Reihe Informatik
TR-2007-007

University of Mannheim
Database Research Group
B6, 29

68131 Mannheim, Germany
brantnefkanneémoerkotte @informatik.uni-mannheim.de

Let a Single FLWOR Bloom

Matthias Brantnet Carl-Christian Kanne Guido Moerkotte

July 9, 2007

Abstract

To globally optimize execution plans for XQuery expressianplan generator must generate
and compare plan alternatives. In proven compiler archites, the unit of plan generation is the
query block. Fewer query blocks mean a larger search spatiesf@lan generator and lead to a
generally higher quality of the execution plans. The goahaf paper is to provide a toolkit for
developers of XQuery evaluators to transform XQuery exqioes into expressions with as few
query blocks as possible.

Our toolkit takes the form of rewrite rules merging the inaed outer FLWOR expressions
into single FLWORs. We focus on previously unpublished rmaules and on inner FLWORs
occurring in thef or , | et , andr et ur n clauses in the outer FLWOR.

1 Introduction

XQuery evaluators become more and more mature in termstoiréssand performance, and XQuery
is being integrated into mainstream DBMS products as a edgrguage [6, 10, 17]. However,
XQuery processing research is still missing some fundaahéatils to facilitate the development of
industrial-strength XQuery optimizers. The goal of thipgais to fill one of these gaps: We provide
a rewrite toolkit that allows to reduce the number of queocksk in a query expression. This widens
the search space for plan generators by making more infaxmasible to a single run of the plan
generation algorithm. Let us begin by stressing the impegaf our goal:

Industrial-strength query optimizers proceed in a twoggh@anner. In a first phase, the query
is translated into an internal representation, and hécalgewrite rules are applied to simplify and
normalize the query. In a second phase, a plan generatorezates alternative execution plans,
determines their costs, and chooses the optimal plan.ridtiee plans can differ in the access paths
used for the basic input sets (e.g. whether to use an indegtprin the order in which the basic
input sets are joined, and in the position of other operasush as grouping or sorting.

However, efficient plan generation algorithms cannot takérary query structures as input. In-
stead, the unit of plan generation is tieery block. Depending on the design of the query compiler,
a query block can be represented in a variety of ways, for plaas a source language construct
(SELECT FROM WHERE in SQL, or FLWOR in XQuery), as a node in ateinal graph repre-
sentation (such as the Query Graph Model QGM [20]), or as@ebahic expression. Some queries
exhibit a nested structure, where a query block referendaguery blocks. In such cases, the plan
generator is called in a bottom-up fashion, generatingspfanall subquery blocks before the sur-
rounding query block is processed. It is easy to see thatdn sases, the search space examined by
the plan generator is limited, because only locally goodtsmhs are computed. For globally opti-
mal plans, it is desirable to reduce the number of query lddéakave more information available in
a single run of the plan generator, creating a larger seg@atesof alternative plans. For this reason,
in the first phase of optimization, queries are rewritten lgyging as many query blocks as possible.
This is state-of-the-art for SQL query processing (e.g. 1[4, 21]), but not highly developed for
XQuery.

For an industrial-strength approach to XQuery optimizatguch a rewriting step to merge query
blocks is particularly necessary:

*This work was supported by the Deutsche Forschungsgenheifissnder grant MO 507/10-1.

e In XQuery expressions in real applications, a nested queaugtsire is the norm rather than an
exception. This is due to a number of reasons, includingdnstcuction of hierarchical XML
results, the absence of a grouping construct, the generatiqueries using visual editors,
and, last but not least, the inlining of (non-recursive) X@Qufunctions that contain FLWOR
expressions.

e XML query processing can benefit from holistieway joins [3] which perform single-pass
tree-pattern matching instead of constructing resultsysisig binary joins. The detection of
tree patterns and the decision when to use regular joins aed to use pattern matching is a
global decision during plan generation that requires acteas much of the query as possible.

An example for a highly nested query (inspired by XMark Quéyys shown here:

let $auction := doc(”auction.xml”)return
let $euro:=for $o0 in $auction/site/operauctions/opebnauction
for $i in $auction/site/regions/europe/item/@id
where $o/itemref/@item eq $i
return $o
for $a in $euro
where zero—or—one($a/bidder[1]/increase/text ()} 2
<= $al/bidder[last ()]/increase/text()
return
for $p in $auction/site/people/person[profile/@income 5000]
for $w in $p/watches/watch
where $a/@id = $w/ @opemauction
return <auction id="{$a/@id">
<increase first={$a/bidder[1l]/increase/text()
last="{$a/bidder[last()]/increase/text})/ >
<watchedby id="{$p/@id}"/ >
<lauction>

The query body is constructed of four FLWOR expressiongedtaf which are nested inside
other FLWORs. However, these are only the explicit FLWORck# Depending on the compiler
design, the number of nested query blocks may be even deEpeexample, with a plan gener-
ator that focuses on purely structural tree-pattern matghested value-based predicates such as
profil e/ @nconme > 5000 may be separate query blocks.

Without further processing, such a query is optimized usiegeral runs of the plan genera-
tion algorithm, where each plan for a FLWOR expression iglusehe plan for the surrounding
FLWOR. This separate optimization of subqueries impedeslibcovery of good overall execution
plans. This is demonstrated by our example, in which thezdvao value-based joins, one joining
the Open Auctions to the European Items, and one joining then@\uctions to the Persons with
an income higher than 5000. However, the join conditiondawther e clauses are in different
FLWORSs, prohibiting the plan generator to see both of thegaind optimize their order. Join order
optimization is a cornerstone of efficient relational guerycessing and just as importantin XQuery
processing [7].

As in many other cases, the nested structure of the querytiseqaired to obtain the query
result, but is used because this way, the query is simplerite.win fact, the whole query above
can be formulated using a single FLWOR block. One alteredtivdo so is shown below, with the
results of each processing step bound to a separate variable

let $auction := doc(”auction.xml”), $x32 := S$auction/site
for $o in $x32, $x13in $o/openauctions, $ain $x13/openauction
for $i in $x32, $x15in $i/regions, $x16in $x15/europe
for $x17 in $x16/item, $x18in $x17/@id
let $x4 := $al/itemref , $x19 = $x4/@item
let $x33 := $a/bidder[1], $x34 := $x33/increase, $x35 := $x34kt ()
let $x36 := $a/bidder[last ()], $x37 := $x36/increase , $x38 :x3F/text()
let $x39 := $a/@id
for $p in $x32, $x20in $p/people, $x21lin $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id, $x10 := $x22/ @opeauction
let $x13 := $x21/profile , $x27 := $x13/@income
for $x1 in <auction id="{$x39}">

<increase first={$x35}" last="{$x38}"/>

<watchedby id="{$x8}"/>

<lauction>
where zero—or—one ($x35) * 2 <= $x38 and $x39 = $x10
and $x27 > 5000 and $x19 eq $x18

return $x1

While this form of the query is less readable and more diffibalwrite, it is easier to opti-
mize because all the basic operations, intermediate sesnfiut sets, and their dependencies are
uniformly represented in a single, top-level FLWOR constru

The goal of this paper is to provide a toolkit for developerXQuery evaluators to transform
XQuery expressions into expressions with as few query Bl@askpossible. This toolkit takes the
form of rewrite rules merging the inner and outer FLWOR egpiens into single FLWORs. These
unnesting rules are supplemented by some helpful norntializ@writes. We have chosen to present
our rules using regular XQuery syntax because other repiasens (such as QGM or algebraic
expressions) are less universal and would be more diffioudtapt to different evaluators. We do
not use the XQuery Core sublanguage because it does not lgasyablock construct suitable for
plan generation. It is, instead, inherently nested, evemfiite simple XQuery expressions. Due
to space constraints, we limit our presentation to preWouspublished rewrite rules and to inner
FLWORSs occurring inthé or, | et , andr et ur n clauses in the outer FLWOR.

2 Related Work

Michiels et al. [19] discuss rewrite rules on two levels. rétg from expressions in XQuery Core,
they propose to first rewrite them into normal forms (stilk@Query Core) that make the subsequent
stages robust against different syntactic formulationthefsame query, and to support tree-pattern
detection. They also simplify the query by removing unneags constructs introduced by Core
normalization. Some of these simplification rewrites cookdincorporated into our toolkit. The
rewritten query is then translated into an algebra thatuthe$ a tree-pattern matching operator.
These algebraic expressions are then rewritten usingr@igeduivalences in order to merge simple
path-navigation operators into holistic tree-patternahistg operators. The rewrite rules on the
algebraic level are orthogonal to the ones presented iroolkit and can be used by a plan generator
to create execution plans based on tree-pattern matching.

The very thorough paper by Hidders et al. [5] has a similar, &int directly translates a frag-
ment of XQuery into tree patterns without an intermediatgehiaic phase. In a first phase, the
gueries are annotated with properties such as result @ditglirordering, and occurrence of dupli-
cates. These properties are then used to control a rewoitithge query into the Tree Pattern Normal
Form (TPNF), which is always possible for the language fragtunder consideration. For TPNF,
a direct mapping onto tree patterns is then described. tinfately, the language fragment does
not cover important XQuery constructs, such as value-baticates. Another problem is that the
rewrite rules are based on XQuery Core, which is unsuitabla plan generator input, for exam-
ple because the absence oftaer e clause makes it difficult to identify applicable join condits.
However, the property annotations are not only useful foNFRewriting and can be used when
implementing our rewrite toolkit. Further, the TPNF tedue may be used by plan generators to
identify parts of the query that can be evaluated using patteatching.

May et al. [18] have presented unnesting strategies for X@QUdeir approach is based on alge-
braic equivalences to be applied after translation of X@ireo the NAL algebra of the Natix sys-
tem. The main focus of that work is unnesting of selectiordjmagtes which correspond Wher e
clauses on the source level. The paper also discusses imgnénst subscripts of map operators,
which on source level correspondsltet clauses. However, the rules are exclusively for the con-
version of implicit grouping into explicit grouping opeoas, and not for the general unnesting of
| et. Translated into the source form, the presented rewritesrate complementary to the rules
discussed in this paper.

3 Overview
The overall goal of this paper is to flatten an XQuery expmagsie. merge as many query blocks

(i.e. FLWOR expressions) as possible. To achieve this gaahasically proceed in two phases: (1)
Normalization and (2) FLWOR Merging. Fig. 1 gives an ovewigf our processing model.

Normalization

Path Normalization

Return Path Extraction Predicate Factorization For-/Let Rewrites
——»| Rewrites [—P| and Tailoring [«%| Normalization [—| Figure 5 1 (Figures 6 - 10) —
(Figure 2) (Figure 3) (Figure 4) 9 9

Figure 1: Processing model

In both phases, we apply a set of rules based on XQuery syntaxquery. A separate figure
presents one set of rules for each normalization and regritiep. The Overview Figure 1 contains
references to each of them.

3.0.1 Normalization
comprises two major subtasks:

1. All Expr Si ngl e expressionsfrom ther et ur n clause are moved to the expression creating
the binding sequence of a néwr expression.

2. Path expressions are normalized (as far as possibleariicydar, (1) all path expressions not
directly associated with fior clause are bound to variables usingt , (2) path expressions
are taken to single steps, (3) predicates are moved intattlee e clause, and (4) common
location steps are factorized.

3.0.2 FLWOR Merging

Starting from this normalized form, we remove as many quéoghks (FLWOR expressions) as
possible. Specifically, we present rewrite rules that elate or merge inner FLWORS occurring in
thef or orl et clause, respectively.

3.0.3 Notation

Our rewrite rules are formulated using XQuery syntax [9].wdwer, to simplify the presentation,
we use the following abbreviations for frequently used stsu

For Or Let Cl ause
For Or Let Cl auses

Moreover, we assume that all variable names are unambig&mce we sometimes introduce new

variables or change the bindings of existing ones, we inited notation for variable substitution:
Expr [$x2 <+ $x1] denoteExpr with all free occurrences &x2 replaced byx1.

For d ause | Let O ause
For Or Let Ol ausex

3.0.4 Running Example

We illustrate the application of our rules on the query frdma introduction. Applying our rules to
the example query yields a query which has a single FLWORkbloc
The original example query (i.e. before rewriting) is refeelehere for convenience.

let $auction := doc(”auction.xml”)return
let $euro:=for $o0 in $auction/site/operauctions/opebnauction
for $i in $auction/site/regions/europe/item/@id
where $o/itemref/@item eq $i
return $o
for $a in $euro
where zero—or—one($a/bidder[1]/increase/text ()} 2
<= $al/bidder[last ()]/increase/text()
return
for $p in $auction/site/people/person[profile/@income 5000]
for $w in $p/watches/watch
where $a/@id = $w/ @opemauction
return <auction id="{$a/@id">
<increase first={$a/bidder[1l]/increase/text()
last="{$a/bidder[last ()]/increase/text))/ >
<watchedby id="{$p/@id}"/ >
<lauction>

INote thatExpr Si ngl e is the expression produced by the grammar rules from [9].

In practice, this query could well be the result of an inlingguery function. XQuery functions
are often used agews to increase data independence, or simply to make queries readable,
similar to views in SQL. In our case, the sequence bourfietor o could be an inlined function
to retrieve European Auctions, whereas the bottommost FR/®pression could be a function
to retrieve all watchers for a given auction. The resultshefse functions are joined using the
surrounding FLWOR block. In such a context, the applicatidrour rewrite rules can also be
described asiew merging, allowing the plan generator to optimize join orders beywiet borders.

4 Normalization

Normalization does not decrease the FLWOR nesting levelaquiexy. Instead, it transforms the
query such that the unnesting rewrite rules can still beiagji case of minor syntactical variations.
In addition to this preparatory character, normalizatitso alirectly helps to achieve our ultimate
goal of preparing queries for plan generation: XQuery afl@averal different ways of formulating
predicates (e.g. theher e clause and XPath predicates). However, the plan geneedoires a
single unified formulation of all the constraints on all thegiables in the currently considered query
block to systematically explore the search space of altsmplans. Execution plan alternatives for
value-based predicates include, but are not limited toptheement of selection operators, the use
of joins, and index selection. Which of these alternatigesded, and in which order the different
predicates of a query are evaluated, should not depend aresiiimg level or the placement of the
predicates. This robustness is achieved by our normalizatiase.

Normalization proceeds in several consecutive steps, @srsin in Fig. 1. We first enforce a
simple form for allr et ur n clauses before we break down complex location paths intoifives,
with an emphasis on predicate normalization. Finally, vimielate common subexpressions.

4.1 Return Normalization

In order to allow a uniform treatment of nested expressiansit ur n andl et clauses, we move
all Expr Si ngl e expressions fromet ur n clauses td et clauses (see Rewrite 1). This way, we
can treat the unnesting ofet ur n andl et uniformly and can always assume at ur n clause
that consists of a single variable reference.

For Or Let Cl auses

For OrLet d auses I et $x1 := Expr Si ngl e,

Wer ed ause?

2
O der Byd ause? - \(/;hgre?gyguzjéy @
returnExprSingle; return $xl

For Or Let Cl auses; For Or Let Cl auses;

l et $x1 := Expr Si ngl e, for $x1in ExprSingle;

For Or Let Cl ausess . For Or Let Cl auses» @

Wher eCl ause? Wher ed ause?

O der ByCl ause? Or der Byd ause?

return$xl return$zl

Condition: There are no other occurrences$efl.

Figure 2: Return rewrites
Other than normalizing theet ur n clause, we can further prepare optimization by converting

the newl et clause into & or clause (see Rewrite 2). This is possible because on the hiayid
side, the concatenation semantics of FLWOR blocks reésiegs the same result sequence as on the
left-hand side of the rewrite, as long &sl is used nowhere but in theet ur n clause.

Turning| et into f or expressions allows a significantly larger range of alteveatfor plan
generation. Evaluation dfor clauses can be done in an iterative manner, generatingetimes it
of the binding sequence one by one, instead of computing aterializing the whole sequence at
once. This allows efficient techniques such as pipelinirdjiathe preferred style of implementation
in database runtime engines [13].

4.1.1 Running Example

Applying ther et ur n elimination and et transformation rewrites (1 and 2) to thet ur n ex-
pressions of our example query results in the following:

let $auction := doc(”auction.xml”)
for $x1 in let $euro:= for $o in $auction/site/openauctions/openauction
for $i in $auction/site/regions/europe/item/@id
where $o/itemref/@item eq $i
return $o
for $a in $euro
for $x2 in for $p in $auction/site/people/person[profile/@income 5000]
for $w in $p/watches/watch
for $x3 in <auction id="{$a/@id">
<increase first={$a/bidder[1l]/increase/text{)
last="{$a/bidder[last ()]/increase/text¥)/ >
<watchedby id="{$p/@id}"/ >

<lauction>
where $a/@id = $w/ @opemuction
return $x3

where zero—or—one($a/bidder[1]/increase/text ()} 2
<= $al/bidder[last ()]/increase/text()
return $x2
return $x1

4.2 Path Normalization

Path expressions are a crucial performance factor for thkiation of almost every XQuery query.
For efficiently evaluating path expressions, the plan geiwemakes cost-based decisions on algo-
rithms that should be used to evaluate them. For exampleptimiaer decides whether a holistic
approach (e.g. [3, 16]) for evaluating multiple path expi@ss is superior to a fine granular ap-
proach that evaluates single steps individually (e.g.48), probably with the help of an index. The
plan generator requires a canonical form of the path exjpresso make such decisions. Besides
separating each processing step for plan generationnguyttith expressions involves two other
advantages:

¢ It allows to move location step predicates from the middléoohtion paths into theher e
clause.

e Common subexpression elimination (see below) can be dotteeagranularity of steps.

4.2.1 Path Tailoring

for $x1in StepExpr

for $xin StepExpr /Pat hExpr — for $x2i n $x1,/Pat hExpr 3)
Condition: St epExpr must not produce duplicates.
) | et $x1 := St epExpr
for $xin St epExpr /Pat hExpr — for $§2i n $x1;)PatphExpr 4)

| et $x1 := St epExpr

| et $x := St epExpr /Pat hExpr — et $x2 = $x1,/Pat hExpr (5)

Figure 3: Path tailoring rewrites
In order to separate each processing step, we first extilgoathl expressions from the query

which are not already binding expressionsfafr or | et , and bind them to newet variables.
We keep path expressionsfior clauses because they need a different treatment in ourcatedi
rewrites below.

Having extracted all path expressions, we cut them up imglailocation steps (see Fig. 3 for
rewriting rules). Again to facilitate iterator-based awation, we attempt to avoidet clauses when
possible (3 and 4) while breaking up path expressioriin clauses. Without further refinements,
we can only cut those steps that do not produce duplicateg%sé5]). Of course, location steps
assigned to et variable remain in & et binding (5).

4.2.2 Predicate Normalization

The plan generator not only decides on the path evaluatimritims and the order of joins based on
structural predicates, but also on the order of regulatueslased joins and selections. Moving all
non-structural predicates into thaer e clause makes such join and selection predicates explicitly
available in a uniform manner. This allows a search spacéaofghat is robust against the syntac-
tical placement of the predicate. Further, a unifidckr e also allows predicate processing, which
includes, but is not limited to, the inference of new pretlisand the elimination of redundant ones.

For Or Let Ol auses; For Or Let Ol auses;
for $x1in StepExpr [Expr] for $x1in StepExpr
For Or Let Ol auses» For Or Let Cl ausess 6
wher e Expr 5 - wher e fn : boolean($x1/(Expr ;)) and Expr 5 Q)
Or der Byd ause? Or der ByCl ause?
return ExprSingle; returnExprSingle;
Condition: The value ofExpr ; must not depend on the context position or context size.
For Or Let Cl auses; For Or Let Cl auses;
| et $x1 := St epExpr [Expr] Il et $x1 := St epExpr
For Or Let Cl ausess For Or Let Cl ausess 7
wher e Expr o - wher e fn : boolean(Expr ;) and Expr)
Or der ByCl ause? O der ByCl ause?
returnExprSingl e, returnExprSingle;
Condition: The value ofExpr ; must not depend on the focus (context item, context positionontext size).
For Or Let Ol auses; For Or Let Cl auses;
for $x1in StepExpr [Expr, and Expr 5] for $x1in StepExpr [Expr,]
For Or Let O auses: For Or Let O auses: g
wher e Expr 5 - wher e fn : boolean($x1/(Expr)) and Expr 3 ®)
Or der ByCl ause? Or der ByCl ause?
returnExprSingl e, return ExprSingl e,
Condition: The value ofExpr ; must not depend on the context position or context size.
For Or Let Ol auses; For Or Let O auses;
for $x1in StepExpr [Expr, and Expr 5] for $x1at $ylin StepExpr [Expr,]
For Or Let O auses: For Or Let O auses: 9
wher e Expr 5 - wher e Expr ; and Expr 3 ©)
O der ByCl ause? Or der ByCl ause?
return ExprSingle; return ExprSingle;

Conditions: The value ofExpr ; depends on the context position, but not the context §ixer | := Expr ; [$fs : position « $y1] and
St epExpr must not consist of a reverse axis step (see text).

Figure 4: Predicate normalization rewrites

In Fig. 4, we present rules that get predicate expressiotecafion steps and move them into
thewher e clause of the surrounding FLWOR block. For each extractedipate expression, we
have to set the context to the context defined by the accostiépg For example, if we moxpr
from a location step predicate intovéner e clause (see Rule 6), we have to guarantee that all
context accesses are performed with respeskio which is why we prepenéix1 to the predicate
expression. Similarly, we can get comparison expressiwatscontain calls to the context position
of a location step by creating a positional variable usingftbr Var Ref at Var Ref syntax
and replacing accesses to the context position with thebtari(see Rule 9). This is not strictly
possible in XQuery syntax, but easily implemented in moatwators because the context position
is modeled as a special variable anyway. Our choice of vieriadme §fs : position) follows the
XQuery Formal Semantics, which also replaces context iposhiy a special variable. Further,
reverse axis steps cannot be handled this way, becauserntextcposition numbering is different
from the order of the result sequeAce

Note that for the sake of brevity, we assume that there isyawaher e clause in the outer
expression. We treat outer FLWORs withouwttaer e clause as if there wasvéher e t r ue clause.

4.2.3 Common Path Elimination

To avoid redundant evaluation, we eliminate common paihsljfig them to new or orl et vari-
ables as needed. In Fig. 5, we present four rules for elinmgaiommon location steps. However,

2|f the rewrite is not done on source level, the internal repngation may have a suitable special variable to bind for
reverse axis numbering, making our rewrite possible again.

et $x1 := St epExpr, I et $x1 := St epExpr

| et $x2 := St epExpr , /St epExpr 5 I et $x2 := $x1/St epEXpr , 10

| et $x0 := St epExpr
— for $x1in $x0 (11)
for $x2in $x0/St epExpr 5

for $x1in StepExpr
for $x2in St epExpr /St epEXpr o

| et $x1 := St epExpr | et $x1 := St epExpr

for $x2i n St epExpr , /St epExpr 5 - for $x2in $x1/St epExpr 12

| et $x0 := St epExpr
— for $x1in8$x0 (13)
I et $x2 := $x0/St epExpr

for $x1in StepExpr
l et $x2in $x1/St epExpr,

Figure 5: Common path elimination

elimination of common subexpressions is a complex prodesscinnot be sufficiently described
using only those rules. We refer to [1] for algorithms on syivession elimination.

4.2.4 Running Example

In the following, we present the query that is obtained bylpg normalization, i.e. path extraction,
path tailoring, predicate normalization, and common péthieation, to our example query.

let $auction := doc(”auction.xml”)
let $x32 := S$auction/site
for $x1 in let $euro:= for $0 in $x32, $x13in $o/openauctions
for $x14 in $x13/openauction, $iin $x32, $x15in $i/regions
for $x16 in $x15/europe, $x17in $x16/item, $x18in $x17/@id
let $x4 := $x14/itemref, $x19 := $x4/@item
where $x19 eq $x18
return $x14
for $a in $euro
let $x33 := $a/bidder[1], $x34 := $x33/increase. $x35 := $x34Kt ()
let $x36 := $a/bidder[last ()], $x37 := $x36/increase, $x38 :x3F/text()
let $x39 := $a/@id
for $x2 in for $p in $x32, $x20in $p/people, $x21in $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id
let $x10 := $x22/@operauction
let $x13 := $x21/profile, $x27 := $x13/@income
for $x3 in <auction id="{$x39}">
<increase first={$x35}" last="{$x38}"/>
<watchedby id="{$x8}"/>
<lauction>
where $x39 = $x10and $x27 > 5000
return $x3
where zero—or—one ($x35) x 2 <= $x38
return $x2
return $x1

In this expression, for example, the XPath predigatef i | e/ @ ncone > 5000 is removed
from the location step and added to thieer e clause of the according FLWOR block. Moreover, we
replaced the common path expressions from within the elecwogrstruction and theher e clauses
(e.g. the path selecting the increases of the first and ldpblyisingle variables. Note that it is not
possible to move the positional predicates intowher e clause, as they occur inlaet binding.
Also note that for presentation purposes, we abbreviatademtive occurrences bbr andl et
expressions using commas. In the full representation efghery,f or andl et expressions that
bind multiple variables are split into separate expression

5 Merging FLWOR Blocks

After finishing the normalization phase, the query is preddor the core rules of our toolkit, the
for andl et merging rewrites. The ultimate goal of the rewrites presénn this section is to
reduce the number of query blocks as much as possible.

Reconsider our normalized example query shown above. dhisuflation of the query contains
several nested FLWOR expressions. The FLWOR nesting depithel 3 is three. Thé or -clause
binding$o is nested in & et clause which, in turn, is nested in the outer mfost -clause binding

$x1. Moreover, the query containdar clause definingx2 whose binding sequence is generated
by anotheff or clause.

In the following, we introduce rewrite rules that removelsnested expressions. Applying them
to our example query eliminates all nested FLWORSs.

We start with rewrites that remove FLWORSs nestetlam clauses (see Fig. 6) and then proceed
tol et clauses (see Fig. 7).

5.1 For Rewrites

The semantics of &or clause is to iterate over items of the binding sequence,ifgnithe f or
variable to every item in this sequence. The remaining FLWWPression is evaluated for each
such binding, and the individual result sequences are tenated. We are interested inf ar
clause if its binding sequence is created by a nested FLW@Resgion. In some cases, we can lift
the inner FLWOR to the outer level. This rewrite opportunigults from the fact that sequences
in the XQuery data model are never nested. Hence, it oftes doematter on how many levels an
implicit concatenation of et ur n sequences occurs because the result is always a flat sequence

For Or Let Ol auses;

for $x1in (ForOrLet O ausesy For Or Let O auses;
for $x2i n Expr Si ngl e, For Or Let O ausesy
For Or Let O ausess for $x1inExprSingle;
wher e Expr Si ngl e, — For Or Let O auses} (14)
return $x2) For Or Let Cl ausesy
For Or Let O ausesy wher e Expr Si ngl e; and Expr Si ngl e},
wher e Expr Si ngl e3 return Var Ref |

return Var Ref |

Conditions: For Or Let O ausesj := For Or Let 0 auses3[$x2 « $x1] and
Expr Si ngl e}, := Expr Si ngl e;[$x2 « $x1]

For O Let O auses;
for $x1in (ForOrLet O ausesy
| et $x2 := Expr Si ngl e;
For Or Let Cl ausess
wher e Expr Si ngl e, —
return $x2)
For Or Let Cl ausesy
wher e Expr Si ngl es
return VarRef |

For Or Let Cl auses;

For Or Let Cl auses»

| et $x2 := Expr Si ngl e;

For Or Let O ausess (5)
for $x1in $x2

For Or Let Ol ausesy

wher e Expr Si ngl e; and Expr Si ngl e,

ret urn Var Ref ;

Figure 6: For rewrites

For example, consider the left-hand side of the fist Rewrite 14. In this rewrite, the variable
$x1 is iteratively bound to each item returned by the inner FLW®ORe result of the inner FLWOR
is generated by theet ur n clause. Note that in our case, thet ur n clause consists only of a
variable reference, i.e. variabf&2. To merge the two blocks, we have to guarantee that the outer
f or variable$x1, after merging, is still bound to the same items, i.e. thameegated by variable
$x2. To this end, we replace the nested FLWOR with the expressigponsible for bindingx2.

In the rewrite, this expression is call&stpr Si ngl e; and bound by & or clause. The remaining
(optional) clauses are moved into the outer FLWOR block c8igally, For Or Let Cl auses, and
For Or Let Cl ausess are pulled up one levelExpr Si ngl e, from the innemher e clause is
conjunctively connected to the expression in the outeer e clause®. After relocating the inner
expressions, we have to replace free occurrences of thmpsanner variabléx2 with $x1.

Similarly, we merge two query blocks if the binding sequeisazeated by a nestéat variable
(see our Rewrite Rule 15). Note that the right-hand side dé RS may still contain a FLWOR
nested in d et clause. This case is unnested by Rule 16, which is presemtbd next section.

Other rules for FLWORs nested withiror clauses are discussed in the extended version of this

pafﬁn;[z],_mcludmgmsesm_pasiﬂonal variables andler by clauses.
As before, expressions withowher e are treated as if@aher e t r ue clause was added.

5.1.1 Running Example

On our example query, we can apply Rewrite Rule 14 twicet,Ro®liminate the innefror -clause
binding $x2, as this variable is returned to create the binding sequiemdx1. Second, we apply
this rule to eliminate thé or expression bindin§x3. This results in the following expression:

let $auction := doc(”auction.xml”)
let $x32 := S$auction/site
let $euro:= for $o in $x32, $x13in $o/openauctions , $x14in $x13/openauction
for $i in $x32, $x15in $i/regions, $x16in $x15/europe
for $x17 in $x16/item, $x18in $x17/@id
let $x4 := $x14/itemref , $x19 = $x4/@item
where $x19 eq $x18
return $x14
for $a in $euro
let $x33 := $a/bidder[1], $x34 := $x33/increase, $x35 := $x34kt ()
let $x36 := $a/bidder[last ()], $x37 := $x36/increase , $x38 :x3F/text ()
let $x39 := $a/@id
for $p in $x32, $x20in $p/people, $x21lin $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id, $x10 := $x22/ @opeauction
let $x13 := $x21/profile , $x27 := $x13/@income
for $x1 in <auction id="{$x39}">
<increase first={$x35}" last="{$x38}"/>
<watchedby id="{$x8}"/>
<lauction>
where zero—or—one($x35) * 2 <= $x38 and $x39 = $x10 and $x27 > 5000
return $x1

5.2 Let Rewrites

| et clauses require separate rewrites because they bind dbeattathe result of its associated
expression, i.e. without iterating over this result. Figorésents three rewrite rules to eliminate
FLWORSs nested ih et clauses.

For Or Let Ol auses;
I et $x1 := Expr Singl e; Eg:gtgg 232221
For Or Let d ausess 8 02
f for $x2i n ExprSingl e;
for $x2in $x1 — (16)
For Or Let O ausess For Or Let O ausess
wher e Expr Si ngl e wher e Bxpr Si ngl e,
2
return Var Ref return Var Ref
Condition: There are no other occurrences$efl.
For Or Let Cl auses;
I et $x1 := (For Or Let O auses; For Or Let Cl auses;
for $x2i n Expr Singl e; For Or Let O auses:
wher e Expr Si ngl e, — for $x2i nExprSingl e, 17)
return $x2) wher e Expr Si ngl e; and Expr Si ngl e,
wher e Expr Si ngl eg return $x2
return $x1
Condition: There are no other occurrences$efl.
For Or Let O auses;
I et $x1 := (For Or Let Ol ausess For Or Let Ol auses;
l et $x2 := ExprSingl e, For Or Let O ausess
wher e Expr Si ngl e, — I et $x21i n ExprSingl e, (18)
return $x2) wher e Expr Si ngl e; and Expr Si ngl e,
wher e Expr Si ngl eg return $x2
return $x1
Condition: There are no other occurrences$efl.

Figure 7: Let rewrites

Rewrite Rule 16 tackles a frequently used case. Theferaiteration is used to enumerate
all items contained in &et variable. This technique is used in our example query and foay
example, result from inlining an XQuery function as expéarat the beginning of this section. The
rules suggest to eliminate thet variable if it is used only once and inline the associatedesgion
(i.e. Expr Si ngl e;). On this result, the rewrites of the previous section (9ge6j can be applied
and eliminate the nesting.

Fig. 7 also contains two rewrites that remove nested (see Rule 17) antlet (see Rule 18)
expressions, respectively. Without loss of generality,dbterl et clause in both rules is immedi-
ately followed by theanher e clause. If there was anothkor orl et clause, it would not contain
occurrences aof1 and, hence, could be moved aboveltle¢ clause binding1.

10

5.2.1 Running Example

The result of applying theet Rewrite Rule 16 and thieor Rewrite Rule 14 to our example is the
following query finally consisting of a single query block.

let $auction := doc(”auction.xml”), $x32 := S$auction/site

for $o in $x32, $x13in $o/openauctions, $ain $x13/openauction
for $i in $x32, $x15in S$i/regions, $x16in $x15/europe

for $x17 in $x16/item, $x18in $x17/@id

let $x4 := $al/itemref , $x19 = $x4/@item

let $x33 := $a/bidder[1], $x34 := $x33/increase, $x35 := $x34Kt ()
let $x36 := $a/bidder[last ()], $x37 := $x36/increase , $x38 :x3F/text ()
let $x39 := $a/@id

for $p in $x32, $x20in $p/people, $x21lin $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id, $x10 := $x22/@opeauction
let $x13 := $x21/profile , $x27 := $x13/@income
for $x1 in <auction id="{$x39}">
<increase first={%$x35}" last="{$x38}"/>
<watchedby id="{$x8}"/>
<lauction>
where zero—or—one($x35) * 2 <= $x38 and $x39 = $x10
and $x27 > 5000 and $x19 eq $x18
return $x1

Note how in this form, all value-based join and selectiondprates are available in a unified
wher e clause. This allows a plan generator to decide on index a@es$join orders.

6 Intricacies

In the last section, we presented rewrite rules to merge FRW@&pressions. However, all of the pre-
sented elimination rewrites were limited in terms of FLWQRat do not contain positional variables
ororder by clauses. Merging FLWORSs contains one of these construgtsres more sophisti-
cated rewrite techniques or more restrictive conditionghls section, we present new rewrite rules
that are abutted to the previously presented rules for FLWOR can also contain one of these
intricacies.

6.1 Positional For Rewrites

A for expression (having a nested FLWOR expression) binding #iquel variable is called a
positional f or expression. Fig. 8 presents two rewrites that are abuttéoetbor rewrites from
Fig. 6. Both have on the left-hand side a positidnai expression. In order to merge the outer and
the inner FLWOR into one, the inner FLWOR must not contaimnar e oror der by clause. Our
solution for merging such FLWOR expresisons is shown onititeé-hand side of Rewrite Rules 19
and 20.

For Or Let Cl auses;

for $xlat $ylin (for $x2inExprSingle;
return $x2)

For Or Let Cl ausess

wher e Expr Si ngl e,

ret urn Var Ref ;

For Or Let Cl auses;
for $x1at $ylinExprSingle;
— For Or Let Ol auses: (19)
wher e Expr Si ngl e,
returnVar Ref |

For Or Let Ol auses;

for $xlat $ylin (I et $x2 := Expr Singl e,
return $x2)

For Or Let Cl ausess

wher e Expr Si ngl e,

ret urn Var Ref ;

For Or Let Ol auses;
for $x1at $ylinExprSingle;
— For Or Let Ol auses: (20)
wher e Expr Si ngl e,
return Var Ref |

Figure 8: Positional for rewrites

11

6.2 Order-by

A second restriction on the rewrites from the previous seds that neither the outer nor the inner
FLWOR must contain anr der by clause. In this section, we extend our merging rewrite nides
expressions containing @t der by clause.

For keeping the required order in the unnested case, wedimteoa technique that we call
Canonical Order By. This technique modifiebor clauses to bind a positional variable using the
for Var Ref at Var Ref syntax and add anr der by clause to the corresponding FLWOR
expression having the new positional variables inGtsder SpeclLi st . If there are multiple
f or and/orl et clauses in one FLWOR expression the order of the positioaghbles in the
O der SpeclLi st is determined by the order these clauses occur in the FLW@Rssgion. Doing
S0, we guarantee the query result to be in correct order.

In the following, we show how this technique can be appliethesge FLWOR expressions that
contain anor der by clause in the outer and/or the inner FLWOR. Analogously tghevious
section, we start witfi or rewrites and then presehet merging rewrite rules.

6.2.1 For Rewrites

Fig. 9 presents four rules to tackle queries whose inner mrdtLWOR contains aor der by
clause, respectively. The left-hand side (lhs) of Rulesr&td 22 correspond to the lhs of Rules 14
and 15 but with the inner FLWOR expression containingader by clause. Similarly, the Ihs
of Rules 23 and 24 also correspond to the rules from Fig. 6 lithttive outer FLWOR expression
containing aror der by clause. The right-hand side (rhs) of all four rewrite rulbevss how the
outer and inner FLWOR expression can be merged, despitdhaating the order of the result.

On the rhs of each rule, we annotated expressions that nesttbpal variables. For example,
the expression

For Or Let O auses, (with positional variables $y21, ..., $y2,)

means that thethf or clause inFor Or Let Cl auses; is extended to bind the positional vari-
able$y?2; using thef or Var Ref at Var Ref syntax. Theor der by clause in all rewrite rules
presented in Fig. 9 is simplified such thatdreder by expression could also be ahabl e or der
by expression. Rules 21 and 22 we could omit the positionaabtes$y4,, . . ., $y4,, and instead
usest abl e order by. However, the latter could be less efficient as it probabdyiees sorting
on uneccesary attributes.

In case both, the outer and inner FLWOR contairoadler by clause, we proceed as shown
in Fig. 6. However, we also merge the twoder by clauses such that sorting is done first for the
Or der SpeclLi st of the outer FLWOR and then for th@& der SpeclLi st of the inner FLWOR.

6.2.2 Let Rewrites

Similarly to the previous section, we also allow @t merging rewrite rules from Fig. 7 to contain
order by clauses. The resulting rewrite rules are presented in Big. 1

Rewrite Rule 25 corresponds to Rule 16 but havingader by clause. Rules 26 and 27 con-
tain anor der by clause in the inner FLWOR, Rules 28 and 29 in the outer FLW@Rpectively.

7 Evaluation

A goal of this paper is to show how to rewrite a query into a fahat consists of a single query
block to give a single run of the plan generator as much umifpstructured information about the
guery as possible. We now elaborate on the importance ofjtakby discussing the optimization
of our example query during plan generation. We will see hawenefficient plans can be generated
only when the query has been reduced to a single block.

Due to space constraints, we do not explore the whole sepedfesvailable, but focus on join
ordering. We assume that the optimizer has decided on subfgproduce the sequences for Open

12

For Or Let Cl auses;

for $x1in (For O Let O ausess For Or Let O auses; (with positional variables $y11,...,8yl,)
for $x2inExprSingl e; For Or Let O ausess
For Or Let Ol ausess for $x1at $y2i nExprSingle;
wher e Expr Si ngl e, For Or Let O auses} 21
order by O der SpecLi st - For Or Let Ol ausesy (with positional variables $y41, ..., $y4,,) @h
return $x2) wher e Expr Si ngl e, and Expr Si ngl e},
For O Let Ol ausesy order by $yliy,...,8yl,,$y2, Order SpecListy, $y4i,...,Sydm
wher e Expr Si ngl e, return VarRef |

return Var Ref |

Conditions: For Or Let Ol ausesj := For Or Let Cl ausess[$x2 « $x1], Expr Si ngl e, := Expr Si ngl e5[$x2 «— $x1], and
O der SpeclLi st} := Order SpecLi st ; [$x2 « $x1]

For Or Let Cl auses;

for $x1in (For O Let O ausess
| et $x2 := Expr Singl e;
For Or Let Ol ausess
wher e Expr Si ngl e,

For Or Let O auses; (with positional variables $y11,...,8yly,)
For Or Let Cl ausess

I et $x2 := Expr Singl e;

For Or Let Cl ausess

: for $xlat $y2in $x2 (22)
order by Crder Speclist, For Or Let O ausesy (with positional variables $y41, ..., $y4,,)
return $x2) - :

For O Let O auses, wher e Expr Si ngl e, and Expr Si ngl e,)
order by $ylq,...,8yl,,$y2, Order SpecLi st {, $y41,...,8y4.m,

wher e Expr Si ngl e,

return Var Ref | returnVarRef,

For Or Let Cl auses;

for $x1in (For O Let O ausess For Or Let O auses;
for $x2i n Expr Si ngl e, For Or Let O auses; (with positional variables $y21, ..., 8y2,)
For Or Let Ol ausess for $x1at $y2i n ExprSingl e;
wher e Expr Si ngl e, For O Let O auses} (with positional variables $y31, . . ., $y3.,) 23
return $x2) - For Or Let Cl ausesy @3
For O Let O ausesy wher e Expr Si ngl e, and Expr Si ngl €,
wher e Expr Si ngl e, order by Order SpeclListq, $y21,...,8y2,,8y2,8y31,...,8y3m
order by Order SpeclLi st return VarRef |

return Var Ref ;

Conditions: For Or Let Ol ausesj := For Or Let O ausess[$x2 « $x1], Expr Si ngl e, := Expr Si ngl e5[$x2 «— $x1], and
O der SpeclLi st} := Order SpecLi st ; [$x2 « $x1]

For Or Let Cl auses;

for $x1in (ForOrLet O ausess For OrLet O auses,

g For Or Let Cl auses ith positional variables $y21, ..., $y2
I et $x2 := Expr Si ngl e, Lt $x2 im ExprSizng;V:el positional variables 5y2; V2n)
x;roé'g ?S"’i“:felse?’ For Or Let O ausess (with positional variables $y31, . .., $y3.m)
PrSingt &, — for $xlat $y2in $x2 (24)

return $x2)
For Or Let Cl ausesy
wher e Expr Si ngl e,
order by Order SpeclLi st
return Var Ref ;

For Or Let O ausesy

wher e Expr Si ngl e, and Expr Si ngl e,

order by Order SpecListq,$y21,...,8y2,,%y2,8y31,...,8y3m
return Var Ref |

Figure 9: Order-by for rewrites

Auctions, European Items, and Persons. The subplans maaskd bn pattern matching algorithms.
Further, we assume that the predicate selecting the asaiicrording to their bids has been con-
verted into a single predicate subplan. This predicateoelrer, more expensive to evaluate than a
simple value comparison, and its placement in the overall gbes affect performance significantly.
Thus, finding an optimal plan includes finding an optimal posifor this predicate. We now discuss
execution plans for our example query in the form of algebeapressions on an abstract level (see
Fig. 11).

A straightforward translation of the original, nested, thblock query looks like Fig. 11(a).
Here, the FLWOR blocks are translated directly into segasabplans, and no global optimization
takes place. For simplicity, we disregard the first line & &xample query (the initidlet clause
for the document root). The top-level MapConcat operatpragents the main FLWOR expression.
Its operand generates the tuple stream and contains sslipfehe European Auctions query block.
The subplan connected to MapConcat by the dashed line episethe query block in theet ur n
clause (the last eight lines of the query). It has a free bi&a in the subplan for theeopl e
sequence, and, hence, has to be reevaluated for every fuplke MapConcat operand, as dictated
by XQuery FLWOR semantics.

Fig. 11 shows four other execution plans based on the rewrisingle-block form of our exam-
ple query. They can be enumerated by the plan generator $eitdas access to all value-based

13

For Or Let Cl auses;
| et $x1 := Expr Si ngl e, EorOr Let 0 auses,
For O Let O ausess orOrletd ausesy
for $x2i n $x1 for $x2i n Expr Si ngl e,
= — For Or Let Ol ausess (25)
or Or Let O ausess wh :
8 ere Expr Si ngl e,
wher & Expr Si ngl e, order by Order SpeclLi st
order by Order SpeclLi st Y P
return Var Ref
return Var Ref
Condition: There are no other occurrences$efl.
For Or Let Ol auses;
I et $x1 := (For Or Let O ausess For Or Let Ol auses; (with positional variables $y11,...,8yl,)
for $x2i n Expr Si ngl e, For Or Let O ausess
wher e Expr Si ngl e, for $x2at $y2i n ExprSingl e, 26
order by Order Specli st - wher e Expr Si ngl e; and Expr Si ngl e, (26)
return $x2) order by $ylq,...,8$yl,, $y2, Order SpeclLi st
wher e Expr Si ngl eg return $x2
return $x1
Condition: There are no other occurrences$efl.
For Or Let Cl auses;
I et $x1 := (For Or Let O auses; For Or Let O auses; (with positional variables $y11,...,8yly,)
l et $x2 := ExprSingl e; For Or Let O ausesg
wher e Expr Si ngl e, l et $x2in ExprSingl e; 27
order by Order Specli st - wher e Expr Si ngl e; and Expr Si ngl e, @n
return $x2) order by $ylq,...,8$yl,,O der SpeclLi st
wher e Expr Si ngl eg return $x2
return $x1
Condition: There are no other occurrences$efl.
For Or Let Cl auses;
I et $x1 := (For Or Let O ausess For Or Let Cl auses;
for $x2in ExprSingl e; For Or Let O ausess (with positional variables $y21, ..., $y2,)
wher e Expr Si ngl e, for $x2at $y2i n ExprSingl e; 28
return $x2) - wher e Expr Si ngl e; and Expr Si ngl e, @8)
wher e Expr Si ngl eg order by O der SpeclLi st |, $y21,...,8y2,,$y2
order by Order SpecLi st return $x2
return $x1
Condition: There are no other occurrences$ofl.
For Or Let Ol auses;
l et $x1 := (For Or Let O ausess For Or Let Cl auses;
l et $x2 := ExprSingle; For Or Let Ol ausess (with positional variables $y21, ..., $y2,)
wher e Expr Si ngl e, I et $x2in ExprSingl e; 29
return $x2) - wher e Expr Si ngl e; and Expr Si ngl e, (29)
wher e Expr Si ngl eg order by Order SpeclLi st |, $y21,...,8y2,
order by Order Specli st return $x2
return $x1
Condition: There are no other occurrences$efl.

Figure 10: Order-by let rewrites

predicates of the query in a singlber e clause and can detect joins and determine an optimal order
for them and the residual selections. We executed all fivesgfiam Fig. 11 in our hybrid relational
and XML DBMS Natix [11] on an XMark document with scaling facbone.

The experimental setup consisted of a PC with an Intel PenBuCPU having 3.40GHz and
1GB of main memory, running on openSUSE 10.2 with Linux Ké&h6.18 SMP. To investigate
the relative performance of the execution plans, we vahiedtlectivity of the predicate restricting
the people by their income between 0.14 and 0. This correlsptmincomes between 60,000$ to
130,000$ instead of 5,000% in the original query. Fig. 12xghtine result of this small performance
study (execution time in seconds) for four plans from Fig. 11

The experiment makes obvious why careful global plan geimerbased on single-block queries
is crucial for efficient execution. The results of the nedteap strategy of the straightforward trans-
lation are orders of magnitude slower (well beyond 100s)landt been left out of the graph. The
join-based plans made possible by our rewritten singlekbtpuery show that an enumeration of
alternatives is as important as in relational query prangsPepending on selectivity, the overall
best plan varies. The plan according to Fig. 11(e) perforass Wwith a very low selectivity, whereas
the plan belonging to Fig. 11(b) outperforms the others waitlincreasing selectivity.

14

MapConce;n:;\\ /N\ >

i N
0 bid[l]*2 < bid[last] 0 mcom’e >5,000 O.bid";? = bidlest 0 I"CC"‘“E 7000 /N\ 0 mcon’\e > 5,000
i
D] > O st
[oen_auctions | [european tems | [open_auctions | [european items |
(a) Block-by-block translation (b) Plan 1 (c) Plan 2
X<
N obid[\]“z < bid[last]
TN l
> o
Obld[\]'E < bid[last] o income > 5,000 o ir\co"r > 5,000
\ i
[‘open_auctons | [poone |
(d) Plan 3 (e) Plan 4

Figure 11: Alternative execution plans

35

Plan1 —

Plan 2 -

Plan 3.+
Plan'4 —a

3L 1

25

Time (s)

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Selectivity

Figure 12: Performance results

References

[1] A. Aho, R. Sethi, and J.D. UllmanCompilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[2] M. Brantner, C-C. Kanne, and G. Moerkotte. Let a singleofivbloom. Technical report,
University of Mannheim, 2007. http://db.informatik.umiannheim.de/publications/TR-07-
001.pdf.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic twigrjei optimal XML pattern matching.
In SIGMOD, pages 310-321, 2002.

[4] U. Dayal. Of nests and trees: A unified approach to prangsgueries that contain nested
subqueries, aggregates, and quantifier®rot. VLDB, pages 197-208, 1987.

[5] J. Hidders et al. How to recognise different kinds of tpadterns from quite a long way away.
In Proc. PLAN-X, 2007.

[6] K. S. Beyer etal. System RX: One part relational, one gaft.. In SGMOD, pages 347-358,
2005.

15

[7]1 N. May et al. XQuery processing in natix with an emphasigan ordering. InFirst Inter-
national Workshop on XQuery Implementation, Experience and Perspectives (XIME-P 2004),
June 2004.

[8] S Al-Khalifa et al. Structural Joins: A primitive for effient XML query pattern matching. In
ICDE, pages 141—, 2002.

[9] S. Boag et al. XQuery 1.0: An XML query language. Techhiegport, World Wide Web
Consortium, January 2007. W3C Recommendation.

[10] Shankar Pal et al. Indexing XML data stored in a relatiafatabase. INWLDB, pages 1134—
1145, 2004.

[11] T. Fiebig et al. Anatomy of a native XML base managemgstem.j-VLDB-J, 11(4):292-314,
2002.

[12] R. A. Ganski and H. K. T. Wong. Optimization of nested gqgkries revisited. '5GMOD,
pages 23-33, 1987.

[13] G. Graefe. Query evaluation techniques for large deab. ACM Computing Surveys,
25(2):73-170, 1993.

[14] T. Grust and M. v. Keulen. Tree awareness for relatiaitahs kernels: Staircase join. In
Intelligent Search on XML Data, pages 231-245, 2003.

[15] J. Hidders and P. Michiels. Avoiding unnecessary drdgoperations in xpath. IDatabase
Programming Languages, pages 54-70, 2003.

[16] V. Josifovski, M. Fontoura, and A. Barta. Querying XMtreams.j-VLDB-J, 14(2):197-210,
2005.

[17] Z. H. Liu, M. Krishnaprasad, and V. Arora. Native XQugrsocessing in Oracle XMLDB. In
SIGMOD, pages 828-833, 2005.

[18] N. May, S. Helmer, and G. Moerkotte. Strategies for guearmesting in XML databasesCM
Transactions on Database Systems, 31(3):968—-1013, 2006.

[19] P. Michiels, G. Mihaila, and J. Siméon. Put a tree patie your algebra. IfProc. ICDE, 2007.

[20] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Exteerdible based query rewrite optimization
in starburst. IIGMOD, pages 39-48, 1992.

[21] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complexygdecorrelation. IrProc. ICDE,
pages 450-458, 1996.

16

