
Riesz hounds of Wilson hases generated hy B-Splines

Bernhard Trebels and Gabriele Steidl

Nr.241/99

March 1999



· ~~gang$n.u~r; .~ ~ ~ 0 \ ~~
~fIn?tyr;

f Y NI V rg f.1S , TAT MAN N HEl MI ggf@i~MsaiblifJthtk Mathematik und. Informatik
t.::;:.=._.~~~~......"."". _



L
I

"Riesz bounds of Wilson bases generated by B-splines

Bernhard Thebels
Technical University Darmstadt

Department of Mathematics
Schloßgartenstraße 7
D-64289 Darmstadt

and

Gabriele Steidl
University of Mannheim

Institut of Computer Science
D-68131 Mannheim

steidl@math.uni-mannheim.de

March 26, 1999
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1 Introd uction

Gabor frames {g(x_an)e271"ibmx : m, n E Z} (a, b E 114) have found wide applications in digital
signal processing, in particular in time-frequency loealization of signals (cf. [11]). However,
by the Balian-Low theorem, Riesz bases of the above form have neeessarily bad loealizatiön
properties in time or frequeney. See [9, p. 108] and the referenees therein. Therefore Wilson
[18] introdueed orthonormal bases that avoid the Balian-Low phenomenon by considering
functions having two peaks in frequeney domain. Wilsons's suggestion was simplified to a
constructive approach in [10].
A more general construetion are the orthonormal loeal trigonometrie bases proposed in [7]
and [13]. Here the concept of folding operators plays a significant role (cf. [1]). In con-
trast to Wilson bases, loeal Fourier bases require the basic assumption that only immediate
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neighboring windows are allowed to overlap. According to[5]' we call this assumption the two-
overlapping condition. On the other hand, local trigonometrie bases can also be constructed
on a nonuniform partition of the real axis.
Based on an-extension of the folding concept biorthogonaLlocaLFourier-bases-were examined
in [5, 2]. The consideration of biorthogonal Wilson bases was addressed in [6] and for special
Gaussian windows in [8].
In this paper, we are concerned with biorthogonal Wilson bases. In Section 2, we"provide a
simple approach to basic material concerning biorthogonal Wilson bases whieh differs from
[6]. The approach is based on the connection of the folding concept with the Zak transform
and was suggested byBittner [3].
Based on the results in Section 2, we estimate Riesz bounds of Wilson bases with cardinal B-
splines and their Fourier transforms as window functions. For this, we have to prove properties
of cardinal B-splines and exponential Euler splines which may be also interesting in other
contexts.

2 Biorthogonal Wilson bases

Based on the orthonormal bases {Ck : k E No} and {Sk : k E N} of L2 ([0,1/2]) given by

co(x) :=h, Ck(X) := 2cos(27rkx), Sk(X) := 2sin(27rkx) (kE N),

we follow [12] and introduce the functions

{

V2g(x - j /2)
'!f;{(x) = 2g(x-j/2)cos(27rkx)

2 g(x - j /2) sin(271"kx)

k = 0,j E Z even ,
k E N,j E Z even ,
k E N,j E Z odd ,

(2.1)

where 9 E L2(IR) denotes a window function. We are interested in properties of

(2.2)

Clearly, a similar approach is possible with respect to other intervals than [0,1/2] and with
respect to the other orthonormal bases of L2 ([0,1/2]) usually involved in the construction of
local Fourier bases. See [1].
If suppg ~ [-1/4,3/4]' then the functions '!f;{ satisfy a two-overlapping condition and we
consider a special case of local Fourier bases.
To define a folding operator for arbitrary 9 E L2 (IR) similar to the folding operator known
.from local Fourier bases (cf. [5, 2]), we apply the Zak transform.
The Zak transformation Z : L2(IR) -1- L2(1'2) := L2([0, 1]2) is the unitary linear operator,
which 'maps the orthonormal basis {Ejk(x) := e27rijx1[0,1] (x - k) : j, k E Z} of L2(IR) to the
orthonormal basis {ejJc(s, t) := e27rijse27rikt: j, k E Z} of L2(1'2), i.e.

Here 1[0,1] denotes the characteristic function of [0,1]. For f E L2(IR), the Zak transform is
given by

Z f (s, t) =L f (s + k) e27rikt ( (s, t) E 1'2) .
kEZ
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Furthermore, we have _

Z f (s + 1, t) = e - 27rit Z / (s, t), Zf (s, t + 1) = Z / (s, t) .
.- ------------------

Let the Fourier trans/orm j E£2 (IR) of a function / E L2 (IR) be defined by

j(v):= J f(x)e-2"iXv dx.

R

(2.4)
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Then for / E L2(IR) n LI (IR) with sufficiently fast decay of / and j, e.g. 1/(x)1 ~ Clxl-1-e
and Ij(x)1 ~ Clxl-I-e, the Zak transforms of / and j are related by

Z j (s, t) = e - 27ristZ / (t, - s ) ( (s, t) E 11'2).

Let Ij := (j/2, (j + 1)/2]. By (2.3) and (2.4), it is easy tho check that

Z(lI2jCk)(S, t) { ~k ( s) e2"ijt s E [0,1/2) ,= s E [-1/2,0) ,

Z(lI2j+l Sk) (s, t) { ~k(s)e271'i(j+l)t

s E [0,1/2) ,
=

s E [-1/2,0)

and that

Z(VJ~j)(s, t) = ck(s)e27rijtZg(s, t),

Z(VJ~j+I)(s, t) = _sk(s)e27ri(j+I)t( -Zg(s + 1/2, t)) .

This can be rewritten as

(2.5)

where
M (s t) _ ( Zg(s, t) _ Zg(-s, t) )

9 , - -Zg(s + 1/2, t) Zg( -8 + 1/2, t)

and M; = M~. This motivates the followingdefinition of the adjoint /olding operator
T; : L2 (IR) -+ L2 (IR)

(- Z(T; f)(s, t) ) = M*( t) ( Zf(s, t) _) ((s, t) E [0,1/2] x 11') .
Z(T; f)( -s, t) 9 s, Z f( -s, t)

Clearly, the corresponding /olding operator Tg : L2 (IR) -+ L2 (IR) is given by

( Z(Tgf)(s, t) ) = M ( t) ( Z /(s, t) ) ((s, t) E[O,"1/2] x 11').
Z(Tgf)( -s, t) 9 s, Z /( -s, t)

In particular, we see by (2.6) and (2.7) that

ZVJ~j = ZT; (lI2j Ck) , Z'IjJ~j+I = ZT;(lI2j+l Sk).

3
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In the "twö-overlapping" setting, the folding operator Tg coincides with the usual folding
operator for-Iocal Fourier bases on theequally partioned real axis [5, 2].
In Section 3, we examine window functions 9 E L2(JR) which are symmetrie with respect to

_..1/4,- Le..__ ~-- . . _

L
I

g(x) = g(1/2 - x).

For these window functions, we have

Zg(8, t) =L g(8 + k)e27Tikt =L g(1/2 - 8 - k)e-27Ti(-k)t = Zg(1/2 - 8, t)
kEZ kEZ

such that M 9 has the simpler form

(2.9)

M 9(8, t) = ( Z 9 (8, t) Z 9 (~ 8 ,t )) ((8, t) E [0,1/2] x 'Ir). (2.10)
-Zg( -8, t) Zg(8, t)

With the above folding concept at hand, we consider (2.2).
Remember that aset offunctions {Uk E L2(JR) : k E Z} is aframe of L2(IR), iffor allf E L2(IR)
there exist constants 0 < A ~ B < 00 such that

A 1111Ii2(lR) ~ L 1(1, Uk)L2(lR)1
2

~ B 1IJIIi2(lR)'
kEZ

The best possible constants A and B are called frame bound8. Every function f E L2(IR) can
be rec?nstructed from the values (I, Uk)L2(lR) (k E Z), where the convergence of

1 = L(I, Uk)Ük
kEZ

(2.11)

with respect to the "most economical" Ük E L2 (IR) is determined by the quotient
~+1= ~~1~iwhich should be small (cf. [9, p. 62]). However, frame expansions of functions
are in general not unique. Instead of {Ük E L2 (IR) : k E Z} other function systems may fulfil
(2.11) too. To obtain unique representations of functions as superposition of basic functions
Uk we must turn to Riesz bases. .
A set of functions {Uk E L2 (IR) : k E Z} is called a Riesz basis of L2 (IR), if
L2 (IR) is the closure of all finite linear combinations of the' functions Uk (k E Z) and if for all
{ Ck} kEZ E l2 there exist constants 0 < A ~ B < 00 such that

A II{Ck}lll2 ~ 11L CkUklli2(lR) ~ B lI{ck}lIl2.
kEZ

The best possible constants A and Bare the Riesz ,bounds. Furt her , {Uk E L2 (JR) : k E Z}
is an orthonormal basis if and only if A = B = 1. Riesz bases are precisely those that are
images, under invertible bounded linear operators on L2(JR), of orthonormal bases.
For our set B9, we can establish the following

Theorem 2.1. Let 9 E L2(JR). Then, for Bggiven by (2.1) and (2.2), the following statements
are equivalent:
i),Bg is a frame with frame bounds A, B.

4
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ii) 89 is a Riesz basis with Riesz bounds A, B.
iii) There exists constants 0 < A ~ B < CXJ such that

and A, Bare the best possible constants fulfilling these inequalities. Here 11 . 112 denotes the
spectral norm.
Furthermore~ if 9 E L2(lR) satisfies the symmetry property (2.9), then (2.12) can be rewritten
as

A ~ D9(s, t) ~ B a.e. on [0,1/2] x 11',

where D 9 ( s, t) := 1Z 9 (s, t) 1
2 + 1Z 9(- s, t) 1

2.

(2.13)

Since we are not aware of a proof of Theorem 2.1 in literature, we sketch the short proof
here. For aproof of (2.13) in the case of orthonormal Wilson bases see [10]. Note further that
Bittner [4] has announced more sophisticated results in this direction.

Proof. For 9 E L2(lR), with symmetry property (2.9), we have by (2.10) that

M*( )M ( ) _ ( D9(s, t) 0 )
9 s,t 9 s,t - 0 D9(s,t).'

which yields the equivalence of (2.12) and (2.13) for these functions.
Now we show that i) b iii) k ii) ~ i).
The third implication is straightforward, since every Riesz basis is a frame.
1. By (2.8) and since Z is a unitary operator, we obtain

L I(i, 7P~)L2(IR)12 = L I (~T9i, Z(lI2jCk) )L2(IR) 12 + L 1(ZT9i, Z(lI2j+l Sk) )L2(IR) 12
.

j,k j,k j,k

The functions {lI2jCk}jEZ,kENoU{lI2j+lSk}jEZ,kEN form an orthonormal basis of L2(JR). Thus,
by Parseval's identity

and further by definition of ZT9

(2.14)

Since on the other hand

1 ~

11 ( Zi(s,t) ) 2 I. 11 Zi(-s,t) 112 dsdt = IIZfIIL2(1l'2) = Ilil L2(IR)
o 0

we obtain that i) implies iii).
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2. By (2.14) and since Z is a unitary operator, we see that

such that Tg is a bounded linear operator with bounded inverse if Mg fulfills iii). Since we
have by (2.8) that 8g = {T;(lI2jCk) : j E Z, k E No} U {T;(lI2j+l Sk) : j E Z, k E N}, this
yields ii). •

3 B-splines and their Fourier transforms as window functions

The cardinal B-splines Nm 0/ order mare defined by

where * denotes the eonvolution in L2(IR). The centered cardinal B-splines Mm of order m
are given by

(3.1)

Note that supp(Nm) = [0,m] and that and that Nm is symmetrie with respeet to m/2, i.e.
Nm(m/2 - x) = Nm(m/2 + x). The Fourier transform of Mm is given by

where

(3.2)

sine(v) := { ;in(7l"v)
7l"V

Moreover, B-splines fulfil the two-scale relation

v = 0,
otherwise.

(3.3)

We begin with the eonsideration of the two-overlapping ease, i.e. we set g(x) :=

Mm(a(x - 1/4)) (a ~ m). To determine the Riesz bounds of the eorresponding Wilson bases,
we have to apply the following lemma whieh seems to be clear at first glanee.

Lemma 3.1. For m ~ 2, the cardinal B-splines have the following properties:
i) N:n is monotone increasing on [0,mil],
ii) N:n(x) :::;N:n (T - x) for all x E [0,T]'
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Proof. We prove the assertion by induction on -m, where we mainly apply that the derivatives
of cardinal B-splines fulfil (cf. [15])

x-'-"--'-~---------------7----------------"N:n+I(X) = Nm(x) - Nm(x - 1) = N:n(t) dt.
x-I

(3.4)

For the "hat function" N2, the assertion is obvious.
Assurrie now that i) and ii) hold for k ::; m.
First, we show that N:n+I is monotone increasing on [0, mt2].
By induction hypothesis i), we have for t E [0,mtI] that

N:n(t) - N:n(t - 1) ~ O.

Let t E [mtI, mt2] such that t - 1 E [mi3, mi2] and T - t E [m,42, m,4I]. Then we obtain by
assumption i) that

N:n(t) ~ N:n(t - 1) ~ N:n(t) - N:n (; - t)

and further, since by induction hypothesis ii) for t E [r;, T]
N:n (; - t) ::; N:n(t),

that

N:n(t) - N:n(t - 1) ~ O.

Thus, we get for 0 ::; x ::;Y ::;-mt2 that
xJ N;"(t) - N;"(t - 1) dt
o

Nm(x) - Nm(x -1)

which yields assertion ii) by (3.4).

y

< J N;"(t) - N;"(t - 1) dt,
o

< Nm(y) - Nm(y - 1),

Next, we prove ii). We distinguish the cases x E [0, ~], x E [~, m,4I] and x E [miI, mtI].
Let x E [0, ~]. Then we obtain by (3.4) and since N!m(t) = -N!m(m - t) that

N' .(m + 1 _' ),m+I 2 x

=

and further by assumption ii) and i) that

x+~ x

N;"+l (m; 1 - x) 2': J N;"(t) dt 2': J N;"(t) dt = N;"+l(x).
-x+~ 0

7
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[1 m-l] B (3 4) ci ) b . £ [1m 1] hLet x E 2' -4-' Y . an ll,. we 0 taIn or x E 2' 4" - 2 t at

and similarly for x ~ (7: - i, mil] that.

, (m + 1 )Nm+l. -2--x

>

Now assumption i) implies that

x+~J N:"(t) dt +
m-I
-2--X

x+~J N:"(t) dt +
m-I
-2--X

m;j=1_x

J N:"(t) dt
x+~ .
m;-I_x x+~

J N:"(t) dt = J N:"(t) dt.
x-~ x-~

Finally, let x E [mil, mtl]. By (3.4) we obtain

I (m + 1 ) I ()Nm+l -2- - x. - Nm+l x =

=

mtI_x X

J N:"(t) dt - J N:"(t) dt.
m;-I_x x-I

By induction hypothesis i), we have

x
m-3

j N:"(t) dt
x-I

x-I
m-IJ -XN:"(t) dt.
.m-3
-4-

!!:.:t.l m- 3

j N:"(t) dt ~ j N:"(t) dt,
x

while assumptions ii) and i) yield

x-I

mt1_x m-I m-I
-4- -2--X

J N:n (t) dt ~ J N:n(t) dt ~ J N:n(t) dt.
m+l x-! m-3
-4- -4-

8



Thus, we get assertion ii) for x E [mi1, mt1].
This completes the proof. •
Theorem 3.2. Let g(x) := Mm(a(x-l/4)) (m 2:: 2). Then Bg is not a Riesz basis for a 2:: 2m,
while it constitutes a Riesz basis for m :s; a < 2m with Riesz bounds Am = 2M;,(a/4) and
Em = .M;,(O).

Proof. Since supp(g) ~ [-1/4,3/4] and Mm(x) = Mm( -x), we obtain by (2.3) for a 2:: m
that

Dg(s, t) = Dg(s) = M~(as) + M~(a(I/2 - s)) (s E [0,1/2]).

We show that the function Dg(s) attains its minimum on [0,1/4] in s = 1/4 and its maximum
in s = O. To this end we calculate the derivative

D~(s) = 2a (Mm(as)M:n(as) - Mm(a(I/2 - s))M:n(a(I/2 - s))) .

By Lemma 3.1, we have M:n(as) :s; M:n(a(I/2 - s)) :s; 0 for s E [0,1/4].
Since furt her Mm(as) 2:: Mm(a(I/2 - s)) 2:: 0 for s E [0,1/4]' we conclude that D~(s) :s; 0
for s E [0,1/4]. Consequently, we obtain by Theorem 2.1 for m :s; a < 2m that Am =
2M;,(a/4) > ° and Em = 2M;,(0) < 00. For a 2:: 2m, we see that Mm(a/4) = 0 such that Bg
is not a Riesz basis. •

To see how Gm := Em/ Am increases with m, we consider the following computation, where
a :=2m:

m 2 6 10 22 26 30 34 38
Gm+l / Gm 1.778 2.2580 2.2623 2.2640 2.2641 2.2641 2.2642 2.2642

Indeed, using [17]' the quotient !im Gm+1/Gm can be estimated as follows:Since by Taylor
m-+oo

expansion of the sin function

we see that the functions 1m converge uniformely for m -t 00 to e-7l"
2
t
2
. Since on the other

hand by (3.2)

Mm(O) = J (sinev)m dv = {!;I (sine( {!;t)r dt,
-00 -00

MmG) = J (sine v)m e21rivmj4 dv = {!;I (sine( {!;t)r e21riy'3j(8m)t dt
-00 -00

and the Fourier transform of e-x2/b is given by M e-bV27l"2, we have that

!im (Mm+1(0)/Mm(0))2 = m/(m + 1) = 1
m-+oo

9



while

(
M (m/4) ) 2 m e-3m/4

lim m ~ lim -- ---- = e3/4 ~ 2.117.
m-+oo Mm+l((m +1)/4) m-+oom + 1 e-3(m+l)/4 . .

Preparing the next result we start with the definition of exponential Euler splines ..
The exponential Euler splines cPm (m E N) are defined by [15] .

cPm(S, t) = L Mm(s - k)e21rikt (8 E IR,t E (-1/2,1/2]) .
kEZ

(3.5)

The fo.llowing theorem summarizes results about exponential Euler splines stated in [19].

Theorem 3.3. The exponential Euler splines cPm (m ~ 2) satisfy:
i) Let s, t E [0,1/2] be fixed. Then IcPm(s, t)1 ~ IcPm-l(S, t)l.
ii) Let S E [0,1] be fixed. Then IcPm(s,t)1 decreases for t E [0,1/2].
Furthermore, (s, t) = (1/2,1/2) is the unique rootofcPm on [0,1] x [0,1/2].
iii) Let t E [0,1/2] be fixed. Then IcPm(s, t)1 decreases for s E [0,1/2]
and increases for s E [1/2,1].
iv) B-splines form a partition of unity, i.e. cPm(s,O) = 1 for s E [0,1].
_ v) The function

Um(s) := cPm(s, 1/2) = L( _l)k Mm(s - k)
kEZ

decreases on [0,1], where Um(O) > 0 and satisfies the additional properties:

Um(l - s) = -Um(s),
U:n( -s + 1/2) = U:n(s + 1/2) = -2 Um-1(s) (m > 2),

U~(s) = -4Um-2(s) (m> 3).

Now we can formulate our next result.

Theorem 3.4. Let g(x) := Mm(x - 1/4) (m ~ 2). Then B9 constitutes a Riesz basis with
upper Riesz bound B = 2 and lower Riesz bound A = Am, which can be estimated by

U~ (0) /2 ~ Am ~ U~_l (0) /2,

i.e. for even mby

and for odd m by

2 (1 _ 2-m-1)2 (~) 2(m+l) < A <1f
4 (1_21

-
m) 2 (~) 2(m+l)

1f - - m - 8 1 - 22-m 11

10



Note that for sufficiently large m E N

Proof. By (2.3), (3.5) and since Mm is even, we obtain

Dg(s, t) = l<Pm(1/4 - s, t)12 + I<Pm(1/4 + s, t)12 ((s, t) E [0,1/2] x 1').

By Theorem 3.3ii), the above function attains its minimum in t = 1/2 and its maximum in
t = 0. Thus, we conclude by Theorem 2.1, that we have to look for
Am = min{Dg(s, 1/2) : s E [0, 1/4]} and Bm = max{Dg(s, 0) : s E [0,1/4]}.
By Theorem 3.3iv), we see immediately that Bm = B = 2.
Following Theorem 3.3v), we rewrite A in the form

Am = min{U~(s) + U~(1/2 - s) : s E [0, 1/4]}.

By straightforward computation we obtain that A2 = 1/2 and A3 = 1/4.
In the following, let m > 3. We define the linear function

passing through the points (0, Um(O)) and (1/2, Um(1/2)) = (1/2,0). Since we have by The-
orem 3.3v) that U~(s) ~ ° for s E [0,1/2]' the function Um is concave on [0,1/2]. Thus,
hm(s) ~ Um(s) for s E [0,1/2]. On the other hand, we see by Theorem 3.3v) that

hm-t{s) = -2 Um-t{O)s + Um-1 (0) = U:n(1/2)s + Um-1(0)
such that Um(s) ~ hm-1(s) for s E [0,1/2].
Now it is easy to check that min{h~(s) + h~(1/2 - s) : s E [0,1/4]} = U'/;,,(0)/2.
Consequently,

(3.6)

By [14]' we have that

22m(22m - 1)
U2m(0) = (2m)! IB2ml

.and further since the Bernoulli numbers B2m can be estimated by

that

2(22m - 1) 2(22m - 1) 22m
2m < U2m(0) < 2m 22m 2'1r 1r-

By Theorem 3.3i), it follows U2m+2 (0) ~ U2m+1 (0) ~ U2m (0) such that

2(22m+2 - 1) 2(22m - 1) 22m
1r2m+2 < U2m+l (0) < 1r2m 22m _ 2 .

11
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Together with (3.6) this yields the desired estimates for Am. •
Finally, we consider Wilson bases with powers of sinc-functions as window functions. Again,
we prepare our result by proving some properties of B-splines.

Lemma 3.5. Let m 2:: 2 and

Vm(x) :=L( _l)k Mm(x - 2k) .
kEZ

Then, for odd m E N,

and for even m E N,

Vm(O) = 2(m-2)/2Um(O),
2(m-4)/2um(O) :S Vm(1/2) < 2(m-2)/2Um(O).

Proof. Due to the two-scale relation (3.3) we obtain

(3.7)

Let m E N.be odd. Then (3.7) can be rewritten as

(m+l)/2
Um(O) = 21-m L (m-~ +/) L(-1)jMm(2j + ~ -I).

1=( -m+l)/2 2 jEZ

Since Mm is even and

(m;l ~r+l) = (m;lm_2r),
we obtain by splitting the above sum into even and odd l E N that

,J(m+l)/4J .

U2m(O) = 22-m L (m-:n+ 2/) L(-1)j Mm(2j + ~ - 2/)
l=L( -m+3)/4J 2 jEZ

1 L(m+l)/4J

= 22-mVm(2) L (-1)I(m-::2J
l=L( -m+3)/4J 2

where lxJ denotes the integer part of x, i.e. lxJ:S x < lxJ + 1. The last sum So has the form

(m-l)/2 (m-5)/4
~ (m) 2 ~ (m) m == 1 mod 8 or m == 5 mod 8,~ 2k -. ~ 4k+2
k=ü k=ü

(m-l)/2 (m-3)/4
~ (m) 2 ~ (m) .m == 3 mod 8 or m == 7 mod 8 ,~ 2k+l - ~ 4k+3
k=ü k=ü

12



Using the formulas in [20, p. 17]' weobtain ~hat .Su = 2(m-l)/2 and consequently Um(O) =
2(3-m)/2Vm(1/2).
For the rest of the proof let m E N be even. Then (3.7) can be rewritten as

----,-------m/2 ----.-----------. --------~---- ..-_.-----'..

Um(O) = 21-m L: (!!!:.J L:(-l)i Mm(2j -I).
l=-m/2 2 . jEZ

Since Mm is even, we have for l = 2r + 1 that

L:(-l)j Mm(2j - 2r - 1) = (-Ir L:(_l)k Mm(2k - 1) = 0
jEZ kEZ

such that

The last sum Se has the form

Se =

mj2 m/4I: (~)- 2 I: (~) m == 0 mod 4 ,
k=O k=O
(m-2)/2 (m-2)/4

~ (m) 2 ~ (m) m == 2 mod 4 .6 2k+l - LJ 4k+lk=O k=O

Using [20, p. 17] again, we see that Se = 2mj2. Hence Um(O) = 2(2-m)/2vm(0).
To prove the last assertion we consider Vm(x). Obviousely, V2(x) = M2(x) = 1 - x for
x E [0,1]. Assume that Vm-2(x) > 0 for x E (0,1) and m ~ 4. By (3.4) and (3.1), it
follow~ V~(x) = -2Vm-2(x) < 0 such that Vm is concave on (0,1). Since furt her Vm(O) =
2(m-2)j2um(0) > 0 and Vm(1) = 0, we obtain Vm(x) > 0 for x E (0,1). Now concavity of Vm
yields

1 1
Vm(1/2) ~ 2(Vm(0) + Vm(1)) = 2Vm(O).

Using that M:n(x) = -M:n( -x), we get V~(O) = O. Hence, Vm has a local maximum in x = 0
and Vm(1/2) ::; Vm(O) . This completes the proof. •

Theorem 3.6. Let g(x) := (sinc(x -1/4))m (m ~ 2). Then 89 is a Riesz basis and the Riesz
bounds A = Am and B = Bm can be estimated by

{ 2m-1 U;.(O)
~ { (2v'2) 2m-2 (1_21-m) 2 modd,modd 4 11' 1-22-m

0 < Am < 2m U~(O) (2v'2) 2m ( 1-2-m ) 2m even
4 11' 1-21-m m even,

1+ U~(O) < Bm < 1 + 2 Um(O) + U~(O).
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L
I

Proof. By (2.5) and since g = (Mme27ri-/4j, we obtain for ((s, t) E [0,1/2] x 1') that
-------------_ •.,...-----_._,_ .._._~---,_ '_ __ _.,_., ._. --~---,_ .. -,.- .

Dg(s, t) = IZ(Mme27ri-/4)(t, _s)12 + IZ(Mme27ri./4)(t, s)12 I

= ILMm(t+k)e27rik(1/4-S)12 + iLMm(t+k)e27rik(1/4+S)12 ..

kEZ kEZ

By Theorem 2.1 and Theorem 3.3iii), we have to look for the minimum of Dg in [0, 1/4] x {1/2}
and for the maximum in [0,1/4] x {O}.
Concerning the minimum we obtain by 2(la12 + Ib12) = la + bl2 + la - bl2 that

= I L Mm(~ + k)e27rik(S-1/4)12 + I LMm(~ + k)e27rik(s+1/4)12

kEZ kEZ

~ 1 2 'k 7rk 2. ~. 1 2 'k 1rk 2
= 2 I L..t Mm (2 + k) e 7rl S cos ("2)I + 2 I L..t M m (2 + k) e 7rl S sin (2")I

kEZ kEZ

4 IL Mm (~ + k) e27riks cos ( 1r
2
k) 1
2 .

kEZ

For m ~ 10 it is easy to check by straightforward computation that Dg(s, 1/2) has its minimum
in s = O. However, for arbitrary m E N, we were not able to prove this result. Therefore
Dg(0,1/2) can only serve as upper bound of the minimum. Applying Lemma 3.5, we obtain

modd,
m even.

By Theorem 3.3ii), we see that Dg(s, 1/2) > O.
Concerning the maximum we examine

Dg(s,O) = I L Mm(k)e27riks1
2 + I L Mm(k)e27rik(1/2-s) 1

2

kEZ kEZ

= (Mm(O) +2~Mm(k)COS(21fkS)) 2 + (Mm(O) +2~(-1)kMm(k)COS(21fkS)) 2

A lower bound for the maximum of Dg(s, 0) is given by

Regarding that Um(O) > 0, an upper bound for the maximum of Dg(s, 0) can be obtained by
a2 + b2 ~ (a + b)2, (ab ~ 0), namely

00

Dg(s,O) < (2Mm(0) + 4LMm(2k) cos(27r2ks))2
k=l

< 4 (L Mm(2k))2 = (1 +Um(0))2 ,
kEZ

where the last equation follows by Theorem 3.3iv) and definition of Um. This completes the
proof •
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l,

Based on Section 2, biorthogonal Wilson bases with Gaussians as window functions ean be exa-
~i~edin-a<:iifferent wayasi~-[8]. For estimations of Riezs bo~d~- ~nd~~piicit eonstruetion~- --------.----
of dual window functions see [16].
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