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1. Introduction

This paper does not contain anything new, and, in fact, it deals with a rather old-fashioned
subject: the theorem of Chung-Doob [CD 64] and Meyer [Me66] (cf. also [DM 78]) on the
existence of a progressively measurable modification of a measurable, adapted process.

The raison d'€tre of this paper is that in our seminar at Mannheim periodically with
new students the need comes up to understand the construction of the Itö-integral, and
that in most of the common literat ure the details of a certain argument (see below) are not
given or only hinted at. This paper attempts to provide that. argument in rather much -
maybe even unnecessary - detail, so that the student can understand the probably most
direct approach to the stochastic integral with respect to a Brownian motion as the limit
of approximations of Riemann type.

Consider a Brownian motion B = (Bt, t E IR+) on some probability space (0, A, P),
and suppose that we are given a stochastic process X = (Xt, t E IR+). One is interested
to construct the Itö integral f: Xt dBt, 0 ~ a < b ~ +00, of X with respect to B. The
assumptions which are typically made in the literat ure are that i) X is adapted to the
filtration F = (Ft, t E IR+) generated by the Brownian motion, and that ii) X belongs to
£2(0 x [a, b]). Then one tries to construct f: Xt dBt as the £2 (O)-limit of approximations
of Riemann-type LX~ (Btk+1 - Btk),

k

where the tk define a partition of [a, b], and xn is a suitable approximation to X. (For
other approaches, aiming at more general stochastic integrals, we refer the interested reader
also to, e.g., [RY91], [Pr 90], [WW 90] and the references cited there.)

The key to all constructions of the Itö integral is, of course, the Itö isometry. The
approximation Xn of X above (in £2(0 x lR+)) is usually obtained by first makin~ X
uniformly bounded by cutting it off, and then making the resulting process - say X -
pathwise continuous by setting

Xr :=nlt Xs ds.
t-l/n
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(Here we have not been very careful about what happens for t and a near zero, cf. section
5 for a more careful discussion.) The problem is, that even though the cutting procedure
preserves the adaptedness of the process, the last operation does in general not, because
it involves uncountable many values of the time parameter. But then we cannot use the
Ito isometry for the above sum, and our construction breaks down.

One remedy is to assume in addition that X is separable, e.g. [Fr 75], but this is
not done in most of the literature and therefore generates some incompatibility. Another
possibility, which can for example be found in the book by Dynkin [Dy 65], is to make
a slightly stronger measurability assumption than adaptedness, namely, to suppose that
X is progressive with respect to:F. Roughly, this means that for given t E R+, X as a
function of both variables is :Ft@B([O, t])-measurable when they range in nx [0,t]. Then it
followsfrom the theorem of Fubini- ToneIli that Xn above is actually adapted. But again
this assumption entails some incompatibility with the assumptions usually made in the
literature. On the other hand, Chung and Doob proved in [CD64] that every measurable,
separable and adapted process has a progressive modification, and in the book by Meyer
[Me 66] (which is most of the time quoted for this result) it is stated that this holds also
without the assumption of separability. The argument in [Me 66] has been judged by
Karatzas and Shreve in their book [KS 88], p. 5, to be "lengthy and,rather demanding".
Actually, the proof in [Me 66] has a gap, which has been fixed in [DM 78]. In fact, the
proof in [DM 78] makes use of rather heavy machinery: the Dunford,-Pettis compactness
theorem and aversion of the Eberlein-Smulian theorem. In [KS 88] then the progressive
version of X is used to construct its Ito-integral (under the additional assumption that
the underlying probability space is complete).

The proof in [DM78] of the theorem of Chung, Doob and Meyer (without the separa-
bility assumption; - it is apart of Theorem IV.30 in [DM 78]) has essentially two steps.
The first is to establish that a measurable process X has an approximation by processes
of the form

Xn(t) =L Hn,k 1An,k (t),
k

where the An kare. Borel sets which form a partition of the time parameter domain,,
and the Hn kare random variables. In order to prove this, one combines elementary,
measure theory with the monotone dass theorem. In the second step, one replaces the
Hn,k (which are close to X on An,k) by values of X, so that the expressions lAn,k Hn,k
become progressive processes. For example, if An,k is an interval of the form [Sn,k, tn,k]
one may choose Hn,k = XSn,k' because the fact that XSn,k is :FSn,k-measurable implies that
l[s t ] Xs k is progressive. For"a general Borel set An,k which does not have a minimumn,k, n,k n,
the situation becomes more involved. In this case, Dellacherie and Meyer replace Hn,k by
a weak £l(P)-limit of a sequence (Xtn i E N), where the ti decrease to the infimum of
An k. Once one has the new progressive processes, say (Xn, n E N), one may choose,

X(t) = limsup Xn(t)
n

to obtain a progressIve modification of X.
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Essentially, in the present paper this proof is carried out in detail. However instead. '
of the weak £l(P)-convergence mentioned above, we use weak £2(P)-convergence. This
has the advantage that we can avoid the Dunford-Pettis and Eberlein-8mulian theorems
and use instead a very simple result, namely the classical "Theorem of Choice", which,
e.g., can be found in [RN 55]. Its proof uses only veryelementary Hilbert space theory
(the projection theorem and the Riesz representation theorem), and this way, the proof
of the desired result becomes rather simple (though still somewhat lengthy if carried out
with all the details).

Finally, we combine this result with the theory of smoothing in £P (lR), as it can,
e.g., be found in [Zy 88], to obtain a result which can be used as a basis for the' usual
construction of the Itö-integral (under the usual assumptions on X): Every process X
which belongs to £2(0 x lR+) and is adapted to F has an approximation in £2(0 x lR+)
by a sequence of continuous F-adapted processes.

Throughout the paper we avoided to enlarge the various O"-algebras,even though this
would have been very convenient here and there. In particular, we do not assume that
the underlying probability space is complete, nor that the filtration F satisfies the "usual"
conditions, i.e., that Fo contains all P-null sets, and that F is right-continuous. We did
this in order to be compatible with the existing literature (where often the underlying
O"-algebraand the filtration generated by the integrator process are used "as is").

The organization of the paper is as folIows. In section 2 we prepare a standard lemma
in measure theory. Section 3 is devoted to the (pointwise) approximation of a measurable
.process X by processes of the form (1). Section 4 deals with the proof of the above
described version of the theorem of Chung, Doob and Meyer. In section 5 we combine this
theorem with £P-smoothing. There are four appendices which are supposed to make this
paper rather self-contained in view of its above mentioned purpose. Appendix A contains
the powerful version of the monotone class theorem as it is found in [DM 78], appendix B
discusses weak L.:P-convergenceversus measurability, appendix C contains the statement
and proof of the Theorem of Choice, and appendix D givesan account of £P (lR)-smoothing.

Acknowledgement We are grateful to all the participants of the seminar Stochastische
Analysis in Mannheim for fruitful discussions and patience with our talks about the subject
of this paper.

2. Measurability and Pointwise Limits

Let (E, £) be a measurable space, (M, d) a metric space, which we consider as equipped
with its Borel O"-algebraßd.
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1 Lemma Let (In, n E JN) be a sequence of measurable mappings from E. into M
which converges pointwise to f. Then f is measurable.

Remark In case that M = R one finds this result in every textbook on measure
and integration theory. However, most of the proofs make use of the lattice structure
of R (e.g., [Ba 90]), which is not available in the general case.

Proof Because the family of open sets is a generator of Bd which is stable with respect
to intersections, it suffices to show that for every open set 0 in M we have 1-1(0) E c.

First we re~ar k that if U is open, and x E f -1(U), then U contains a neighbor-
hood of f(x). Since I(x) = limn-+oo fn(x), we obtain

00 00

x E U n f;1(U).
n=1 k=n

Hence

Next we consider a closed subset A of M. It is straightforward to see that

limsup f;;1(A) C f-1(A).
n

(Let us check this: If x E limsuPn f;;1(A), then x is contained in infinitely many
sets f;;1(A). Le., for a subsequence (fn') we have fn'(x) E A for alln'. Since this
subsequence converges to f(x) and A is closed, x E f-1(A) follows.)

Now let 0 be open in M, and define for m E JN

Um:= {y E 0; d(y,aO)) > ~},

Am:= {y E 0; d(y,aO)?: ~}.

Then we have for all m E JN, Um C Am C 0, and 0 = Un Am = Um Um. Therefore
00

f-1(0) = U f-,1(Um)
m=1
00 ;

C U limsupf;;1(Um)
m=1 n

and
00

f-1(0) = U f-1(Am)
m=1
00

:> U limsupf;;1(Am)
. m=1 n

00

:> U limsup f;;1(Um).
m=1 n
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Consequently

00

1-1(0) = U limsup 1;1 (Um)
m=1 n
00 00 00

= u n u Ik1(Um),
m=1 n=1 k=n

and therefore 1-1(0) E £. o

2 IfM is in addition separable, we can take the Lebesgue approximation to 1and obtain
a result in the reverse direction:

Lemma Let (E, £) be a measurable space, (M,d) a separable metric space. Assurne
that 1 is a measurable mapping from E into M. Then 1 is a uniform pointwise limit
of a sequence of countably valued, measurable step functions.

Proof We construct für given n E :IN a countable valued, measurable step function f n
so that for all x E E, d(ln(x), I(x)) < Iln, in the following way. Let {Ym, m E :IN} be
a dense subset in M. For m, n E :IN, Bn,m denotes the open ball of radius Iln with
center Ym: Bn,m = {y E M; d(Ym, y) < I/n}. Furthermore, define

m-1

An,m := Bn,m \ ( U Bn,k).
k=1

Then for every n E :IN, {An,m, m E :IN} is a cover of M of pairwise disjoint Borel sets.
Now we set

In(x) := Ym for all x E 1-1(An,m).
fn is clearly of the desired type. Now let x E E, n E":IN. Then x E 1-1(An,m) for
some m E:IN, and In(x) = Ym E An,m, so that d(ln(x), f(x)) < I/n. 0

3 Consider again a general metricspace (M, d) and a sequence of countably valued
mappings from E into M. Then the union of the images of E under these mappings
is still a countable subset of M, and its closure in (M, d) is a separable subspace of
(M, d). Thus we can combine both lemmas into the following

Corollary Let 1 be a mapping from a measurable space (E, £) into a metric space
(M, d) equipped with its Borel a-algebra. Then the following two statements are
equivalent:

(i) 1 is measurable and takes values in a separable subspace of M;
(ii) 1 is the uniform pointwise limit of a sequence of countably valued, measurable

step functions.
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3. Measurability ofStochastic Processes

Let (0, A, P) be a probability space and let' T be an interval in lR+ or let T = lR+. A
real valued stoehastie proeessX = (Xt, t E T) with time parameter in T is a family of real
valued random variables indexed by T. (In this paper we will not distinguish between real
valued and extended real valued functions; - there will be no danger of confusion.) We
say that X is a modifieation of X, if for every t E T, P(Xt =j:. Xt) = 0 holds. We equip T
with its Borel O"-algebra B(T) and 0 x T with the product O"-algebra AQ9B(T). According
to convenience we shall write Xt(w) as weIl as X(w, t) for the evaluation of a stochastic
process X at (w, t) E 0 x T.

1 Definition A stochastic process X is called measurable, if the mapping

X:OxT--+lR

is A Q9B(T)-B(lR)-measurable.

2 Let a process X be given. Then we can associate with X the mapping

........
X: T--+Rp

t 1----+ Xt = [Xt]p,

where Rp is the space of P-equivalence classes [Y]p of real valued random variables
Y on (0,A, P).

By R Pb we denote the space of P-equivalence classes of P-a.s. bounded real
valued rand~m variables. We equip Rp,b with the normll.112 of L2(P). Without lo~
of generality we shallconsider from now on only processes X which are such that X
takes values in Rp,b. We call X (P-a.s.) uniformly bounded, if there is M > 0 so that
for all t E T and (P-a.e.) w E 0, IX(w, t)1 ::; M.

3 Lemma Assume that X = (Xt, t E T) is a,measurable stochastic process, so that
for all t E T, Xt isbounded. Then the following two equivalent statements hold:'

(i) X is measurable and takes its values in a separable, subspace of Rp,b;

(ii) X is a uniform pointwise limit of countably valued, measurable step functions.

Proof If we choose E = T, £ = B(T), M = Rp,b, and d as defined by 11.112on Rp,b,
then the equivalence of (i) and (ii) is just the statement of corollary 2.3.

First we reduce to the case that X is uniformly bounded. Assume that we have
shown that for every measurable, 'uniformly bounded process Y the properties (i) and
(ii) hold for Y. Let X be a process as in the hypotheses of the lem~a, and for n E :IN
set

w E 0, tE T.
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Then x(n) is uniformly bounded, and by our assumption we have that .xc;) is measur-
able and takes values in a separable subspace of Rp,b. For every t E T, xin) converges
pointwise on n to Xt. Since we can bound-IXt - xin) 1

2 from above by 4IXt/2, the
~ominated convergence theorem implies that x(n) converges to X in (Rp,b, 11 . 112).
x(n) being measurable, we obtain from lemma 1.1, that so is X. Furthermore, as the
limit of separably valued .xc;), X is separably valued, too. Thus, from now on we
may and do ass urne that X is uniformly bounded.

We denote by ti the set of all uniformly bounded processes X so that for X
property (i), and consequently also property (ii), holds. We show that ti is a vector
space which admits all the properties in the hypotheses of the monotone class theorem
(theorem 1 in appendix A). That ti is a vector space with 1 E ti is trivial from (i).
Next we show that ti is stable under uniform limits. Assurne that (Xn, n E N) is
a sequence in ti which converges uniformlyon n x T to X. Then in particular for
every t E T, (Xn(., t), n E N) converges uniformlyon n to X(., t), and therefore for
every t E T, (Z(.,t), n E N) converges in L2 (P) to X (.,t). By assumption, for every
n E N the mapping t 1----+ Z(., t) from T into (Rp,b, 11 .112) is measurable, and by
lemma 1.1, the same holds for t 1----+ X(., t). Moreover, since for all n E N, Z is
separably valued, so is X. (Set Moo = Un Z(T), which is a separable subspace of
(M, d). Let Mo be the closure of Moo. Then also Mo is separable. For every t E T
-we have X(t) = lirnn Z(t), Z(t) E Mo. Hence X(t) E Mo, because Mo is closed.)
Thus X fulfills (i) and we have X Eti, so that ti is closed under uniform limits.

Assurne that (Xn, n E N) is a uniformly bounded, increasing sequence of positive
processes in ti which converges to X. Clearly, X is uniformly bounded, too. By the
dominated convergence theorem, for every t E T, Xn(., t) converges to X(., t) in L2(P).
Thenwe can argue as in the previous case and find that ti is closed under limits of
uniformly bounded, increasing sequences.

Let C denote the set of processes X of the form

w E n,t E T,

with a, b E T, a < t, A E A. Clearly, C is closed under multiplication, and o-(C) =
A Q9B(T). By the monotone class theorem (theorem 1 in appendix A) ti contains all
uniformly bounded, measurable processes. " 0

4 Let X be as in the hypothesis of lemma 3.3, and let the sequence in statement (ii) of
lemma 3.3 be denoted by (Xn, n E N). Then for n E N, Xn is of the following form

00

Xn(t) =L [Hn,k]P 1An,k (t),
k=l

tE T,

where (An,k, k E N) is a sequence of pairwise disjoint Borel subs~ts which form a
partition of T and (Hn,k, k E N) is a sequence of random variables. Hence statement
(ii)of lemma 3.3 reads explicitly as follows:
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Corollary There exists a sequ~nce (X n, n E N) of processes of the form

00

Xn(w, t) =L 1An,k (t) Hn,k(W),
k=l

W E 0, tE T,

so that
1/2

sup (JE(X(., t) - Xn(., t))2) ---+ O.
tET n-+oo

4. Progressive Stochastic Processes

Let (0, A, P) be a probability space. For convenience we choose for T either an interval of
the form [0, a], a > 0, or JR+. A filtration Fon (0, A) is a family (Ft, t E T) of a-algebras
over 0 indexed by T, so that t > simplies Ft ::> Fs' We assurne throughout that for every
t E T, Ft C A.

I

1 Definition Suppose that X = (Xt, t E T) is a stochastic process and F = (Ft, t E
T) is a filtration on (0, A, P).

(a) X is called F-adapted, if for every t E T, Xt is Ft-measurable.
(b) X is called F-progressive, if for every t E T, the restriction of X to 0 x [0, t] is

Ft Q9 B([O, t])-measurable.

Whenever it is clear from the context which filtration is meant, we shall also
simply say "adapted", "progressive" respectively.

If X is F-progressive, then the theorem of Fubini- Tonelli implies that X is F-
adapted. The converse is in general false.

In order to prove the main result of this.section - aversion of the well-known theorem
of Chung, Doob and Meyer - we prepare a couple of simple lemmas.

2 Lemma Let (Ei, Ei), i = 1,2, be two measurable spaces and li, i = 1,2, measurable
mappings from (Ei, Ei) to (lR,B(lR)). Set

Then 11 Q9 12 is £1 Q9£2-B(lR)-measurable.

The proof is an elementary exercise in "turning the prayer-wheel" of measure
theory: Begin with indicators, move on to their linear combinations with positive
coefficients, take increasing limits to get the statement for all positive measurable
functions li, i = 1,2, and finally decompose general li into their positive and negative
parts. Details are left to the interested reader. .
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3 Given a filtration F = (Ft, t E T) and t E T, we set Ft+ := ns>t F8•

Lemma Let A E 8(T), r = inf A, and let Z be a random variable. Set Y = Z 01A.
Then Y is in the following cases F-progressive:

(a) r E A and Z is Fr-measurable, or

(b) r t/. A and Z is Fr+ -measurable.

Proof We only give the (almost trivial) proof for case (b), case (a) is similar (and
easier) . If t ~ r, then Y (s) = 0 for all s E [0,t], and hence the restriction of Y to
n x [0,t] is Ft 08([0, t])-measurable. Let t > 7. Then :Fr+ C Ft, and therefore Z is
Ft-measurable. Moreover, lA restricted to [0,t] is B([O, t])-measurable. Now we can
apply lemma 4.2 to conclude that the restrietion of Y to n x [0, t] is Ft 0 B([O, t])-
measurable. 0

4 Lemma Suppose that X is an F-adapted process, t E T, and (tn, n E lN) is a
sequence which converges to t. Assume furthermore that (Xtn, n E lN) converges
weakly in £p (P) to a random variable Z. Then the following statements hold:

(a) If (tn, n E lN) is decreasing to t, then Z is P-a.s. equal to an Ft+-measurable
random variable.

(b) If for all n E lN, IIXtnlip ~ M, then also IIZllp ~ M.

Proof

(a) Let Zn := Xtn, n E lN, so that a comparison with lemma 1 in appendix B shows
that Z is P-a.s. equal to a random variable which is measurable with respect to the
(J-algebra nn a(Xtk, k ~ n). On the other hand, since X is F-adapted, we have that
a(Xtk, k ~ n) C Ftn. Finally, we observe that nn :Ftn = Ft+, because Ft C Fs for
s ~ t.

(b) With the notation Bi := {Y E £q(P); IIYllq ~ I}, we have-

IIZllp = sup lE(ZY)
YEB~

= sup lim inf lE{Xtn Y)
YEB~ n

~ lim inf sup lE(Xtn Y)
n YEB~

= lim inf IIXtn lIqn

~M.

9
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tE T,

5 Theorem Assurne that X is a measurable, F-adapted process. Then it has a mea-
surable, F-progressive modificadon.

Proof We do the proof in several steps.

Step 1: With the following argument we reduce to the case that X is in addition
uniformly bounded. Suppose that we can show the statement of the theorem for
every uniformly bounded,measurable and F-adapted process, and let X be as in
the hypothesis. Consider Y = arctan X. Then Y i~ uniformly bound~d, and by~our
assumption Y has an F-progressive modification Y. Set X = tan Y. Then X is
progressive, too, and for t E T we have P(Xt = Xt) = P(arctanXt = Yt) = P(yt =
Yt) = 1. Hence X is also a modification of X. Therefore, we can from now on assurne
that X is uniformly bounded.

Step 2: By corollary 3.4 we know that there exists a sequence of processes (Xn, n E
N) of the form

00

Xn(t) =L Hn,k lAn,k (t),
k=l

where the An,k E B(T) form a partition of T, and (Hn,k, n, k E N) are random
variables, such that

lim sup IIX(t} - Xn(t)112 = O.
n~oo tET

By choosing a subsequence if necessary we may assurne that for every n E N we have

sup IIX(t) - Xn(t)112 ~ 2-n.
tET

)

This entails that for all n, k E N,

sup IIX(t) - Hn,k112 ~ 2-n.
tEAn,k

Step 3: We replace the Hn,k by other random variables so as to make the resulting
process F-progressive as follows. Let n, k E N, and define Tn,k := inf An,k'

Gase 1: Tn,k E An,k' Set
Xn k := X'T k', n,

Then we have

sup IIX(t) - Xn,kll
tEAn,k 2

~ Sup (1IX(t) - Hn,k112 + IIHn,k - X'Tn,k 112)
tEAn,k

~ 2-(n-l).

By lemma 4.3a, Xn,k 0 lAn,k isF-progressive.
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- -X := limsup Xn.
n

Gase 2: Tn,k (j. An,k. Choose a sequence (tm, m E :JN)in An,k which is decreasing to
Tn,k. Consider the sequence (Xtm, mE :JN)which is bounded in £2(p). By theorem
2 in appendix C, we may assurne - by selecting another subsequence, if necessary
- that (Xtm, m E :JN) converges weakly in £2(p) to some random variable Xn k.
~y lemma 4.4a, we may choose Xn,k as FTn,k+ -measurable. Therefore the proc~ss
Xn,k Q91An,k is F-progressive by lemma 4.3b. Moreover, by lemma 4.4b we have

sup IIX(t) - Xn,k112::; 2-(n-l),
tEAn,k

because (Xtm - Hn,k, m E :JN)converges weakly in £2(p) to Xn,k - Hn,k.

Step 4: For n E :JNdefine

00

Xn := '" Xn k Q9 1A k.~, n,

k=l

In view of lernEla 4.2 it is c1ear that Xn is measurable and by the previous step, for
every n E :JN,Xn is F-progressive. Moreover we have

sup IIX(t) - Xn(t)112 ::; 2-(n-l).
tET

But this implies that for every t E T, (Xn(t), n E :JN) converges P-a.s. to X(t),
uniformly in t E T. (The argument is the same as proving that £2-convergence
implies a.e. convergence of a subsequence.)

Step 5: Define

Then X is still measurable and F-progressive, because it is the pointwise lim sup of
mappings of this type. On the other hand, for every t E T, X (t) is P-a.s. the limit of
(Xn(t), n E :JN). Hence we have for every t E T, P(X(t) = X(t)) = 1, so that X is a
modification of X. 0

5. Approximation of Adapted Stochastic Processes

Throughout this section we suppose that X = (Xt, t E T) is areal valued stochastic
process, which belongs to £2(0 X T, A QSl ß(T), P QSl A) and which is adapted to a filtration
F = (Ft, t E T). As before, we assurne that T = [0, a]' a > 0, or T = lR+.

1 Definition Areal valued stochastic process Y = (¥t, t E T) is called P-a.s. (uni-
formly) sampie continuous if there exists a P-null set N E A so th(~.t for all w E CN,
the mapping t I----t Y(t,w) from T into lRis (uniformly) continuous.

11



Xn := (X /\ n) V (-n).

,2 Theorem There exists a sequence (Xn, n E N) of uniformly bounded, measurable,
F-adapted processes which are P-a.s. uniformly sampIe continuous, so that

Proof Consider a measurable, F-E,rogressive modificatiotl X of X, which exists ac-
cording to theorem 4.5. Because X is a modification of X, we have that for every
tE T,

1- 2nlXt-Xtl dP=O.

The theorem of Fubini- Tonelli entails that

Therefore it suffices to show the statement for X.

For n E N, set

Then Xn is uniformly bounded by n, and for all n E N, we have IXnl ::; lXI. Since
lXI E £2(P Q?) A), we may apply the dominated convergence theorem, and conclude
that (Xn, n ~ N) converges to X in £2(p Q9 A). Therefore in the sequel we may
assume that X is uniformly bounded, say by M > o.

Let W E 0 and extend X (w, .) to all of:IRby setting it identically zero outside T.
Let <P= 1[0,1], and for n E N, <Pn(U) = n<p(nu), U E:IR. Put

Xn(W, t) := (<Pn* X(w, .))(t), tE :IR,

and restrict Xn(w,.) to T. According to lemma 2 in appendix D, for every w E
0, Xn(w,.) is uniformly continuous on T. Lemma 5 in appendix D implies that
(Xn(w, .), n E N) converges in £2(T) to X(w, .). It is plain to check that IXn(w, t)1 ~
M for all n E N, (w, t) E 0 x T. Thus the dominated convergence theorem implies
that

as n ----+ 00 •

. I~ remains to show that Xn is F-adapted. Let t E T. Writing the convolution
<Pn* X as an integral, we have

Xn(w, t) = n rt X(w, s) ds
lt-1/n

= nlt
l[(t-l/n)VO,tJ(s) X(w, s) ds.

12



X is F-progressive so that its restrietion to n x [0, t] is Ft Q9B([O, t])-measurable.
It is trivial that l[(t-l/n)VO,t] has the same properties, and therefore the integrand is
Ft Q9B([O, t])-measurable. But then the. (first part of the) theorem of Fubini-Tonelli
states that W I----t Xn(w, t) is Ft-measurable. 0

The last theorem is a convenient starting point for the construction of the Itö integral
J~XS dBs of the processX against a Brownian motion via approximation by Riemann
type sums. .

Appendix A: Monotone Class Theorem

We prepare a powerful version of the monotone class theorem which can be found, e.g., in
[DM 78].

1 Theorem Let (E, E) be a measurable space, and H a vector space of bounded, real
valued functions on E which contains 1. Assume that the following holds:

(i) 1£ is closed under uniform convergence;
(ii) 1£ is closed und er limits of uniformly bounded, monotone increasing sequences of

nonnegative functions.

If C is a subset of H which is closed under multiplication, then H contains all bounded,
0"(C)-measurable functions. .

Proof Let C' be the algebra generated by C and 1, Le. I E C' is of the form

n

I = ao +L ak Ik '
k=l

for certain n E lN, ao, al, ... , an E R, 11, ... , In E C. Since 1 E H, C c 1£ and 1£ is a
vector space, we have C' c 1£.

Let .JAdenote the set of all algebras I of functions in H so that C' C I . .JAis
partially ordered by inclusion. Consider a chain Ti C 72 C ... eine ... in.JA. Then
.JAcontains also Uk Tk: If f, 9 E Uk Tk, then we can find k so that I, 9 E Tk, and
therefore I 9 E Tk, and I 9 E Uk Tk. Similarly, we can show that I + ag belongs to
Uk Tk for any a E R. Hence Uk Tk is an algebra, it contains C' and Uk Tk C 1£.
Therefore Uk Tk E .JA,and Uk Tk is an upper bound for the chai.n Ti C 72 c ... c
Tk c ... By Zorn's lemma, .JAhas a maximal element which we denote by Ta.

We are now going to prove that Ta shares all stability properties of H. Note that
1E Ta, because C' C Ta and 1E C'.

We show that Ta is c10sed under uniform limits. Assume that. (In, n E lN) is a
sequence of functions in Ta which converges uniformly to I. Since Ta C Hand 1£ is
stable with respect to uniform convergence, we have fEH. Assume that I fj. Ta. We

13



() {
I if I(x) ~ 1

1B X = o otherwise,

bring this in contradiction to the maximality of Ta as follows: Let 7ö be the algebra
generated by Ta and f so that our assumption implies that 7ö is strictly larger than
Ta. The contradiction follows if we can show that 7ö E JA. C' c 7ö is trivial, and so it
remains to show that 7ö c 1-£. Clearly, the uniform convergence of (fn, n E N) to f

-' entails the uniform convergence of (f!:, n E N) to IP, P E lN. Since I!:e Ta, we have
I!: E 1-£, and the stability of 1-£ with respect to uniform convergence implies IP E 1-£.
Similarly, for every 9 ETa, 9 . I!: E Ta c 1-£and these functions converge uniformly to
9 . IP, so that 9 . IP E 1-£. Thus we have 7ö c 1-£ and the proof of the stability of Ta
with respect to uniform convergence.

Next we prove that Ta is closed und er taking absolute values. Let f E Ta and recall
that III is bounded, say by M > O. By Weierstraß' theorem the function x f---t lxi can
be approximated uniformlyon [- M, M] by a sequence (Pn, n E N) of polynomials Pn.
Then Pn 0 I belongs to Ta and converges uniformly to II I, and therefore If I belongs
to' Ta. Consequently, Ta is also closed under the operations A and v.

Now we can show that Ta is closed under increasing limits of uniformly bounded
sequences of nonnegative functions in Ta. Let (In, n ElN) be such a sequence. Then
it has a limit I in 1-£. Als~ (I!:, n E lN) is monotone increasing to fP for all P E N.
Hence we have fP E 1-£. For 9 ETa, we decompose 9 = g+ - g- with g-1:. ~ 0 in Ta, by
the previous step. Then g-1:.Il:, increase to g-1:.IP. Therefore we have 9 fP E 1-£. Thus,
as before, the assumption f ~ Ta leads to a contradiction.

Consider the family
1) := {A c E; 1A ETa}.

Since Ta is an algebra it follows that 1) is stable with respect to intersections. 1E Ta
implies that E E 1), and the fact that Ta is a vector space entails that 1) is closed
under formation of complements. Finally, the stability of Ta with respect to unifC?rmly
bounded, monotone increasing limits of positive functions translates into the stability
of 1) with respect to countable unions of monotone increasing sequences. Thus 1) is
an intersection-stable Dynkin system and consequently, a a-algebra. It is clear, that
Ta. contains all bounded 1)-ß(lR)-measurable functions.

Finally, we show a(C) c 1) to conc1ude the proof: This impÜes that every a(C)-
measurable function is 1)-measurable, hence in Ta and consequently in 1-£. To this
end, we remark that we have a(C) c a(Ta), since C c Ta, so that it suffices to prove
that a(Ta) c 1). This in turn follows, if we can show that for every I E Ta,

B: . {x E E; I(x) ~ I} E 1),

because then we also have {x E E; I(x) ~ a} E 1)for all a E lR. To prove B E 1),
consider

and define
9 = (I A 1) V 0 E Ta.

14



Then (gn, n E N) decreases to ~:-8.,'or in other words, 1 - gn increases to lCB' Thus
we have lCB E 70 and hence also IB E 70. Consequently, B E V and the proof is
finished. 0

Appendix B: Weak £P -Convergence and Measurability

Let (0,A, P) be a probability space, and assurne that (Zn, n E N) is a sequence of rando~
variables in £'P(P), p ~ 1, which converges weakly in £'P(P) to a random variable Z. For
nE N set

A-n := U(Zk , k ~ n),

and furthermore define
A-oo:= n A-n.

nE lN'

1 Lemma Z is P-a.s. equal to an A-oo -measurable random variable.

Proof First we show that for every n E N, (Zk, k ~ n) converges weakly in £'P(P)
to IE(Z I A-n). To this end, let Y E £,q(P) with p-l + q-l = 1, and observe that by
Jensen's inequality we have that IE(Z I A-n) E £,q(P). Then we have for every k E N
with k ~ n,

IE(Y (IE(Z IA-n) - Zk)) = IE(Y IE(Z - Zk IA-n))

= IE(IE(Y I A-n) (Z - Zk)),

and by hypothesis the last term converges to zero as k tends to infinity.

Consequently, for every n E N there exists Nn E N with Z = IE(X I A-n) on the
complement of Nn. Set N = Un Nn E N. Then for all n E N, Z = IE(Z IA-n) on
the complement of the null set N.

Since Z E £'P (P) for some p ~ 1, we have that Z is P-integrable. Therefore
we can now apply Theorem VII.4.3 in [Do 53] with the result that the sequence
(Zn, n E -N) given by Zn := lE(Z I An), n E -N, converges P-a.s. to lE(Z I A-oo),
as n tends to -00. If we denote the exceptional set for this convergence by M, then
we have that Z = lE(Z IA-oo) on the complement of the P-null set NU M. 0

Remarks The theorem of Doob we used in the last step is a very simple consequence
ofDoob's second martingale convergence theorem (Theorem VII.4.2 in [Do 53], or, e.g.,
Theorem 19.9 in [Ba 91], Corollary 2.4 in [RY 91]), which is a convergence theorem
for martingales indexed by -N. It is very easy to use alternatively Doob's second
martingale theorem directly for the second step in the proof.

If one wants to avoid to use Doob's second martingale theorem or its above
mentioned cons.equence, one can simply set

I _

- {ZZ:= 0
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after the first step in the proof. Then Z is measurable with respect to the o--algebra

n An,
nE-lN"

where An denotes the augmentation of An by the P-null sets in A. For the application
of this result in sections 4 anii 5, one has then to augment the filtration considered
there, too. This gives somewhat weaker results than theorem 4.5 and theorem 5.2,
but for all practical purposes the differences are immaterial.

Appendix C: Theorem of Choice

In this appendix we give a proof of the classical theorem of choice, as one can find it, e.g.,
in [RN 55]. We begin with a (well-known) lemma.

1 Lemma Every Hilbert space is weakly complete.

Proof Let 1l be a Hilbert space with inner product (., .), norm 11 . 11 and dual 1l*.
Assume that (un, n E N) is a sequence in 1l, such that for every v E 1l ((Un, v), n E

N) is Cauchy. We have to show that there exists U E 1l so that for every v E 1l,
(un - U, v) ~ 0, as n tends to infinity.

Let v E 1l. Because ((un,v), n E N) is a Cauchysequence it converges, and
therefore this sequence is bounded. Le., ((un, .), n E N) is pointwise bounded on 1l.
The Banach-Steinhaus-theorem implies that ((un, .), n E N) is bounded in 1l*. By
the Riesz representation theorem we know that the norm of (un, .) in 1l* is equal to
lIunll. Thus (un, n E N) is bounded in 1l,say Ilunll ::;M, M > 0, for all n E N.

For v E 1l, set
L(v) := lim (un, v) .

n-7OO

Clearly, v I---t L(v) is linear (as the limit of linear mappings). Moreover it is continu-
ous:

IL(vr) - L(V2)1 = IHm (un, Vl - v2)1
n-7OO

::; lim sup I (un, Vl - V2) I
n-7OO

Therefore, by the Riesz representation theorem there exists U E 1l with Lv = (u, v).
. 0
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2 Theorem Every bounded sequence in a Hilbert space contains a weakly convergent
subsequence.

Proof Let (un, n E N) be a sequence in a Hilbert space 1-l which is bounded by
M > O. Let 1-lo be the closure of the span of the elements in (un, n E N). Then 1-lo
is a Hilbert subspace of 1-l.

We show first that there is a subsequence (un') and an element U E 1-lo so that
for all v E 1-lo, (UnI, V) --+( U, v) as n' ---+00. By construction, 1-lo is separable, and we
let (Vk, k E N) be a dense subset. Then for each k, ((Un,Vk), n E N) is a sequence
of real numbers, bounded by M IIvkll. The Bolzano-Weierstraß theorem implies that
this sequence contains a convergent subsequence. By the diagonal process we can
hence extract a subsequence (unI) so that for every k E N, (UnI, Vk) converges. 1.e.,
the subsequence (UnI) converges weakly ona dense subspace of 1-lo. Since (unI) is
bounded, (UnI) converges weakly on all of 1-lo. (Let v E 1-lo and c > 0 be given.
Choose k E N so that Ilv - vkll < c/2M, and choose n~ large enough so that for all
n' ~ n~, I(un" vk)1 :::;c/2. Then

I (Un', v) I :::; I (Un', Vk) I + I(Un', V - Vk) I
c:::;2+Mllv-Vkll

:::;c.)

In particular, for every V E 1-lo, ((Uni, v)) is a Cauchy sequence: (UnI) is weakly
Cauchy in 1-lo. Since 1-lo is Hilbert we can apply lemma 1 so that there exists U E 1-lo
with Un' --+ U weakly in 1-lo.

Now let W E 1-l. By the projection theorem (1-lo is a closed subspace of 1-l), W
admits an orthogonal decomposition W = Wo + wJ.. with Wo E 1-lo, wJ.. orthogonal to
1-lo. In particular, wJ.. is orthogonal to the elements of the sequence (unI) and to u:
(UnI, wJ..) = 0 for all n', (u, wJ..) = O. Therefore (unI - U, w) = (UnI - u,wo) --+ 0 as
n' ---+ 00. 0

Remark The reader might think that we can conclude the statement of this theorem
directly from the Banach- Alaoglu theorem. This is not so, because the weak topology
is in general not metrizable, and therefore sequential compactness does not follow
from compactness.

Appendix D: Smoothing in .cP(lR)

A nice reference for the results in this appendix, which are all well-known, is the book [Zy
88], chapters land 11. (Zygmund considers there (periodic) functions on an interval, but
the methods extend without effort to functions on JR or JRd .) .
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1 Lemma Let 1E .cP(IR), p ~ 1, and for y E IR set fy(x) := f(x - y), x E JRd. Then
IIfy - Illp converges to zero with y -t o.

The following proof is taken from the- book [Ba 91] of H. Bauer (Lemma 23.1).

Proof It suffices to consider y E IR with Iyl ::; 1.
First let f E Cc(JR) and choose a compact K in IR large enough so that for all

y E IR with Iyl ::; 1, suppfy c K. f is uniformly continuous on K so that we find
for given c > 0 a 8 > 0 so that Ix - x'I< 8, x, x' E K, implies I/(x) - l(x')1 < c.
Without loss of generality we may choose 8 ::; 1. But then we have for all y E JRwith
Iyl < 8 the inequality Ily(x) - f(x)1 < c for all x E K. From this we conclude

1m. IMx) -' f(x)IP dx =L JMx) - f(x)IP dx

::; cP IKI.

Now let f E .cP(IR), and let c > 0 be given. Choose f' E Cc(IR) so that 111 - f'lIp ::; c.
Then we also have Ilfy - f~ I/p ::; c, and

IIly - flip::; I/fy - f~llp + IIf - f'lIp + Ilf~- f'IIp
::; 2c + Ilf~- f'llp'

and the last term vanishes as y -t 0 by the first step.

2 As usual, we denote for two functions I, 9 their convolution by 1 * g, Le.,

(J * g)(x) = 1m. f(x - y) g(y) dy, x EIR,

whenever the integral on the right hand side is defined for every (or A-almost every)
x E JR. For example, f * 9 is everywhere defined, if f E £P(IR), 9 E £q(IR) with
p-l + q-q = 1. Moreover in this case we have the following:

Lemma Assurne that f E .cP(IR), 9 E .cq(IR) with p-l + q-l = 1. Then 1* 9 is
uniformly continuous.

Proof Let x, y E IR, then

by Hölder's inequality. Now we can apply lemma 1.

18
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3 Lemma Let (Ei, Ei, J-Li), i ~1,2, be two O"-finite measure spaces, f a positive
E1 Q9E2-B(lR)-measurable mapping from E1 x E2 into lR. For p ~ 1,

And the result follows upon division by IIIf(., Y) dJ.L2(y)II:/
q
.

4 Lemma (Young's Inequality) Let f E .cP(lR), 9 E.cq(lR),p,q ~ 1, withp-1+q-1 >
1. Let r be given by r-1 = p-1 + q-1 - 1. Then f * 9 E .cr(lR), and

A proof can be found, e.g., in [Zy 88]' p. 37 f, or in [RS 75], p. 28 f.

5 Let p ~ 1, and let cP E .c1(lR) n .cq(lR), p-1 + q-1 = 1 with cP ~ 0, IIcpll1= 1. For
n E lN, set

CPn(X) := n cp(nx), xE lR.

Assume that I c IR is an interval, where we allow also ::1::00 as endpoints. Furthermore
let f E .cP(I). We associate with fits trivial extension 1E .cP(IR), given by

1(x) = {~(x)

19
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Set
x E lR, n E N,

which is_well-defined and uniformly continuous by nQ2. We denote by In the restric-
tion of In, n E N, to I. '

Lemma For every n E N, In E £'P (I). Moreover, (In, n E N) converges in £'P (I) to
I.
Proo! The first statement follows from Young's inequality (lemma 4) for r = q = 1.
For the second consider

111- Inll~p(I) ~ 111- hll~p(lR)
=LI L (1(x) - J(x - v)) CPn(y)dyIP dx

=LIL cp(y)(1(x)-J(x-~))dyr dx

:s; (L cp(y) 111- f-y/nIIO(IR) dyr.
where we used lemma 3 in the last step. By lemma 1, the integrand of the last integral
converges pointwise to zero as n ---+ 00. On the other hand,

Ilf-y/nllp = Ilfllp
= 11111.cP(I),

so that 2<p 11111.cP(I) is a uniform majorant. Thus the result follows from an application
of the dominated convergence theorem. 0
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