

El|z(t) - X" 1<Cs, Vielo,T). (3.35)
In addition, the functions h and £ are Lipschitz:

h(x) = h(y)] < [z -yl
() =€) < (& + &)z —yl
Then, if we use successively that (a + b)? < 2(a® + b?), the Cauchy-Schwartz in-

equality, the Ito isometry, the Fubini Theorem and the Lipschitz property of the
functions h and &, we get

B |A(1) - Z3") < 2T / h(E(s)) — h(X)2ds]
28] / £(2 £(X?0)|ds]
< @r+g +52>/ E[J(s) — X°|)ds
0
< QT+ & +&)TCS.
It is sufficient to take .
C=+QT+& +&)TC . (3.36)

O

Remark 3.3.14. With the aid of Theorem 3.3.11, inequalities (3.27) and (3.36) it is
not difficult to get an explicit expression for the constant C' = C(e, b, 0,T).
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Theorem 3.3.15. The time discretization process Z° converges strongly to the pro-
cess {z(t) Yo<i<r with an order 1/2 on Qrp,. That is, for some constant C > 0
independent of &

E[ Loy, |2(T)—Z}| ] < C6'2,

Proof. Recall that Qr 5, = {z(t),Z(t) € B, = R x (—o0, M., Vt € [0,T]}.
For all t € [0,T7:

i. z(t) =z(t) a.s. on Qrp
ii. 2(t) = [ h(#(s))ds + [y £(F(s))dw(s) as. on Qrp

Then, for all t € [0,T]
z(t) = 2(t) a.s. onQrp, .

We use Lemma 3.3.13 to conclude:

E[ IQT,B ‘Z(T) - Zg“’ ] = E[ IQT,B ‘§(T> - Z’ils“‘ ]
< E[|AT) - 23]
< (82,
We get the result by taking C' = C. O

The time discretization process Z° satisfies
Z5 = 0
Zy = Zp+Sh(YP) + (YY) Avw, for all k € {0,...,N — 1}
where Ajw = w1 — wy. Let us define the discrete process {¢°(k)}o<r<n by
¢’(0) = 0
Clk+1) = YD) +EY)uw’(k), forall k€ {0,...,N — 1}

where w? (k) = 6 *Ajw. The process {w’} is a 1-dimensional standard white process
and for all k € {1,..., N}

Z; = 52@(]’)- (3.37)

In particular,
e Forall0 <k <N, J{Zf,Ogjgk}za{C5(j),O§j§k}.
e To calculate Z9 we have to store the (°(j)’s for 0 < j < k — 1.

The filtering algorithms are recursive. That’s means that we need only to keep the
new information, represented here by ¢°(k + 1).

But at time k+1, the observation ¢°(k+1) seems to be a measurement on the state at
time k rather a measurement at time k+1 and just the noise w®(k) = 6~ (wy1 —wy)
depends on the point time k + 1.

It is more appropriate to take as observation the process z° defined by

2(k) = h(Y?) + V)’ (k—1) Vke{0,...,N}. (3.38)

Still the question of the validity of these observations.
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Estimations of the position
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Figure 3.3: The particle filter and the EKF estimates of the position and the speed
of the car.

Proposition 3.3.16.

1. Forall0 <k <N, a{C°(j), 0<j<k}=0{@), 0<j<k}
2. There exists a constant A independent of § such that for all k € {0,..., N}
E[[¢°(k) = 2°(k)] ] < Ad.
Proof. Let k € {0,..., N — 1}, then

Ok +1) =2k + D] < [AYE) =AY+ EYRD) = €Y [0’ (k)
< VP =Y {1+ (G + &)’ (R)]}
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Position of the Car
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Figure 3.4: Branching mechanisms comparison: Multinomial /Bernouilli

I

Since the processes w® and Y? are independent and E[|w’(k)|] < ¢ then using (3.27)

and Lemma 3.3.10 we get
E[I¢°(k +1) — 2°(k +1)]]

< (14 (& +&)0)ELY, - YL
< (14 0(6 +&)) (2047 + (2045 + 5) sup E[ V7]

It is sufficient to take A = (1 + & + &){242 + (242 + 3%) sup, E[|Y?)?]}.

3.4 Estimations of the position and the speed

O

The discrete time model, equation (3.21) and equation (3.38), approximate the
continuous time model, equation (3.7) and equation (3.8).
Let us fix 6, we denote x(k) = Y and z(k) = 2°(k), then
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The state equation: z(k + 1) = f(x(k)) + o(z(k))u(k)
The observation equation: z(k) = h(z(k)) + {(x(k))w(k)
where

e The functions o, h and ¢ are defined previously

e Forall y e R,

2 .
o a2y I{yZO} if Yy < MC,
Ply) = { ay M? if not .

e For all x = |:$1:|€R27
T2

fla) = ot on
| w2+ 0{ao + gcos(Oy + ) — arry — V(xa)}

e {u(k)}r is a 2-dimensional standard white process independent with the 1-
dimensional standard white process {w(k)}

Aim: Approximate the state vector (k) given the observations {z(0), ..., z(k)} up
to time k.

For simulations proposes we fix the constants of the system: 7" = 10, N = 4000,
Mc = 150, 80 = 7T/6, R = 200, (fo, 51,52) = (1, 05, 005) and {L‘(O) = (0, 25)

We approximate the position and the speed of the car using successively the EKF
algorithm and two particle filter methods using 160 particles. We use a multinomial
and a Bernouilli branching mechanisms, respectively.

The initialization of the state for the different approximation methods coincide with
the true initial state, ie.

#(0[0) = [ - } .

Figure 3.3: We approximate the position and the speed of the car using the EKF
and the particle filter with a Bernouilli mechanism, respectively. It is clear that the
particle filter performs better and gives better approximations.

Figure 3.4: We compare the Bernouilli and the multinomial branching mechanisms
and we plot the square of the difference to the true paths. A Bernouilli resampling
scheme performs better.



Chapter 4

Zakai Equation with an
Ornstein-Uhlenbeck Noise Type

4.1 Introduction

The filtering problem consists of estimating the statistics of a partially observed pro-
cess X, called the signal process, based on observations or measurements corrupted
by noises. The measurements are supplied by a process Z called the observation
process:

¢
Zt:/ h(Xs, s)ds + Ny .
0

The conditional probability m(p) = E[p(X;,1)|{Z,,0 < s < t}], where ¢ is a
bounded Borel function, gives the minimum variance estimate of ¢(X;,t) based on
the observations {Z;,0 < s < t}.

Many interests was developed to describe the nonlinear filtering with the help of
stochastic partial differential equations. This connections make it possible to apply
Monte Carlo and probabilistic methods for partial differential equations to filtering.
The case when the noise N is a Brownian motion was extensively studied, see
[7, 54, 57, 69]. Under some regularity conditions, 7, satisfies a measure valued
nonlinear stochastic partial differential equation, called the Kushner-Stratonovitch
equation.

In his famous paper [77], M. Zakai uses the Kallianpur-Striebel formula:

where p;(¢) is called the unnormalized conditional expectation, and he character-
izes pi(p) as the solution of a linear stochastic partial differential equation, called
the Zakai equation. The linearity of the Zakai equation makes it simpler and more
attractive for numerical methods than the Kushner-Stratonovitch equation.
Bensoussan [7] has established that p; is the unique solution of the Zakai equation
when the observation function A has linear growth bound.
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Recently, interest has developed when the noise is an Ornstein-Uhlenbeck or a gen-
eral Gaussian process [9, 10, 56, 65]. A. Bhatt et al. [10], study the case of Ornstein-
Uhlenbeck noise. They derived an analogous to the Zakai equation and they prove
existence and uniqueness results for 1-dimensional processes and bounded observa-
tion function h.

This chapter represents a generalization of the work of Bensoussan [7] and of Bhatt
et al. [10]. We consider a multi-dimensional dynamical system such that

e The noise N is of Ornstein-Uhlenbeck type

e The observation function h has a linear growth bound

We prove that the unnormalized conditional expectation p;(¢) is a solution of the
Zakai equation and we give uniqueness result. Then, we construct a sequence of
particle measures that converges to the solution of the Zakai equation. We precise
the rate of convergence and we establish an implementation scheme.

In the section 4.2 we describe in details the filtering problem under consideration.
In section 4.3 we transform the observation process and the probability measure
to obtain the (analogous) Zakai equation and under some additional assumptions
we prove the existence and uniqueness of the solution. Finally, in section 4.4 we
approximate the solution of the Zakai equation by a sequence of weighted empir-
ical measures, we give a rate of convergence, an implementation scheme and an
illustrative example.

4.2 The filtering problem

Let (€2, A, P) be a probability space equipped with a complete filtration {F;}:>o.
Let us consider

1. Two independent standard Fi-Brownian motions W = {W;}i59 and G =
{G;}i>0 with values respectively in R” and in R™

2. An Fy-measurable R"-valued random variable £ independent of W and G such
that

Ellef) = / & Pmo(d) < 00 (A1)
where 7 is the probability density of £

3. Two Borel functions g(-,-) : R" x [0,00) — R™ and o(-,-) : R" x [0,00) —
M, (R) such that
Global linear growth bounds: There exists a constant K > 0 such that

for all t > 0 and x € R™ we have
max( |g(z,t)|, [lo(z,t)|]) < K (1+ |z]) (4.2)

Locally Lipschitz: For every T > 0, there exists a constant K > 0 such
that for all t € [0,7] and x,y € R" we have

max( |g(z,t) — g(y,t)|, llo(z,t) —a(y,t)|]) < Kr |z -y (4.3)
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4. A jointly continuous Borel function A(-,-) : R™ x [0,00) — R™ satisfying for
allt > 0and z € R

|h(z, )] < K(1+ |z]) (4.4)
We consider the following model
The signal process:
dX; = g( Xy, t)dt + o(Xy, t)dWy ; Xg=¢ (4.5)
The observation process:
dZy = h( Xy, t)dt + dNy ; Zy=0 (4.6)

The noise process N = {N;};>0 is the unique continuous square integrable process
satisfying the SDE

The functions a and 3 are non random and satisfy:
i. (z,t) ER™ x [0,00) — a(z,t) = —A; ' Alz — A;'Bl € R™,
where
e The functions A € C'([0,00), GL»(R)) and B. € C*([0,0),R™)
e A} =dA,/dt and B, = dB,/dt

In particular, A~' € C*([0, 00), GL,,,(R))
ii. t€]0,00) — f; € GL,,(R) is continuous
For all t > 0, we define the bijective affine transformation L; of R™ by
Li(z)=Az+ By, VzeR™. (4.8)

Remark 4.2.1. 1. The conditions on the coefficients of the SDE (4.7) determine
uniquely (strongly and path-wise) the process N. We take a continuous square
integrable measurable version for the process N

2. We say that the process N is an Ornstein-Uhlenbeck type process because if
A; = exp(tA), A is a negative definite matrix of order m, B, = B a constant
vector in R™ and (; = I' a constant matrix of order m, the process N is an
Ornstein-Uhlenbeck process

The conditions (4.2) and (4.3) implies that the SDE equation (4.5) admit a
unique strong solution. Moreover,

1. Forall T >0, X € L*(Q, A, P,C(0,T;R")), i.e.

E[sup | X[} <00, VT >0 (4.9)

0<t<T
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2. For every k > 1 such that E[|¢|*] < o0,

BIX* < (1+E[¢*]) exp (Ct)

EX, — €] < D(1+ E[€))t* exp (Ct) (4.10)

where 0 < t < T < oo, C' = 2k(2k + 1)K% and D is a positive constant
depending only on k£, K7 and T

3. For every k > 1 such that E[|¢|?*] < oo,

Elsupocicr |X:[**] < D{E[IE*"] + T*(1 + B[l¢]*"]) exp(CT)}

E[SUPogth |Xt — §|2k] ; DTk(l + E[|f|2k]) exp (CT) (4.11)

where T < o0, and C' and D are positive constants depending only on k, K,
Krand T

Remark 4.2.2. In [50] one can find the proofs of the existence and the uniqueness
of the solutions of the equations (4.5) and (4.7), their mentioned properties and the
proofs of the inequalities (4.9), (4.10) and (4.11).

Given the observations {Z,, 0 < s < t}, what is the best L*-estimate X, of the
state X;, based on these observations ?

Let us denote Z; = 0(Z,,0 < s < t)* C F;, where % denote the augmentation of a
o-algebra by the P-null sets.

a. The estimate X, is based on the observations {Zs, 0 < s < t}if X, is Z-
measurable

b. X, is the best L2-estimate if
/ X, — X,2dP = B[ |X, — X,[2] = nf{E[|X, — Y[!], ¥ € K,}
Q

where C; = K(Z,t) = L*(Q, 2, P;R") = {Y €= L*(Q, P;R"), Y is Z;-adapted}

Lemma 4.2.3. Let H C A be a o-algebra with H* = H and X € L*(P) be A-
measurable. Put N = L*(2,H, P) and denote by Py the orthogonal projection from
the Hilbert space L*(P) into its closed subspace N. Then,

Pyv(X)=E[X|H], a.s..
Proof. E[X|H] is by definition the P-a.s. unique function: 2 — R™ such that
e E[X|H] is H-measurable
o Forall Ae H, [, E[X|H]dP = [, XdP
However, Py (X) is H-measurable and for all Y € N, [, Y (X — Py (X))dP =0
In particular, for all A € H the choice Y = 14 gives

/(x —Pu(X))dP = 0.
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Theorem 4.2.4. X, = Py, (X;) = E[X:|Z].

The filtering problem: For any arbitrary fixed positive number T, estimate the
conditional expectation

() = Elp(Xy, )| 2], YVt €[0,T],

where ¢ is a bounded Borel function on R™ x [0, 00). Clearly,

mle) = | e@m(do).

4.3 The Zakai equation

Following the work of Bhatt et al. in [10], we apply an affine transformation to
the observation equation to obtain a new observation equation. This will allow us,
after a change of the probability measure, to obtain an evolution equation of the
unnormalized conditional probability. We call this evolution equation the Zakai
equation. Under some additional assumptions we will show that this unnormalized
conditional probability is the unique solution of the Zakai equation.

4.3.1 Change of the probability measure

To derive the Zakai equation we will transform the observation equation (4.6) to
obtain a new observation process Y. The process Y will be a continuous square
integrable F;-martingale, independent of the signal process X in the probability
space (2, A) endowed by a new probability measure P obtained by

aP|
apls — Pt

Let us define properly the processes Y and p.
First, let T' be an arbitrary fixed positive real number. We define

1. The function H on C(0,7;R™) x [0,T] by
d t
(x,t) — H(x,t) = p [At/ h(x(s), s)ds} e R™. (4.12)
0
2. The process M by M; = L;(N), then
t
M, = / As BsdGs, Yt e[0,T]. (4.13)
0

3. The process Y by Y; = Li(Z;), then

t
Yt:/ H(X,s)ds+M,, VteloT]. (4.14)
0
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4. The process p = {p:}o<t<r such that
dpr = —pH (X, t)R;'dM,, py=1.
where Ry = (A,03,)(As3,)T. The matrix R, is symmetric positive definite
We have the following properties

i. The matrices A; and A} are continuous on [0, 7], then there exists a constant
ar > 0 such that max (||A.]],[|4;]|) < ar for all ¢ € [0,T]. This implies that for
all (x,t) € C(0, T;R"™) x [0,T]:

arK(L+ |x(t)| + [(1+ [x(s)])ds)

<
< KT(1 + SUPg< <y x(s )|)

(4.15)

where Ky = apK(1+T)

ii. The process M = {M,;}o<i<r is a centered continuous square integrable F-
martingale, independent of the Brownian motion W, where F¢ = o{G,, 0 <
s < t}*. Tts quadratic variation is given by

(M), = /Ot R.ds, Vtel0,1]. (4.16)

iii. Since L, is a bijective deterministic affine transformation of R™ and Y; = L;(Z,),
then for all ¢ € [0, 7] we have

Zt — yt 5 (417)
where Y, = o{Y,, 0 < s <t}*. In particular, E[- |Z,] = E[- | )]

iv. The process p is explicitly given by

t 1 t
pt:exp{—/ HT(X_,S)RsldMS—E/ HY(X,s)R;'H(X,s)ds} (4.18)
0 0

The measure P is a probability if we show that the process p is a martingale.

Let us consider the process M;¥ = — [ HT(X, s)R;'dM,, t € [0,T]. Since R;" is
nonrandom and continuous and H(X ,t) is square integrable, see (4.9) and (4.15)
and Fi-adapted, then the Proposition 2.2.2. in [35] ensures that the process M;*
is an F-martingale. Its quadratic variation is (M), = f(f HT(X,s)R;'H(X ,s)ds
for all ¢ € [0, T]. Moreover,

1
pr=exp(M; — S (M7),).

The Theorem 3.5.2 in [35] implies that the process p is an F;-super-martingale and
Elp:] < 1. It is a martingale if E[p;] = 1 for all ¢ € [0,T].
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Lemma 4.3.1. For all t € [0,T], we have
Elp] =1.
Proof. We check first that there exists a constant L; < oo such that
Elp Xi|?] < Ly, Vte[0,T]. (4.19)

Let us denote for simplicity g( Xy, t), o(X¢,t) and H(X ,t) by g, o and H respectively.
The Ito formula gives

L d|X,)> ={2X] g+ tr(oo?)}dt + 2X o dW,
2. dpy| Xi|? = pe{2XF g+ tr(ooT)}dt — ps| X |PHT R7YdM; + 20 X odW,
3. Taking U(t,x) = U(x) = z/(1 + ex) for € > 0,

Pt|Xt|2
dU (L, X _ P
LX) = AP
Pt 2 17T p—1 T
— X, 2HT RYAM, + 2X T odW
T+ enpy R od)
+{ Pr 2XZg + tr(ooT))

(14 epe| X4[?)?

2
€0y 4777 p—1 T _ T
_(1+€pt| t|2)3(|Xt| H "R H+4X, oo Xt)}dt.

We integrate dU (t, X;) from 0 to ¢, then we take the expectation, we see that the
expectation of first term is zero. The derivative w.r.t. ¢ gives
d o p(t)| X[
dt 1+ Gpt‘Xt‘Q

Pt T T
E[(1 oy ATE (2X; g+tr(co))]

2
€Pt 4T p-1 T _ T
-k X¢e"H'"RTH+4X; 00" X
[(1+€Pt|Xt|2)3(| t| t t)]

The last term of this last inequality is negative, then

i pt|)(t|2 < [ pt
dt 1+ epe| X (L4 epe| Xef?)

{2X] g+ tr(oo")}]
.

El—  _foXxTg+1t r
1+€pt|Xt|2{ tg+ T(UU )}]

The linear growth bound property (4.2) of g and o, implies

2" g(x, 1)) < Klz|(1+ |2]) < 2K(1 + |2]?)

ltr(o(z, )o(z, )T)| < 2nK2(1 + |z?) V(x,t) € R" x [0,T].  (4.20)

Then, using the fact that p;/(1 + ep;| X¢|?) < p; and that E[p;] < 1, we get

2 2
d o p] X < KE[’Ot(1+‘Xt| )
dt 1+€pt‘Xt|2 1+€Pt‘Xt‘2

= Pt|Xt|2
< K1+F———F—
= ( + [1+€Pt|Xt|2
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where K = 2(K 4+ nK?). The Gronwall inequality implies that

[ pt|l't|2

Lt epla’ =

where L; = fOT (K + K? [y exp (K(t — s))ds)dt. The constant L, is independent
from e. If we apply Fatou’s Lemma ¢ — 0 we get (4.19).
Next, we prove that there exists a constant L, < oo such that

t
E[pt/ IX.[2ds] < Ly, Wte[0,T]. (4.21)
0

Using the Fubini Theorem, that the process p is an F;-super-martingale, ie. for all
0<s<t E[pt’]:s] < ps, and that the processX; is F;-measurable we get

t t
Eloo [ 1XPas = [ Elpx.lds
0 0
t

E[E[/Ot|Xs|2}szd8

t

B[ Elp|F,)|X, ) ds

t

Elps|X,|2ds < Ly =TI,

I
S— — S—

which proves (4.21).
Finally, Ito’s formula gives us

d P _ _ptHTR_lth B ep?HT R, P Hdt
1+ epy (1+epe)? (L+ep)?
Then,
p 1 Yep?HT (X, s)R;YH(X , s)ds
g oL E[/ ! I (4.22)
L+ep 14e 0 (1 +eps)

The integrand part in the second hand term of equation (4.22) converges pointwise to
0 as € — 0. In addition, the inequalities in (4.15) and the fact that ep?/(1+€p;)® < py
implies that there exists a constant L independent of € such that
ep?HTY (X, s)R;PH(X , s)ds
(L + ep)?

< L1+ X2+ / X, Pdr),
0

This quantity is integrable by (4.19) and (4.21), then the Lebesgue theorem implies
that

E[/t ep?HT (X, s)R;H(X , s)ds
0 (14 €ps)?
In addition, we have E[p;] < 1, then
Pt
E — Elpy|.
) — £
The claim follows by taking e to 0 in (4.22). O

] =—.00.
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Lemma 4.3.1 shows that p; is an integrable F;-martingale, then by Propositions
8.1.1. and 8.1.3. in [71] we can define a new probability measure P < P such that
the Radon-Nykodym derivative of P with respect to P on F; is

dP
— = T|.
dP 7 Pt 5 vVt € [0, ]

If we denote by E the expectation w.r.t P, then for all integrable and JF;-measurable
random variable ¢ :  — R? we have

B[] = Elpg] (4.23)
E[|F] = p'Elpi¢|F), W0 <s<t (4.24)

Proposition 4.3.2. On the probability space (92, A, P, (Ft)eeo,1]) we have:
1. The process Y 1is a continuous square integrable Fi-martingale

2. The law of the process X remains unchanged under P and the processes X
and Y are independent

3. The law of the process Y under P coincide with that of the process M under
P. In particular, for allt € [0,T] we have

(Y): = (M)

Proof. The process M;¥ = — fot H(X,,s)R;'dMj is a martingale and its quadratic
variation 1s

t
(MX)t:/ H" (X, s)R; ' H(Xs, s)ds .
0

Then, the Theorem 4.4.1. in [35] implies that the process Y, = M, — (M, M*), is a
continuous square integrable local-martingale and for all ¢ € [0, T7,

from the equality (4.16) we get
t t
(M, M%), = —/ H(X,,s)R7\d(M), = —/ H(X,,s)ds (4.25)
0 0
This implies that for all ¢ € [0, T], Y; = Y; almost surely, see (4.14).

The process Y is a martingale: It is sufficient to prove that

E[ sup V3] < 0.

0<t<T
In fact, suppose that E[supy<,<r|Yi| | < 0o, then we can apply Ito’s formula:
d(p:Yy) = d{p(M; — (M, M)}

= Yidp, + prdM, — prd(M, M), + dp,d M,
Yidpr + prd M,
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Since dp;dM; = —p,HT (X;, t)dt = pyd(M, M*);, see (4.16), we get p;Y; is an Fi-
martingale on (2, P) and forall 0 < s <t < T

EY,|F) = o, ElpY| F] = Y.
Let us show that E[supg<,< Y| ] < oo. We have
. supgeyer [Yil? < 42K (1 + supgeye; | Xo|?) + 2t supge o, | M|
ii. E[supgc,< | Xs]?] < o0
iii. M is a square integrable martingale
iv. The Doob inequality:

E[ sup |M,|*] < 4E[M,|?] < o0

0<s<t

We deduce the result by using that E[supg,«r |Vi|]? < E[supgci<r [Yil?]-

The law of the process X remains unchanged and the processes X and
Y are independent: It is sufficient to prove that the law of (X,Y) under the
probability P is law of (X, M) under the probability P. We use characteristic
functionals. Let u € L*([0,T],R™) and v € L*>([0,T], R™), then

Ferwo) = Blow(i [ W oaxo+i [ o7 (sav.)
= Elpexp (i /0 tuT(s)dXs—l—i /0 th(s)dYs)] (4.26)
= Elexp (i /OtuT(s)dXs)exp(/Ot(—HTRs_l+iv(s)T)dM8)
exp (/Ot(—%HTRslH +iv(s)" H)ds] (4.27)

where we have replaced p; by its expression in (4.26) and we have denoted H (X, )
simply by H.

Let FoW = o{&;W,,0 < s < t}*. Tt is clear that X, is F~"“-measurable. We see that
given F;" the process M{" = [[(—=HT(X,, s)R;' +iv(s)T Ry)dM, is a martingale
with quadratic variation

t
(MW, = / (—H'R;' +iv(s)")Ry(—HTR;' +iv(s)") " ds (4.28)
0
We claim that

Blexp (MF™)| Y] = exp( (MEV),). (4.29)



4.3. THE ZAKAI EQUATION 99

We will show this equality later in the proof.
If we use the equalities (4.28) and (4.29) in the equation (4.27), we get

t
Fxy(u,v) = E[E[exp(i/ ul(s)dX,) x exp(MEY)
0
t
1
exp( / (=5 H" RV (Xo, ) + iv(s)” H)ds| 7]
%
= Elexpli / u? (5)dX,) Blexp(ME™) | 76
tO 1
exp (/ (—iHRS’lH +iv(s)" H)ds)]
° t 1 t
= E[exp(i/ u®'(s)dX,) exp(—é/ vT (s)Ryv(s))ds)] (4.30)
0 0
Given F", the process i f(f vT (s)dM, is a martingale and its quadratic variation is
¢ ¢
(z/ v?(s)dM,)), = —/ vT(8)Ryv(s)ds .
0 0
We deduce that
t 1 t
E[exp(i/ o7 (s)dM,)|FF) :exp(—é/ vT (s)Rgv(s)ds) . (4.31)
0 0
Finally, we use together (4.31) in (4.30) to get the result, that is
¢ ¢
Fxy(u,v) = E[exp(z’/ u®(s)dX, —i—’i/ vl (s)dM,)] = Fx.(u,v).
0 0

Then, the law of the martingale M under P is equal to the law of the martingale Y’
under P. In particular, M and Y have the same quadratic variation.
To finish the proof we prove the equality (4.29), that is

1
Elexp (M;™)|FFY] = exp(z (M&),).

Recall that F&"V = 0{&;W,,0 < s < t}* and X, is F-"-measurable. The equality
(4.13) implies that dM; = A;(,dGs, G is a standard BM.
We write the process Mf’w as a sum of two integrals

t t
MY = z/ U(S)TQidGS—/ H(X,, 5)" QG
0 0

where Q! = A, and Q? = R;'A,3,.
Given F&" | the two integrals I; and I, are jointly Gaussian.

Let us denote I = [ ? } and T = E[I(t)I(t)T ’ff’w], then
2



100 4.3. THE ZAKAI EQUATION

a. E[I(t)|F"] = [ 8 ]

[ [ivT(s)Rov(s)ds [y H v(s)ds
b- 1= [ fot HTv(s)ds fot HTR;'Hds ]

Let us denote € = Elexp ( [y (—HT R, + iv(s)T)dM,)|F;"], then
;9T
e = glew (| ] 10) A"

_ expg[_ﬁlrn[;p

1 t 1 t t
= exp (= [ H'R;'Hds — = | v"(s)Ryv(s)ds —i [ H"v(s)ds)
2 Jo ’ 2 Jo 0

= exp(% (MS™),).

That is, Elexp(MSW)|F "] = exp(L(M&V),) and the proof is complete. O

Definition 4.3.3. For all bounded Borel function ¢ on R"™ x [0,7] and for all
te0,7]

Lon=p; ' =exp{ [y H'(X,s)R;'dM, + % [ HT(X ,s)R;'H(X,s)ds }

2. pilyp) = E[@(Xt,t) Ut}Zt]

Lemma 4.3.4 (The Kallianpur-Striebel formula). For any bounded Borel function
© on R" x [0,T] and for all t € [0,T] we have

m(p) = : (4.32)
Proof. Let ¢ be any Z;-measurable and bounded random variable. One has

E[Cm(e)] = ElC (X, 1)]-

Then,
E[C ()] = E[C (X, )] -
This implies
E[Q Wt(SO)E[Ut|ZtH = E[C E[‘P(Xu t)m!Zt]] .
This gives the result. ]
Before establishing the Zakai equation we give a Proposition that enables us to

give a suitable space where the operator p (-) will act and where we will prove the
uniqueness of the solution of the Zakai equation.
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Proposition 4.3.5. Let ¢ : R" x [0, T] — R be a Borel function. Suppose that there
exists a constant k > 0 such that for all x € C([0,T],R™) we have

[W(x(t),1)] < k(1 + |x(t)]? +/0 [x(s)[*ds) . (4.33)
Then, for almost allt € [0,T]
i pe(v) = E[¢(Xtat)nt’2t] < Ll(sztap)
ii. B[] pi(¥)dt] < oo
Proof. Since E[supg<;<r|X:]?] < 0o, we get

El(Xnt)ln] = Eld(Xe,0)]
< B[4 |X.P+ / X, [2ds)]

< 0.
Then, we can define E[t)(Xy, t)n, | Z,] as the unique element of L' (€, Z,, P) satisfying
ENER (X, thne| Z4]] = Elp(Xe hn] -V v € L®(2, Z,, P).

The Fubini Theorem implies

B / (X )lmdt] = E / (X, 1)

IN

T t
HE[/ (1+\Xt\2+/ X, [2ds)dt]
0 0
< . (4.34)

Since 1 = )T — 1), we suppose that ¢ > 0. Let us consider

kb (X, t )
o RO DM 0.7y < st o P

wt B k + ¢(Xt’ t)

If we denote 1hF = E’[@Z)ﬂZt], then for almost all ¢, ¥F € L2(Q, Z;, P) and ¢F 1 py(¢)

a.s.. In addition,
B[ k) = B[ dsigntitian
0 t 0 t t
~ T ~
= B[ wtsign(it)ar
< B / (X, 1) ] (4.35)

The inequality (4.35) and Lebesgue’s Theorem imply the result. O
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The Proposition 4.3.5 enables us to define the space where we will find solutions
of the Zakai equation. Let us consider the space

Br ={¢:R" x [0,7] — R Borel function satistying (4.33)} . (4.36)
We define the space of linear operators £5(0,T) by

; 0.(¥) € L'((0,T) x Q;dt ® P) V4 € By
@) € Lz0T) & { ¢ (1) € LY, 2, P) for almost all t in [0, 7] (4:37)

In particular, we have

- CPM(R™ x [0,T];R) C Br i

- The linear operator p (-) belongs to the space £L5(0,T)
4.3.2 The Zakai equation

We begin by a useful Lemma. For any bounded Borel function 3 : [0,7] — R™, let
us define

t 1 t
= expli [ TR+ [ TR ). (4.38)
0 0

Then, 0y = 1 and db#; = i@tﬁtTRt_ldYt, 0 <t <T. In addition, the process 0; is a
C-valued Z;-martingale.

Lemma 4.3.6. Let ¢ be a Z;-measurable and P-integrable complex valued random
variable. If E[C6;] = 0 for all bounded Borel function [ :[0,T] — R™, then

(=0 a.s.
Proof. The proof is similar to that of Lemma 4.1.4 in [7]. O
From now we suppose that
E[sup |X;*)] < 00. (4.39)
0<t<T

A sufficient condition for which (4.39) holds is that E[|¢]%] < oo, see (4.11).
Let us consider

e The matrix a(z,t) = Lo (z,t)o(z, t)" = (a;(z, 1))

1<i,j<n

82

e The second order differential operator A = — >, .. % =D 1< i<n Yij 3z.0z,
1> i >4J> 10T 4

Theorem 4.3.7 (Zakai equation). For every ¢ € Cp'(R" x [0, T];R) we have

pe(p) = mo(p) + /Otps((% — A)p)ds + /Otps(wHT)RldYs. (4.40)
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Remark 4.3.8. The strategy of the following proofs is instead of proving properties
for unbounded quantities we prove the same properties for bounded ones which
depends on parameters like € and A and then taking the limit to zero to get the
results for the unbounded cases. This permit us to give an elementary proof.

Proof. For every € > 0, we define

€ Nt
= . 4.41
un 1+ en; ( )

In particular, n; — 7, as € — 0 a.s.
We will prove in Proposition 4.3.10 that for every ¢ € CZ(R™; R)

(X t)|2] = @@lyéémfz—mwxmmaus

1+e (83

t en?
— | F[— (X, s)H'R'H|Z,]d
R T LI EATE

t
- s T -1
+ Fl— Xs, H Z dY, 4.42

/0 [(1 + 6775)2()0( ’ } ( )

We obtain the Zakai equation if we can take the limit € — 0 in the equality (4.42).
It is clear that we can take the limit ¢ — 0 in the left-hand side of the equality
(4.42), then ) .

E[WESO(Xt,t)}Zt] - E[ﬁt@(Xt,t)}Zt] :

It remain the three terms of the right-hand side of the equality (4.42):
First term: We have

o E[nf(% — A)p(Xy, 1)| 2] — E[m(% — A)p(Xy,1)| 2] as e — 0 aus.

o Eln(2 — A)p(Xy, t)| 2] < Eln (2 — A)p(Xy,1)] | 2]

e Proposition 4.3.5 implies that E[nﬂ(% — A)p(X,1)| | 2] is integrable on [0, 7]
Then,

| Bt~ e 9| 20ds — o [ Bl - Aplxes)|2lds

Second term:  The function ¢ is bounded and the function H satisfies the
inequalities(4.15), then there exists a constant L > 0 such that

t s
}/ + 3<p(X8,s)HTR 'H|Z,]ds| <L/ E[(1+|Xt|2+/ | Xu|?du)| Z,)ds .
677 0 0

In addition,

b EN[(ljZZ )390(X373)HTR 1H’Z —>O ase — 0

o [TE[(1+|X,+ [ |Xu[2du)|Z,]ds < 0o as.
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Then,

t en?
El—" _o(X,,s)H'R'H|Z,d 0 0 as.
/0 [(1—1-6773)3%0( ,S) |Z]ds — 0 ase—0 as
Third term: Let us denote

fO (1—&-6773)2%0 XSaS)HT}Zs]Rild}/S

o a, = [y Enyp(X,, s VHT|Z,|R7dY,

In particular, of — fo C?ff;ens o(Xs, s)HT| ZR71dY;.
We check first that
ay — a4 as € — 0 in probability. (4.43)

From Theorem 2.3.4. in [55], we obtain (4.43) if we prove that
~ 2 B
/ |E| 6775 a 677 — (X, s)HT}ZSHst — 0ase—0 as. (4.44)
(1+ ens)

The function ¢ is bounded and the function H satisfies the inequalities (4.15), then
there exists a constant L’ > 0 such that

= €02 (2 + eny)
B

< L|E| M((1+|X5|2)1/2+/ X, |du) H|2,]]7.
1+ 775) 0

Using the Fubini-Lebesgue Theorem (Theorem 1.8.5. in [64]), we get

o(X,,5)HT|Z])|*

= T en?(2+e s 2\1/2 ° T
E[/O E[%((MHXJ )i/ +/0 |X,|du) HT| 2,)ds]

_ en2(2 + en ) 5 T
=F s s 1+X321/2—|—/ Xyldu)H  ds| —._¢ 0
[/0 (1 6775)2 (( ’ ‘ ) 0 ‘ ‘ u) 8] ’

Then, there exists a subsequence such that dt ® P-a.s. we have

2 S
= €175 (2 + €ns) 201/2 / T
B[ 2 T+ | X, X, |du)HT|2,] — 0
e (TGP | 1 Xldu) Y| 2]

Moreover, using that en?(2 + en;)(1 + en;) 2 < 2, we get

}E[%w(&, ) HT|Z,)[ < 4L Bl ((1+ | X)) + /0 | X du) | 2.]|°

In Lemma 4.3.14 and Lemma 4.3.15 we will prove that
Bl (14 P2+ [ Xuldu)| 2. € 17(0.7) (4.45)
0

We apply Lebesgue’s Theorem to (4.44) we get (4.43) for the above subsequence.
Now taking the "subsequence” limit in (4.42) we get (4.40) almost surely. O
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Corollary 4.3.9. For every 0 as defined in (4.38) we have

Elbio)) = male) + B[ [ 6m.((GL — Ao+ ipHTRVD)d] (440

Proof. We have

2

en; O T -1 2
—r  __oH R H| <Cn(l+ X,

’(1+€77t)3¥J ’ < Om 0855215' "

Since E[n(1 +8uPg< o< [ Xs]?)] = E[14supgc <, | Xs]?] < 0o, we take the limit € — 0
in (4.47) and with the Fubini-Lebesgue Theorem, Theorem 1.8.5. in [64], we deduce
the result. O

Let ¢ be a function in C;' (R x [0, T]; R), then Ito’s formula yields to

) it ) 0
d(Omzp(Xi,t)) = [(1 fte;;t)gngTR 16“‘97&777&(5_
2
en; O T p—1
0 e e
+[(1f7€j7t)290HtRl+29t77t903 ay,
+9t77t6D<PTU(Xt, t)dW,

Ay

If we integrate d(6:m5¢(X¢,t)) from 0 to ¢ and we take the expectation w.r.t. P, we
get

t .
n € To ¥ - 7)s _
Elmio(Xe,t)] = 10i3 + E[/o Hsm@(Xs,S)HTR 'Bds]

+EL [ (e~ ANplX o)

N t 6772
—FE 0,—5 (X, s)H'R"'Hd 4.4
[/0 S(1+ens)3<ﬂ( «s)H R s] (4.47)

Proposition 4.3.10. For every ¢ € C;''(R" x [0, T];R) and every e > 0 we have

9 (X, )| 2)ds

Enfe(Xe,t)| 2] = M+/O E[ni(as

1+e€

feen -
—A E[WQ(XS,S)HTR 1H}Zs]d8

b Ns T -1
L /0 Bl e Yo HT|ZIRAY, (4.48)

For the proof of Proposition 4.3.10 we need the following Lemma

Lemma 4.3.11. i E[fnio(X,,t)] = E[GtE[n)f(p(Xt,t)’Zt]]
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ii. E[ [y (0sn5(Z; — Ap + O (1 + ens) " HT R H)ds]
[et fo 75 ( as A)p + 5773(1 + 6775)‘3<pHTR‘1H]ZS]ds}

11, E[fot 2'08778( +ens) (X, s)H'R™ 15d8}

E[0; [y Elne(1 + ens) ?@(X,, s) HT | Z]R~1dY]
Proof. The first equality: Since 6, is Z;-measurable, we obtain the equality.
The second equality: The inequalities (4.15) and (4.19) imply that

0 Orenf (X, t) oy 1 5
(—=— — A)p(X,, t —— " H Hel T Q:dt @dP) .
tht(at )(,0( ty ) + (1 + 67%)3 R € ((07 ) X ) ® )

Then, The Fubini-Lebesgue Theorem (Theorem 1.8.5. in [64]) yields to

- t o en?
f(— — — 5 (X, s)H'R'H
E[/O (08775(68 A)p(Xs, 8) + 0, (1 + en,)3 o(Xs,s)H' R )ds}

= 50— X 0,— (X, s)H' R H]ds.
/Ov E|:05n5(68 A)SD( 8’8)+ S(1+6778)3g0( 8’8) R j| S

In the other hand, using that 6, = E [Qt}Zs] we get

210 (2 e’ o

E[esnS(a B A)SD(XS’ 8) + esmw(){g, S)H R H}
:E[QSE[%(%—A) (X, )‘f‘%hﬂ}% 1H}Z]
= B0~ )+ S 2

The third equality: for similar arguments as for the second equality we get

B t ZT] t B
E[/O 0 m@(Xs,s)HTR 'Bds| = [/0 0 E[mw()(s,s H"| 2R Bds]

Let us define the process Y; = f(f E[(lﬂﬁw()@, s)HT|Z,)R7'dY, the Ito formula
gives

> nt(p(Xsas T T 1
d(6,Y; 0, B[ [T 2] 40 Yl dy,
O = 0PI B sy,

i (@ T 1
El—————o(X, tYH" | Z,|R™"Bdt .
BT e Xe OB

We integrate d(thQ) from 0 to ¢ and we take the expectation, we get

B,V :E[/O HSE[JW('D(XS’S VHT| 2R 6ds] .
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Then,
E[/te s (X, s)HT R pds]
(1 +en,)? >

t
» % Ts T -1
= Fl|0 E Xs,s)H" | Z,|RdY] .

[l‘//ov [(1+€773)2S0( S) ’ ] ]

O

Proof. (Proposition 4.3.10) The use of Lemma 4.3.11 in the equality (4.47) and of
the density of the #’s in the way of Lemma 4.3.6 give the result. O

Let us define the following processes
1. Xt = fot |X5|d8
ii. Forall A >0, X} = X;(1+ X))

Remark 4.3.12. If we apply Ito’s formula to the product 9m§)§'t)‘ then we integrate
from 0 to ¢ and finally we take the expectation w.r.t. P we get

T L Dol X.|
Elon XN = E/ s gTR-1g 4 Ml 2sl
i i1 [0 ((1+ens)2 ’ v (1+AX,)?
20, .
B TR H)ds).
(1+€775)
Proposition 4.3.13.
t
Elnc XMz = /E”iXAHTz RdY,
[m t’ t] ; [(1+€77) ’
b X, 2
+/ Bl en X)HTRTUH|Z)ds. (449)
0 (1 + >\Xs)2 (1 + 6775)

Proof. Like the proof of Proposition 4.3.10, we need to show that:

Elbi; X)) = E[6.Eln; X?)| 2]

2 By (G555 — qoap X2HT R H) ds]
= E[6, [ B[l el AT R-VH|Z,)ds]

(1+/\XS)2 (1+ens)

3. B [} el X)HT R Bds) = E [0, [y E

(1+577$)2

p X)HT|Z) R Y]

(1+577$

The first equality: the process 0; is Z;-measurable, then we obtain the equality.
The second equality: We have

Oms|l Xel  en?os
(1+ X))z (L+en)?

X HTRH € L'((0,T) x Q;dt ® dP) .
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Then, we obtain easily the second equality.
The third equality: First, we have

~ ¢ 2770 ~
E — B X HTR'4d
[/o T e e 1 F s

_F ' s AT p-1
_E[/O esE[(Hem) X HTR™'B|Z,)ds]

Then, if we consider the process Y} = fo 1+sn X)‘HT}Z ~1dY, and we write

the Tto formula for the product 0,Y, then we integrate from 0 to ¢ and we take the
expectation w.r.t P we get the result. O

The following two Lemmas proves (4.45). That is,
Bl (14 P2 + [ Puldu)| 2. € 12(0,7)
0
Let us denote, for all z € R™ and A > 0,
o Alx) = (1+z[*)"?

212 \1/2
° Ay(z) = (113@“2) /

e A\(2) — A(z) = (1+]z])Y? as A — 0
Lemma 4.3.14.
t— E[ntA(Xt)’Zt](w) € L~(0,T) P-a.s. (4.50)

Proof. For any A > 0, Ay € C2(R™;R). Then, the equality (4.48) applies to p = Aj.
In addition,

=~ Ns
E[mAA(X )

[1+ sup |X,[*] < Cip

0<s<t
Then,
i. E’[ns(l—i—ens) 2ANX HT’Z —>E[n5(1—|—e778) 2A(X HT}Z Jas A —0
ii. Eny(1+ens) 2A(X,)HT | 2] € L*((0,T) x Q;dt ® dP)

We conclude that the equality (4.48) apply also to A. In particular, the process

t
= 1s T -1
M;f = EFl—————A(X,)H" | Z,JR dY,

t /0 [(1 _'_6773)2 ( ) ‘ ]

is a square integrable Z,-martingale and E[M{] = 0. Moreover,

WS- [ - da)
A(X)H"R'H|Z,)ds (4.51)

My = E[UEA(Xt)‘Zt]_

2
€ng

_l_i
(1 + eng)3
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In other hand, for all (x,t) € R" x [0, 7]

2la(z, t)x B 2lg(xz,t) + tr(a(z,t))
U+ PP~ O+ P

AA(z) =

Then, there exists a constant D > 0 such that
|AA(z)| < DrA(z) Y (x,t) € R* x [0,T7.

In addition, using the inequalities (4.15) and the fact that en?/(1 + en;)® < n; we
can find a constant D/. > 0 such that

2
€7} T -1 / 3

— 2 AX)H "R H<D,(1 X,

At ey < Dr(L+ sup 1X.)

Then, Lebesgue’s Theorem implies that M converges as € — 0 to a process M,.
In addition,

e The process M; is a Z;-martingale
o E[M]=0
o M, = E[nA(X)|2] — mo(A) — [y Elng(Z — A)A(X,)|2,]ds

Since E[M;] = 0, then the martingale M, has a modification such that its sample
paths are right continuous with left hand limits a.s., see Theorem 1.2.2 in [55]. We
can assume that M; has a.s. right continuous sample paths with left hand limits
which implies that the paths are bounded on the compact [0,7]. This proves the
Lemma. 0

Lemma 4.3.15.
¢
t— E[nt/ | X|ds|Z)(w) € L=(0,T) P-as. (4.52)
0
Proof. Recall first that for all A > 0, X} = X,(1 + AX;)~'. We have
e For all x € C([0,T],R"™) and t € [0, T]

fg |x(s)|ds
1+ /\f(f |x(s)|ds

¢
—>/ |x(s)|ds as A —0.
0

b }E[m(l + 6775)72)2;\]—]7“}25“ < CE[l+ SUPg<s<t |X8|2] < Cé,T
Then, we have the following convergence in L2((0,T) x Q; dt ® dP):

Ens(1+ eny) 2X2H"| 2] — Es(1 + eng) 2X,H"|Z,] as A — 0.
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We conclude that we can replace X' by X, in equation (4.49). That is,

t
Bl e v = Ts T -1
En X\ 2| = E[—" _X.H ZJR™dY,
[7715 t’ t] /o [(1 5775) }
2

t en B
+ | E[nfX,| - —"—X.H'R'H|Z,]d
| B - s 12.Jds

Moreover, let us denote the process Mf = fo N X HT|Z)R7'dY,, then

(1+en
e M is a square integrable martingale
o E[Mf]=0
o Mi = E[iXi| 2] - [y Bl X.| — s X, HT RV H| 2,)ds

Since n§| X¢| < n:| X¢| and 1+6 ) X, HTR'H < Cr(1+supgc < | Xi]?), then Lebesgue’s
Theorem permit us to deduce that M; converges as ¢ — 0 and the limit M, is a
Z-martingale with E[M;] = 0. Moreover,

t t
Mt:E[m/ | X|ds| 2] —/ E[ ng|X,| |Z)ds
0 0

Since E[M;] = 0 then the martingale M, has a modification such that its sample
paths are right continuous with left hand limits a.s., see Theorem 1.2.2 in [55]. We
can assume that M, has a.s. right continuous sample paths with left hand limits
which implies that the paths are bounded on the compact [0,7]. This proves the
Lemma. O

4.3.3 Uniqueness of the solution to the Zakai equation

From now we suppose that the following assumptions hold:

Assumption 4.1. The initial condition of the state is deterministic, ie. there exist
x € R" such that Xy =& = =.

Assumption 4.2. The functions ¢ and o are C3-class in x and C'-class in ¢.
Assumption 4.3. The function h(z,t) is C'-class in x and ¢.

We denote the solution of the state equation (4.5) by X* = {X[};. The solution
®;(x) = X7 has a modification that is almost surely a C?-class diffeomorphism in
the variable x, see Theorem 2.3. in [54]. That is, for all ¢ € [0,7] we have almost

surely
®, : R" = R™ is a C*-class diffeomorphism . (4.53)

Denoting f(z,t,w) = H(X*(w),t) then for almost all w in Q we have
H(X"(w),t) = H(X] (w), t,w), (4.54)

where for all y € R”, H(y,t,w) = f(®;  (y),t,w).
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i. For almost all w, H(-,-,w) is a jointly measurable function on R™ x [0, T]
ii. For all z € R, the process {H(z,t,-)}; is Wy = o{W,, 0<s < t}* adapted
iii. For almost all w and for all ¢ € [0, 7] the function  — H(z,t,w) is C*-class

Let us consider a subspace € in Q such that P(€) = 1 and on which both (4.53)
and (4.54) hold for all w € €.

We fix w in @ and ¢ in (0,7], and we simply write H(z,s) for H(z,s,w). We
consider the following partial differential equation:

(% — Ap(x, s) + ip(x, ) H (x STR71B, = 0, 0<s<t
{ b(a,) — ) (4:55)

Assumption 4.4. For all w € €, the partial differential equation (4.55) has at
least one solution ¥ = ¥, € C*(R" x [0,T]; C) such that its first derivative w.r.t.
x has at most a polynomial growth.

We consider a standard R™-valued F,-Brownian motion W independent with the
process Y on the space (2, P) and we denote by {7, the solution of the SDE (4.5)

on [s,t]driven by the noise W in the place of the noise W such that §ss = x. That
is, for all r € [s, t]

&o=ot [ oluwidns [ ol wdi,

Let us define for all s € [0, ]
To(z,s)="T(x,s) = E[gp(fft,t) El (4.56)
where £, = exp (i f H( 2 .r)TR1B.dr). Then,
o T € C*(R™ x [0,t]; C) and sup,, }T(:v,s)} < lell
o &2, = i€ H(¢2,, )T Ry Bydt and 7, = 1

Proposition 4.3.16. Under the Assumption 4.4, the partial differential equation
(4.55) has only one solution. This solution is bounded and coincide with Y defined

in (4.56).
Proof. Let ¥ € C*'(R" x0,t]; C) a solution of (4.55), in particular ¥(x,t) = p(x,t).

We apply the Ito formula to the product G, ,(z) = V(&7 7)EL, we get
_ e g9 T p—1
dgsﬂ‘('r) - gsr{(a?n A) ( S, ) +ZH( s,m7 ) RT BT}dT

+ELDV(EL ) o (€5, )W,

Integrating from s to ¢ and taking the expectation w.r.t. P we get
Elp(€8,,0)E2] — ¥(x,5) = 0.

This proves the Proposition. O
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Definition 4.3.17. For every t € [0,7], we define the family P; as the set of
stochastic processes {®(z, s) = ®(z, s,w) }o<s<t, © € R™, satisfying

i. For each s € [0, ], the function ®(-, s) is a bounded C*-class function on R™ a.s.

ii. For each z € R", the process ®(x,-) is F, adapted and has C!-class paths on
0,t] a.s.

iii. For each (z,s) € R" x [0,¢],

O(z,s) = P(x,0) + /OS{ACI)(:E,T) —iW(z,r)H(z,r)TR B dr as.  (4.57)

Remark 4.3.18. The solution W given in (4.56) of the partial differential equation
(4.55) belongs to the space P;.

The Tto formula for the composition of processes, see Theorem 1.1. in [53], applies
to the processes in P; and for all ® € P,

dd(X?, s) = (% — A)®(XT, 5)ds + DO(XT, s) o(X7E, s)dW, a.s.

We prove next that elements of P; satisfies the Zakai equation

Proposition 4.3.19. For every ® € P; and s € [0,t] we have

pi@) = mo®) + [ (5~ @)+ [ 'y (®HT)a,. (458)

Proof. The proof is similar to that of Theorem 4.3.7, the only difference is that the
function @ is bounded but not necessarily its first derivatives w.r.t. ¢ and x and its
second derivatives w.r.t x.

The process ® satisfies the equation (4.57) P-a.s. and P-a.s., then

(% —A)D(XT,s) = (X", s)H(X",s)TR;'B,, as. (4.59)

In addition, we have

o Elsupgc<r | Xi|*] < 00

o [H(x,t)| < arK(1+|x(t)] + [y (1+ [x(s)|)ds)

o |[H(x,t)| < f(T(l + Supg<,<; |X(s)]), where Ky =arK(1+T)
Together with Proposition 4.3.5, we get

L (& — A)P(X2,s) € L((0,t) x Qi ds ® dP)

2 J) Blnl(Z — A(XZ, )] ZJds < oo
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Then, in one hand the process ® satisfies the equation (4.48) and in the other hand
we can take the limit € — 0 in this identity to get the Zakai equation. U

Remark 4.3.20. The equality (4.46) is valid for the function ® and for every 6 as
defined in (4.38) and every s € [0, ]

El0,py(®)] = () + E[/OS Qrpr((% — AP +i®H"R™'B)dr]
= 7T0(q>) .

Now we are ready to prove the uniqueness of the solution to the Zakai equation.
Let us first note that the Zakai equation (4.40) and the equality (4.46) still hold for
complex values functions ¢ € Co' (R™ x [0,T]; C). Then, we define B,

Bf ={¢: R" x [0,T] — C Borel function satisfying (4.33)} .

In particular, ;' (R™ x [0,T];C) C B. )
The linear operator p (-) extends naturally to belong to the space L (0, T; C) defined
by

N A . () € LY((0,T) x Q;dt ® P), Vi € B§,
() € Lz(0,T;C) = { q(v) € LY(Q, Z;, P), for almost all ¢ in [0, 7]

Theorem 4.3.21 (Uniqueness). Let q.(-) € LL(0,T;C) such that for all t € [0,T)
and for all ® € C;'(R™ x [0, T]; C) U P, we have

qs(®) :WO(@)—I—/OS qr((% —A)CID)dr+/O ¢ (PH")dY, , as. (4.60)

Then, for all t € [0,T] and for every real valued bounded Borel function ¢ on
R"™ x [0,T] we have )

@(p) = Elme(X]7 )| 2] .
Remark 4.3.22. my(®) = &(z,0).

Proof. Let t € [0,T] and ¢ € C7'(R™ x [0,T];R). We denote by ¥ the solution
of the associated partial differential equation (4.55) with the terminal condition
U(z,t) = @(x,t) a.s.

The function (process) ¥ is an element of Py, then from Remark 4.3.20 we have

El0sps(V)] = mo(¥) = El0sq:(V)], Vs €[0,1].

In particular, for s = ¢ we have for every 6 as in (4.38)

El0.pi(0)] = E[biqs(¢)] -
Using Lemma 4.3.6 we get, for all ¢ € [0, T] and for all ¢ € C;'(R™ x [0, T]; R), that

pi(0) = qs(p) .

Since every bounded Borel function on R" x [0, T'] can be approximated with elements
of C2'(R™ x [0, T];R), we get the result. O
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4.4 Particle approximation method
In our formulation, the filtering problem consists of computing
m(p) = Elo(Xe, 1) 2], Vi€ [0,T]

where ¢ is a bounded Borel function on R" x [0, 7] and Z; = 0{Z,,0 < s < t}* C F;.
The process X = { X, }o<t<r is the signal, given by (4.5). The process Z = {Z; }o<i<r
is the observation, given by (4.6).

After an affine transformation of the observation equation (Z — Y') and a change of
the probability measure (P — ]5), the process Y becomes a martingale independent
of the process X whose law remains unchanged under the new probability measure.
In addition,

e The Kallianpur-Striebel formula: 7,(¢) = p, (1) pi(e)

o pi(p) = Elp( Xy, t)me| 2]
o n=exp(fy H'(X,8)R;'dY, — L [V H'(X,s)R; ' H(X ., s)ds)

If we suppose that the functions o, g € C*(R™ x [0,T]) and h € CH1(R™ x [0,T]),
and that the initial state Xo = 2 € R", then p (-) is the unique solution of the Zakai
equation. That is, if

o(z,t)ol (z,t)

DO [

o a(z,t) =
d 92
e A=-3%, 9ipe; — ZZ] i Bzi0x;

Then, for all t € [0, 7] and all ¢ € C2H(R" x [0, 7))

t a t B
p(e) = (.00 [ p(GE = Apds+ [ pleHTIRAY. as. (a6)
0 0
Definition 4.4.1. A set of weighted particles is a system of the form
Py ={(Xi,w;), 1 <i < N},

where N > 1, X; € R" and w; > 0.
The set of particles Py approximates the finite measure A € Mg (R") if the weighted
empirical measure

N
M (da) = widpx,y(de)
i=1
converges to A as N — o0o. The system Py is unweighted if w; = 1/N for all i.

Because of the linearity of the Zakai equation, much interest was given to char-
acterize the solution of the filtering problem as the solution of the Zakai equation
via the Kallianpur-Striebel formula, [7, 9, 54, 56, 57, 65, 69]. Crisan [16, 18] and
Crisan et al. [21] approximate the solution of the Zakai equation using branching
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particle methods. This method offers an algorithm that begins with N particles
then produces N generations. Each particle has a weight equal to 1/N, lives a time
length equal to 1/N and gives a number of offsprings depending on its trajectory.
The number of particles may change from one generation to another. In [18], Crisan
uses a particle approximation method. He attaches a time dependant weight to each
of the N particles. The particles moves independently w.r.t. the law of the state
process. He gives also a comparison with the branching particle methods. Other
methods based on the Galerkin approximation or based on the Cameron-Martin
version of the chaos decomposition can be found in [1, 38, 66].

We approximate the solution to the Zakai equation using a particle approximation
method. We avoid the use of a branching particle method because of the presence
of the integral H (X ,s) in the expression of the martingale p;. It is not evident to
express the process y; as a product of terms that are dependent on pairwise disjoint
portions of the trajectory of the process X.

We will construct a sequence of weighted empirical measures Uy of the form

N
i=1

weakly convergent to the solution of the Zakai equation and we give the rate of
convergence (Theorem 4.4.6). This will enable us to numerically solve the filtering
problem via the Kallianpur-Strieble formula.

We first make two assumptions. The first assumption will allow us to consider
many independent processes, all of law of the process X. We will need the second
assumption to prove the main result of the next Section, (Theorem 4.4.6).

Assumption 4.5. We suppose that on the probability space (€2, ]5) we can con-
sider many infinite independent R™-valued Brownian motions all independent of the
process Y.

Assumption 4.6.
B T
A} = E|exp (2/ H' (X" t)R;"H(X", t)dt)] < oc. (4.62)
0

In particular, if the function h is bounded then Assumption 4.6 holds.

Remark 4.4.2. From now we work under the probability measure P.

4.4.1 Particle approximation

Let us consider, for any integer N > 2, V;1, V2,... V;¥ be N independent realiza-
tions of the signal X?* that are in addition independent of the process Y. Those
random vectors are called particles. For each particle V,' we attach a weight u}
given by

, ¢ 4 1 [t 4 ,
pi=exp ([ BT RAY ~ 5 [ RO STRIHV 9ds) . (1
0 0
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Let us consider the associated weighted empirical measure

N
UN(t) == N ,uté{vtz} .
=1

We fix an integer number N > 2, then there exists /N independent Brownian motions
{Wi; i=1,...,N} on (Q, P) such that

e Forall 1 <i< N and t € [0,T],

t t
|74 x +/ g(VZ, s)ds +/ a(VE s)dW! (4.64)
0 0

t
pe = 1+ / pH(V?, s)T RITY,
0
e For all p € C*(R" x [0,T]; R),
- 9 A - A -
(Vi) = iz — A)e(V D)t + (Vi 6 H(VE 6T R Y,
+u DV ) o (Vi t)dW, (4.65)

Remark 4.4.3. The law of each particle coincide with the law of the process X*
under P, since the law of the process X* remains unchanged after the change of
probability: P — P.

Lemma 4.4.4. For all1 <i< N, t€[0,T] and ¢ € B(R" x [0,T];R)
pe(p) = Eluie(Vi,1)| 2],
t
AN i 2 % i - i
Bl(nieVis0)] = EleVitP expl [ HTRIH(V, 9)ds)].
0

Proof. The first equality: The equality follows from the fact that each V' has the
law of the process X.
The second equality: We have

t
(i) =vi x expl [ HTRIUHT (V. s)ds).
0
where v} = exp(fy 2H(V',8)TR;'dY, — & [JAHTR;'H(V?, s)ds).
From Assumption 4.6 we deduce that the Novikov condition is satisfied, see Theorem

3.5.3 in [35], then the process 1] is an J; = o{Y;; 0 < s < t}-martingale. Moreover,
E [l/f}))o] = 1. In addition, the processes Y and V* are independent, then

E[(io(Vi )] = B[E[(1ie(Vi, 1) Vl]

= Bl el [ HTRH(V 95 Bl ]

= Bl el [ HTRH(V )as)]
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Remark 4.4.5. If the function ¢ = 1, then

B{(4)?) = Bl exp( / HTRH(VY, $)ds)] < /A%,

Denoting by Mg(R"™) the space of finite measures on R" endowed with the weak
convergence topology. That is,

{un — pin MpR")} <= {(uny,0) = (1, 0), Vo€ C(R" x[0,T])}.
The weak topology on this space is metrizable. The distance d(-, -) given by

k (M SOk)‘
22 Hsoku ’

where the sequence {py}r>1 C Cb(R" [0,77]) is convergent determining, generates
the weak topology. Then,

pn — p<= d(pn, 1) = 0.

A sequence {u™*} of random measures converges to the random measure p* a.s. if

for all ¢ € C,(R™ x [0,T]) and for almost every w € Q we have

d(p™ ) — 0 as N — oo a.s.

Nwl of random measures on (Q, P) is weakly convergent to p* in

A sequence {p
Mp(R™ x [0,T]) if .

Eld(p™ 1)) — 0 as N — oo.
In the next Theorem we prove that the sequence Uy converges weakly to the measure
p, with a rate of convergence proportional to N~1/2,

Theorem 4.4.6. 1. For allt € [0,T] and p € B(R" x [0,T];R) we have

E[((Ux(8), ) = pu(9))] < \/NT{ el

2. Forallt €[0,T]
2(AF)
N
Proof. 1. The particles are independent; the equalities of Lemma 4.4.4) and As-
sumption 4.6 imply that for all ¢ € [0,7] and all ¢ € B(R™ x [0,T];R) we
have

E[d(UN(t)7pt)] <

E[((Un(t),¢) = p(9))]] = E[(% Z pio(Vit) — pi(9)]

_ %ZE[(W(VH)—M@))Z}

IN

ZE Mt‘P(tha )) ]
lell? \/F

IN
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2. For all k > 0,

U, 20) = Gopnll;  EIUN. 1) = (001
il - el
o (apv
= N1/29k

Since Y, 27" < oo, then Fubini’s Theorem implies

B

Bl(t),p)] = B3 1O 2,g|m||<p“"’“)']
_ i;[(UN( ),er|20;||(pt,wk)l]
. gE[\(Uw),§:|>|w—k|<|pt,sok>|2]1/2
< <ff_>”4.
This proves the Theorem. 0

4.4.2 Implementation

The numerical implementation of the empirical measure Uy () needs the simulation
of the particles (V}'); and the evaluation (approximation) of the weights (pt);.

We approximate the true trajectory V; of each particle on the interval [0, T] with
a trajectory V; based on a discretization of the SDE (4.64). Depending on the
smoothness of the functions g and o, we can use one of the two strong scheme
time discretizations: the Euler-Maruyama scheme or the Milstein scheme. The
Euler-Maruayma scheme is implementable in our setting if, in addition to the linear
growth bounds on g and o see (4.2), we replace the local Lipschitz condition on
g and o w.r.t. z, see (4.3), by a global Lipschitz condition w.r.t. z and ¢, see
Appendix B.4.

Assumption 4.7. For all z,y € R" and s,t € [0, T,

max{|g(z,s) = g(y, )|, |o(z,s) —o(y, O} < K(lz —yl+[s —t).  (4.66)

Let V; be the trajectory of a generic particle. Then, there exists an R"-Brownian
motion W such that for all ¢ € [0, 7],

t t
Vi=ux —I—/ g(Vs, s)ds —I—/ o(Vy, 8)dW.
0 0
Let M be a positive integer sufficiently large such that
0=T/M < 1.

The equidistant time discretization trajectory V; of the generic trajectory V; is:
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« Vo=

e Forall k€ {0,...,M — 1} and t € [r, Tk41], where 7, = k0, we have

Vi =Vi+ (t =) g(Viy 7)) + 0 (Vi, 7o) (W — W)

Let us denote AW =W, . — W.., then

Tk+1
o Vp==
e Forall k€ {0,...,M — 1},

‘7k;+1 = ‘N/k + 59(‘7k> ) + U(f/k:a Tk)AkW

The process V; converges strongly to the process V; with order 1 /2 and there exists
a constant C' independent of M, see [73], such that

El sw [Vi-Vi[*]<Cs. (4.67)

0<t<T

Moreover, even if it means to take a greater C' in (4.67) we have

El swp [Vi["]<Ci=CeC(1+ 2. (4.68)

0<t<T

To approximate the weights 1! we approximate the integrals in (4.63), we define the
following process

.I():O

e Forall k€ {1,..., M},

k-1 k—1
. )
p=> H;(V,m)"RIIAY — 5 > HIR'H;(V,7) (4.69)
7=0 Jj=0
e Forall k € {0,...,M — 1} and all t € [7y, Tk y1)
j:t - j:k
where
- AY =Y, - Y,
— For all k € {0,..., M},
H (V1) = A, h(Vie, i) + 5A'Tk( h(V;, 1)) - (4.70)
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Then, elk approximate the generic weight p;.
The total number of time increments M is the same for both approximations. Both
H;, and I, can be evaluated on-line since

o Hy(V,7) = Ay h(Vi, 7)) + 6 AL Sy where Sy = 0 and Syy1 = Sy, + h(Vi, %)

o Iy =1I+ Hk(f/.a Tk)TR;klAkY - ngTR;lej(Va Tk)
Still the question of the validity of the approximation I; in (4.69) to the integral

t 4 1 [t 4 :
I, = / HV' s)TR'dY, — 5 / HV s)TR;PH(V', 5)ds .
0 0

We need to make two additional assumptions, one on the function h and one on the
matrix valued application s — R.
Assumption 4.8. For all z,y € R" and s,t € [0, T

Assumption 4.9. For every T' > 0, there exists a constant Kr > 0 such that for
all s,t € [0,7],

sup {[|R||, IR} < Kr
te[0,7]
max{[|Rs — Ril, |R;' = R} < Kpls —t]'?

Since the process I; involves the function H then the following Lemma is of
utility

Lemma 4.4.7. There exists a positive constant K such that for allx,y € C([0, T]; R™)
and s,t € [0,T] we have

[H(x.,s) = H(y.,t)| < K{llx =y + (1 + [Ix] + ly )]s — t[} . (4.71)

Proof. The inequalities (4.4) and (4.15) together with the Assumption 4.8 give easily
the result. O

Proposition 4.4.8. There exists a constant C' > 0 independent of M such that
E| |1, — INt} ] < C8Y% forallt €[0,T].
Proof. We fix M sufficiently large and we define the two processes N and N such
that for all k € {0,...,M — 1} and t € [, Tk—1)
t
N, = / H(V,s)"R;'dY,
0
) k—1

N, = > Hj(V., )" R 'AY

Jj=0
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The process N, is clearly a square integrable martingale. The process N, is also
a square integrable martingale since the increments of the martingale Y are inde-
pendent and the function A and the process V satisfies successively the inequalities
(4.4) and (4.9). In particular, their quadratic variations are

<N%=L[HW@”$HW%M&

~ k—1 ~ Tit1 ~
N), = H(V,t)TR? R.ds)R:'H,;(V,1;).
J J 7 T T4 J

J=0 j
Then, we can write the process I; — INt as a sum of three terms:
L —L =T +T,+Ts, (4.72)
where
e T) =N, — N,
o Th=3((N) — (N)y)
o Ty= (M) = 00iy HT RS, (V7))
We prove in three steps that
E[|Ti|] < 0("?), i=1,2,3.
Step 1 We prove that for some constant A > 0
B[N, — N[ <Ad, forallte[0,T]. (4.73)
One has

t
m—m::/kﬂ%$—ﬂwwfawn
0

t k—1
+(/ H(V,s)"R]'dY, = > H(V,7)"R'A;Y)
k—1 ~ ~
+> {H(V.,7) - Hi(V,7,)} R AY (4.74)
=0

Denoting successively by Si, S and S3 the three terms in the right-hand side in
equality (4.74). Then, E[|N, — N,J?] < 3327, E[|S;]]. The idea is to found an
upper for each E[|S;|?].

First term

E[| 517

E%{m%$—mﬁﬁf&%MW$—HW@Mﬂ

t
gm@#ﬂmm@—ﬂwﬁﬁw
0
< K;TK*E[sup |V; —Vi|*
0<t<T
< KiTK*CS = A6, (4.75)
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Second term
. . k-1 Ti+1 . -
Blis:f) = EIY [ {H(VL SR - HV.m) R, Yavi[).
=077

We have
H(V,s)"R;' = H(V,m) "R} = {H(V,s) = H(V,7;)} R
C HHV )R - R,
Then,

BlSsY < 2605 /7”1}H(V,s)—H(V,Tj)fds]

_ Tj+1 ~ ~
2 / H(V, m)T{(R = RV R AR — RYH(V, )ds [
0 T

In one hand,

&
IN

OKpK2E[T(1+2 sup |Vi])?%6%

0<t<T

2K+ K*(2T + AE[ sup |‘N/t|2])52

0<t<T

< A2 (4.76)

where, Ay = 2K7K2(2T + 4C}), see the inequality (4.68).
In the other hand, from the Assumption 4.9 we get

IN

B, < 2By / H(V, ) PR — R2Y2ds)

A
s
=
=

9

\
E

Su
—~
=
2
N~—
—

QL
o

[@%)

A
W
3
~
—
+
St

»n
[wr}
o}
=
=,

< A3l (4.77)
where Az = 4(K5)3T (1 + CY).
Third term
. Rl e . .
E[|Ss)"] = E[Z/ (H — H;)(V,m)"R'R.R_N(H — Hj)(V, 7;)ds]

Jj=0

< (BRPE[Y / [H(V. 7)) = Hy(V.,7;)|"ds]

< TK} mJaXE'HH(V,Tj) - Hj(VyTj)’2] (4.78)



4.4. PARTICLE APPROXIMATION METHOD 123

From the Assumption 4.8, we have

_ -1
H(V,m) — Hy(V.m)| = AL /0 h(Vs,5)ds =83 h(V, 7))
=0

k-1 Tj+1 -
— ALY [ (V) V)|
3=0 T

Flpmin -
< arKY [ V-Vl plhds
=077

< arKTé+arKTmax sup |V;—V;| (4.79)

T s€lry,mita]

Ve = Vil

From the definition of the process V, we have for all s € (75, Ti+1]

We need to found an upper bound on £ [SupSE[T]’,T7'+1

Ve =Vil? < 20%|g(Vy, m5) P + 20l (Vy, 7)1 W — W, |
< AR+ V) + AR+ [T, — W 2.
Then,
sup Vo —Vi|* < AKPP(1+|V;]) +4K°(1+ Vi) sup  [W, — W, [*.
S€[T),Tj41] s€[T;,Tj+1]

The processes W, — W, and \7j are independent, then the Doob inequality and the
inequality (4.68) imply that

B[ swp V.-V < 4K’E[L+ VB[ sup [W, - W, [

$€[75,7j41] s€[15,7j41]

HAK252E[1 + V|7

< 16KE[L+ [V E[W.,,, — W, [’
+AK2E[ + |V,

= 4K?0*(1+ C)) + 16K*(1 + C1)6

< 20K%*(1+Cy)S.

If we denote Ay = a2 T2 K2K?(2 4+ 40K?(1 + C))), then
E[|Ss"] < A48, (4.80)
Conclusion: If A =3%7,_,,A;, then
E[|N:— NJ*] < A6
Step 2 We show that

E[|(N); — (N);|] = 0(5"?), forallte[0,T].
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Since (NN, N), < <N>2/2<N)2/2, see Theorem 2.2.13 in [55], then ((N),flﬁ— <N)t1/2)2 <
(N — N);. Using Schwartz’s inequality we get

E[[(N)e— (N)|] = BI(N) = (NN + (V)]
BINY = (NP RELNY? + ()2 )72
V2E[(N — N),J'2E[(N), + (N),]"/?
V2E[|N, - Nt} IY2E[|N? + | N, P]V2
We denote by I'L, = E[(N)r|?] = E[|Nr|?] < oo, then

o E[|N,2] <TT forall t € [0,7]

IA A

o E[|N,J?] < 2L + 2E[|N, — N,|?] for all ¢ € [0, T
We deduce that
E[}<N>t— <N>t}] < V2E| [| N — Nt] 1V2(31L + 2E] [|V: — N,JH))Y2

< {V2VAQBTYE +2A)1/21612.
Step 3 Finally, we show that

k—1
E[[(N)e =0 H;y(V,7)"R'H;(V,7))| ] = 0(6"?).
j=0
Let us denote \; = (5Zk " H; (V,Tj)TR;lej(V, 7;), then
~ k—1 ~ Tit1 ~
(N, — X\ = Z H;(V, Tj)TR;jl(/ (Rs — R.,)ds) R H;(V., 7).
j=0 i

From Assumption 4.9 we get
k—1
BI[(N): = x|] <Y K22 E[|H,(V, 7)[]

J=0

In addition, from the definition of the process H;, see (4.70), we get
j—1
|H;(V, )| < arK(1+ Vi) +arKs » (1+V;))
i=0
N-1

< aTK(1+sup|V}|)+aTK5Z 1+SUP|VZ|)
=0

< arK(14T)(1 +sup |V;])
t
This implies that there exist a constant I' independent of M such that
~ ~ 2
E[|H;(V,7)|"] <T.
Then, we deduce that

E[[(N): — N\|] < K}TTS.
The proof is complete. O
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4.4.3 Numerical example

09 b

0.5 —— 300 particles ‘ A
04F | - —————— 200 particles : -
0.3F 100 particles .f
0.2 . ! L L L I ! | |

0 20 40 60 80 100 120 140 160 180 200

time

Figure 4.1: Conditional mean approximations
The signal process X:
L4 X() =1
o dX; = g(X;,t)dt + o(Xy, t)dW, for all t >0
where

i. W = {W,;}; is a 1-dimensional standard Brownian motion
ii. g(x,t) = (14 cos(t))x
iii. o(z,t) =2z

The functions g and o are C*-class, global Lipschitz w.r.t. (z,t) and admits a global
linear growth bounds w.r.t . Moreover, for all A > 0 we have

A} = E[(X;)"] = exp (At + Asin(t)) .
For all ¢ > 0, let us denote B = exp (A?t) and 3 = exp ( — A?t), then
R} = (A5 = exp(2Asin (1))

The observation process: dZ; = e~/? cos(Z — X;)dt + dN}, t > 0
where the process N* = {N}}, is given by
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. N(j\:()
e Forallt >0

AN} = {=(A]) (AN — (AN TH(BY) Yt + BdG,
= {(A2 4 Acos(t)) N} + N2e OVt + e G,

where G = {G,}; is a 1-dimensional Brownian motion independent of W

0.05

0.04

200

Figure 4.2: Conditional densities time evolution

We take p(z) = sin(x). In figure 4.1, we plot the normalized expected mean of p(X})
using the particle approximation method and the Kallianpur-Striebel formula. We
use 100, 200 and 300 particles successively. In figure 4.2, we plot the normalized
conditional densities of the signal at various times, using 100 particles.
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Appendix A

A.1 Pseudo-inverse of a matrix

Let A be a linear operator from R"™ to R™; n,m > 1. Each of R" and R™ is
equipped by its canonical inner product. The mapping W obtained by restricting
A to (ker(A))*+ with range R(A) is one to one and onto, hence

W™ R(A) — (ker(A))* is linear .
Denoting by A’ the orthogonal projection in R™ onto R(A).
Definition A.1.1. The pseudo-inverse A" of A is defined by
AT R™ R At =W lo A
Properties A.1.2. If AT is the transpose matrix of A then
1. Ac At =A", Ato A=At
2. AcATo A=A, AToAo AT = AT, (AN)T = (AT)*
If A=! exists, then AT = A~!
At = AT o (Ao AT)t = (AT 0 A)T 0 AT

-~ w

5. If b e R™ and zyp = ATb € R” then
||Azg — b|| < ||Ax —b]|, Vo € R"
Moreover, if b € R(A) then Azy =b

Lemma A.1.3. Let D be the following diagonal matrix

M

D= A2 ) 0 = diag(\, Mo, -« ., \n)

0 | An

where \y > Ay > -+ > X\, > 0. Then, if A\, >0 and \,11 = 0, we have

D' =diag(1,...,1,0,...,0) and D" =diag(A\',...,2;1,0...,0).
—_——

» Np
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Theorem A.1.4. [14] Let A be an n x n symmetric matriz and let D = UT AU be
its spectral decomposition, in particular U is unitary. Then,

At =UDTUT.

Remark A.1.5. Using together Properties A.1.2, Theorem A.1.4 and Lemma A.1.3
we get the pseudo-inverse of any real n x n matrix.

One application of the pseudo-inverse calculus is the following

Theorem A.1.6. Let {z1,29,...,2x} be any family of vectors in R™. For x € R",

consider T = Zle a;z; its orthogonal projection onto spand{zy, za,...,zx}. Then,
+
aq < z1,21 > o < 21,2 > < zZ,T >
(079 < Zp, 21> . < 2,2 > < Zp,T >

A.2 Fatou Lemma and Gronwall Inequality

Fatou Lemma [11] If f1, f2,... is a sequence of nonnegative measurable functions
in a measure space X, then

/ liminf f,, <lim inf/ fn-
X n—oo n—oo X

Gronwall Inequality [15] Suppose a and [ are Lebesgue integrable in [0, 7] for
some 1" € (0,00) and there exists a constant L > 0 such that

at) < B(t) + L/Otoz(s)ds, for all t € 0,7].

Then
a(t)gﬁ(t)JrL/O exp (L(t — $))B(s)ds, forall € [0,T].
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B.1 Conditional probability

Let (€2, A, P) be a probability space and G be a sub-o-algebra of .A. The conditional
expectation E[X |G| of an integrable random vector X given (or based on) G is the
integrable G-measurable random vector, which exists uniquely P-a.s., such that

/sz/mm%w, VAEG.
A A

Properties of the conditional expectation, [76]

a) If ay,ay € Rand X, X, are A-measurable, then Eloy X1+ao X5|G] = oy F[X|G]+
as B[ X5|G], P-as.

b) If X is a positive random variable then F[X|G] > 0, P-a.s.

¢) If H is a sub-c-algebra of G, then E[F[X|G]|H] = E[X|H]

d) If0< X, / X, then E[X,|G] / E[X|G] P-as.

e) If X is G-measurable, then F[XY|G] = XE[Y|G] P-a.s.

f) If H is independent from o(c(X),G), then F[X|o(H,G)] = E[X|G] P-a.s.

The conditional probability of A € A given G is the random variable P(A|G) =
E[14|G], where I, is the indicator function of A. In particular we have

PMmByi/PMWMP,VBEQ

B
If Yi,...,Y; are A-measurable random variables, define the random vector Y by
Yy
Y=|":
Yy

The conditional expectation E[X|Y] of X given Y is given by
EX[Y] = E[X]|o(Ys,..., V)]
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Definition B.1.1. The conditional distribution of X given Yis said to be regular
if there exists a function Q(-,-) defined on Q x B(R") such that

1. Vw € Q, Q(w, ) is a probability measure on (R", B(R"))

2. VB € B(R"), Q(-,B) is o(Y1,...,Y;) -measurable and Q(-,B) = P(X €
B|Y)(-) P-a.s.

Remark B.1.2. All the random elements in this thesis take values in Borel spaces of
the form (R™, B(R")), then all conditional distributions/probabilities are chosen to
be regular (see [70], pp. 146-150).

The conditional expectation E[X|Y] is o(Y7,...,Ys)-measurable, then there ex-
ists a Borel measurable function m : R¥ — R™ such that E[X|Y] = m(Y). We
denote, see [14], for every y € R¥ m(y) by E[X|Y = y| the conditional expectation
of X given the event {Y = y}. If Py is the probability distribution of Y, then by
the formula of change of variable we get

Xap = [ m)Ptdy) = [ BIX)Y = ylP(dy), VA € BRY),
YeA A A

Suppose that X and Y are independent, then for any Borel measurable function g
and any measurable subset A of A

Elg(X.V)[Y =y] = E[g(X,y)] Py-as.
PAN{Y € B}) — / P(AY = y)Py(dy), VB eB®RY.  (B1)
B
The random vector X is said continuously distributed if Py < \,, where A, is the

Lebesgue measure on R”. By the Radom-Nikodym theorem, there exists a Borel
measurable function py, called the probability density function (pdf) of X, s.t.

Pe(B) = P(X € B) = / px(@)dM (), VB € BR).

d\,(x) is shortly denoted dz. In particular, for any Borel measurable function g we
have

/gdPX:/ngd/\n, VA € B(R").
A A

If px is continuous a.e., then at every point (z1,...,x,) of continuity we have
( )= g X
Tiyeveyy) = ——————
Pxi®Ls- - s Tn oxry...0x,

where Fx is the distribution function of X.
If the R? x R%-valued random vector X = (X, X3) is continuously distributed, then
so are X7 and Xs. In particular

le(xl) = /pX(x17x2>d$27
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The random vectors X; and X, are independent if and only if px (z1, z2) = px, (z1)px, (72).
Finally, we define the conditional density function px,|x, (21|x2) of X; given the event
{X5 = x5} for all z1, x5 by

If px,(z2) >0, then px|x,(z1]r2) = px(z1,22)/Px,(22),
prxg(l'z) IO, then pX1|X2(Z'1‘.I'2) =0.

In particular, we have the Baye’s rule, that is

P (11 g) = Pt (F2lT0Px (1)
" pxz(x2)

The conditional density function satisfies

ElgCOlY =)= [ g@pale)de, ¥ g e BE),

In particular,

EIXY =y| = /wpxy(ﬂf,y)dw
P(X]Y) = E[(X-EX|Y])(X - EX[Y])T|Y]

E[X]Y = y] is conditional mean and P(X|Y’) is the conditional covariance matrix.
One can see [40], pp. 36-42 for proofs.

B.2 The multivariate normal distribution
On the probability space (€2,.4, P), consider the following two random vectors
Xl Yl

X = : and Y = : , n,m>1.
Xn Y

If ux = E[X] and py = E[Y], then the covariance matrix of X and Y is given by
cov(X,Y) = E[(X — px)(Y — py)"] = (cov(Xi, V7))

If A and B are two constant matrices, then cov(AX, BY) = Acov(X,Y)BT.

The matrix cov(X, X)) is symmetric, positive and semi-definite.

The family {X; — px,, ..., Xn, — px, } is linearly independent in £2(P) if and only
if the matrix cov(X, X) is symmetric, positive and definite.

Definition B.2.1. A random variable X is normally distributed with mean p and
variance 02, we write X ~ N (u,0?), if X is continuously distributed w.r.t. the
Lebesgue measure on R and its probability density function py is given by

px(a) = (VImo)Texp (= E)  yaeR.

202
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We have the following properties, [14, 34]:
1. If X ~ N(0,1), then Elexp (itX)] = exp (—3t%), Vt € R

2. For all k > 0,
21 ok _ (2K)!
E[X*™] =0 and E[X]= ST (B.2)
3. If X ~ N (p,0?), then Va,b € R, aX + b ~ N(au+b, (ac)?)
4. If X1, X5 are independent and X; ~ N (u;,0;), 1 <i,7 < 2, then

a1 X1 + ap Xy ~ N (o + gz, (0102)° + (a202)?)

5. If Xy, X5 are two independent random variables such that S = X; + X, is
normally distributed, then X; and X5 are normally distributed.

Theorem B.2.2. [14] Let T' = cov(Y,Y) and u = E[Y]. Suppose that det(I') # 0
and that Y; ~ N (i, 04), 1 <i < m. Then,

1. The function
1

19~ g vaar

is a pdf for Y and Y is multivariate normal distributed: Y ~ N (u,T)

exp[— < T ' z—p),(z—pn)>/2], Vz€R™ (B.3)

2. There exists a matriz U € O,,(R) such that Z = UY has marginals that are
pairwise independent and normally distributed

Definition B.2.3. Let X = {X,} be a system of random variables. We say that X
is a Gaussian system if for any n > 1 and any Xy,..., X,, € X, we have Xy,..., X,
are jointly distributed and their joint distribution is normal.

Proposition B.2.4. [3/] Let X = {X,} be a system of random variables. Then,
X is a Gaussian system if and only if any finite affine combination of elements of
X is normally distributed. In that case, the linear subspace and the closed linear
subspace spanned by X in L*(P) are Gaussian systems.

Remark B.2.5. A random vector Y is said Gaussian, if the system formed by its
components is Gaussian. In particular, for every k x m-matrix A and k-dimensional
vector b the vector AY + b is Gaussian.

Theorem B.2.6. [3/] Let X = {X)}xea be a finite Gaussian system. If X' =
{Xx}rven is a subsystem of X and B' = o{X,, N € N'}. Then, for all X € A,
E[X,|B'] is the orthogonal projection of X onto span{Xy, N € A'} in L*(P). In
particular, E[X|B'] is normally distributed.

We finish this subsection by the following result.

Theorem B.2.7. [J0] If X and Y are two multivariate normal distributed random
vectors such that X ~ N(mx,Tx) and Y ~ N(my,Ty). Then, if we denote
Ixy =cov(X,Y), we get
EX|Y] = mx +TxyI N Y —my),
XY ~ N(mx+TxyIy' (Y —my),Tx = Txy Ty Ty
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B.3 Limit and asymptotic convergence theorems

Convergence criterions Two classes of convergence criterions are commonly
used. The first class contains three strong criterions of convergence and the sec-
ond one contains two weak criterions.

Suppose that {X}r>1 and X are random vectors on a probability space (€2, .4, P)
with values in R". For all £ > 0, denoting by F'x and Fx, the respective distribution
functions of X and Xj.

Strong criterions of convergence
1. Convergence with probability one (w.p.1), called also almost sure convergence:
PllweQ, lm |Xi(w) - X(@) =0})=1.
We write X — X, P-a.s.
2. Mean square convergence: If E[|X]?] < oo and E[|X}|?] < oo, V k.

Jim E[|X, - X*]=0

3. Convergence in probability, called also stochastic convergence:

lim P{w, |[Xi(w) — X(w)| >€})=0, Ve>0.

k—oo

equivalent to

In particular, 1. = 3. and 2. = 3.
Also, 3. implies that X has a subsequence satisfying 1.
Weak criterions of convergence

1. Convergence in distribution, called also convergence in law:
For all continuity point x of Fx, one has

lim Fx, (z) = Fx(x).

k—o00

we write X —p X or X = X

2. Weak convergence: For all f € C,(R"), one has

lim E[f(Xy)] = E[f(X)].

k—o0
. w
we write X, — X

Convergence in probability implies the convergence in distribution. In the case that
X is non random, they are equivalent.
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Strong laws of large numbers (SLLN) Let X be a R"-valued random vector.
If E[|X|%] < oo, we set 02(X) = E[|X —F[X]|?]. Suppose that { X} },>1 is a sequence
of R"-valued random variables.

Theorem B.3.1 (Strong law of large numbers). Suppose that the Xy’s are inde-
pendent with finite expectations E[Xy| = py. Set for allk > 1, Xy = %Zle X; and

fit = Xoiiy pi- Then, )
P({erlXi — il — 0}) = 1

for every sequence {ci}y in Ry such that ¢, /k — 0 and > k™*cio?(Xg) < oc.

Corollary B.3.2. Suppose in addition the o*(X})’s are uniformly bounded by c €
R,. Then, )
Pk Xy — ] — 0) =1, for every a < 1/2.

The next result removes the condition on the variance, but supposes that the
X}’s are identically distributed.

Theorem B.3.3 (Kolmogorov law of large number). Let X, X, ... are independent
identically distributed random vectors. If uy = E[X,] € R", then

k—o00

k
1
P(lim E;Xi:,ul):l.

Central limit theorem (CLT)

Theorem B.3.4 (Central Limit Theorem). Let { X1, X, ...} be a family of indepen-
dent identically distributed random vectors and denote T' = cov(X,). If E[|X1]*] <

oo, then B
VE(Xy, — ) —=p U

where Xy, = 1/kS2F | X; and U ~ N(0,T).

We finish this subsection by a result on the asymptotic behavior of functions
of random vectors. Let {Z,}, be a sequence of n-dimensional random vectors such
that

bk(Zk — C) —D U.

where
1. U~ N(0,T), where I is a n x n-real matrix
2. {bx}r a sequence of real numbers such that b, — oo
3. ceR"”
Consider a Borel measurable transformation H : R — R™, we have

Theorem B.3.5. If H has a differential D at the point c, then

Remark B.3.6. For proofs see, for example, [27].
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B.4 The Euler-Maruyama discretization

Modeling a time varying physical quantity is of central importance in many scientific
areas. In many problems, this quantity satisfies a continuous time stochastic differ-
ential equation (SDE) and its solution gives information on this quantity. Generally,
solutions of a SDE are not analytically available. Even when such a solution can be
found, it may be to complicated to visualize or to evaluate numerically. Necessity
has thus lead to the development of methods for calculating numerical approxima-
tions to the solutions of a SDE.

The most widely applicable and commonly used of these are the time discretiza-
tion, also called time discrete approximation or difference methods, in which the
continuous time SDE is replaced by a discrete time stochastic difference equation
which evolves recursively in discrete time. One hopes that sufficiently small time
increments lead to more accuracy.

In the filtering problem context, strong convergence criterions called strong Taylor
approximations are used to discretize the equations of the system. Strong Taylor ap-
proximations are based on the Ito-Taylor expansions and on the Stratonovich-Taylor
expansions (Theorem 5.5.1 and Theorem 5.6.1 in [50]). We will present the Euler-
Maruyama scheme. This method attains an order of strong convergence v = 0.5.
More accurate methods, like the Milstein scheme, can be found in [50].

First, let us consider the following R%valued SDE

t m t
X, = X, +/ a(X,, s)ds + Z/ Y (X,,s)dW? (B.4)
to j=1 710

where t € [to, T], W = (Wy)sefto,17 is an R™-valued standard BM and

a : (ak)lgkgd : Rd X [O, OO) — Rd’
b= (V") 1<p<d 1<j<m : R? x [0, 00) — R&>™.

For each t € [ty, T], we set A, = 0{ Xy, ; Wy, to < s <t}*. If §o > 0and d € (0,0),
then (7)s = {7,, n=0,1,2,...} is a time discretization of [ty, T] if :

Ltn<mp<m<-<1m<---<T

. sup(7pg1 — ) <4
iii. iy =max(n >0, 7, <t)<oo,VtEeElty,T)
iv. 7,41 is A, -measurable

An R’-valued continuous process Y = (Y(t))seft,,77 is a time discretization approxi-
mation of maximum step size ¢ based on (7)s of the process X if

1. Y(r,) is A, -measurable

2. Y (Tn11) can be expressed as a function of Y (70), Y (71), ..., Y (T0), To, - - - Tns Tt 1
and a finite number of A, .  -measurable random vectors which generate mainly
the noises

Tn+1
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In such a case the process Y is denoted by Y.
The process Y? converges strongly with order v > 0 at time 7T if there exists a
constant C', independent of §, such that

€(6) = E[|Xr — Y°(T)|] < C47, for all 6 € (0, ). (B.5)

Let (1)s = {to =70 <71 < --- < 7y = T} be a time discretization of [ty, T]. The
nth time increment is A,, := 7,41 — 7,,, the maximum step is 6 = max,, A,,.
We consider only equidistant time discretization, that is

T, =ty+nd, with d=A,=A=(T—-t)/N<1.

The Euler-Maruyama scheme is the simplest strong Taylor discretization. For every
ke {1,...,d}, the kth component of the Euler-Maruyama scheme is

o Yfﬂ =Y+ ad" (Y m)A + Z;nzl VI (Y., 7o) AW

o forallt € [7,, Thi1),

YE(t) = Y+ a" (VE ) (= 7) + D W (VE 7)) (W) — W) (B.6)
j=1

where V¥ = Y*(7,) and for all n € {0,..., N — 1}, A, W/ =W/] W/ .
For allm € {0,...,N —1}, A,W?' ... A, W™ are independent Gaussian and for all
1<j<m

E[A, W] =0 and E[(A,W7)?] = A.

Suppose that there exist constants C;, i € {1,2,3,4} independent of § such that
for all s, t € [to, T] and z, y € RY,

[} E(’X0|2) < o0

o B(|Xo— Y |H)Y? < C16'/?

o |a(t,x) —a(t,y)| +[b(t,x) = b(t,y)| < Calz —y|

e la(t,z)| + |b(t, y)| < C3(1 + |z)

o la(s,z) —a(t, )| + [b(s, ) = b(t, )| < Ca(1+ [z])]s —t['/?

Then, the Euler scheme converges strongly with an order v = 1/2, i.e. for a constant
C independent of §
E(|Xr — Y/(T)]) < C5/2.



Appendix C

C.1 Bayesian Approach Estimation

In a purely statistical setup, computational difficulties occurs at the level of statis-
tical inference on a given probabilistic model (estimation, prediction, tests, variable
selection, etc.).

Some of the most applied statistical techniques are maximum likelihood and Bayesian
methods and the inferences that can be drawn from their use.

The maximum likelihood is associated with maximization problems, based on an
implicit definition of the estimators as solutions of maximization problems.

The Bayesian methods, in which we are concerned here, deals with integration prob-
lems and proceed to give an explicit representation of estimators as an integral.
Suppose that a density f(z,#) involves all statistical information about some real
world situations, where the unknown parameter vector 6 belongs to a Borel mea-
surable set © C R™.

The aim is to estimate the true unknown parameter vector 6 .

Suppose that prior information about § € © are available, this permit us to treat
f as a random variable, usually square integrable. We can then represent all prior
information by a density function 7(#), called prior density on 6 .

Furthermore, suppose that we are able to sample from f(x|): the conditional den-
sity function given 6. Let X = (Xy,..., X)) be a sequence of samples from f(z|6).
The function f(X6) is the conditional density of X = (X3,..., X}) given 6.
Bayesian inference combine in some optimal way the prior information given by the
prior density with the data in order to improve the inference about 6.

Let us make some notations and definitions before conducting such inference about
0 in an optimal way.

- f(X|0) is the conditional density of X = (Xj,..., X}) given .
- 7(0) is the prior density on 6.

- g(X) is the marginal density of X, ie. g(X) = [ f(X][0)7(6)d6.
- h(0|X) is the posterior density of (9 given X (Xy,... ,Xk).

- f(X,0) is the joint density of # and X = (Xy,..., X).

In particular,

F(X,0) = [(X]|0)7(0) = h(6] X)g(X) -
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Then,

o) - 200

o f(X]6)7(6) (C.1)
Let T : (R™)* — © be a Borel measurable function. The function T is called the
estimator and T'(X) = T'(X; ..., Xj) is called an estimate of §. For any realization
x=(x1,...,2,) of X = (X1...,Xy), we call 0* =T(zy,...,7,) a point estimation
of 0.

A loss function L(6,6%) is defined to be any non-negative function equal to zero if
the parameter and its estimator coincide, it measures the deficiency (loss) incurred
when taking 6* as a point estimation of 6.

We restrict our selves to the quadratic loss, called also the square error loss, that is

L(0,6") = 1|0 — 0"[[zn = [0 — 071"

The Bayesian risk r(r,T) of the estimator 7" with respect to the prior 7 is
r(r,T) = / / L6, T(x))f(x|0)T(0)dzdl
© J(Rm)*
= [ [ 1o T@Iselre)dsas.
© J(R™)*

where dr = dx;...dx,. Loosely speaking r(7,7T) measures the average over 6 of
the average loss when we risk 7" as an estimator of a fixed 6. Finally, the Bayesian
estimator T is defined by

r(r,Ty) = in{f’)“(T, T). (C.2)

This criterion gives the optimal estimator in the Bayesian framework:

Theorem C.1.1. For the square error loss L(0,0*) = |6 — 0*|*, the Bayesian
estimator is given by

T.(X)=E[0|X] = /eeh(H\X)dG : The posterior expectation.

Proof. see Theorem 4.1.1. and its corollaries in [58]. O

An important class of numerical problems that arise in statistical inference is
integration problems, which is generally associated with the Bayesian approach.
With the advanced of computers in the last years, simulations methods, as Monte
Carlo Methods, has proved a powerful performance and one can apply probabilistic
results as the Laws of Large Numbers or the Central Limit Theorem to obtain an
assessment of the convergence. These methods are essentially based on the possibil-
ity to generate random variables (usually i.i.d.) from distributions, not necessarily
explicitly known, with the computer, see Chapter 2 in [72].
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C.2 Minimum Variance Estimation (MVE)

Let us consider the n+1 random variable X, Y, ..., Y, in £2(Q, P) and Y be random
vector given by

Y

y=| :

Y,

An estimator X of X given Y is called minimum variance estimator (MVE) if for
all Borel function h such that |[[hoY — X||? = [,(hoY — X)?dP < co we have

1X = X|| < |lhoY — X]|. (C.3)
More generally, if A is a subspace of Borel measurable functions on R™ such that
L |[foY|<ooforall feA
ii. M(A,Y)={foY; fe€ A}isa closed subspace of L?(P)

we define the best A-MVE of X based on Y to be the orthogonal projection X of
X onto M(A,Y). The subspace M(A,Y) is the set of A estimators based on Y.

L IfA={g:R"— R,gisalinear}, then M(A,Y) is a finite dimensional
subspace of £2(, P) called set of linear estimators based on Y and X is the
best linear minimum variance estimator (BLMVE) of X based on Y

2. If Ais the set of affine transformations from R" to R, then M(A,Y’) is a finite
dimensional subspace of £2(£2, P) and X is the best affine minimum variance
estimator (BAMVE) of X based on Y

Remark C.2.1. These definitions extend to the case where X is a random vector.
Theorem C.2.2. The MVE X of X based onY is X = E[X|Y].

Proof. Let h be any Borel function such that [[hoY — X||? = [,(hoY —X)?dP < oo,
we get the result using the orthogonality of X — E[X|Y] and E[X|Y]—hoY. That
is,
IX = hoY|* =X = EX|Y]|* + [|EX]Y] = ho Y|
U

Remark C.2.3. The MVE X of X based on Y can be seen as the Bayesian estimator
of X based on the observations Y7,---,Y,,.

Let us now characterizes the BLMVE and BAMVE. The following Theorem shows
that’s in general such estimators don’t coincide and they are also different of the
MVE.

Theorem C.2.4. Consider two random vectors X and Y. Denote u, = E[X],
py = E[Y], Ty = cov(X, X), I'e = T3, = cov(X,Y) and Tay = cov(Y,Y). Then,
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1. The BLMVE of X based on'Y 1is given by
X =KY, where K=EXYTE[YYT]*.
Moreover, E[(X — X)(X — X)T] = E[XXT] — KE[Y XT].
2. The BAMVE of X based on Yis given by
X =HY +b, where H= o, and b= p, — Hpy, .
Moreover, E[(X — X)(X — X)T] =Ty — HTDyy .

Remark C.2.5. The BLMVE of X — i, based on Y — p,, is X - [z, Where X is the
BAMVE of X based on Y.

The following Theorem gives a recursive linear Bayesian estimation. This result
has its application in the theory of Kalman filter.

Theorem C.2.6 (Static Updating Theorem-Bayesian Estimation).
Let X, Yy, Yo and W be random vectors such that E[XW7T] =0, E[YyWT] =0 and
Yo =HX +W, where H € M, ,(R). We denote R = E[]WWT].
Suppose that Xl 1s the BLMVE of X based on Yy, where Xl and P, = E[(X —
X)(X = X)) are known. If
Y1
y = {Y2 ] |

Then, the BLMVE X of X based on'Y and its error covariance P satisfy
1. X =X, + PLHT[HP,H' + R]*[Y, — HX}]
2. P=E[(X —X)(X - X)) =P, — PLHT[HP,H' + R|*HP,

Corollary C.2.7. If p, = E[W] = 0, then the Theorem still hold if we replace
BLMVE by BAMVE.

We end this section by a result that makes the relation between the MVE and
the BAMVE.

Theorem C.2.8. If (X, Y) is multivariate normal distributed then the MVE of X
based on Y coincide with the BAMVE.

C.3 Monte Carlo Integration

Looking at the generic problem of evaluating the finite integral

BAW(X)) = [ ha)f(a)da. (C4)
For any function g, such that supp(f) C supp(g), we have
Erlhx)] = [ MO g(opts = £, MU (©5)
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If (Xi,...,Xy) are i.i.d. sampled from the function g, then the integral (C.5) is
approximated by

h(X;) . (C.6)

Indeed, by the strong law of large numbers H év converges almost surely to E¢[h(X)].
In addition, if

A,
Ag - 9( g(X) ) < ) (C?)
or equivalently
s PO O P
B0 - 0l - [ ReiH wcw, es)
the variance .
Uarg(HéV) = Eg[(HéV - Eg[HéV])2] = NAQ (C.9)

can be estimated from the sample (X, ..., Xy) through

N

N_L f(Xj) N gNy2
A =5 ;(T(Xj)h(xj) HYY.

The speed of convergence of H év can be assessed. In fact, from the central limit
theorem,

Hy' — Ey[h(X)]

Ay

is approximately distributed as a N (0, I),) variable for large N. This leads to the
construction of a convergence test and confidence bounds on the approximation of
By [h(x).

If f = g, this method is called the classical or perfect Monte Carlo Method. The
instrumental function g, called the impotance function, is used to avoid a direct
simulation from f and to gain in the speed of the convergence. When taking any
importance function g such that f # g and supp(f) C supp(g), we talk about
Importance Sampling Method. This method is of considerable interest since it puts
little restrictions on the choice of the importance function g. The function ¢ can
be chosen from distributions that are easy to simulate. Moreover, the same sample
generated from g can be used repeatedly, not only for different functions h but also
for different densities f.

Although the distribution g can be almost any density, there are some choices better
than others. It is natural to compare different distributions ¢ for the evaluation of
(C.4).

While (C.6) converges almost surely to (C.4), we have no idea about the computation
time and the speed of the convergence and this can be determinant on the choice of
the importance function. It is natural to choose g among the distributions leading to




144 C.3. MONTE CARLO INTEGRATION

finite variance of the estimator (C.6) or equivalently to one of the conditions (C.7)
and (C.8). Importance functions g with unbounded ratio f/g are not appropriate for
importance sampling because they leads to an infinite variance for many functions
h. In addition, if the ratio f/g is unbounded, the weights f(z;)/g(z;) will vary
widely, giving too much importance to a few values x;.
In [30], Geweke gives two types of sufficient conditions:

i. f(z)/g(x) < MV x €R" and vars(h) < oo

ii. The support of the integrand functions h of interest are include in some fixed
compact K C R¥ and f(z) < F and g(z) >eVar e K

Under one of those conditions and in view of (C.6), the distribution g leading to
smaller variance of the estimators performs better. That is, a reduction of the
variance accelerate the convergence.

Nevertheless, it is possible to exhibit the optimal distribution g corresponding to a
given function h and a fixed distribution f:

Theorem C.3.1. The choice of g that minimizes the variance of the estimator (C.6)

’ @)l
J MG

Proof. see [72]. O

g (z)

This optimality is formal since, when h(z) > 0, the optimal choice g*(x) requires
the knowledge of [ h(z)f(x)dx: the integral of interest!.

Remark C.3.2. From a practical point of view, Theorem C.3.1 suggests looking for
distributions g for which |h|f/g is almost constant with finite variance.
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