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Non technical summary This paper considers the shape invariant semiparametric re-

gression model in which nonparametric functions of similar shape are linked by parametric

transformations with unknown parameters. Existing contributions do not provide clear guid-

ance to the applied researcher in terms of model identification, numerical implementation

and finite sample performance of the estimators. This paper extensively discusses the iden-

tification issue. Furthermore, it introduces a new estimator which has desirable theoretical

and practical properties: i)
√
N - consistency of the parameter estimates is proved ii) the

suggested implementation is computationally convenient iii) its finite sample performance is

superior to former specifications. iv) a small application to British consumer data illustrates

the importance of this method for applied statistics. The estimation results indicate that the

imposed shape invariance restrictions have empirical evidence in the semiparametric mod-

elling of consumer demand. This kind of models can be used for the consistent estimation

of equivalence scales for social security systems.
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Abstract

This paper considers the shape invariant modelling approach in semiparametric re-

gression estimation. Nonparametric functions of similar shape are linked by parametric

transformations with unknown parameters. A computationally convenient estimation

procedure is suggested.
√

N - consistency of the parameter estimates is proved. Finite

sample performance of this estimator is investigated by simulations. An application to
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1 Introduction

Semiparametric estimation has become an important tool for applied statistical analysis

during the past two decades. This paper is a contribution to the so called ”shape invariant

modelling” approach, where unknown functionals are linked by parametric transformations.

The general estimation frameworks of Härdle and Marron (1990) and Pinkse and Robin-

son (1995) provide conditions which ensure the identifiability of the parameters. However,

these conditions are difficult to scrutinize in applications. Moreover, for particular model

specifications it is not evident what particular identification conditions are required. This

paper considers a simplified model which is of interest for the estimation of consumption

based equivalence scales. We identify the difficulties which might occur in applied analysis.

Necessary and sufficient conditions are derived in order to ensure identifiability of the pa-

rameters. An new estimator estimator is suggested. Consistency and asymptotic normality

of the parameter estimates are proved. The new estimator requires less computational effort,

it is convenient to implement and has better finite sample properties. Simulations compare

different specifications of the estimator for finite samples. A illustrative application to con-

sumption based equivalence scales estimation demonstrates the importance of this method

for applied research.

Let us briefly state some motivation for the application of shape invariant models by

considering the semiparametric estimation of equivalence scales. Blundell, Duncan and Pen-

dakur (1998) investigate expenditure shares of couples with one child that are supposed to be

related by horizontal and vertical shift to the expenditure shares of couples with two children.

The horizontal shift is directly related to the equivalence scale between the two groups of

households. Equivalence scales are of major interest for welfare policies because they provide

information about how to equalize the income between demographic groups of households.

Figure 1 presents the nonparametric estimates of the transport expenditure shares for the

two groups using the same household data from the British Family Expenditure Survey as

in Blundell, Duncan and Pendakur (1998). It is apparent that the two functions are similar

in shape and that they might be related by constant shift. The econometrician wants to

identify the unknown functions as accurately as possible and wants to know the true values

of the parameters.

More generally, suppose there is a finite number of samples with unknown regression

functions. These regression functions are assumed to be similar in shape. In fact they are

linked by known transformation functions with unknown parameters. There are two aims
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for the researcher in this approach: first, the identification of the parameters and second,

the exact pooling of the data. The first point is interesting for the usual reasons. The idea

of the second is to achieve a more accurate nonparametric pooling estimate of the unknown

regression function. This paper focuses on the first point. The second is already subject to

deep analysis in Pinkse and Robinson (1995).

Härdle and Marron (1990) suggest a general framework for nonstochastic regressors,

whereby the identification problem is not convincingly solved: instead of deriving precise

regularity conditions on the model, they simply assume a nicely shaped objective function.

The same criticism applies to Pinkse and Robinson (1995). They consider the case of in-

dependent stochastic regressors and the case of limited dependency between the stochastic

regressors of the samples.
√
N consistency of the parameter estimates is proved in both of

the papers. The applied researcher cannot find in none of the papers an example with a full

set of identification conditions, not even for a simple model specification. The estimators

of the two papers are related but not the same. Simulations in this paper indicate that the

specification of the estimator affects the finite sample performance. Moreover, it seems that

the Pinkse and Robinson specification performs weaker in small samples.

Two general difficulties for the shape invariant modelling approach are identified in this

paper: 1. Precise identification conditions are derived for a specific parametric transforma-

tion function. The purpose of this paper is to tackle these problems such that this class

of estimators can become more popular in applied research. 2. Because of the complex

structure of the estimation problem, the researcher has to carefully select an appropriate

algorithm in order to avoid exploding computational effort.

The paper is organized as follows: Section 2 presents the model, informally introduces

the necessary and the sufficient conditions for identification, suggests a new 4 step estimation

procedure and provides an intuitive discussion of the above mentioned difficulties. Section

3 considers the large sample properties of the estimator. The consistency proof applies to a

wide range of models and nonparametric estimators. Asymptotic normality of the parameter

estimates is shown for the Nadaraya-Watson estimator as nonparametric regression estima-

tor. Section 4 presents results of Monte Carlo experiments in order to investigate the finite

sample behavior. Section 5 presents an illustrative application to consumer data.
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2 The Model

Consider two samples (Yi, Xi)i=1,...,N and (Zi,Wi)i=1,...,N of size N . The sample sizes might

be different without affecting the spirit of the following analysis. Suppose

Yi = m0(Xi) + Ui

Zi = m1(Wi) + Vi, i = 1, . . . , N

with E[Ui|Xj] = E[Vi|Wj] = 0 almost surely for all i, j. Ui and Vi have finite fourth moments

and the pairs (Ui, Vi) are mutually independent. Xi ∈ X1 and Wi ∈ W are i.i.d. random

variables with realizations on compact sets with twice continuously differentiable densities

fx and fw. Let the densities satisfy infx∈X1fx(x) > 0 and infw∈Wfw(w) > 0. Suppose the

unknown functions m0 and m1 are twice differentiable. Let m0 and m1 and its first two

derivatives be uniformly continuous and bounded over their supports. Furthermore a0, b0

and µ0 are unknown parameters in the interior of open subsets in IR. The following equation

is supposed to hold:

m1(x) = a0 + b0m0(x− c0), (1)

where c0 ∈ C ⊂ IR, Wi + c0 ∈ X2 and (Xi − c) ∈ Wc. In other words there exist horizontal

and vertical translations with unknown parameters between the unknown functions m0 and

m1. This model setup is similar to one of the models defined in Härdle and Marron (1990)

and Pinkse and Robinson (1995) but here we restrict the model to the case of linear and

constant translations of m0 and x respectively. This is because the objective of this paper is

to point out and to solve the main difficulties for the identification and estimation for this

specific class of models. The example of the introduction applies to the considered class of

translations. We provide directly applicable solutions for applied researchers. The spirit of

these solutions would carry over to more general frameworks but more technicalities would

cause a loss of intuition. Let us denote m̂1(x) and m̂c(x) = m̂0(x − c) the nonparametric

estimates of m1(x) and mc(x) = m0(x− c) respectively.

The Objective Function In order to estimate the unknown parameters (a0, b0, c0) we

now suggest minimizing the loss function

LN(a, b, c) =

∫
1I{x∈W∩Wc}

[
m1(x) − a− bmc(x)

]2
w(x)dx∫

1I{x∈W∩Wc}fx(x)w(x)dx

=

∫
W∩Wc

[
m1(x) − a− bmc(x)

]2
w(x)dx∫

W∩Wc
fx(x)w(x)dx

(2)
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in (a, b, c). The function w is a nonnegative weight function which may help in improving

the efficiency of the estimation. The loss function L is constructed such that it minimizes

the distance between m0 and m1 over the space of possible translations of m0 for any point

of x ∈ W ∩ Wc. This set is compact. Restricting the integration bounds is necessary in

order to ensure that we only consider points where we may obtain consistent estimates of

mc and m1. The denominator is required to ensure that the objective function does not

become close to zero as the intersection of W ∩Wc becomes small. This is not required for

identification but it improves the finite sample properties of the estimations.

Let us now outline the difficulties that are involved in identifying and computing the true

parameters:

• Identification: If the supports of Xi and Wi + c0 are disjoint, i.e. X1 ∩ X2 = ∅,the
function m1

(
Wi + c0

)
cannot be compared to m0(Xi) since their nonparametric esti-

mates are evaluated on different supports. Furthermore, the unknown function m0 has

to follow some shape restrictions (non linear and non cycling) otherwise the parameters

cannot be identified.

• Computation: The loss function is to be minimized numerically on a multidimen-

sional parameter space. In practice this is done with compact parameter spaces. This

requires a lot of computational effort. This paper introduces a convenient 4 step esti-

mation procedure.

Identification We need to distinguish between two issues: restrictions on the space of the

unknown parameter c and restrictions on the shape of the unknown function m0.

We require some restrictions on the parameter space in order to ensure that the nonpara-

metric estimates of the two samples are comparable.

Proposition 1 If X1 ∩X2 = ∅, m0(x) and m0(w+ c0) are observed on disjoint support and

hence, they cannot be compared. Then a, b, c are not identifiable.

In applications we therefore have to ensure that c0 is located in a suitable parameter space

with respect to X1 and W . An example is given in Figure 2: X1 ∩X2 = [5, 12]. Accordingly,

W ∩Wc0 = [0, 7]. If |c0| ≥ 12, the functions are observed on different supports.

The identification of the unknown parameters in model (2) is still not yet ensured. The

loss function under the above conditions might not have a unique global minimum at the
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true parameter values. We now introduce intuitively the identification restriction for the

shape of m0 which are formally required in the consistency proof. In particular, we have to

impose some shape restrictions for the unknown function m0. These conditions are violated

if:

1. The unknown function m0(x) belongs to the class of linear functions.

2. The unknown function m0(x) is cycling, i.e.

∃c ∈ C such that for all x− c ∈ W ∩Wc, m0(x) = m0(x− c).

The first difficulty makes it impossible to identify a and c. The loss functions (3) and (4)

are constant in this case, i.e. L(c) = L:

Proposition 2 If m0(x) belongs to the class of linear functions, L(c) is constant and there-

fore does not posses a local minimum since the sufficient condition ∂2
cL(c) > 0 does not hold.

The parameters a and c cannot be identified.

The second difficulty implies that (3) and (4) do not have a unique minimum on the support of

c, but there is a multiple set of global minima. Therefore c cannot be identified. Nevertheless,

pooling of the data would still be possible. Pooling estimates of the unknown function can

improve the accuracy of the nonparametric estimate of m0.

Proposition 3 If m0 is cycling on W ∩Wc, the parameter c cannot be identified.

Figure 3 presents an example using a cycling sine function. In this case there are three

minima of the loss function on C.

However, the smaller is the intersection of X1 and X2, the more unlikely the non-linearity

condition holds because we have imposed some smoothness conditions on the unknown func-

tions. This might lead to the following complication: The nonlinear parts of mc0(x) drop

out of the support and a and c are not longer identifiable.

Proposition 4 If the intersection of X1 and X2 is too small, the identification of the pa-

rameters might be impossible even if the samples are large.

This difficulty should have relevance in applications. It is therefore reasonable to restrict C

such that the intersection of W and Wc is not too small. If we would allow for more general

transformation functions Tc(x) this issue issue would become even more problematic because
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the more flexible the transformation, the more likely the shape restrictions are violated, in

particular if W∩Wc is small. Thus, in applications the loss function might be systematically

minimized if W∩Wc is small. However, even if the parameters are identifiable, the variance

of the estimates would become large since many of the observations cannot be used for the

estimation. This is formally shown in section 3 when deriving the limit distribution of the

parameter estimates.

Computation Suppose for instance that X1 ∩ X2 is non empty. Let us now introduce an

alternative formulation for the loss function criterion as given in (2) and (5). A four step

estimator is defined for this purpose:

1. Estimate m0 and m1 on their support using a nonparametric estimator.

2. The least squares estimator for a and b, given a c is defined as

mina,b

∫
W∩Wc

(m̂1(x) − a− bm̂c(x))
2w(x)dx,

whereby it reduces to OLS in applications if w(x) = 1. More efficient estimates may

be obtained by using information about varm̂1(x) and varm̂c(x) for the construction

of w(x).

3. Estimate c by minimizing the conditional loss function

LN(c) =

∫
W∩Wc

[
m̂1(x) − âc − b̂cm̂c(x)

]2
w(x)dx∫

W∩Wc
f̂x(x)w(x)dx

(HM) (3)

where the integral is now restricted to the intersection of W and Wc since this is the

set where both samples are comparable. The denominator is required for weighting

purposes. We have to compensate for the fact that the size of W∩Wc depends on c. The

denominator improves the finite sample performance and does not affect asymptotic

properties.

4. â = âĉ and b̂ = b̂ĉ.

This estimator is to be referred to as the HM 4 step estimator. Instead of minimizing (3)

one could also use the following specification for the third step:

LN(c) =

∫
W∩Wc

[
f̂(x)r̂c(x) − âcf̂(x)f̂c(x) − b̂cf̂c(x)r̂(x)

]2
w(x)dx∫

W∩Wc
f̂x(x)w(x)dx

(PR), (4)
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where we assume that the nonparametric regression estimators may be written as fractions:

m̂1(x) = r̂(x)/f̂(x) and

m̂c(x) = r̂c(x)/f̂c(x).

This specification is to be referred to as the PR 4 step estimation, because it is similar to

the specification of the Pinkse and Robinson (1995) estimator.

By breaking up the minimization of the loss function into two parts, the numerical

problem reduces to one dimension with the following advantages:

• Minimization with respect to a and b on a unbounded parameter space with low com-

putational effort, e.g. least squares.

• Minimization of L reduces to a one dimensional problem. Allows for graphical analysis.

• If the grid on C is carefully selected, the unknown functions have only to be estimated

once and not for every grid search step for c.

Therefore, this formulation of the estimation procedure induces feasible computational effort.

Before deriving the large sample properties of this estimator let us briefly compare it to the

estimators given by Härdle and Marron (1990) and Pinkse and Robinson (1995).

Pinkse and Robinson (1995) Their loss function is given by

LN(a, b, c) =

∫ [
f̂(x)r̂c(x) − af̂(x)f̂c(x) − bf̂c(x)r̂(x)

]2
w(x)dx,

which has to be minimized with respect to the parameters, where w(x) is again a weight

function. In fact this specification of the loss function has some weaknesses: first, the loss

function is not minimized at the true parameter values, whenever there does not exist x such

that f̂(x) > 0 and f̂c0 > 0. Therefore, Pinkse and Robinson need to impose conditions on

the model which may imply in applications that one of the samples of x and w need to have

a support ranging from −∞ to ∞. Their identification conditions are difficult to scrutinize

if we leave the world of econometric theory and turn to specific applications. Second, by

leaving out the denominator of equation (4), the loss function tends to zero whenever W∩Wc

is small. For the large sample sample properties, i.e. N → ∞, this does not matter but in

finite samples the minimum of their loss function is naturally attained for values of c such

that W ∩ Wc is small. Third, due to the multiplicative writing of r̂, r̂c, f̂ and f̂c (instead
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of r̂/f̂ etc.), the finite sample properties for the parameter estimates using this specification

seem to be weaker instead of using the fractions r̂/f̂ and r̂c/f̂c. See Section 4 for a detailed

discussion.

Härdle and Marron (1990) Suppose m̂1(x) and m̂c(x) are nonparametric estimates of

m(x) and mc(x) respectively. The parameters are estimated by minimizing the loss function

LN(a, b, c) =

∫ [
m̂1(x) − a− bm̂c(x)

]2
w(x)dx (5)

with respect to a, b and c, where Härdle and Marron suggest that w(x) is a known nonnegative

weight function which is zero whenever one of the densities f̂ and f̂c is zero. This avoids

that the loss function is always zero if W ∩Wc is empty. By leaving out the denominator

of equation (4), the same problems occur in finite samples as in the Pinkse and Robinson

(1995) framework.

3 Asymptotic Properties

This section presents asymptotic properties for the estimator defined in Section 2. For this

purpose we use a modified Härdle and Marron loss function as given in (3) that incorporates

the intuitive findings of Section 2 concerning identification. Consistency of this estimator is

shown. This result is not restricted to the case of regression functions. It holds for a wide

range of nonparametric functionals, e.g. density functions, and nonparametric estimators,

e.g. local polynomial smoothers. Asymptotic normality of this estimator is shown for the

case of regression functions when using the Nadaraya-Watson estimator as nonparametric

regression estimator. However, it might be that the limit distribution is not affected if we

use a similar estimator like a local linear smoother.

Consistency Härdle and Marron (1990) very generally assume that the loss function is

convex around the true parameter values. In the light of section 2 we derive here the neces-

sary and sufficient conditions on the shape of the unknown function m0 and the parameter

space c ∈ C such that the loss function has indeed a unique minimum.

Denote m̂(xt) as the nonparametric estimate of m0 evaluated at Xi = xt. Define Tc =

card{xt − c|xt − c ∈ W}i=1,...,N . Accordingly, we have xt − c ∈ Wc for all c ∈ C. Let

{xt − c}i=1,...,Tc = {Xi − c|Xi − c ∈ W}i=1,...,N for all c ∈ C. Note that Tc ≤ N . Note also

that Tc weakly increases in N .
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Assumption 1 c0 is an interior point of C, where C is such that W ∩Wc is non empty for

all c.

In terms of the empirical model this implies that C has to be such that for all c ∈ C:
Tc ≥ 3. Tc > 0 solves the support problem. Tc ≥ 3 is required for the identifiability of

a, b and c. Define a sequence t = 1, . . . , Tc of evaluation points wc
t ∈ W such that for

a given c: {wc
t}t=1,...,Tc = {xt − c}t=1,...,Tc . Denote {m̂1(w

c
t )}t=1,...,Tc = {m̂1(xt)}t=1,...,Tc0

as

the nonparametric estimates of m1 evaluated at wc
t . Moreover, denote m̂0(xt − c) as the

nonparametric estimate of m0 evaluated at xt and horizontally shifted to xt − c for all x and

c. The loss function (3) can then be rewritten as:

LN(a, b, c) =
Tc∑
t=1

[
m̂1(xt) − a− bm̂0(xt − c)

]2
/Tc. (6)

Intuitively, the loss per evaluation point is minimized. Note that this function depends on

N due to the nonparametric estimates and Tc.

Assumption 2 m0(xt − c) is not cycling on W ∩Wc, i.e. there does not exists c �= c0 such

that m0(xt − c) = m0(xt − c0) for all xt − c ∈ W ∩Wc.

Assumption 3 m0(xt − c) is nonlinear on W ∩Wc for all c, i.e.

(1 m(xt − c) m′(xt − c))

are linearly independent on W ∩Wc for all c.

Assumptions 1-3 ensure the identifiability of the unknown parameters.

The nonparametric estimates for m0 and m1 may be written as

m̂1(xt) = a0 + b0m0(xt − c0) + ε1(xt, N) (7)

m̂0(xt − c) = m0(xt − c) + ε0(xt − c,N). (8)

for t = 1, . . . , Tc given c ∈ C.

Assumption 4 ε0(x,N) and ε1(w,N) converge to 0 in probability uniformly in x and w,

i.e.

limN→∞P
[
supx∈X1

|ε0(x,N)| < δ] = 1 for any δ > 0

limN→∞P
[
supw∈W |ε1(w,N)| < δ] = 1 for any δ > 0.
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This assumption can be justified for the class of Kernel estimators by Theorem 2.1 of

Nadaraya (1989). Let us now state the theorem about consistency of the parameter es-

timates:

Theorem 1 Under Assumptions 1-4, a root of Model (6) is consistent, i.e.

limN→∞P


infa,b,c∈B̂






a− a0

b− b0
c− c0




′ 

a− a0

b− b0
c− c0





 > ε


 = 0 for any ε > 0

where B̂ is the set of roots.

Proof: see Appendix 1.

Asymptotic Normality Asymptotic normality has already been shown by Härdle and

Marron (1990) and Pinkse and Robinson (1995) for their frameworks. Both show that

despite the lower convergence rate of the nonparametric estimates, the rate
√
N for the

parametric estimates can be achieved. Whether it is indeed achieved mainly depends on

the convergence rate of the nonparametric estimator. This paragraph derives the limit

distribution for the parameter estimates of model (3). The result only applies to regression

functions as nonparametric functions and the Nadaraya-Watson estimator as nonparametric

estimator. It is shown that the denominator does not affect the finite sample properties.

Assumption 5 The nonparametric regression estimator is the Nadaraya-Watson estimator.

This assumption looks rather specific. It is done in for convenience in the proof of the

theorem below. Intuitively, the results should not change when using a related nonparametric

estimator like a local linear smoother. This is because the crucial requirement that the

nonparametric estimates converge uniformly at a fast enough rate can also be achieved under

similar conditions. Newey (1994) derives results for the limit distribution of semiparametric

estimators which endorse this suspicion.

Assumption 6 The Kernel function K(x) is differentiable of order 2, the derivatives of

order 2 are bounded, K(x) is zero outside a bounded set,
∫
K(x)dx = 1 and for j = 1, . . . , 4,∫

K(x)[xj]dx = 0.

Higher order kernels are used for bias reduction of the regression function estimates and

their derivatives.
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Assumption 7 E[|y|4] <∞, E[|z|4] <∞, E[|y|4|x]f0(x) and E[|z|4|w]fw(w) are bounded.

Assumptions 6 and 7 replace Assumption 4. In contrast to Assumption 4 they are not

only required for uniform convergence of the nonparametric estimators of the regression

function and its first derivative. They also ensure that the convergence rate of m̂0 and m̂′
0

is at least N1/4 and that supx∈Wc|m′′
0(x) − Em̂′′

0(x)| is stochastically bounded.

Theorem 2 Let the following conditions on the bandwidth hN hold:

Nh6
N/(lnN)2 → ∞

Nh8
N → 0.

Then, under Assumptions 1-3 and 5-7 a consistent root of of model (3) satisfies

√
N



â− a0

b̂− b0
ĉ− c0


 D→ N(0,Q−1ΣQ−1),

where

Q = E

[


1 m0(x− c0) −bm′
0(x− c0)

m0(x− c0) m0(x− c0)2 −b0m′
0(x− c0)m0(x− c0)

−bm′
0(x− c0) −b0m′

0(x− c0)m0(x− c0) b20m
′
0(x− c0)2


 x−c0 ∈ W

]

and

Σ = E

[(
1

fw(x)2
(z −m1(x))

2 +
b20

fx(x− c0)2 (y −m0(x− c0))2
)

×




1 m0(x− c0) −b0m′
0(x− c0)

m0(x− c0) m0(x− c0)2 −b0m′
0(x− c0)m0(x− c0)

−b0m′
0(x− c0) −b0m′

0(x− c0)m0(x− c0) b20m
′
0(x− c0)2


 x− c0 ∈ W

]
.

Proof: see Appendix 1.

There are two properties of the limit distribution which are worth to mention: the limit

distribution is not affected by the denominator of the loss function (3) which is intuitive

because it is just added to the model in order to improve the finite sample performance. It

can be seen in the proof that the denominator is eliminated by the usual ”sandwich” formula.

In contrast, the probability that an observation of each sample falls into W ∩ Wc0 affects

the variance matrix of the estimator. It explodes as this probability for one of the samples

goes to zero. In this case most of the observations of the respective sample cannot be used

for the estimation of the parameters and therefore the estimation becomes more unreliable.

However, we do not observe that the convergence rate is affected by these probabilities.
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4 Simulations

Let us now investigate the finite sample performance of the 4 step estimator defined above

using the HM specification as given in (3) and the PR specification as given in (4). A non-

linear least squares estimators is used as a parametric benchmark. It turns out that the

results for the two semiparametric estimators differ. Explanations for these differences are

provided afterwards.

Let λ denote the Lebesgue measure defined on the Borel-σ-algebra. For simplicity suppose

λ(X1) = λ(W) in this section. Suppose also X1 = W and λ(X1 ∩ X2) ≥ λ(X1)/2. The

latter condition implies c ∈ [−λ(X1), λ(X1)]. Due to Proposition 4 we restrict C such that

c ∈ [−λ(X1)/2, λ(X1)/2]. Therefore, C is properly defined.

Monte Carlo Experiments Two Monte Carlo series shall help to investigate the prop-

erties of both estimators. The following model is used:

m1(x) = 5 + 3sin
(
0.5(x− c0)

)
m0(x) = sin(0.5x),

Xi,Wi ∼ U(0, 10), Ui, Vi ∼ N(0, 1), N = 200, 1000 simulations. The two experiments only

differ in the value of c0, where we use c0 = 0 in the first Monte Carlo study and c0 = 4

in the second. The model setup up is interesting because the estimators have to detect a

unique minimum of the loss function in the first experiment and two minima in the second

experiment.

Figure 4 and 5 show the mean loss functions in c for the parametric estimator, the HM

4 step estimator and the PR 4 step estimator. Note that the loss functions have different

scalings and can therefore only compared in relative shape. Table 1 presents the mean pa-

rameter estimates of the two experiments. The HM 4 step estimator detects any minimum

of the loss functions in contrast to the PR 4 step estimator. The latter performs badly in

the second experiment since it does not detect one of the minima. Moreover, from Table 1

it is apparent that the HM 4 step estimator is superior to the PR 4 step estimator under the

imposed model specification of the first experiment. The results of the second experiment

are only presented for completeness.

A variation of C should therefore lead to a significant shift or change in shape of the
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distribution of ĉ as estimated by one of the above estimators. Histograms, as given in Figure

6 and 7 support this guess for the PR 4 step estimator. A researcher who applies these

estimators to data might be faced to such a situation. In this case a graphical analysis of

the loss function is a very convenient way to check whether there exists a unique global

minimum. A specification test might also be constructed using some information about the

shape of the objective function.

On the finite sample performance of the HM and the PR specification This

paragraph cannot provide a complete formal treatment of the question of interest but it

points out two points which (among other things) cause the differences between the two

specifications:

1. different distributions of the errors (Variance effect)

2. proportionality of the bias (Bias effect)

1. Variance effect: Suppose that in both specifications we use the Nadaraya-Watson

estimator:

r̂(x) = r(x) + εr(x), r̂c(x) = rc(x) + εrc(x)

f̂(x) = f(x) + εf (x), f̂c(x) = fc(x) + εrc(x),

where εl(x) are random variables. These pointwise errors depend on the marginal distribu-

tions, the bandwidths and the unknown regression functions. In HM 4 step estimation we

minimize the integrated square of

rc(x) + εrc(x)

fc(x) + εfc(x)

− a− b r(x) + εr(x)

f(x) + εf (x)

and the PR 4 step estimator minimizes the integrated square of

rcf + rcεf + fεrc + εrcεf − a
[
fcf + fcεf + fεfc + εfεfc

]
− b

[
rfc + rεfc + fcεr + εrεfc

]
,

where we write f(x) = f etc.. What is called variance effect becomes clear when considering

a simplified case. Suppose εf = εfc = 0, i.e. the marginal distributions are known. The

heart of the minimization problem becomes:

rc(x) + εrc(x)

fc(x)
− a− br(x) + εr(x)

f(x)
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for the HM specification and

rc(x)f(x) + fεrc(x) − afc(x)f(x) − b
[
r(x)fc(x) + fc(x)εr(x)

]
for the PR specification. It is clear that both estimators are the same if fc(x) = f(x).

Otherwise it is important to point out that their error distributions differ. Standard least

squares theory tells us that the variance of the HM 4 step estimator is larger whenever fc

and f are less than one. Otherwise it is smaller in this specific case. This simple example

serves just as an illustration that each specification of the estimator may perform better.

2. Bias effect: This point becomes clear when rewriting the problem into

r̂(x) = r(x)ξr(x), r̂c(x) = rc(x)ξrc(x)

f̂(x) = f(x)ξf (x), f̂c(x) = fc(x)ξrc(x)

and for the HM specification we obtain accordingly

rc(x)ξrc(x)

fc(x)ξfc(x)
− a− b r(x)ξr(x)

f(x)ξf (x)
.

ξr(x) and ξf (x) differ from one whenever the corresponding estimates are biased. Figure

8 presents some mean ξr(x) and ξf (x) that are obtained by averaging 1000 monte carlo

samples. It is apparent that ξf (x) and ξr(x) are very similar functions. Therefore, their

ratio deviates less from one than each of the functions itself. A part of their pointwise bias

is therefore ruled out by the division. Rewriting the estimator in the Pinkse and Robinson

style causes a loss of this nice property. Estimators using the specification

f(x)ξf (x)rc(x) − afc(x)ξfc(x)f(x)ξf (x) − br(x)ξr(x)fc(x)ξfc(x)

therefore behave worse in the case of small samples. They are in particular weak if the data

is not trimmed in order to eliminate the boundaries. Thus, the final parameter estimates

are more affected by the bias of f̂ , f̂c, r̂ and r̂c.

We conclude that there is a trade-off between. Which estimator is preferable depends on

the specific situation. In small samples the second point should clearly dominate the first

one, since the systematic bias is more evident. The PR specification should therefore not be

applied in such cases. The simulations (N = 200) impressively support these findings. In

the second experiment (c0 = 4) the overlapping support at c0 = 4 is small. Since the two

nonparametric estimates are assumed to be more biased at the boundaries, we expect the
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same for the estimates of the unknown functions on a large subset of W ∩Wc0 . In addition,

we should take into account that the PR specification is limited to the Nadaraya-Watson

estimator, whereby the HM specification works with different nonparametric estimators. In

the simulations we use the local linear smoother for the HM specification. This and the

above findings are probably the main reasons why the HM specification performs better in

the above experiments. (see Figure 5c).

5 Application

This section is devoted to an illustrative application of the HM 4 step estimator to British

consumer data. We mainly follow Blundell, Duncan and Pendakur (1998) who use an estima-

tor of the Pinkse and Robinson specification in order to estimate the unknown translation

parameters between the expenditure shares of two demographic groups of households. It

should therefore be of interest to investigate how the HM 4 step estimator behaves in com-

parison. Two different data are used for this purpose.

1. FES I is the same cross section data of the British Family Expenditure Survey (FES)

1980-1982 as in Blundell et al. (1998). The samples contain couples with one child

and couples with two children, respectively.

2. FES II is the same cross section data of the FES 1982 as in Blundell, Chen and

Kristensen (2001). The samples contain a subsample of childless couples and couples

with one or two children.

Further description of the data can be found in the relevant papers. A detailed application

of the estimator to German consumer can be found in Wilke (2003).

Blundell, Duncan and Pendakur estimate expenditure shares for several commodities

using an extended semiparametric specification as given in the model of Section 2. The

parametric shifts are now related to observable household characteristics like the number of

children in a household. Accordingly, they compare couples with one child to couples with

two children. The expenditure shares for the two groups are linked by the following model:

m1(x) = a+m0(x− c),

where x is the log of total expenditure of a household. In contrast to the model of section

2 we now have different sample sizes for the two sample (Xi, Yi) and (Wi, Zi). In FES we
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have Nx = 594 and Nw = 925, whereby in FES II we have Nx = 895 and Nw = 2456. This

would suggest to introduce an optimal weighting scheme for the comparison of the unknown

curves as for example derived in Pinkse and Robinson (1995). Since this is not subject to

analysis here, a weighting scheme is not introduced.

Kernel density estimates of the sample distributions using fixed bandwidth are shown in

Figure 9. Interestingly, the densities of the FES I sample seem to be related by parametric

shifts, too. Since the consistency result also hold for density comparisons, we apply the

estimator

LN(a, c) =

∫
W∩Wc

[
f̂1(x) − a− f̂0(x− c)

]2
dx∫

W∩Wc
f̂x(x)dx

to the densities of the log of total expenditure. Figure 10 and Table 2 show the resulting

transformation and the corresponding loss function. Note that Theorem 2 does not hold in

this case. Variances of the parameter estimates are therefore not available.

Back to regression estimation, we apply the HM4SE to FES. Appendix 2 presents the

estimation results for the different commodities. For the nonparametric estimation we use

a local linear smoother with either a constant or a variable bandwidth. The bandwidths

are obtained with an iterative plug-in method as described for example in Fan and Gijbels

(1995). At a glance, these Figures indicate that for most of the commodities this specifica-

tion is appropriate. When looking at the corresponding loss functions this opinion has to

be revised since in many cases the shape of the loss function indicates that the identifica-

tion conditions for the parameters are not satisfied. For example in the case of food, the

hypothesis that expenditure shares are linear cannot be rejected (Blundell et al., 1998). In

this case the parameter estimates are inconsistent, since the loss function does not possess

a unique minimum. Similar reasoning applies to some of the other commodities.

Blundell, Duncan and Pendakur choose this semiparametric specification because the

commonly used partially linear model is ruled out by economic theory. For further details

see Lemma 3.1 and Lemma 3.2 in their paper or Blundell, Browning and Crawford (2003).

Blundell, Duncan and Pendakur consider a system of unknown regression functions under

shape invariance restrictions, the so called Extended Partially Linear Model (EPLM), which

is given by

m
(j)
1 (x) = a(j) +m

(j)
0 (x− c) for j = 1, . . . , J,
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where J is the number of equations (commodities). In this case the loss function (3) becomes:

LN(a, c) =

∑J
j=1

∫
W(j)∩W(j)

c

[
m̂

(j)
1 (x) − a(j) − m̂(j)

0 (x− c)]2
dx∫

W(j)∩W(j)
c
f̂x(x)dx

The unknown horizontal shift is supposed to be the same for all commodities. All param-

eters have therefore to be estimated simultaneously. This specification appears crucial for

FES I data since ĉ(j) varies across the single equation estimates (Figures 16-21). Estimates

of the EPLM confirm these doubts concerning the specification: ĉ is very sensitive to the

choice of the bandwidth and the exclusion of irrelevant information (food expenditure share).

From Figures 11 and 12 it is apparent that the loss function tends to have two minima,

one around c = 0.5 and the other around −0.4. The parameter c is the log of the so called

equivalence scale. Negative values of c do not have a reasonable economic interpretation

since this would imply exp(c) < 1. However, the global minimum is in most of the cases

located at ĉ < 0. Parameter estimates for the EPLM are given in Table 3. In contrast

to our findings, Blundell, Duncan and Pendakur obtain ĉ = 0.259 using the Pinkse and

Robinson specification and restricting the space C to [0, 1]. As we have seen in Section 3,

the finite sample performance of this specification is weaker and might yield a larger bias

of the parameter estimates. Our specification using the full system and using a fixed band-

width (ĉ = 0.3926) is the closest to their specification. However, it uses here the local linear

smoother instead of the Nadaraya-Watson estimator. Since the estimation results indicate

that the model is not very well supported by the data, it is of interest to see what happens

when using different data.

Estimates for the FES II data are presented in Figures 13 and 14. The corresponding loss

functions behave smoothly and possess a unique minimum in the interior of C, see Figure

15. The model specification seems to be appropriate in this case. The horizontal shifts

in Figures 13 and 14 seem to be reasonable and the parameter estimates (Table 4) have

reasonable economic intuition. The estimated equivalence scale is positive and suggest that

the additional costs of a child are in the range of 58 percent (fixed bandwidth) to 75 percent

(variable bandwidth) of the household income of the reference group of households. The

reported variances are based on the asymptotic theory of Section 3. Most of the parameter

estimates â are not significant. Large variances for the parameter estimates are in accordance

with the results of the small sample simulations in section 4. However, the main interest of

this application would be to estimate c.

18



Tables

19



first experiment second experiment

HM4SE PR4SE HM4SE PR4SE

â 5.2328 (1.2211) 6.8020 (6.7376) 4.8844 (0.3122) 4.1837 (4.0385)

b̂ 2.1716 (7.9016) −0.4570 (31.2005) 0.2633 (10.4807) −1.1374 (19.3405)

ĉ 0.2398 (2.2289) 0.4324 (12.6926) 0.9527 (10.5263) −1.6030 (12.8688)

Table 1: Mean parameter estimates of the first and of the second Monte Carlo experiment;

(variances in brackets)

fixed bandwidth

marginal distribution

â 0.0053

ĉ 0.0724

Table 2: FES I, transformation of densities
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fixed bandwidth variable bandwidth

expenditure shares â(j)

food −0.0292 (0.2423) 0.0776 (0.5014)

fuel −0.0176 (0.0336) 0.0140 (0.0437)

clothing 0.0209 (0.1238) −0.0293 (0.2410)

alcohol −0.0009 (0.0520) −0.0137 (0.0562)

transport 0.0149 (0.1502) −0.0376 (0.2798)

other goods 0.0125 (0.1039) −0.0162 (0.1280)

ĉ 0.3926 (0.0086) −0.3402 (0.0409)

Table 3: Estimation results for the EPLM using FES I; variances in brackets.

fixed bandwidth variable bandwidth

expenditure shares â(j)

alcohol −0.0200 (0.3961) −0.0178 (0.2849)

catering −0.0040 (0.0546) −0.0036 (0.0578)

clothing −0.0029 (0.1115) 0.0067 (0.1971)

food −0.0065 (1.5455) −0.0191 (1.7819)

personal goods and services 0.0027 (0.1065) 0.0030 (0.0856)

leisure goods 0.0137 (0.1145) 0.0158 (0.1144)

travel −0.0065 (0.3632) −0.0122 (0.3872)

ĉ 0.4606 (0.0139) 0.5593 (0.0159)

Table 4: Estimation results for the EPLM using FES II; variances in brackets.
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Figure 1: Nonparametric estimates of transport expenditure shares with 95% wild bootstrap

confidence bands using the data of Blundell, Duncan and Pendakur (1998).
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Figure 4: Mean conditional Loss functions L(c|a, b) of the first Monte Carlo Series (c0 = 0):

a) parametric b)HM 4 step estimator c) PR 4 step estimator.
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Figure 6: Three histograms for the distribution of ĉ obtained with the Pinkse-Robinson 4

step estimator using different supports of c. First Monte Carlo series (c0 = 0).
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Figure 11: FES I: Loss function of EPLM
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Figure 12: FES I: Loss function of EPLM, J=5 (food excluded).
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Figure 13: FES II, EPLM, fixed bandwidth
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Figure 14: FES II, EPLM, variable bandwidth
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Appendix 1: Proof of Theorems

Proof of Theorem 1 According to Theorem 4.3.1 in Amemiya (1985) we have to check:

1. The parameter space is an open subset in IR3. The true value is an interior point of

this set.

2. The objective function LN(m̂0, m̂1, a, b, c) is a measurable function of m̂0 and m̂1,

continuous in a, b, c uniformly in N . The partial derivatives of LN with respect to the

parameters exist and are continuous in an open neighborhood of (a0, b0, c0).

3. There exists an open neighborhood of (a0, b0, c0) such that LN(a, b, c) converges to a

nonstochastic function L(a, b, c) in probability uniformly in (a, b, c).

4. plimLN(a, b, c)=0 at (a0, b0, c0) and greater than zero elsewhere.

The first and the second condition are clearly satisfied due to the model specification.

The third and the fourth condition can be written as

3. plimLN(a, b, c) = L(a, b, c)

and

4.
∂L(a, b, c)

∂(a, b, c)
(a0,b0,c0) = 0.

3. Combining (6),(7) and (8) yields

LN(a, b, c) =
Tc∑
t=1

T−1
c

[
a0 + b0m0(xt − c0) + ε1(xt − c0, N) − a− bm0(xt − c) − b0ε0(xt − c,N)

]2

=
Tc∑
t=1

T−1
c

[
a0 + b0m0(xt − c0) − a− bm0(xt − c)

]2

+
Tc∑
t=1

T−1
c

[
ε1(xt − c0, N) − bε0(xt − c,N)

]2

+2
Tc∑
t=1

T−1
c

[
a0 + b0m0(xt − c0) − a− bm0(xt − c)

][
ε1(xt − c0, N) − b(ε0(xt − c,N))

]
= A1 + A2 + A3

By the Slutsky Theorem it suffices to show that the plim of A1, A2 and A3 respectively exist.
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plim A3 can be derived by using the fact that ε0(xt, N) and ε1(xt − c0, N) converge to

zero in probability uniformly:

plim supb,c

∣∣T−1
c

∑
t

bε0(xt − c,N)
∣∣ = supb

∣∣bplimT−1
c

∑
t

ε0(xt, N)
∣∣

≤ supb

∣∣bplim supxt∈X1
|ε0(xt, N)|∣∣

= 0

and using the fact that

sup a,b,c
x∈X1

∣∣a0 + b0m0(x− c0) − a− bm0(x− c)
∣∣ <∞.

Hence plim A3 = 0. Repeated application of the Slutsky Theorem to A2 yields plim A2 = 0.

plim A1 can be derived using the fact that Xi are i.i.d. and

supa1,a2,b1,b2,c1,c2

∣∣E[
a1 + b1m0(x− c1)

)(
a2 − b2m0(x− c2)

]∣∣ <∞.

for all c1, c2 ∈ C. Applying Theorem 4.2.1 and Theorem 3.2.6 of Amemiya (1985) yields

plimA1 =
E

[(
a0 + b0m0(x− c0) − a− bm0(x− c)

)2|x− c ∈ W]
∫ x(c)

x(c)
fx(x)dx

.

where the integration bounds are such that

∫ x(c)

x(c)

fx(x)dx = F (x(c)) − F (x(c))

= Prob(Xi ∈ X1|Xi − c ∈ W).

4. To be shown: The probability limit of the loss function, i.e. plimLN(a, b, c) =plimA1,

has a unique minimum at a0, b0, c0, i.e.

plim
∂LN(a, b, c)

∂(a, b, c)
(a0,b0,c0) = 0

We have to check the necessary and the sufficient conditions.
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The first order conditions are:

∂aplimA1(a, b, c) = −2E
[
a0 − a+ b0m0(x− c0) − bm0(x− c)|x− c ∈ W][

F (x(c)) − F (x(c))
] = 0 (9)

∂bplimA1(a, b, c) = −2E
[
m0(x− c)

(
a0 − a+ b0m0(x− c0) − bm0(x− c)

)|x− c ∈ W][
F (x(c)) − F (x(c))

]
= 0 (10)

∂cplimA1(a, b, c) =
2E

[
bm′

0(x− c)
(
a0 − a+ b0m0(x− c0) − bm0(x− c)|x− c ∈ W)][

F (x(c)) − F (x(c))
]

−E
[(
a0 − a+ b0m0(x− c0) − bm0(x− c)

)2|x− c ∈ W]
[
F (x(c)) − F (x(c))

]2

×[
x′(c)fx(x(c)) − x′(c)fx(x(c))

]
(11)

= 0

From (9) and (10) we obtain

â = a0 + E
[
b0m0(x− c0) − bm0(x− c)|x− c ∈ W]

(12)

b̂ =
E

[
m0(x− c)

(
a0 − a+ b0m0(x− c0)

)|x− c ∈ W]
E

[
m0(x− c)2|x− c ∈ W]

Substituting for a yields:

b̂ =
cov

(
b0m0(x− c0),m0(x− c)|x− c ∈ W)
var (m0(x− c)|x− c ∈ W)

(13)

The condition given by equation (11) is stronger than required. We need to show that the

loss function is zero at the true parameter values and greater than zero elsewhere. We know

that the denominator is greater than zero and less than or equal to one. It is therefore

enough to show that the numerator of the loss function is only zero at the true parameter

values. We can therefore substitute (11) by

2E
[
bm′

0(x− c)
(
a0 − a+ b0m0(x− c0) − bm0(x− c)

)|x− c ∈ W]
= 0 (14)
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Using (12) and (13) to substitute for a and b in (14) yields

0 = E

[
cov (b0m0(x− c0),m0(x− c)|x− c ∈ W)

var (m0(x− c)|x− c ∈ W)
m′

0(x− c)

×
(
cov (b0m0(x− c0),m0(x− c)|x− c ∈ W)

var (m0(x− c)|x− c ∈ W)
E [m0(x− c)|x− c ∈ W]

−b0E [m0(x− c0)|x− c ∈ W] + b0m0(x− c0)
−cov (b0m0(x− c0),m0(x− c)|x− c ∈ W)

var (m0(x− c)|x− c ∈ W)
m0(x− c)

)
|x− c ∈ W

]

=
cov (b0m0(x− c0),m0(x− c)|x− c ∈ W)

var (m0(x− c)|x− c ∈ W)

×
(
b0E [m′

0(x− c)m0(x− c0)|x− c ∈ W]

−b0E [m′
0(x− c)|x− c ∈ W]E [m0(x− c0)|x− c ∈ W]

+
cov (b0m0(x− c0),m0(x− c)|x− c ∈ W)

var (m0(x− c)|x− c ∈ W)

×(
E [m′

0(x− c)|x− c ∈ W]E [m0(x− c0)|x− c ∈ W]

−E [m′
0(x− c)m0(x− c)|x− c ∈ W]

))

=
cov (b0m0(x− c0),m0(x− c)|x− c ∈ W)

var (m0(x− c)|x− c ∈ W)

(
b0cov (m′

0(x− c),m0(x− c0)|x− c ∈ W)

−cov (b0m0(x− c0),m0(x− c)|x− c ∈ W)

var (m0(x− c)|x− c ∈ W)
cov (m′

0(x− c),m0(x− c)|x− c ∈ W)

)

Assumption 3 ensures that

cov (m′
0(x− c),m0(x− c)|x− c ∈ W) �= 0 and

cov (m′
0(x− c),m0(x− c0)|x− c ∈ W) �= 0 for all c ∈ C.

Assumptions 2 ensures that the equality only holds at c = c0.

For the sufficient conditions we need to analyze the second order conditions. Denote

H11 = 1/2∂2
a|a=a0E

[
(a0 + b0m0(x− c0) − a− bm0(x− c))2 |x− c ∈ W]

and Hkl accordingly. It is easy to show that the Hessian H is symmetric at (a0, b0, c0). The

sufficient conditions for having a minimum of the numerator of the loss function are:

1. H11, H22 and H33 > 0

2. H11H22 −H2
12 > 0
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3. detH > 0

The elements of the Hessian are:

H11 = 1

H22 = E
[
m0(x− c0)2|x− c ∈ W]

H33 = b20E
[
m′

0(x− c0)2|x− c ∈ W]
H12 = E [m0(x− c0)|x− c ∈ W]

H13 = −b0E [m′
0(x− c0)|x− c ∈ W]

H23 = −b0E [m′
0(x− c0)m0(x− c0)|x− c ∈ W]

Condition 1 is clearly satisfied. It is to be shown that the other two conditions also hold.

Condition 2 holds, since

E
[
m0(x− c0)2|x− c ∈ W]

> (E [m0(x− c0)|x− c ∈ W])2

due to the Cauchy-Schwartz inequality.

Condition 3 requires

0 < E
[
m0(x− c0)2|x− c ∈ W]

b20E
[
m′

0(x− c0)2|x− c ∈ W]
+b20 (E [m′

0(x− c0)m0(x− c0)|x− c ∈ W])
2

+E [m0(x− c0)|x− c ∈ W] b20E [m′
0(x− c0)|x− c ∈ W]E [m′

0(x− c0)m0(x− c0)|x− c ∈ W]

+E [m0(x− c0)|x− c ∈ W] b20E [m′
0(x− c0)|x− c ∈ W]E [m′

0(x− c0)m0(x− c0)|x− c ∈ W]

− (E [m0(x− c0)|x− c ∈ W])2 b20E
[
m′

0(x− c0)2|x− c ∈ W]
−E [

m0(x− c0)2|x− c ∈ W]
b20 (E [m′

0(x− c0)|x− c ∈ W])
2

which is equivalent to

2 (E [m0(x− c0)|x− c ∈ W])2 (E [m′
0(x− c0)|x− c ∈ W])

2

+E
[
m0(x− c0)2|x− c ∈ W]

E
[
m′

0(x− c0)2|x− c ∈ W]
+(E [m′

0(x− c0)m0(x− c0)|x− c ∈ W])
2

> (E [m0(x− c0)|x− c ∈ W])2E
[
m′

0(x− c0)2|x− c ∈ W]
+(E [m′

0(x− c0)|x− c ∈ W])
2
E

[
m0(x− c0)2|x− c ∈ W]

.

The inequality can be shown by an application of the Cauchy- Schwarz inequality to the

second and the third term of the left hand side. �
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Proof of Theorem 2: The derivative of the objective function at the minimum is a mo-

ment condition. This moment condition can be decomposed. Based on the Slutsky theorem

we show that some of the elements converge in probability and that the score term converges

in distribution. The latter is shown using the results of semiparametric two step estimators

given by Newey and McFadden (1994).

Observe first that Assumptions 1-3, 5-7 and the appropriate bandwidth choice ensure the

existence of a consistent root. Observe also, that the loss function (3) can be rewritten as:

LN(θ) =
1∑N

i=1 1IXi−c∈W

N∑
i=1

1IXi−c∈W
(
m̂1(w

c
i ) − a− b (m̂0(Xi − c))

)2

where θ = (a, b, c)′ and m1(x) = a0 + b0m0(x− c0). This loss function implies that the non-

parametric function m0 is evaluated at Xi and shifted by the value c to wc
i , i.e. wc

i = xi − c.
The nonparametric function m1 is evaluated at wc

i . Note that in most cases wc
i �= Wi. This

ensures that we can compare the shifted estimate of m0 to the estimate of m1. According to

the consistency proof, let denote m̂1(w
c
i ) = m̂1(Xi).

A first order Taylor expansion of ∂θLN(θ)/∂θ|θ0 yields:

√
N(θ̂ − θ0) = −

[
∂LN(θ)

∂θ∂θ′ θ∗

]−1 √
N
∂LN(θ)

∂θ
θ=θ0 ,

where θ∗ lies between θ0 and θ̂ and denote θ0 = (a0, b0, c0)
′. We have to show that

1. the score term at the true parameter values

√
N
∂LN(θ)

∂θ
θ=θ0

converges in distribution to a mean zero normal random variable.

2. the Hessian
∂LN(θ)

∂θ∂θ′
=

∑
i

Hi(θ
∗)

converges in probability uniformly to a nonsingular matrix Q.

Introduce the following notations:

the score term may be written as

√
N
∂LN(θ)

∂θ
=

√
N

N∑
i=1

qi(θ, m̂0, m̂1)

=
1/
√
N

∑
i q1i(θ, m̂0, m̂1)

1/N
∑

i 1IXi−c∈W
,
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where

qi(θ, m̂0, m̂1) =
q1i(θ, m̂0, m̂1)∑N

i=1 1IXi−c∈W

with the 3 × 1 vector

q1i(θ, m̂0, m̂1) = −21IXi−c∈W




m̂1(Xi) − a− bm̂0(Xi − c)
m̂0(Xi − c) [m̂1(Xi) − a− bm̂0(Xi − c)]
bm̂′

0(Xi − c)[m̂1(Xi) − a− bm̂0(Xi − c)]




−1IXi−c∈W




0

0

[m̂1(Xi) − a− bm̂0(Xi − c)]2
[

∂
∂c

∑
i 1IXi−c∈W∑

i 1IXi−c∈W

]

 .

The following relations hold:

0 <
∑

i

1IXi−c∈Wc∩W ≤ N

and
1

N

∑
i

1IXi−c∈W
P→ Prob(x− c ∈ W) a.s.

Therefore, N−1
∑

i 1IXi−c∈W converges almost surely to a twice continuously differentiable

function. Then, the denominator of

√
N

∑
i

qi(θ, m̂0, m̂1)

converges almost surely to a twice continuously differentiable function. Moreover, we have

qi(θ0,m0,m1) = 0.

ad 1.

By the Slutsky Theorem we have to show that the numerator of the score term, i.e.

1√
N

∑
i

q1i(θ, m̂0, m̂1)

converges in distribution. Using the linearization

β̂α̂− βα = α(β̂ − β) + (α̂− α)β̂
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we obtain

q1i(θ, m̂0, m̂1) − q1i(θ,m0,m1)

= 2 [m̂1(Xi) −m1(Xi) − b[m̂0(Xi − c) −m0(Xi − c)]]




−1

−m0(Xi − c)
bm′

0(Xi − c)




+2[m̂1(Xi) − a− bm̂0(Xi − c)]




0

−m̂0(Xi − c)] +m0(Xi − c)
b[m̂′

0(Xi − c) −m′
0(Xi − c)]




−
(
[m̂1(Xi) − a− bm̂0(Xi − c)]2 −

[
[m1(Xi) − a− bm0(Xi − c)]2

]2
) 


0

0[
∂
∂c

∑
i 1IXi−c∈W∑

i 1IXi−c∈W

]



= Ai +Bi + Ci

To be shown:

I

1√
N

∑
1IXi−c∈WAi

D→ N(0,Σ)

II

1√
N

∑
i

1IXi−c∈WBi
P→ 0

uniformly in x and
1√
N

∑
i

1IXi−c∈WCi
P→ 0

uniformly in x.

ad III

We show this using the framework of Newey and McFadden Theorem 8.11. For this reason

we introduce the following notations:

40



Ai =
1

2
(gi(θ, γ̂) − gi(θ, γ))

γ = (γ1, γ2, γ3, γ4)
′

m1 = γ2/γ1

m0 = γ4/γ3

Note, that we use here the information that the Nadaraya-Watson estimator can be written

as a fraction. Then,

gi(θ, γ̂) − gi(θ, γ)

= 1IXi−c∈W

(
γ̂2(Xi)

γ̂1(Xi)
− γ2(Xi)

γ1(Xi)
− b

(
γ̂4(Xi − c)
γ̂3(Xi − c) −

γ4(Xi − c)
γ3(Xi − c)

)) 


−1

−m0(Xi − c)
bm′

0(Xi − c).




Linearize in γ̂2/γ̂1 and γ̂4/γ̂3 around the true values by

α̂

β̂
− α

β
= β−1

[
α̂− α− α

β
(β̂ − β)

]

in order to obtain a function that is linear in the error of the nonparametric estimates:

G(x, θ, γ̂ − γ)

= 1Ix−c∈W

(
1

γ1

[
(γ̂2 − γ2) − γ2

γ1

(γ̂1 − γ1)

]
− b

γ3

[
(γ̂4 − γ4) − γ4

γ3

(γ̂3 − γ3)

])


−1

−m0(x− c)
bm0(x− c)




=

(
1Ix−c∈W

[
1

γ1

[−m1(x), 1],
b

γ3

[m0(x− c),−1])

]


γ̂1 − γ1

γ̂2 − γ2

γ̂3 − γ3

γ̂4 − γ4




) 


−1

−m0(x− c)
bm0(x− c)




Define the norm ‖γ‖ = max0≤l≤1supx|∂lγ(x)/∂l
x| as a Sobolev norm. We have now to check

the four conditions of Theorem 8.11:

(i) We show this using Lemma 8.10 of Newey and McFadden (1994). The conditions for the

application of this Lemma are satisfied by the model setup and Assumptions 5-7. Hence, we

have √
N‖γ̂ − γ‖2 P→ 0.

(ii)

‖G(x, θ, γ)‖ ≤ c(x, θ)‖γ‖

41



holds since γ1 and γ3 are bounded away from zero on their bounded supports, |b| <∞ and

supx|m0(x)| and supx|m1(x)| <∞.

(iii) There is v(x) with
∫
G(x, θ, γ)dF (x) =

∫
v(x)γ(x)dx for all ‖γ‖. Choose

v(x) = 1Ix−c∈W




−
[

1
γ1

[−m1(x), 1],
b
γ3

[m0(x− c),−1])
]

−m0(x− c)
[

1
γ1

[−m1(x), 1],
b
γ3

[m0(x− c),−1])
]

bm0(x− c)
[

1
γ1

[−m1(x), 1],
b
γ3

[m0(x− c),−1])
]



(iv) v(x) is continuous except at the two points where the indicator function switches. More-

over, it is bounded for all x.

Then,

δ(x, y, z) = [1, z, 1, y]v(x) − E([1, z, 1, y]v(x))

= 1Ix−c∈W

(
1

γ1

(z −m1(x)) +
b

γ3

(y −m0(x− c))

−E
[

1

γ1

(z −m1(x)) +
b

γ3

(y −m0(x− c))
]) 


−1

−m0(x− c)
bm′

0(x− c)




Noting thatE(Ui|Xi) = E(Vi|Wi) = 0 for all i and j, mutually independence and g(x, θ0, γ) =

0 yields

var(g(x, θ0, γ) + δ(x, y, z)) = E[δ(z)2]

= E


1Ix−c∈W

[
1

γ1

(z −m1(x)) +
b

γ3

(y −m0(x− c))
]2




−1

−m0(x− c)
bm′

0(x− c)







−1

−m0(x− c)
bm′

0(x− c)




′
 .

Let denote E[δ(x, y, z)2]|θ=θ0 = E[δ0(x, y, z)
2], then

E[δ0(x, y, z)
2]

= E

[(
1

fw(x)2
(z −m1(x))

2 +
b20

fx(x− c0)2 (y −m0(x− c0))2
)

×




1 m0(x− c0) −b0m′
0(x− c0)

m0(x− c0) m0(x− c0)2 −b0m′
0(x− c0)m0(x− c0)

−b0m′
0(x− c0) −b0m′

0(x− c0)m0(x− c0) b20m
′
0(x− c0)2


 x− c0 ∈ W

]

Hence, application of Theorem 8.11 of Newey and McFadden (1994) yields

√
N

∑
i

qi(θ)|θ=θ0

D→ N

(
0,

4

Prob(x− c0 ∈ W)2
Σ

)
,
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where

Σ = E[δ0(x, y, z)
2]

ad II

By the Slutsky Theorem it suffices to show for each i

1IXi−c∈W∩WcBi
P→ 0

uniformly in x. First note again that we have θ̂
P→ θ0. Thus, the problem is shown if the

following holds

1IXi−c∈W (m̂1(Xi) − a0 − b0m̂0(Xi − c0))




0

−m̂0(Xi − c0) +m0(Xi − c0)
+b0m̂

′
0(Xi − c0) − b0m′

0(Xi − c0)




≤ 1IXi−c∈W (|m̂1(Xi) −m1(Xi)| + |m1(Xi) − a0 − b0m̂0(Xi − c0)|)


0

−m̂0(Xi − c0) +m0(Xi − c0)
+b0(m̂

′
0(Xi − c0) −m′

0(Xi − c0))




= op(N
−1/2)

Therefore, we have to verify two conditions:

(i)

[|m̂1(Xi) −m1(Xi)| + |b0(m0(Xi − c0) − m̂0(Xi − c0))|] (m0(Xi − c0) − m̂0(Xi − c0)) = op(N
−1/2)

(ii)

[|m̂1(Xi) −m1(Xi)| + |b0(m0(Xi − c0) − m̂0(Xi − c0))|] b0 (m′
0(Xi − c0) − m̂′

0(Xi − c0)) = op(N
−1/2)

Noting that by Lemma 8.10 Newey McFadden we have that the nonparametric estimates

and its derivatives converge at rate N1/4, we obtain

√
N‖γ̂ − γ‖2 = N1/4‖γ̂ − γ‖N1/4‖γ̂ − γ‖ P→ 0

and therefore (i) and (ii) hold.

A similar reasoning applies to the proof of

1IXi−c∈WCi
P→ 0
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uniformly in x for all i and taking into account that one of the squared terms is zero at the

true parameter values.

ad 2.

This step can be proved by using Theorem 4.1.5 Amemiya (1985) or Theorem 8.12 Newey

and McFadden (1994). We use here the first one. The sum of the symmetric Hessians is

given by a 3 × 3 matrix with entries

∑
i

Hi(aa)(θ) =
2∑

i 1IXi−c∈W

∑
i

1IXi−c∈W

∑
i

Hi(ab)(θ) =
2∑

i 1IXi−c∈W

∑
i

1IXi−c∈Wm̂0(Xi − c)
∑

i

Hi(ac)(θ) = − 2∑
i 1IXi−c∈W

(∑
i

1IXi−c∈Wbm̂′
0(Xi − c)

−
∑

i

1IXi−c∈W [m̂1(Xi) − a− bm̂0(Xi − c)]
[

∂
∂c

∑
i 1IXi−c∈W∑

i 1IXi−c∈W

])
∑

i

Hi(bb)(θ) =
2∑

i 1IXi−c∈W

∑
i

1IXi−c∈Wm̂0(Xi − c)2

∑
i

Hi(bc)(θ) =
2∑

i 1IXi−c∈W

(∑
i

1IXi−c∈Wm̂′
0(Xi − c) [m̂1(Xi) − a− 2bm̂0(Xi − c)]

−
∑

i

1IXi−c∈W [m̂1(Xi) − a− bm̂1(Xi − c)]m̂0(Xi − c)
[

∂
∂c

∑
i 1IXi−c∈W∑

i 1IXi−c∈W

])
∑

i

Hi(cc)(θ) = − 2∑
i 1IXi−c∈W

(∑
i

1IXi−c∈Wbm̂′′
0(Xi − c) [m̂1(Xi) − a− bm̂0(Xi − c)]

−
∑

i

1IXi−c∈Wb2m̂′
0(Xi − c)2

)

− 2∑
i 1IXi−c∈W × 1IXi−c∈W

×
(∑

i

1IXi−c∈Wbm̂′
0(Xi − c) [m̂1(Xi) − a− bm̂0(Xi − c)]2

[
∂
∂c

∑
i 1IXi−c∈W∑

i 1IXi−c∈W

]

+
∑

i

1IXi−c∈Wbm̂′
0(Xi − c) [m̂1(Xi) − a− bm̂0(Xi − c)] ∂

∂c

∑
i

1IXi−c∈W

+
1

2

∑
i

1IXi−c∈W [m̂1(Xi) − a− bm̂0(Xi − c)]2 ∂
2

∂c2

∑
i

1IXi−c∈W

−
∑

i

1IXi−c∈W [m̂1(Xi) − a− bm̂0(Xi − c)]2
[

∂
∂c

∑
i 1I

2
Xi−c∈W∑

i 1IXi−c∈W

])
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Using the information θ∗ P→ θ, ‖m̂0 − m0‖ P→ 0 and ‖m̂1 − m1‖ P→ 0 and |Em̂′′
0 − m′′

0| is

stochastically bounded (Lemma 8.9, Newey and McFadden, 1994) we can apply Theorem

4.1.5 Amemiya (1985) if the limit functions are continuous at the true parameter values.

Indeed, we have by the Slutsky Theorem

plim
∑

i

Hi(θ
∗)

= 2




1 E[m0(x−c0)|x−c0∈W]
Prob(x−c0∈W)

−E[bm′
0(x−c0)|x−c0∈W]

Prob(x−c0∈W)
E[m0(x−c0)|x−c0∈W]

Prob(x−c0∈W)
E[m0(x−c0)2|x−c0∈W]

Prob(x−c∈W)
−E[b0m′

0(x−c0)m0(x−c0)|x−c0∈W]

Prob(x−c0∈W)

−E[bm′
0(x−c0)|x−c0∈W]

Prob(x−c0∈W)
−E[b0m′

0(x−c0)m0(x−c0)|x−c0∈W]

Prob(x−c0∈W)

E[b20m′
0(x−c0)2|x−c0∈W]

Prob(x−c0∈W)




=
2

Prob(x− c0 ∈ W)
Q,

where the convergence in probability is uniformly in x and the positive definite matrix Q

(see sufficient condition in consistency proof) consists of continuous functions. Note that

all remainders in H converge to zero in probability uniformly at the true parameter values. �
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Figure 16: FES I: Food expenditure share.
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Figure 17: FES I: Fuel expenditure share.
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Figure 18: FES I: Clothing expenditure share.
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Figure 19: FES I: Alcohol expenditure share.
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Figure 20: FES I: Transport expenditure share.
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Figure 21: FES I: Other goods expenditure share.
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