
Reihe Informatik
TR-2007-007

University of Mannheim
Database Research Group

B6, 29
68131 Mannheim, Germany

brantner|kanne|moerkotte@informatik.uni-mannheim.de

1

2

Let a Single FLWOR Bloom

Matthias Brantner∗ Carl-Christian Kanne Guido Moerkotte

July 9, 2007

Abstract

To globally optimize execution plans for XQuery expressions, a plan generator must generate
and compare plan alternatives. In proven compiler architectures, the unit of plan generation is the
query block. Fewer query blocks mean a larger search space for the plan generator and lead to a
generally higher quality of the execution plans. The goal ofthis paper is to provide a toolkit for
developers of XQuery evaluators to transform XQuery expressions into expressions with as few
query blocks as possible.

Our toolkit takes the form of rewrite rules merging the innerand outer FLWOR expressions
into single FLWORs. We focus on previously unpublished rewrite rules and on inner FLWORs
occurring in thefor, let, andreturn clauses in the outer FLWOR.

1 Introduction

XQuery evaluators become more and more mature in terms of features and performance, and XQuery
is being integrated into mainstream DBMS products as a native language [6, 10, 17]. However,
XQuery processing research is still missing some fundamental tools to facilitate the development of
industrial-strength XQuery optimizers. The goal of this paper is to fill one of these gaps: We provide
a rewrite toolkit that allows to reduce the number of query blocks in a query expression. This widens
the search space for plan generators by making more information visible to a single run of the plan
generation algorithm. Let us begin by stressing the importance of our goal:

Industrial-strength query optimizers proceed in a two-phase manner. In a first phase, the query
is translated into an internal representation, and heuristical rewrite rules are applied to simplify and
normalize the query. In a second phase, a plan generator enumerates alternative execution plans,
determines their costs, and chooses the optimal plan. Alternative plans can differ in the access paths
used for the basic input sets (e.g. whether to use an index or not), in the order in which the basic
input sets are joined, and in the position of other operators, such as grouping or sorting.

However, efficient plan generation algorithms cannot take arbitrary query structures as input. In-
stead, the unit of plan generation is thequery block. Depending on the design of the query compiler,
a query block can be represented in a variety of ways, for example as a source language construct
(SELECT FROM WHERE in SQL, or FLWOR in XQuery), as a node in an internal graph repre-
sentation (such as the Query Graph Model QGM [20]), or as an algebraic expression. Some queries
exhibit a nested structure, where a query block references subquery blocks. In such cases, the plan
generator is called in a bottom-up fashion, generating plans for all subquery blocks before the sur-
rounding query block is processed. It is easy to see that in such cases, the search space examined by
the plan generator is limited, because only locally good solutions are computed. For globally opti-
mal plans, it is desirable to reduce the number of query blocks to have more information available in
a single run of the plan generator, creating a larger search space of alternative plans. For this reason,
in the first phase of optimization, queries are rewritten by merging as many query blocks as possible.
This is state-of-the-art for SQL query processing (e.g. [4,12, 21]), but not highly developed for
XQuery.

For an industrial-strength approach to XQuery optimization, such a rewriting step to merge query
blocks is particularly necessary:

∗This work was supported by the Deutsche Forschungsgemeinschaft under grant MO 507/10-1.

1

• In XQuery expressions in real applications, a nested query structure is the norm rather than an
exception. This is due to a number of reasons, including the construction of hierarchical XML
results, the absence of a grouping construct, the generation of queries using visual editors,
and, last but not least, the inlining of (non-recursive) XQuery functions that contain FLWOR
expressions.

• XML query processing can benefit from holisticn-way joins [3] which perform single-pass
tree-pattern matching instead of constructing results just using binary joins. The detection of
tree patterns and the decision when to use regular joins and when to use pattern matching is a
global decision during plan generation that requires access to as much of the query as possible.

An example for a highly nested query (inspired by XMark Query3) is shown here:
l e t $ a u c t i o n := doc (” a u c t i o n . xml ”) re turn

l e t $euro :=f o r $o in $ a u c t i o n / s i t e / o p e na u c t i o n s / o p e na u c t i o n
f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / europe / i tem / @id
where $o / i t e m r e f / @item eq $ i
re turn $o

f o r $a in $euro
where zero−or−one ($a / b i d d e r [1] / i n c r e a s e / t e x t ())∗ 2

<= $a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()
re turn

f o r $p in $ a u c t i o n / s i t e / pe op le / pe rs on [p r o f i l e / @income> 5000]
f o r $w in $p / watches / watch
where $a / @id = $w / @openauc t ion
re turn <a u c t i o n id =”{$a / @id}”>

< i n c r e a s e f i r s t =”{$a / b i d d e r [1] / i n c r e a s e / t e x t ()} ”
l a s t =”{$a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()}”/ >

<watched by id =”{$p / @id}”/ >
</ a uc t i on>

The query body is constructed of four FLWOR expressions, three of which are nested inside
other FLWORs. However, these are only the explicit FLWOR blocks. Depending on the compiler
design, the number of nested query blocks may be even deeper.For example, with a plan gener-
ator that focuses on purely structural tree-pattern matching, nested value-based predicates such as
profile/@income > 5000 may be separate query blocks.

Without further processing, such a query is optimized usingseveral runs of the plan genera-
tion algorithm, where each plan for a FLWOR expression is used in the plan for the surrounding
FLWOR. This separate optimization of subqueries impedes the discovery of good overall execution
plans. This is demonstrated by our example, in which there are two value-based joins, one joining
the Open Auctions to the European Items, and one joining the Open Auctions to the Persons with
an income higher than 5000. However, the join conditions in thewhere clauses are in different
FLWORs, prohibiting the plan generator to see both of the joins and optimize their order. Join order
optimization is a cornerstone of efficient relational queryprocessing and just as important in XQuery
processing [7].

As in many other cases, the nested structure of the query is not required to obtain the query
result, but is used because this way, the query is simpler to write. In fact, the whole query above
can be formulated using a single FLWOR block. One alternative to do so is shown below, with the
results of each processing step bound to a separate variable:
l e t $ a u c t i o n := doc (” a u c t i o n . xml ”) , $x32 := $ a u c t i o n / s i t e
f o r $o in $x32 , $x13 in $o / ope n a uc t i ons , $a in $x13 / o p e n a u c t i o n
f o r $ i in $x32 , $x15 in $ i / re g ions , $x16 in $x15 / europe
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $a / i t e mre f , $x19 := $x4 / @item
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / te x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rs on
f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @openauc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n id =”{$x39}”>

< i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/ >
<watched by id =”{$x8}”/ >

</ a uc t i on>
where zero−or−one ($x35) ∗ 2 <= $x38 and $x39 = $x10

and $x27 > 5000 and $x19 eq $x18
re turn $x1

2

While this form of the query is less readable and more difficult to write, it is easier to opti-
mize because all the basic operations, intermediate results, input sets, and their dependencies are
uniformly represented in a single, top-level FLWOR construct.

The goal of this paper is to provide a toolkit for developers of XQuery evaluators to transform
XQuery expressions into expressions with as few query blocks as possible. This toolkit takes the
form of rewrite rules merging the inner and outer FLWOR expressions into single FLWORs. These
unnesting rules are supplemented by some helpful normalization rewrites. We have chosen to present
our rules using regular XQuery syntax because other representations (such as QGM or algebraic
expressions) are less universal and would be more difficult to adapt to different evaluators. We do
not use the XQuery Core sublanguage because it does not have aquery block construct suitable for
plan generation. It is, instead, inherently nested, even for quite simple XQuery expressions. Due
to space constraints, we limit our presentation to previously unpublished rewrite rules and to inner
FLWORs occurring in thefor, let, andreturn clauses in the outer FLWOR.

2 Related Work

Michiels et al. [19] discuss rewrite rules on two levels. Starting from expressions in XQuery Core,
they propose to first rewrite them into normal forms (still inXQuery Core) that make the subsequent
stages robust against different syntactic formulations ofthe same query, and to support tree-pattern
detection. They also simplify the query by removing unnecessary constructs introduced by Core
normalization. Some of these simplification rewrites couldbe incorporated into our toolkit. The
rewritten query is then translated into an algebra that includes a tree-pattern matching operator.
These algebraic expressions are then rewritten using algebraic equivalences in order to merge simple
path-navigation operators into holistic tree-pattern matching operators. The rewrite rules on the
algebraic level are orthogonal to the ones presented in our toolkit and can be used by a plan generator
to create execution plans based on tree-pattern matching.

The very thorough paper by Hidders et al. [5] has a similar aim, but directly translates a frag-
ment of XQuery into tree patterns without an intermediate algebraic phase. In a first phase, the
queries are annotated with properties such as result cardinality, ordering, and occurrence of dupli-
cates. These properties are then used to control a rewritingof the query into the Tree Pattern Normal
Form (TPNF), which is always possible for the language fragment under consideration. For TPNF,
a direct mapping onto tree patterns is then described. Unfortunately, the language fragment does
not cover important XQuery constructs, such as value-basedpredicates. Another problem is that the
rewrite rules are based on XQuery Core, which is unsuitable as a plan generator input, for exam-
ple because the absence of awhere clause makes it difficult to identify applicable join conditions.
However, the property annotations are not only useful for TPNF rewriting and can be used when
implementing our rewrite toolkit. Further, the TPNF technique may be used by plan generators to
identify parts of the query that can be evaluated using pattern matching.

May et al. [18] have presented unnesting strategies for XQuery. Their approach is based on alge-
braic equivalences to be applied after translation of XQuery into the NAL algebra of the Natix sys-
tem. The main focus of that work is unnesting of selection predicates which correspond towhere
clauses on the source level. The paper also discusses unnesting the subscripts of map operators,
which on source level corresponds tolet clauses. However, the rules are exclusively for the con-
version of implicit grouping into explicit grouping operators, and not for the general unnesting of
let. Translated into the source form, the presented rewrite rules are complementary to the rules
discussed in this paper.

3 Overview

The overall goal of this paper is to flatten an XQuery expression, i.e. merge as many query blocks
(i.e. FLWOR expressions) as possible. To achieve this goal,we basically proceed in two phases: (1)
Normalization and (2) FLWOR Merging. Fig. 1 gives an overview of our processing model.

3

Normalization

Return
Rewrites
(Figure 2)

Path Normalization

Path Extraction
and Tailoring
(Figure 3)

Predicate
Normalization
(Figure 4)

Factorization
Figure 5

For-/Let Rewrites
(Figures 6 - 10)

Figure 1: Processing model

In both phases, we apply a set of rules based on XQuery syntax on a query. A separate figure
presents one set of rules for each normalization and rewriting step. The Overview Figure 1 contains
references to each of them.

3.0.1 Normalization

comprises two major subtasks:

1. All ExprSingle expressions1 from thereturn clause are moved to the expression creating
the binding sequence of a newfor expression.

2. Path expressions are normalized (as far as possible). In particular, (1) all path expressions not
directly associated with afor clause are bound to variables usinglet, (2) path expressions
are taken to single steps, (3) predicates are moved into thewhere clause, and (4) common
location steps are factorized.

3.0.2 FLWOR Merging

Starting from this normalized form, we remove as many query blocks (FLWOR expressions) as
possible. Specifically, we present rewrite rules that eliminate or merge inner FLWORs occurring in
thefor or let clause, respectively.

3.0.3 Notation

Our rewrite rules are formulated using XQuery syntax [9]. However, to simplify the presentation,
we use the following abbreviations for frequently used clauses:

ForOrLetClause := ForClause | LetClause
ForOrLetClauses := ForOrLetClause∗

Moreover, we assume that all variable names are unambiguous. Since we sometimes introduce new
variables or change the bindings of existing ones, we introduce a notation for variable substitution:
Expr[$x2← $x1] denotesExpr with all free occurrences of$x2 replaced by$x1.

3.0.4 Running Example

We illustrate the application of our rules on the query from the introduction. Applying our rules to
the example query yields a query which has a single FLWOR block.

The original example query (i.e. before rewriting) is repeated here for convenience.
l e t $ a u c t i o n := doc (” a u c t i o n . xml ”) re turn

l e t $euro :=f o r $o in $ a u c t i o n / s i t e / o p e na u c t i o n s / o p e na u c t i o n
f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / europe / i tem / @id
where $o / i t e m r e f / @item eq $ i
re turn $o

f o r $a in $euro
where zero−or−one ($a / b i d d e r [1] / i n c r e a s e / t e x t ())∗ 2

<= $a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()
re turn

f o r $p in $ a u c t i o n / s i t e / pe op le / pe rs on [p r o f i l e / @income> 5000]
f o r $w in $p / watches / watch
where $a / @id = $w / @openauc t ion
re turn <a u c t i o n id =”{$a / @id}”>

< i n c r e a s e f i r s t =”{$a / b i d d e r [1] / i n c r e a s e / t e x t ()} ”
l a s t =”{$a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()}”/ >

<watched by id =”{$p / @id}”/ >
</ a uc t i on>

1Note thatExprSingle is the expression produced by the grammar rules from [9].

4

In practice, this query could well be the result of an inlinedXQuery function. XQuery functions
are often used asviews to increase data independence, or simply to make queries more readable,
similar to views in SQL. In our case, the sequence bound to$euro could be an inlined function
to retrieve European Auctions, whereas the bottommost FLWOR expression could be a function
to retrieve all watchers for a given auction. The results of these functions are joined using the
surrounding FLWOR block. In such a context, the applicationof our rewrite rules can also be
described asview merging, allowing the plan generator to optimize join orders beyondview borders.

4 Normalization

Normalization does not decrease the FLWOR nesting level of aquery. Instead, it transforms the
query such that the unnesting rewrite rules can still be applied in case of minor syntactical variations.
In addition to this preparatory character, normalization also directly helps to achieve our ultimate
goal of preparing queries for plan generation: XQuery allows several different ways of formulating
predicates (e.g. thewhere clause and XPath predicates). However, the plan generator requires a
single unified formulation of all the constraints on all the variables in the currently considered query
block to systematically explore the search space of alternative plans. Execution plan alternatives for
value-based predicates include, but are not limited to, theplacement of selection operators, the use
of joins, and index selection. Which of these alternatives is used, and in which order the different
predicates of a query are evaluated, should not depend on thenesting level or the placement of the
predicates. This robustness is achieved by our normalization phase.

Normalization proceeds in several consecutive steps, as shown in in Fig. 1. We first enforce a
simple form for allreturn clauses before we break down complex location paths into primitives,
with an emphasis on predicate normalization. Finally, we eliminate common subexpressions.

4.1 Return Normalization

In order to allow a uniform treatment of nested expressions in return andlet clauses, we move
all ExprSingle expressions fromreturn clauses tolet clauses (see Rewrite 1). This way, we
can treat the unnesting ofreturn andlet uniformly and can always assume areturn clause
that consists of a single variable reference.

ForOrLetClauses
WhereClause?
OrderByClause?
return ExprSingle1

→

ForOrLetClauses
let $x1 := ExprSingle1

WhereClause?
OrderByClause?
return $x1

(1)

ForOrLetClauses1
let $x1 := ExprSingle1

ForOrLetClauses2
WhereClause?
OrderByClause?
return $x1

→

ForOrLetClauses1
for $x1 in ExprSingle1
ForOrLetClauses2
WhereClause?
OrderByClause?
return $x1

(2)

Condition: There are no other occurrences of$x1.

Figure 2: Return rewrites
Other than normalizing thereturn clause, we can further prepare optimization by converting

the newlet clause into afor clause (see Rewrite 2). This is possible because on the right-hand
side, the concatenation semantics of FLWOR blocks reestablishes the same result sequence as on the
left-hand side of the rewrite, as long as$x1 is used nowhere but in thereturn clause.

Turninglet into for expressions allows a significantly larger range of alternatives for plan
generation. Evaluation offor clauses can be done in an iterative manner, generating the items
of the binding sequence one by one, instead of computing and materializing the whole sequence at
once. This allows efficient techniques such as pipelining and is the preferred style of implementation
in database runtime engines [13].

5

4.1.1 Running Example

Applying thereturn elimination andlet transformation rewrites (1 and 2) to thereturn ex-
pressions of our example query results in the following:

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”)
f o r $x1 in l e t $euro := f o r $o in $ a u c t i o n / s i t e / o p e na u c t i o n s / o p e na u c t i o n

f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / europe / i tem / @id
where $o / i t e m r e f / @item eq $ i
re turn $o

f o r $a in $euro
f o r $x2 in f o r $p in $ a u c t i o n / s i t e / pe op le / pe rs on [p r o f i l e / @income> 5000]

f o r $w in $p / watches / watch
f o r $x3 in <a u c t i o n id =”{$a / @id}”>

< i n c r e a s e f i r s t =”{$a / b i d d e r [1] / i n c r e a s e / t e x t ()} ”
l a s t =”{$a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()}”/ >

<watched by id =”{$p / @id}”/ >
</ a uc t i on>

where $a / @id = $w / @openauc t ion
re turn $x3

where zero−or−one ($a / b i d d e r [1] / i n c r e a s e / t e x t ())∗ 2
<= $a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()

re turn $x2
re turn $x1

4.2 Path Normalization

Path expressions are a crucial performance factor for the evaluation of almost every XQuery query.
For efficiently evaluating path expressions, the plan generator makes cost-based decisions on algo-
rithms that should be used to evaluate them. For example, an optimizer decides whether a holistic
approach (e.g. [3, 16]) for evaluating multiple path expressions is superior to a fine granular ap-
proach that evaluates single steps individually (e.g. [8, 14]), probably with the help of an index. The
plan generator requires a canonical form of the path expressions to make such decisions. Besides
separating each processing step for plan generation, cutting path expressions involves two other
advantages:

• It allows to move location step predicates from the middle oflocation paths into thewhere
clause.

• Common subexpression elimination (see below) can be done onthe granularity of steps.

4.2.1 Path Tailoring

for $x in StepExpr/PathExpr →
for $x1 in StepExpr
for $x2 in $x1/PathExpr

(3)

Condition: StepExpr must not produce duplicates.

for $x in StepExpr/PathExpr →
let $x1 := StepExpr
for $x2 in $x1/PathExpr

(4)

let $x := StepExpr/PathExpr →
let $x1 := StepExpr
let $x2 := $x1/PathExpr

(5)

Figure 3: Path tailoring rewrites
In order to separate each processing step, we first extract all path expressions from the query

which are not already binding expressions offor or let, and bind them to newlet variables.
We keep path expressions infor clauses because they need a different treatment in our predicate
rewrites below.

Having extracted all path expressions, we cut them up into single location steps (see Fig. 3 for
rewriting rules). Again to facilitate iterator-based evaluation, we attempt to avoidlet clauses when
possible (3 and 4) while breaking up path expressions infor clauses. Without further refinements,
we can only cut those steps that do not produce duplicates (see [5, 15]). Of course, location steps
assigned to alet variable remain in alet binding (5).

6

4.2.2 Predicate Normalization

The plan generator not only decides on the path evaluation algorithms and the order of joins based on
structural predicates, but also on the order of regular, value-based joins and selections. Moving all
non-structural predicates into thewhere clause makes such join and selection predicates explicitly
available in a uniform manner. This allows a search space of plans that is robust against the syntac-
tical placement of the predicate. Further, a unifiedwhere also allows predicate processing, which
includes, but is not limited to, the inference of new predicates and the elimination of redundant ones.

ForOrLetClauses1
for $x1 in StepExpr[Expr1]
ForOrLetClauses2
where Expr2

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
for $x1 in StepExpr
ForOrLetClauses2
where fn : boolean($x1/(Expr1)) and Expr2

OrderByClause?
return ExprSingle1

(6)

Condition: The value ofExpr1 must not depend on the context position or context size.

ForOrLetClauses1

let $x1 := StepExpr[Expr1]
ForOrLetClauses2

where Expr2

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
let $x1 := StepExpr
ForOrLetClauses2
where fn : boolean(Expr1) and Expr2

OrderByClause?
return ExprSingle1

(7)

Condition: The value ofExpr1 must not depend on the focus (context item, context position, or context size).

ForOrLetClauses1
for $x1 in StepExpr[Expr1 and Expr2]
ForOrLetClauses2
where Expr3

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
for $x1 in StepExpr[Expr2]
ForOrLetClauses2
where fn : boolean($x1/(Expr1)) and Expr3

OrderByClause?
return ExprSingle1

(8)

Condition: The value ofExpr1 must not depend on the context position or context size.

ForOrLetClauses1
for $x1 in StepExpr[Expr1 and Expr2]
ForOrLetClauses2
where Expr3

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
for $x1 at $y1 in StepExpr[Expr2]
ForOrLetClauses2
where Expr′

1
and Expr3

OrderByClause?
return ExprSingle1

(9)

Conditions: The value ofExpr1 depends on the context position, but not the context size.Expr′

1
:= Expr1[$fs : position← $y1] and

StepExpr must not consist of a reverse axis step (see text).

Figure 4: Predicate normalization rewrites
In Fig. 4, we present rules that get predicate expressions oflocation steps and move them into

thewhere clause of the surrounding FLWOR block. For each extracted predicate expression, we
have to set the context to the context defined by the accordingstep. For example, if we moveExpr1

from a location step predicate into awhere clause (see Rule 6), we have to guarantee that all
context accesses are performed with respect to$x1, which is why we prepend$x1 to the predicate
expression. Similarly, we can get comparison expressions that contain calls to the context position
of a location step by creating a positional variable using the for VarRef at VarRef syntax
and replacing accesses to the context position with the variable (see Rule 9). This is not strictly
possible in XQuery syntax, but easily implemented in most evaluators because the context position
is modeled as a special variable anyway. Our choice of variable name ($fs : position) follows the
XQuery Formal Semantics, which also replaces context position by a special variable. Further,
reverse axis steps cannot be handled this way, because the context position numbering is different
from the order of the result sequence2.

Note that for the sake of brevity, we assume that there is always awhere clause in the outer
expression. We treat outer FLWORs without awhere clause as if there was awhere true clause.

4.2.3 Common Path Elimination

To avoid redundant evaluation, we eliminate common paths, binding them to newfor or let vari-
ables as needed. In Fig. 5, we present four rules for eliminating common location steps. However,

2If the rewrite is not done on source level, the internal representation may have a suitable special variable to bind for
reverse axis numbering, making our rewrite possible again.

7

let $x1 := StepExpr1

let $x2 := StepExpr1/StepExpr2

→
let $x1 := StepExpr1

let $x2 := $x1/StepExpr2

(10)

for $x1 in StepExpr1

for $x2 in StepExpr1/StepExpr2

→
let $x0 := StepExpr1

for $x1 in $x0
for $x2 in $x0/StepExpr2

(11)

let $x1 := StepExpr1

for $x2 in StepExpr1/StepExpr2

→
let $x1 := StepExpr1

for $x2 in $x1/StepExpr2

(12)

for $x1 in StepExpr1

let $x2 in $x1/StepExpr2

→
let $x0 := StepExpr1
for $x1 in $x0
let $x2 := $x0/StepExpr2

(13)

Figure 5: Common path elimination

elimination of common subexpressions is a complex process that cannot be sufficiently described
using only those rules. We refer to [1] for algorithms on subexpression elimination.

4.2.4 Running Example

In the following, we present the query that is obtained by applying normalization, i.e. path extraction,
path tailoring, predicate normalization, and common path elimination, to our example query.
l e t $ a u c t i o n := doc (” a u c t i o n . xml ”)
l e t $x32 := $ a u c t i o n / s i t e
f o r $x1 in l e t $euro := f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s

f o r $x14 in $x13 / ope n a uc t i on , $ i in $x32 , $x15 in $ i / r e g i o n s
f o r $x16 in $x15 / europe , $x17in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $x14 / i t e mre f , $x19 := $x4 / @item
where $x19 eq $x18
re turn $x14

f o r $a in $euro
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e . $x35 := $x34 / te x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $x2 in f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rs on

f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id
l e t $x10 := $x22 / @openauc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x3 in <a u c t i o n id =”{$x39}”>

< i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/ >
<watched by id =”{$x8}”/ >

</ a uc t i on>
where $x39 = $x10 and $x27 > 5000
re turn $x3

where zero−or−one ($x35) ∗ 2 <= $x38
re turn $x2

re turn $x1

In this expression, for example, the XPath predicateprofile/@income > 5000 is removed
from the location step and added to thewhere clause of the according FLWOR block. Moreover, we
replaced the common path expressions from within the element construction and thewhere clauses
(e.g. the path selecting the increases of the first and last bid) by single variables. Note that it is not
possible to move the positional predicates into thewhere clause, as they occur in alet binding.
Also note that for presentation purposes, we abbreviated consecutive occurrences offor andlet
expressions using commas. In the full representation of this query,for andlet expressions that
bind multiple variables are split into separate expressions.

5 Merging FLWOR Blocks

After finishing the normalization phase, the query is prepared for the core rules of our toolkit, the
for andlet merging rewrites. The ultimate goal of the rewrites presented in this section is to
reduce the number of query blocks as much as possible.

Reconsider our normalized example query shown above. This formulation of the query contains
several nested FLWOR expressions. The FLWOR nesting depth in line 3 is three. Thefor-clause
binding$o is nested in alet clause which, in turn, is nested in the outer mostfor-clause binding

8

$x1. Moreover, the query contains afor clause defining$x2 whose binding sequence is generated
by anotherfor clause.

In the following, we introduce rewrite rules that remove such nested expressions. Applying them
to our example query eliminates all nested FLWORs.

We start with rewrites that remove FLWORs nested infor clauses (see Fig. 6) and then proceed
to let clauses (see Fig. 7).

5.1 For Rewrites

The semantics of afor clause is to iterate over items of the binding sequence, binding thefor
variable to every item in this sequence. The remaining FLWORexpression is evaluated for each
such binding, and the individual result sequences are concatenated. We are interested in afor
clause if its binding sequence is created by a nested FLWOR expression. In some cases, we can lift
the inner FLWOR to the outer level. This rewrite opportunityresults from the fact that sequences
in the XQuery data model are never nested. Hence, it often does not matter on how many levels an
implicit concatenation ofreturn sequences occurs because the result is always a flat sequence.

ForOrLetClauses1
for $x1 in (ForOrLetClauses2

for $x2 in ExprSingle1

ForOrLetClauses3
where ExprSingle2
return $x2)

ForOrLetClauses4
where ExprSingle3

return VarRef1

→

ForOrLetClauses1
ForOrLetClauses2
for $x1 in ExprSingle1

ForOrLetClauses′
3

ForOrLetClauses4
where ExprSingle3 and ExprSingle

′

2

return VarRef1

(14)

Conditions: ForOrLetClauses′
3

:= ForOrLetClauses3[$x2← $x1] and
ExprSingle′

2
:= ExprSingle2[$x2← $x1]

ForOrLetClauses1
for $x1 in (ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3
where ExprSingle2

return $x2)
ForOrLetClauses4
where ExprSingle3
return VarRef1

→

ForOrLetClauses1
ForOrLetClauses2
let $x2 := ExprSingle1

ForOrLetClauses3
for $x1 in $x2
ForOrLetClauses4
where ExprSingle3 and ExprSingle2

return VarRef1

(15)

Figure 6: For rewrites

For example, consider the left-hand side of the firstfor Rewrite 14. In this rewrite, the variable
$x1 is iteratively bound to each item returned by the inner FLWOR. The result of the inner FLWOR
is generated by thereturn clause. Note that in our case, thereturn clause consists only of a
variable reference, i.e. variable$x2. To merge the two blocks, we have to guarantee that the outer
for variable$x1, after merging, is still bound to the same items, i.e. those generated by variable
$x2. To this end, we replace the nested FLWOR with the expressionresponsible for binding$x2.
In the rewrite, this expression is calledExprSingle1 and bound by afor clause. The remaining
(optional) clauses are moved into the outer FLWOR block. Specifically,ForOrLetClauses2 and
ForOrLetClauses3 are pulled up one level.ExprSingle2 from the innerwhere clause is
conjunctively connected to the expression in the outerwhere clause3. After relocating the inner
expressions, we have to replace free occurrences of the previous inner variable$x2 with $x1.

Similarly, we merge two query blocks if the binding sequenceis created by a nestedlet variable
(see our Rewrite Rule 15). Note that the right-hand side of Rule 15 may still contain a FLWOR
nested in alet clause. This case is unnested by Rule 16, which is presented in the next section.

Other rules for FLWORs nested withinfor clauses are discussed in the extended version of this
paper [2], including cases with positional variables andorder by clauses.

3As before, expressions withoutwhere are treated as if awhere true clause was added.

9

5.1.1 Running Example

On our example query, we can apply Rewrite Rule 14 twice. First, to eliminate the innerfor-clause
binding$x2, as this variable is returned to create the binding sequencefor $x1. Second, we apply
this rule to eliminate thefor expression binding$x3. This results in the following expression:
l e t $ a u c t i o n := doc (” a u c t i o n . xml ”)
l e t $x32 := $ a u c t i o n / s i t e
l e t $euro := f o r $o in $x32 , $x13 in $o / ope n a uc t i ons , $x14 in $x13 / o p e n a u c t i o n

f o r $ i in $x32 , $x15 in $ i / re g ions , $x16 in $x15 / europe
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $x14 / i t e mre f , $x19 := $x4 / @item
where $x19 eq $x18
re turn $x14

f o r $a in $euro
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / te x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rs on
f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @openauc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n id =”{$x39}”>

< i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/ >
<watched by id =”{$x8}”/ >

</ a uc t i on>
where zero−or−one ($x35) ∗ 2 <= $x38 and $x39 = $x10 and $x27 > 5000
re turn $x1

5.2 Let Rewrites

let clauses require separate rewrites because they bind a variable to the result of its associated
expression, i.e. without iterating over this result. Fig. 7presents three rewrite rules to eliminate
FLWORs nested inlet clauses.

ForOrLetClauses1
let $x1 := ExprSingle1

ForOrLetClauses2
for $x2 in $x1
ForOrLetClauses3
where ExprSingle2

return VarRef

→

ForOrLetClauses1
ForOrLetClauses2
for $x2 in ExprSingle1
ForOrLetClauses3
where ExprSingle2

return VarRef

(16)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

for $x2 in ExprSingle1

where ExprSingle2
return $x2)

where ExprSingle3

return $x1

→

ForOrLetClauses1
ForOrLetClauses2
for $x2 in ExprSingle1

where ExprSingle3 and ExprSingle2

return $x2

(17)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

let $x2 := ExprSingle1
where ExprSingle2
return $x2)

where ExprSingle3

return $x1

→

ForOrLetClauses1
ForOrLetClauses2
let $x2 in ExprSingle1

where ExprSingle3 and ExprSingle2
return $x2

(18)

Condition: There are no other occurrences of$x1.

Figure 7: Let rewrites
Rewrite Rule 16 tackles a frequently used case. There, afor iteration is used to enumerate

all items contained in alet variable. This technique is used in our example query and may, for
example, result from inlining an XQuery function as explained at the beginning of this section. The
rules suggest to eliminate thelet variable if it is used only once and inline the associated expression
(i.e.ExprSingle1). On this result, the rewrites of the previous section (see Fig. 6) can be applied
and eliminate the nesting.

Fig. 7 also contains two rewrites that remove nestedfor (see Rule 17) andlet (see Rule 18)
expressions, respectively. Without loss of generality, the outerlet clause in both rules is immedi-
ately followed by thewhere clause. If there was anotherfor or let clause, it would not contain
occurrences ofx1 and, hence, could be moved above thelet clause bindingx1.

10

5.2.1 Running Example

The result of applying thelet Rewrite Rule 16 and thefor Rewrite Rule 14 to our example is the
following query finally consisting of a single query block.

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”) , $x32 := $ a u c t i o n / s i t e
f o r $o in $x32 , $x13 in $o / ope n a uc t i ons , $a in $x13 / o p e n a u c t i o n
f o r $ i in $x32 , $x15 in $ i / re g ions , $x16 in $x15 / europe
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $a / i t e mre f , $x19 := $x4 / @item
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / te x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rs on
f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @openauc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n id =”{$x39}”>

< i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/ >
<watched by id =”{$x8}”/ >

</ a uc t i on>
where zero−or−one ($x35) ∗ 2 <= $x38 and $x39 = $x10

and $x27 > 5000 and $x19 eq $x18
re turn $x1

Note how in this form, all value-based join and selection predicates are available in a unified
where clause. This allows a plan generator to decide on index access and join orders.

6 Intricacies

In the last section, we presented rewrite rules to merge FLWOR expressions. However, all of the pre-
sented elimination rewrites were limited in terms of FLWORsthat do not contain positional variables
or order by clauses. Merging FLWORs contains one of these constructs requires more sophisti-
cated rewrite techniques or more restrictive conditions. In this section, we present new rewrite rules
that are abutted to the previously presented rules for FLWORs but can also contain one of these
intricacies.

6.1 Positional For Rewrites

A for expression (having a nested FLWOR expression) binding a positional variable is called a
positional for expression. Fig. 8 presents two rewrites that are abutted tothefor rewrites from
Fig. 6. Both have on the left-hand side a positionalfor expression. In order to merge the outer and
the inner FLWOR into one, the inner FLWOR must not contain awhere ororder by clause. Our
solution for merging such FLWOR expresisons is shown on the right-hand side of Rewrite Rules 19
and 20.

ForOrLetClauses1
for $x1 at $y1 in (for $x2 in ExprSingle1

return $x2)
ForOrLetClauses2
where ExprSingle2

return VarRef1

→

ForOrLetClauses1
for $x1 at $y1 in ExprSingle1

ForOrLetClauses2
where ExprSingle2

return VarRef1

(19)

ForOrLetClauses1
for $x1 at $y1 in (let $x2 := ExprSingle1

return $x2)
ForOrLetClauses2
where ExprSingle2

return VarRef1

→

ForOrLetClauses1
for $x1 at $y1 in ExprSingle1

ForOrLetClauses2
where ExprSingle2

return VarRef1

(20)

Figure 8: Positional for rewrites

11

6.2 Order-by

A second restriction on the rewrites from the previous section is that neither the outer nor the inner
FLWOR must contain anorder by clause. In this section, we extend our merging rewrite rulesto
expressions containing anorder by clause.

For keeping the required order in the unnested case, we introduce a technique that we call
Canonical Order By. This technique modifiesfor clauses to bind a positional variable using the
for VarRef at VarRef syntax and add anorder by clause to the corresponding FLWOR
expression having the new positional variables in itsOrderSpecList. If there are multiple
for and/orlet clauses in one FLWOR expression the order of the positional variables in the
OrderSpecList is determined by the order these clauses occur in the FLWOR expression. Doing
so, we guarantee the query result to be in correct order.

In the following, we show how this technique can be applied tomerge FLWOR expressions that
contain anorder by clause in the outer and/or the inner FLWOR. Analogously to the previous
section, we start withfor rewrites and then presentlet merging rewrite rules.

6.2.1 For Rewrites

Fig. 9 presents four rules to tackle queries whose inner or outer FLWOR contains anorder by
clause, respectively. The left-hand side (lhs) of Rules 21 and 22 correspond to the lhs of Rules 14
and 15 but with the inner FLWOR expression containing anorder by clause. Similarly, the lhs
of Rules 23 and 24 also correspond to the rules from Fig. 6 but with the outer FLWOR expression
containing anorder by clause. The right-hand side (rhs) of all four rewrite rules shows how the
outer and inner FLWOR expression can be merged, despite not changing the order of the result.

On the rhs of each rule, we annotated expressions that need positional variables. For example,
the expression

ForOrLetClauses2 (with positional variables $y21, . . . , $y2n)

means that thei-thfor clause inForOrLetClauses2 is extended to bind the positional vari-
able$y2i using thefor VarRef at VarRef syntax. Theorder by clause in all rewrite rules
presented in Fig. 9 is simplified such that theorder by expression could also be anstableorder
by expression. Rules 21 and 22 we could omit the positional variables$y41, . . . , $y4m and instead
usestable order by. However, the latter could be less efficient as it probably requires sorting
on uneccesary attributes.

In case both, the outer and inner FLWOR contain anorder by clause, we proceed as shown
in Fig. 6. However, we also merge the twoorder by clauses such that sorting is done first for the
OrderSpecList of the outer FLWOR and then for theOrderSpecList of the inner FLWOR.

6.2.2 Let Rewrites

Similarly to the previous section, we also allow ourletmerging rewrite rules from Fig. 7 to contain
order by clauses. The resulting rewrite rules are presented in Fig. 10.

Rewrite Rule 25 corresponds to Rule 16 but having anorder by clause. Rules 26 and 27 con-
tain anorder by clause in the inner FLWOR, Rules 28 and 29 in the outer FLWOR, respectively.

7 Evaluation

A goal of this paper is to show how to rewrite a query into a formthat consists of a single query
block to give a single run of the plan generator as much uniformly structured information about the
query as possible. We now elaborate on the importance of thisgoal by discussing the optimization
of our example query during plan generation. We will see how more efficient plans can be generated
only when the query has been reduced to a single block.

Due to space constraints, we do not explore the whole search space available, but focus on join
ordering. We assume that the optimizer has decided on subplans to produce the sequences for Open

12

ForOrLetClauses1

for $x1 in (ForOrLetClauses2
for $x2 in ExprSingle1

ForOrLetClauses3
where ExprSingle2

order by OrderSpecList1
return $x2)

ForOrLetClauses4

where ExprSingle4

return VarRef1

→

ForOrLetClauses1 (with positional variables $y11, . . . , $y1n)
ForOrLetClauses2
for $x1 at $y2 in ExprSingle1

ForOrLetClauses′
3

ForOrLetClauses4 (with positional variables $y41, . . . , $y4m)
where ExprSingle4 and ExprSingle

′

2

order by $y11, . . . , $y1n, $y2, OrderSpecList′
1
, $y41, . . . , $y4m

return VarRef1

(21)

Conditions: ForOrLetClauses′
3

:= ForOrLetClauses3[$x2 ← $x1], ExprSingle′
2

:= ExprSingle2[$x2 ← $x1], and
OrderSpecList′

1
:= OrderSpecList1[$x2← $x1]

ForOrLetClauses1

for $x1 in (ForOrLetClauses2
let $x2 := ExprSingle1

ForOrLetClauses3
where ExprSingle2

order by OrderSpecList1
return $x2)

ForOrLetClauses4

where ExprSingle4

return VarRef1

→

ForOrLetClauses1 (with positional variables $y11, . . . , $y1n)
ForOrLetClauses2
let $x2 := ExprSingle1

ForOrLetClauses3
for $x1 at $y2 in $x2
ForOrLetClauses4 (with positional variables $y41, . . . , $y4m)
where ExprSingle4 and ExprSingle2

order by $y11, . . . , $y1n, $y2, OrderSpecList1, $y41, . . . , $y4m

return VarRef1

(22)

ForOrLetClauses1

for $x1 in (ForOrLetClauses2
for $x2 in ExprSingle1

ForOrLetClauses3
where ExprSingle2

return $x2)
ForOrLetClauses4

where ExprSingle4

order by OrderSpecList1
return VarRef1

→

ForOrLetClauses1
ForOrLetClauses2 (with positional variables $y21, . . . , $y2n)
for $x1 at $y2 in ExprSingle1

ForOrLetClauses′
3

(with positional variables $y31, . . . , $y3m)
ForOrLetClauses4
where ExprSingle4 and ExprSingle

′

2

order by OrderSpecList1, $y21, . . . , $y2n, $y2, $y31, . . . , $y3m

return VarRef1

(23)

Conditions: ForOrLetClauses′
3

:= ForOrLetClauses3[$x2 ← $x1], ExprSingle′
2

:= ExprSingle2[$x2 ← $x1], and
OrderSpecList′

1
:= OrderSpecList1[$x2← $x1]

ForOrLetClauses1
for $x1 in (ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3
where ExprSingle2

return $x2)
ForOrLetClauses4
where ExprSingle4
order by OrderSpecList1
return VarRef1

→

ForOrLetClauses1

ForOrLetClauses2 (with positional variables $y21, . . . , $y2n)
let $x2 := ExprSingle1

ForOrLetClauses3 (with positional variables $y31, . . . , $y3m)
for $x1 at $y2 in $x2
ForOrLetClauses4

where ExprSingle4 and ExprSingle2

order by OrderSpecList1, $y21, . . . , $y2n, $y2, $y31, . . . , $y3m

return VarRef1

(24)

Figure 9: Order-by for rewrites

Auctions, European Items, and Persons. The subplans may be based on pattern matching algorithms.
Further, we assume that the predicate selecting the auctions according to their bids has been con-
verted into a single predicate subplan. This predicate is, however, more expensive to evaluate than a
simple value comparison, and its placement in the overall plan does affect performance significantly.
Thus, finding an optimal plan includes finding an optimal position for this predicate. We now discuss
execution plans for our example query in the form of algebraic expressions on an abstract level (see
Fig. 11).

A straightforward translation of the original, nested, multi-block query looks like Fig. 11(a).
Here, the FLWOR blocks are translated directly into separate subplans, and no global optimization
takes place. For simplicity, we disregard the first line of the example query (the initiallet clause
for the document root). The top-level MapConcat operator represents the main FLWOR expression.
Its operand generates the tuple stream and contains subplans for the European Auctions query block.
The subplan connected to MapConcat by the dashed line represents the query block in thereturn
clause (the last eight lines of the query). It has a free variable $a in the subplan for thepeople
sequence, and, hence, has to be reevaluated for every tuple of the MapConcat operand, as dictated
by XQuery FLWOR semantics.

Fig. 11 shows four other execution plans based on the rewritten, single-block form of our exam-
ple query. They can be enumerated by the plan generator because it has access to all value-based

13

ForOrLetClauses1
let $x1 := ExprSingle1

ForOrLetClauses2
for $x2 in $x1
ForOrLetClauses3
where ExprSingle2

order by OrderSpecList
return VarRef

→

ForOrLetClauses1
ForOrLetClauses2
for $x2 in ExprSingle1

ForOrLetClauses3
where ExprSingle2

order by OrderSpecList
return VarRef

(25)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

for $x2 in ExprSingle1

where ExprSingle2

order by OrderSpecList1

return $x2)
where ExprSingle3

return $x1

→

ForOrLetClauses1 (with positional variables $y11, . . . , $y1n)
ForOrLetClauses2
for $x2 at $y2 in ExprSingle1

where ExprSingle3 and ExprSingle2

order by $y11, . . . , $y1n, $y2, OrderSpecList1
return $x2

(26)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

let $x2 := ExprSingle1
where ExprSingle2

order by OrderSpecList1

return $x2)
where ExprSingle3

return $x1

→

ForOrLetClauses1 (with positional variables $y11, . . . , $y1n)
ForOrLetClauses2
let $x2 in ExprSingle1

where ExprSingle3 and ExprSingle2

order by $y11, . . . , $y1n, OrderSpecList1

return $x2

(27)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

for $x2 in ExprSingle1
where ExprSingle2

return $x2)
where ExprSingle3
order by OrderSpecList1

return $x1

→

ForOrLetClauses1
ForOrLetClauses2 (with positional variables $y21, . . . , $y2n)
for $x2 at $y2 in ExprSingle1
where ExprSingle3 and ExprSingle2
order by OrderSpecList1, $y21, . . . , $y2n, $y2
return $x2

(28)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

let $x2 := ExprSingle1

where ExprSingle2

return $x2)
where ExprSingle3
order by OrderSpecList1

return $x1

→

ForOrLetClauses1
ForOrLetClauses2 (with positional variables $y21, . . . , $y2n)
let $x2 in ExprSingle1
where ExprSingle3 and ExprSingle2

order by OrderSpecList1, $y21, . . . , $y2n

return $x2

(29)

Condition: There are no other occurrences of$x1.

Figure 10: Order-by let rewrites

predicates of the query in a singlewhere clause and can detect joins and determine an optimal order
for them and the residual selections. We executed all five plans from Fig. 11 in our hybrid relational
and XML DBMS Natix [11] on an XMark document with scaling factor one.

The experimental setup consisted of a PC with an Intel Pentium D CPU having 3.40GHz and
1GB of main memory, running on openSUSE 10.2 with Linux Kernel 2.6.18 SMP. To investigate
the relative performance of the execution plans, we varied the selectivity of the predicate restricting
the people by their income between 0.14 and 0. This corresponds to incomes between 60,000$ to
130,000$ instead of 5,000$ in the original query. Fig. 12 shows the result of this small performance
study (execution time in seconds) for four plans from Fig. 11.

The experiment makes obvious why careful global plan generation based on single-block queries
is crucial for efficient execution. The results of the nested-loop strategy of the straightforward trans-
lation are orders of magnitude slower (well beyond 100s) andhave been left out of the graph. The
join-based plans made possible by our rewritten single-block query show that an enumeration of
alternatives is as important as in relational query processing: Depending on selectivity, the overall
best plan varies. The plan according to Fig. 11(e) performs best with a very low selectivity, whereas
the plan belonging to Fig. 11(b) outperforms the others withan increasing selectivity.

14

open_auctions european items

people($a)

σ income > 5,000σ bid[|]*2 ≤ bid[last]

MapConcat

(a) Block-by-block translation

open_auctions european items

people

σ income > 5,000σ bid[|]*2 ≤ bid[last]

(b) Plan 1

open_auctions

european items people

σ income > 5,000

σ bid[|]*2 ≤ bid[last]

(c) Plan 2

open_auctions

european items

people

σ income > 5,000σ bid[|]*2 ≤ bid[last]

(d) Plan 3

open_auctions

european items

people

σ income > 5,000

σ bid[|]*2 ≤ bid[last]

(e) Plan 4

Figure 11: Alternative execution plans

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

T
im

e
(s

)

Selectivity

Plan 1
Plan 2
Plan 3
Plan 4

Figure 12: Performance results

References

[1] A. Aho, R. Sethi, and J.D. Ullman.Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[2] M. Brantner, C-C. Kanne, and G. Moerkotte. Let a single flwor bloom. Technical report,
University of Mannheim, 2007. http://db.informatik.uni-mannheim.de/publications/TR-07-
001.pdf.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching.
In SIGMOD, pages 310–321, 2002.

[4] U. Dayal. Of nests and trees: A unified approach to processing queries that contain nested
subqueries, aggregates, and quantifiers. InProc. VLDB, pages 197–208, 1987.

[5] J. Hidders et al. How to recognise different kinds of treepatterns from quite a long way away.
In Proc. PLAN-X, 2007.

[6] K. S. Beyer et al. System RX: One part relational, one partXML. In SIGMOD, pages 347–358,
2005.

15

[7] N. May et al. XQuery processing in natix with an emphasis on join ordering. InFirst Inter-
national Workshop on XQuery Implementation, Experience and Perspectives (XIME-P 2004),
June 2004.

[8] S Al-Khalifa et al. Structural Joins: A primitive for efficient XML query pattern matching. In
ICDE, pages 141–, 2002.

[9] S. Boag et al. XQuery 1.0: An XML query language. Technical report, World Wide Web
Consortium, January 2007. W3C Recommendation.

[10] Shankar Pal et al. Indexing XML data stored in a relational database. InVLDB, pages 1134–
1145, 2004.

[11] T. Fiebig et al. Anatomy of a native XML base management system.j-VLDB-J, 11(4):292–314,
2002.

[12] R. A. Ganski and H. K. T. Wong. Optimization of nested sqlqueries revisited. InSIGMOD,
pages 23–33, 1987.

[13] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73–170, 1993.

[14] T. Grust and M. v. Keulen. Tree awareness for relationaldbms kernels: Staircase join. In
Intelligent Search on XML Data, pages 231–245, 2003.

[15] J. Hidders and P. Michiels. Avoiding unnecessary ordering operations in xpath. InDatabase
Programming Languages, pages 54–70, 2003.

[16] V. Josifovski, M. Fontoura, and A. Barta. Querying XML streams.j-VLDB-J, 14(2):197–210,
2005.

[17] Z. H. Liu, M. Krishnaprasad, and V. Arora. Native XQueryprocessing in Oracle XMLDB. In
SIGMOD, pages 828–833, 2005.

[18] N. May, S. Helmer, and G. Moerkotte. Strategies for query unnesting in XML databases.ACM
Transactions on Database Systems, 31(3):968–1013, 2006.

[19] P. Michiels, G. Mihaila, and J. Siméon. Put a tree pattern in your algebra. InProc. ICDE, 2007.

[20] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based query rewrite optimization
in starburst. InSIGMOD, pages 39–48, 1992.

[21] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex query decorrelation. InProc. ICDE,
pages 450–458, 1996.

16

