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1 Introduction

Gabor frames {g(z—an)e*™ ™ : m,n € Z} (a,b € R} ) have found wide applications in digital
signal processing, in particular in time-frequency localization of signals (cf. [11]). However,
by the Balian-Low theorem, Riesz bases of the above form have necessarily bad localization
properties in time or frequency. See [9, p. 108] and the references therein. Therefore Wilson
[18] introduced orthonormal bases that avoid the Balian-Low phenomenon by considering
functions having two peaks in frequency domain. Wilsons’s suggestion was simplified to a
constructive approach in [10].

A more general construction are the orthonormal local trigonometric bases proposed in (7]
and [13]. Here the concept of folding operators plays a significant role (cf. [1]). In con-
trast to Wilson bases, local Fourier bases require the basic assumption that only immediate
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neighboring windows are allowed to overlap. According to [5], we call this assumption the fwo—

overlapping condition. On the other hand, local trigonometric bases can also be constructed

on a nonuniform partition of the real axis.

Based on an.extension of the folding concept biorthogonal local-Fourier-bases-were examined

in [5, 2]. The consideration of biorthogonal Wilson bases was addressed in [6] and for special

Gaussian windows in [8].

In this paper, we are concerned with biorthogonal Wilson bases. In Section 2, we provide a

simple approach to basic material concerning biorthogonal Wilson bases which differs from

[6]. The approach is based on the connection of the foldmg concept with the Zak transform
o and was suggested by Bittner [3].

: Based on the results in Section 2, we estimate R.lESZ bounds of Wilson bases with cardinal B-
splines and their Fourier transforms as window functions. For this, we have to prove properties
of cardinal B-splines and exponential Euler splines which may be also mterestmg in other
contexts.

2 Biorthogonal Wilson bases
Based on the orthonormal bases {c; : k € Ng} and {s; : k € N} of L?([0,1/2]) given by
co(z) := V2, ci(z) := 2cos(2rkz) , sp(z) := 2sin(2rkz) (keN),

we follow [12] and introduce the functions

_ V2g(z —j/2) k=0,7 € Zeven,
Pi.(z) 2g9(z —7/2)cos(2wkz) k €N,j € Z even, (2.1)
29(z —j/2)sin(2rkz) keN,j € Zodd,

where g € L2(R) denotes a window function. We are interested in properties of
By={y7 :jeZ,keN}u{pZ™ jez keN}. (2.2)

Clearly, a similar approach is possible with respect to other intervals than [0,1/2] and with
respect to the other orthonormal bases of L?([0,1/2]) usually involved in the construction of
local Fourier bases. See [1].

If suppg C [—1/4,3/4], then the functions 1/1k satisfy a two—overlappmg condition and we
consider a special case of local Fourier bases.

To define a folding operator for arbitrary ¢ € L%(R) similar to the folding operator known
from local Fourier bases (cf. 5, 2]), we apply the Zak transform.

The Zak transformation Z : L*(R) — L2(T?) := L3([0,1]?) is the unitary linear operator,
which maps the orthonormal basis {Ejx(z) := ez"ijml[o,l] (x — k) : 5,k € Z} of L2(R) to the
orthonormal basis {e;x(s,t) := e?™9%e?mkt . j k € Z} of L(T?), i.e.

Z(Ej) =ejr (J,k €Z).

Here 1jp,;) denotes the characteristic function of [0,1]. For f € L?(R), the Zak transform is
given by

)= fls+k)e* ((s,t) € T?). (2.3)

keZ




Furthermore, we have

Zf(s+L,t) = e Zf(s,1), Zf(s,t+1) = Zf(s,1). (2.4)

Let the Fourier transform f € L2(R) of a function f e LZ(IR) be defined by

fv) = / f(z)e=2m= dg.
R

Then for f € L*(R) N L*(R) with sufficiently fast decay of f and f eg |f(z)] < Clz|~1~e
and |f(z)| < C|z|~17¢, the Zak transforms of f and f are related by

Zf(s,t) = e"27ri3th(t, —-s)  ((s,t) € T?). (2.5)
Let I; :=[j/2,(j +1)/2]. By (2.3) and (2.4), it is easy tho check that

» 2rijt s
Z(]‘I'zjck)('s’t) = {(c)k(S)e j still//;)O,)

0 s €(0,1/2),
Z(ll'lj-f-lsk)(sst) = { Sk(s)ezm(j+1)t = [_1/2,0)

and that
ZWP)(s,t) = cu(s)e®™tZg(s, 1),
ZWET ) (s,t) = —sp(s)e?™UTIH—Zg(s +1/2,1)).

This can be rewritten as

| Z9¥(s,1) I
(Z¢§j(—s,t) ) - Mg(svt) (

(Z"’?H(S’” > - M*(s,t)( Liysi5e)(s ) ) (%) € [0,1/2] x T)) ,(2.7)

> ((s,t) €[0,1/2] x T)), (2.6)

Zi/)kj+1(—5,t) 1I2j+18k)(—87t)

where

Zg(s,t) Zg(—s,t) >
—Zg(s+1/2,t) Zg(—s+1/2,¢)

My(s,0) = (

and M, = M Z;. This motivates the following definition of the adjoint folding operator
T; : L*(R) — L*(R)

Z(TgH(s:t) N _ arees Zf(s,t) 5
( Z(Tg«f)(_s,t) ) = M(s,t) < Zf(=s.t) > ((s,t) €[0,1/2] x T).

Clearly, the corresponding folding operator Ty : L2(R) — L*(R) is given by

Z(Tyf)(s,1) _ . Zf(s,1) e
( Z(TZf)(—S’t) > = My ’t)< Zf(~s,1) ) ((s,t) €10,1/2] x T).

In particular, we see by (2.6) and (2.7) that
ZyP = ZT; (1, cr), ZUP T = ZT) (11, %) (2.8)




In the ”twé—éﬁeflapping” setting, the folding operator T, coincides with the usual folding
operator for local Fourier bases on the equally partioned real axis [5, 2].
In Section 3, we examine window functions g € L?(R) which are symmetric with respect to

| ~1/4, ie. —

9(z) = g(1/2 - z). - (2"9)

For these window functions, we have

‘ Zg(s,t) = }:g(s + k)e?mikt — Zg(l/Q — 5 —k)e 2=kt = Zo(1/2 = 5, 1)
keZ keZ '

such that My has the simpler form

M, (s,t) = ( f%.(;&i)s’t) gzgs‘i)t) ) ((s,1) € 0,1/2] x T). (2.10)

With the above folding concept at hand, we consider (2.2).
Remember that a set of functions {u;, € L*(R) : k € Z} is a frame of L*(R), if for all f € L*(R)
there exist constants 0 < A < B < oo such that

AllflZa@y < D 1(fw)em)l® < BllfllE-
kez

The best possible constants A and B are called frame bounds. Every function f € L*(R) can
be reconstructed from the values (f,uk)r2w) (k € Z), where the convergence of

F= (f,ue)ix (2.11)

“keZ

with respect to the ”most economical” 4y € L%(R) is determined by the quotient

?Tﬁ = %ﬁ—;—i which should be small (cf. [9, p. 62]). However, frame expansions of functions

are in general not unique. Instead of {ix € L*(R) : k € Z} other function systems may fulfil
(2.11) too. To obtain unique representations of functions as superposition of basic functions
u we must turn to Riesz bases.

A set of functions {uy € L*(R) : k € Z} is called a Riesz basis of L3(R), if
L?(R) is the closure of all finite linear combinations of the functions uy (k € Z) and if for all
{ck ez € 12 there exist constants 0 < A < B < oo such that

All{eetle SN crwell3ay < Bli{ck e
kez

The best possible constants A and B are the Riesz bounds. Further, {u; € L*(R) : k € Z}
is an orthonormal basis if and only if A = B = 1. Riesz bases are precisely those that are
images, under invertible bounded linear operators on L?(R), of orthonormal bases.

For our set By, we can establish the following

Theorem 2.1. Let g € L?(R). Then, for B, given by (2.1) and (2.2), the following statements
are equivalent: '

i) B, is a frame with frame bounds A4, B.

—r



il) By is a Riesz basis with Riesz bounds A, B.
iii) There exists constants 0 < A < B < oo such that

and A, B are the best possible constants fulﬁlhng these 1nequaht1es Here || - ||2 denotes the
spectral norm.

Furthermore, if g € L?(IR) satisfies the symmetry property (2.9), then (2.12) can be rewritten
as

A< Dy(s,t)<B ae. on(0,1/2] xT, : (2.13)

where Dy(s,t) := |Zg(s,t)|2 + |Zg(~s, )|

Since we are not aware of a proof of Theorem 2.1 in literature, we sketch the short proof
here. For a proof of (2.13) in the case of orthonormal Wilson bases see [10]. Note further that
Bittner [4] has announced more sophisticated results in this direction.

Proof. For g € L?(R), with symmetry property (2.9), we have by (2.10) that

M;(S!t)Mg(s’t) = ( Dg([;’t) DQ(O‘S’t) > ’

which yields the equivalence of (2.12) and (2.13) for these functions.

Now we show that i) =5 iii) 3 ii) = i).

The third implication is straightforward, since every Riesz basis is a frame.
1. By (2.8) and since Z is a unitary operator, we obtain

ST el =), (2T f, Z(Lnye)) Le@)’ + D 1(ZTo f, Z(Lay88)) 22wy -
Tk

Ik gk

The functions {11,;ck}jez keNoU{ 11,415k }jez ken form an orthonormal basis of L?(R). Thus,
by Parseval’s identity

SN ) 2w = 12T 113212
— | ,

and further by definition of ZTj

13
12T, ey = | / 104505,0) ( G102, ) 1B dsar 214
0 . ) )

Since on the other hand

1

//H(Zf(” )sz sdt = 1 Zflleas = |l

0

we obtain that i) implies iii).

[@a
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2. By (2.14) and sincé Zisa unjta.ry operator, we see that

1T, 1y = //nM o) (250D B asa,

such that T, is a bounded linear operator with bounded inverse if M g fulfills iii). Since we
have by (2.8) that B, = {T;(l[szk) 1] €Z,keNyHU {Tg(ljzj_'_ISk) :j € Z,k € N}, this
yields ii). |

3 B-splines and their Fourier transforms as window functions

The cardinal B-splines Ny, of order m are defined by

1
Ny = 5(1[0,1) +101), Nms1:=Nm*xNp (meN),

where * denotes the convolution in L*(R). The centered cardinal B-splines My, of order m
are given by

M (z) == Np(z +m/2). (3.1)

Note that supp(Nm,) = [0,m] and that and that Ny, is symmetric with respect to m/2, i.e.
Npm(m/2 — z) = Npp(m/2 + z). The Fourier transform of My, is given by

~

M (v) = (sinc(v))™, (3.2)
where

. 1 v=20,
sinc(v) := sin(rv) otherwise

TV

Moreover, B-splines fulfil the two-scale relation

=gi-m Z ( ) (2 — k). (3.3)

We begin with the consideration of the two-overlapping case, i.e. we set g(z) :=
Mmn(a(z —1/4)) (a > m). To determine the Riesz bounds of the corresponding Wilson bases,
we have to apply the following lemma which seems to be clear at first glance.

Lemma 3.1. For m > 2, the cardinal B—splines have the following pfOpertieS:
i) N}, is monotone increasing on [0, 7],
ii) N! (z) < NI, (T—"“ —:L') for all z € [0, Z].



Proof. We prove the assertion by induction on m, where we mainly apply that the derivatives
of cardinal B-splines fulfil (cf. [15])

N!1(z) = N (z) = N (z = 1) / N ( . (3.4)

For the "hat function” N,, the assertion is obvious.

Assume now that i) and ii) hold for & < m.

First, we show that IV}, is monotone increasing on [0, mT”].
By induction hypothesis i), we have for ¢ € [0, m+1] that

N,.(t) = N/ (t—-1)>0.

Let ¢t € [, 2] such that t — 1 € (273, ™22] and 2 — ¢ € (272, 221). Then we obtain by
assumption i) that

N(®) = Niplt =1) 2 N (8) = Ny (3 - ¢)

and further, since by induction hypothesis ii) for t € [, 3
N, (_é- - t) < Np(8),
that
Np(t) = Npp(t = 1) 2 0.

Thus, we get for 0 <z <y S'm—f—% that

T Yy X
[ V@) =N =nar < [ N - Ne- 1) a,
0 0

Np(z) = Nm(z —1) < Nm(y) = Nm(y — 1),
which yields assertion ii) by (3.4).

Next, we prove ii). We distinguish the cases z € [0, 3], z € [, Z*] and z € [t ™HL
Let z € [0, 3]. Then we obtain by (3.4) and since N' m(t) = =N/ (m —t) that

e Eq B
1
ol <m; —‘z)~ = / N;.(t) dt = / NL(t) dt + / N (t) dt
mil oyl molg =
F-jte
= N .(t) dt

and further by assumption ii) and i) that
z+% z
1
o (Tt =a) 2 [ M0z [N = N,

' —3}+% 0

-1




Let z € [§, 27L]. By (3.4) and 11) we obta.m forze (3,2 - 3] that

x+1

,’n_,;1<m+1——:z:>— / N).( dt>/N’

SB——

and similarly for z € (% — 1, L] that -

z+3 mil_g
a1 (mTH - x) = N, (t) dt + / N (t) dt
mol g a z+i '
T+ 2ol gz
> N/.(t) dt + / N (t) dt =
mol g z-1 z—1
Now assumption i) implies that
o+3

iy z
m+1
Nys1 ( - x) ma1(T) = / N/.(t) dt — /
m2—l_l_ z—1
¢_x

+1 m+1

5 I - "'T_l‘m
- / N () dt + / N(f) dt - / N dt - [ NL() at
z mt1 221 o m=3

4 : 4

By induction hypothesis i), we have

= =2
[ Ny sz [ n e,
z z—1
while assumptions-ii“) and i) yield
ntl g ol g

/N’ dt>/N’ dt > / N, (t) dt.

m+1 m=3

ZIJ—— m=-9




Thus, we get assertion ii) for z € [T, T,
This completes the proof. =

Theorem 3.2. Let g(x) := Mp(a(z—1/4)) (m > 2). Then By is not a Riesz basis for a > 2m,
while it constitutes a Riesz basis for m < a < 2m with Riesz bounds A,, = 2 M2 (a/4) and
B = MZ(0).

Proof. Since supp(g) C [—1/4,3/4] and My, (z) = My (—z), we obtain by (2.3) for a > m
that

Dy(s,) = Dy(s) = MZ(as) + M2 (a(1/2-5)) (s €[0,1/2)).

We show that the function Dgy(s) attains its minimum on [0,1/4] in s = 1/4 and its maximum
in s = 0. To this end we calculate the derivative

Dy(s) =2a (Mmn(as)My,(as) — Mp(a(1/2 = s))M;,(a(1/2 = 3))) .

By Lemma 3.1, we have M, (as) < M (a(1/2 — s)) <0 for s € [0,1/4].

Since further Mm(as) > Mm(a(1/2 —s)) > 0 for s € [0,1/4], we conclude that Dy(s) < 0
for s € [0,1/4]. Consequently, we obtain by Theorem 2.1 for m < a < 2m that 4, =
2M?2(a/4) > 0 and By, = 2M2(0) < co. For a > 2m, we see that M,(a/4) = 0 such that B,
is not a Riesz basis. [ ]

To see how Cy, := By,/An, increases with m, we consider the following computation, where
a:=2m:

m | 2 6 10 22 26 30 34 3
Crt1/Com | 1778 2.2580 2.2623 2.2640 2.2641 2.2641 2.2642 2.2642

Indeed, using [17], the quotient li_r)n Cm+1/Cm can be estimated as follows: Since by Taylor
m—0oQ
expansion of the sin function

m 2 m
fm(t) :=sinc (\/gt) = (1— %ﬁ + 31'1'(7%) mitt — ) )

we see that the functions f,, converge uniformely for m — co to e~™t* . Since on the other

hand by (3.2)
70(31ncv \/7 / (smc \/- ) dt,

-0

. o m
M, (%) = /(sincv)m 2mivm/4 g = 4/— /(smc \/ = t) e2miv/3/(Bm)t 3y

M (0)

and the Fourier transform of e~*/% is given by vV mb e~"’™  we have that

lm (Mpms1(0)/Mm(0))2 =m/(m+1) =1

m—r00




while

34 ~2.117.

; Mn(m/8) \*_ . _m et
m300 \ M ((m +1)/4) ) moeom + 1 e=3(miD/4 —

Prepa.rmg the next result we start with the deﬁmtlon of exponential Euler sphnes
The exponentzal Euler splines ¢, (m € N) are defined by [15]

= Mn(s — k)" (se Rt e (-1/2,1/2)). - (35)

keZ

The following theorem summarizes results about exponential Euler splines stated in [19].

‘Theorem 3.3. The exponential Euler splines ¢, (m > 2) satisfy:

i) Let s,t € [0,1/2] be fixed. Then |¢m(s,t)| < [dpm-1(s,1)].

ii) Let s € [0,1] be fixed. Then |¢m(s,t)| decreases for ¢t € [0,1/2].
Furthermore, (s,t) = (1/2,1/2) is the unique root of ¢, on [0,1] x [0,1/2].

iii) Let ¢t € [0,1/2] be fixed. Then |@¢m(s,t)| decreases for s € [0,1/2]
and increases for s € [1/2,1].

iv) B-splines form a partition of unity, i.e. ¢m(s,0) =1 for s € [0,1].
v) The function '
' Un(s) == ¢m(s,1/2) = > _(=1) Mm(s — k)
o keZ
decreases on [0, 1], where Up,(0) > 0 and satisfies the additional properties:

Un(l=35) = =Un(s),
Ui(=s+1/2) = Uh(s+1/2) = ~2Uns(s) (m>2),
Up(s) = —4Up—2(s) (m>3).

Now we can formulate our next result.

Theorem 3.4. Let g(z) := Mp(x — 1/4) (m > 2). Then B, constitutes a Riesz basis with
upper Riesz bound B = 2 and lower Riesz bound A = A, which can be estimated by

UZ(0)/2 < Am < U2_,(0)/2,

i.e. for even m by

" 2\ %" nt [1-22-m\? 2\
— —-my2 — < <__ - -
-2 (2) a5 (15) (3)

and for odd m by |
9\ 2(m+1) b /1 —9l-m 9\ 2(m+1)
2(1—2"m"12 [ Z <Ap < — | —— ~ )
a3 s T () (3)

10



Note that for sufficiently large m € N

Crnt1/Cm = Am/Ams1 = (7/2)% = 2.4672.

Proof. By (2.3), (3.5) and since M,, is even, we obtain
Dy(s,t) = |¢m(1/4 — 5,8)2 + |dm(1/4 + 5, B)[> ((5,£) €[0,1/2] x T).

By Theorem 3.3ii), the above function attains its minimum in ¢ = 1/2 and its maximum in
t = 0. Thus, we conclude by Theorem 2.1, that we have to look for

Am =min{Dy(s,1/2) : s € [0,1/4]} and B, = max{D,(s,0) : s € [0,1/4]}.

By Theorem 3.3iv), we see immediately that B,, = B = 2.

Following Theorem 3.3v), we rewrite A in the form

Apm = min{U2(s) + U3(1/2 - s) : s € [0,1/4]} .

By straightforward computation we obtain that A2 = 1/2 and A3 = 1/4.
In the following, let m > 3. We define the linear function

hm () 1= —2U (0) s + U (0).

passing through the points (0, U, (0)) and (1/2,U,(1/2)) = (1/2,0). Since we have by The-
orem 3.3v) that U, (s) < 0 for s € [0,1/2], the function Uy, is concave on [0,1/2]. Thus,
hm(s) < Un(s) for s € [0,1/2]. On the other hand, we see by Theorem 3.3v) that

hme1(5) = =2 Up—1(0)s + Um1(0) = U’ (1/2)s + Upp—1(0)

such that Up(s) < hm-1(s) for s € [0, 1/2]
Now it is easy to check that min{h2 (s) +h2,(1/2 —3s):s € [0,1/4]} = U2(0)/2.
Consequently,

Un(0)/2 < Am < UZ_1(0)/2. (3.6)
By [14], we have that
22m 22m -1
Uam(0) = %—) | Bamn|
and further since the Bernoulli numbers B, can be estimated by
2(2m)! 2(2m)! 227
(2 ) m |B2ml < (2 )2m 92m _ 9
that
2(22m —1 2(22m —1) 22m
207 1) < Uam(0) < ( )

em a2m  92m _9°
By Theorem 3.31), it follows Ugm+2(0) < Uam+1(0) < Uz (0) such that

2(2°m+2 1) 2(22m —1) 22m
g < Um0 < ——— 55

11




EE)

Together with (3.6) this yields the desired estimates for A,,. . n

Finally, we consider Wilson bases with poweré of sinc—functions as window functions. Again,
we prepare our result by proving some properties of B-splines.

Lemma 3.5. Let m > 2 and
Vin(z) := ) (=1)F M (z — 2K).
keZ
Then, for odd m € N, .
Vin(1/2) = 27320, (0)
and for even m € N, ’
Vnl0) = 2mD2,(0),
2m=412y(0) < Vin(1/2) < 2220 (0).

Proof. Due to the two-scale relation (3.3) we obtain

. —m n m . m
Un(0) = 3 (~1) (21 kzzo <k>Mm(2] +5 - k)) : (3.7)

J€Z

Let m € N be odd. Then (3.7) can be rewritten as

(m+1)/2

Un0) =27 Y, (o) S Mtz + -0,

l:(—m+1)/2 JEZ

m _ m
melpor+1) \Zyt-2r)°

we obtain by splitting the above sum into even and odd [ € N that

Since M,, is even and

LLm+1)74 m A 1
— 92— : j ;
Uam(0) = 27" - (mT_l +2l) > (1Y M (2 + 5 —20)
I=|(~m+3)/4] jez
\ 1 L(m+1)/4] l m
= —-m - —
I=|(-m+3)/4] :
where |z] denotes the integer part of z,i.e. |z] < 2 < |z]+1. The last sum S, has the form
(m=1)/2 (m=5)/4
. > (3) — 2 (ger2)] m=1 mod8 or m=5 mod38,
k=0 k=0
50 =4 |mon)2 (m=3)/4 :
(1) =2 ¥ (42s)] m=3 mod8 or m=7 modS8.
=0 b= '

12




Using the formulas in [20, p. 17|, we obtain that S, = 2(m=1)/2 3p4 consequently Upn,(0) =
2B-m)/2y. (1/2). ‘ T '
For the rest of the proof let m € N be even. Then (3.7) can be rewritten as

' “m/2 i
U (0) = 21—™ m (=1) M (25 = 1).
l=§/2 (7”)% 7=

Since M,, is even, we have for [ = 2r + 1 that

> (=1 Mp (25 —2r = 1) = (=1)7 Y (=1)*Mpn(2k —1) =0

JEZ k€Z
such that
; [Z] m
Unl0) =277 (11 M) 3 (-1 ( 7 )
, keZ I=—|2] 7+
The last sum S, has the form
: m/2 m/4
Z(;?:)_QZ(ZC) m=0 mod4,
e (m=2)/2 (m—2)/4

m=2 mod4.

o lyd) =20 0 (o)

Using [20, p. 17] again, we see that S, = 2™/2. Hence Up,(0) = 2(2=™)/2V;,(0).

To prove the last assertion we consider Vi,(z). Obviousely, Vo(z) = Ms(z) = 1 — z for
z € [0,1]. Assume that Vip—2(z) > 0 for z € (0,1) and m > 4. By (3.4) and (3.1), it
follows V! (z) = —2Vp—2(z) < 0 such that Vi, is concave on (0,1). Since further V,,(0) =
2(m=2)/217_(0) > 0 and V;»(1) = 0, we obtain Vi,(z) > 0 for z € (0,1). Now concavity of Vi,
yields

Vnl1/2) 2 5(Vin(0) + Vin(1) = 5Vim(0)

Using that M}, (z) = —M] (—z), we get V. (0) = 0. Hence, V,, has a local maximum in z = 0
and Vn(1/2) € Vi (0) . This completes the proof. |

Theorem 3.6. Let g(z) := (sinc(z — 1/4))™ (m > 2). Then B, is a Riesz basis and the Riesz

bounds A = A,, and B = By, can be estimated by

2m—2 _ot=m\ 2
0 < Ap < { 2771 Up(0) m odd < 4 (Z_Tr@) %ﬁ) m odd,
m -— 2 5 - )
 FUa0) meven 4 (¥> " (—‘—1'_11:22 —m) m even ,

1402(0) < Bm < 1+2Un(0)+U2(0).

Note that for large m € N
, 2
Crma1/Cm = (Am/Am2)Y? = (L> ~ 1.2337.
+1/ ( m/ m+2) 2\/5
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Proof By (2. 5) and since g = (Mne?™/4Y, we obtain for ((s t) € [O 1/2] x T) that

Dy(s,t) = IZ( Mpne®™ /%) (t, —5) 2 + lZ(Mmez’” /4)(t 5)|2 k
- lZMm(t+k) 2mik(1/4— 3)'2 + IZMm t+k‘) 27Tik(1/4+3)12"

kez keZ

By Theorem 2.1 and Theorem 3.3iii), we have to look for the minimum of Dy in[0,1/4]x{1/2}
and for the maximum in [0,1/4] x {0}.
Concerning the minimum we obtain by 2(|a|? + |b]?) = |a + bl2 +]a — b|? that

y 1 2rik 4)12 2mik( 4)12
Dy(s,5) = IZMm + K)TECYOP |3 Mo L1 gyermiklety/a)
keZ keZ
1 ‘ .
= 2| Mn(5 + k)™ COS( LTI ZIZM e2miks sin(%n2
kEZ kez
1 ; k
= 4|ZMm(§+k)ez’”kscos(%)|2.
keZ

For m < 10 it is easy to check by straightforward computation that Dy(s,1/2) has its minimum
in s = 0. However, for arbitrary m € N, we were not able to prove this result. Therefore
Dg4(0,1/2) can only serve as upper bound of the minimum. Applying Lemma. 3.5, we obtain

oa L _1\k 1 2 [ = 2771 UR(0) modd,
Pal03) = 41 (70 Ml +28) {S50B mom

By Theorem 3.3ii), we see that Dy(s,1/2) >0
Concerning the maximum we examine

Dg(S,O) — |ZMm 2mksl2 + | ZM 27r1k(1/2 s) |
keZ keZ

[ ‘ 2 o) 2
.= (]V[m(O) +2 Z My, (k) cos(27rk:s)) + (Mm(O) +2 Z(—l)kM,Ln(k) cos(27rks)) )
k=1

k=1
A lower bound for the maximum of Dy(s,0) is given by
Dy(0,0) =1 + Un(0)2.
Regarding that Uy, (0) > 0, an upper bound for the maximum of Dy(s,0) can be obtained by
a? +b? < (a +b)?, (ab > 0), namely

Dy(s5,0) < (2Mn(0) +4iMm(2k) cos(2m2ks))?
k=1

< 45 MaK) = (14 Un(O))?,

keZ

where the last equation follows by Theorem 3. 31v) and definition of Uy,,. This completes the
proof. , v
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Based on Section 2, biorthogonal Wilson bases with Gaussians as window functions can be exa-_
mined in a different way as in [8]. For estimations of Riezs bounds and explicit constructions
of dual window functions see [16].

References

(1] P. Auscher, G. Weiss and M.V. Wickerhauser, Local sine and cosine bases of Coifman
and Meyer and the construction of smooth wavelets in: Wavelets: A Tutorial in Theory
and Applications, C. K. Chui (ed.), Academic Press, Boston, 237 - 256, 1992.

[2] K. Bittner, C. K. Chui und J. Prestin, Multivariate cosine wavelets, in: Multivariate Ap-
proximation and Splines, G. Niirnberger, J. W. Schmidt and G. Walz (eds.), Birkhauser,
Basel, 29 - 45, 1997.

(3] K. Bittner, private communication.
[4] K. Bittner, PhD thesis, GMD Miinchen, to appear.

[5] C. K. Chui and X. Shi, Characterization and construction of biorthogonal cosine
wavelets, J. Fourier Anal. Appl. 32 (1997), 559 — 575.

[6] C. K. Chui and X. Shi, A study of biorthogonal sinusoidal wavelets, in: Surface Fitting
and Multiresolution Methods, A. Le Méhauté, C. Rabut and L. L. Schumaker (eds.),
Vanderbuilt University Press, Nashville, 51 — 66, 1997.

[7) R. R. Coifman and Y. Meyer, Remarques sur l’analyse de Fourier a fenetre, C.R. Acad.
Sci. Paris 312 (1991), 259 - 261.

[8] R. R. Coifman and Y. Meyer, Gaussian bases, Appl. Comput. Harmon. Anal. 2 (1995),
299 - 302.

(9] I. Daubechies, Ten Lectures on Wavelets, STAM, Philadelphia, 1992.

[10] I Daubechies, S. Jaffard and J.-L. Journé, A simple Wilson orthonormal basis with
exponential decay, SIAM J. Math. Anal. 22 (1991), 554 - 572.

[11] H. G. Feichtinger and T. Strohmer (eds.), Gabor Analysis and Algorithms: Theory and
Apphca.tlons Birkhauser, Basel, 1998.

(12] E. Hernandez and G. Weiss, A First Course on Wavelets, CRC Press, New York, 1996.

[13] H. Malvar, Lapped transforms for efficient transform /subband coding, IEEE Trans.
Acoust. Speech Slg Proc. 38/6 (1990), 969 - 978.

(14] G. Plonka and M. Tasche, Periodic spline wavelets, Appl. Comput. Harmon. Anal. 2
(1993), 1 - 14.

[15] I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory 2
(1969), 167 — 206.



[16] B. Trebels, Biorthogonale leson—Ba.sen rmt speziellen Fensterfunktionen, Master the—
sis, TU Darmstadt, 1999.

[17] F. Tricomi, Uber die Summen mehrerer zuflliger Verinderlichen mit konstanten

Verteilungsgesetzen, Jahresber. der deutschen Math. Ver. 42 (1933), 174 - 179.
[18] K. Wilson, Generalized Wannier functions, Preprint, 1987. ‘

[19] K. Jetter, S. D. Riemenschneider and N. Sivakumar, Schoenberg’s exponential Euler
spline curves, Proc. Royal Soc. Edinburgh 118A (1991), 21 - 35.

[20] A. M. Yaglom and I. M. Yaglom, Challenging Problems with Elementary Solutions I,
Holden-Doy Inc., San Francisco, 1964.




	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018

