Some Remarks on g-invariant Fedosov Star Products

and Quantum Momentum Mappings

MICHAEL FRANK MULLER AND NIKOLAI NEUMAIER

Januar 2003, Manuskripte Nr. 268



Zagangsnummer: 038893
Signatur:

UNIVERSITAT MANNHEIM
Bereichsbibliothek Mathematik und Informattk




Some Remarks on
‘g-invariant Fedosov Star Products and
Quantum Momentum Mappings

Michael Frank Miiller *

Fakultat fir Mathematik und Informatik
Universitit Mannheim
A5 Gebiude C
D-68131 Mannheim
Germany

" Nikolai Neumaier §

" Fakultat fiir Mathematik und Physik
Universitit Freiburg
Hermann-Herder-Strafle 3
D-79104 Freiburg i. Br.
Germany

January 2003
FR-THEP-2003/01
Mannheimer Manuskripte 268

Abstract

In these notes we consider the usual Fedosov star product on a symplectic manifold (M,w)
emanating from the fibrewise Weyl product o, a symplectic torsion free connection V on M,
a formal series Q € vZ2,(M)[[v]] of closed two-forms on M and a certain formal series s of
symmetric contravariant tensor fields on M. For a given symplectic vector field X on M we
derive necessary and sufficient conditions for the triple (V,, s) determining the star product *
on which the Lie derivative £Lx with respect to X is a derivation of . Moreover, we also give
additional conditions on which L£x is even a quasi-inner derivation. Using these results we find
necessary and sufficient criteria for a Fedosov star product to be g-invariant and to admit a
quantum Hamiltonian. Finally, supposing the existence of a quantum Hamiltonian, we present
a cohomological condition on  that is equivalent to the existence of a quantum momentum
mapping. In particular, our results show that the existence of a classical momentum mapping
in general does not imply the existence of a quantum momentum mapping.
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1  Introduction

The concept of deformation quantization as introduced in the pioneering articles [3] by Bayen,
Flato, Frgnsdal, Lichnerowicz and Sternheimer has proved to be an extremely useful framework for
the problem of quantization: the question of existence of star products * (i.e. formal, associative
deformations of the classical Poisson algebra of complex-valued functions C*(M) on a symplectic
or more generally, on a Poisson manifold M, such that in the first order of the formal parameter
v the commutator of the star product yields the Poisson bracket) has been answered positively by
DeWilde and Lecomte [9], Fedosov [11], Omori, Maeda and Yoshioka [22] in the case of a symplectic
phase space as well as by Kontsevich [18] in the more general case of a Poisson manifold. Moreover,-
star products have been classified up to equivalence in terms of geometrical data of the phase space
by Nest and Tsygan [21], Bertelson, Cahen and Gutt [5], Weinstein and Xu [25] on symplectic
manifolds and the classification on Poisson manifolds is due to Kontsevich [18]. Comparisons
between the different results on classification and reviews can be found in articles of Deligne [8],
Gutt and Rawnsley [14, 15|, Neumaier [19] and Dito and Sternheimer [10, 23].

Already at the very beginning of the investigations of deformation quantization various notions
of invariance of star products with respect to Lie group resp. Lie algebra actions were introduced
and discussed by Arnal, Cortet, Molin and Pinczon in [2]. Later on it was Xu who systemati-
cally defined the notion of a quantum momentum mapping for g-invariant star products in the
framework of deformation quantization in [26] that naturally generalizes the concept of the mo-
mentum mapping in Hamiltonian mechanics (cf. [1]) and computed the a priori obstructions for
its existence. Actually the notion of a quantum momentum mapping has proved to be essential
for the formulation of the quantum mechanical analogue of the Marsden-Weinstein reduction in
deformation quantization as it was studied by Fedosov in [13], where it was shown that in some
sense ‘reduction commutes with quantization’. For the application of the BRST quantization in
deformation quantization as it was introduced and discussed by Bordemann, Herbig and Waldmann
in {7] the existence of a quantum momentum mapping also turned out to be a major ingredient
of the construction. For the more special discussion of the example of reduction of star products
for CP™ as it was given by Bordemann, Brischle, Emmrich and Waldmann in [6] and was slightly
generalized by Waldmann in [24] again the use of a quantum momentum mapping the existence of
which can be shown explicitly in this case was the key ingredient of the consider_atioﬁs.

" Recently in [17] Hamachi has taken up afresh the question under which preconditions the usual
Fedosov star product admits a quantum momentum mapping and he has given a condition in terms
of parts of the Fedosov derivation used to define the star product which is assumed to be invariant
with respect to a symplectic Lie Group action on M.

In the present paper we want to generalize these results into two directions: Firstly we drop the
assumption of invariance of the star product with respect to a Lie group action and replace it by the
somewhat weaker invariance with respect to the action of a Lie algebra g. Secondly we make the




conditions given in [17] more precise and show that assuming that'there is a classical momentum
mapping the question of existence of a quantum momentum mapping relies on two cohomological
conditions on the formal series Q € vZ2,(M)[[v]] used to construct the g-invariant star product.

The paper is organized as follows: In Section 2 we collect some notations and give a very
short review of Fedosov’s construction. Here we also prove some technical details that enable us to
describe all derivations of the Fedosov star products in a very convenient way which turns out to be
very useful for the further investigations. In Section 3 we consider an arbitrary symplectic vector
field on M and give necessary and sufficient conditions for the Lie derivative with respect to this
vector field to be a derivation of the star product x under consideration. Furthermore we can also
specify additional conditions guaranteeing that this derivation is even quasi-inner. In Section 4 we
recall the definitions of g-invariant star products, quantum Hamiltonians and quantum momentum
mappings from [26] and apply our result of Section 3 to give criteria for the g-invariance of a Fedosov
star product. Finally, supposing that the Lie algebra action is Hamiltonian and the Hamiltonian
is equivariant with respect to the coadjoint action of g we moreover find conditions that permit
a decision whether quantum momentum mappings do exist. We conclude the paper with some
remarks on possible generalizations and further investigations.

Conventions: By C®(M), we denote the complex-valued smooth functions and similarly
['°(T*M) stands for the complex-valued smooth one-forms et cetera. Moreover, we use Einstein’s
summation convention in local expressions. '

2 Preliminaries

In this section we shall briefly recall the essentials of Fedosov’s construction of star products on
a symplectic manifold (M,w). As we assume the reader to be familiar with this construction we
shall restrict to the very minimum to introduce our notation (For more details we refer the reader
to [11, 12] and [19, Sect. 2], where we even used the same notation). Defining

WA = (X2 (VT M @ AT*M)) [[V]]- | (1)

it is obvious that W®A becomes in a natural way an associative, super-commutative algebra and
the product is denoted by u(a ® b) = ab for a,b € WA (By W®AF we denote the elements of
anti-symmetric degree k and set W := W®AL.). Besides this pointwise product the Poisson tensor
A corresponding to w gives rise to another associative product o on W®A by

aob=poexp (-;—Aijis(ai) ®is(3j)) (a®Db), | (2)

which is a deformation of u. Here i4(Y) denotes the symmetric insertion of a vector field Y €
I (T'M) and similarly i,(Y") shall be used to denote the anti-symmetric insertion of a vector field.
We set ad(a)b := [a,b] where the latter denotes the deg,-graded super-commutator with respect
to o. Denoting the obvious degree-maps by deg,, deg, and deg, = 19, one observes that they
all are derivations with respect to p but deg, and deg, fail to be derivations with respect to o.
Instead Deg := deg, + 2deg, is a derivation of o and hence (W®A, o) is formally Deg-graded and
the corresponding degree is referred to as the total degree. Sometimes we write WL ®A to denote
the elements of total degree > k.

In local coordinates we define the differential § := (1® dz?)is(8;) which satisfies 6> = 0 and is a
super-derivation of o. Moreover, there is a homotopy operator 5~ satisfying 661 +67 16+ o =id
where o : W@A — C°°(M)[[v]] denotes the projection onto the part of symmetric and anti-
symmetric degree 0 and d~la := k—_l'_—l(dar;z ® 1)iq(8;)a for deg,a = ka, deg,a = la with k+1 # 0




and 6 la := 0 else. From a torsion free symplectic connection V on M we obtain a derlvatlon
"V (1 ® dz*)Vp, of o that satisfies the following identities: [§,V] = 0, V2 = —Llad(R), where
R := wugRJ wdzt vV dz? ® dz* A dz! € W®A? involves the curvature of the connection. Moreover

we have §R = 0 = VR by the Bianchi identities.
Now remember the following facts which are just restatements of Fedosov’s original theorems

in [11, Thm. 3.2, 3.3] resp. [12, Thm. 5.3.3]: |
For all Q € vZ2,(M)[[v]] and all s € W3 with o(s) = 0 there exists a unique element r € W ®A'

such that )
Sr=Vr—-ror+R+1®Q and 4§ 'r=s. (3)
v

Moreover r satisfies the formula

1
r:ds+5_1_<Vr—;ror+R+1®Q) (4)

-

from which r can be determined recursively. In this case the Fedosov derivation
v .
D:=-6+V-— ;ad(r) (5)

is a super-derivation of anti-symmetric degree 1 and has square zero: D? = 0. Furthermore observe
that the D-cohomology on elements a with positive anti-symmetric degree is trivial since one has
the following homotopy fqrmula DD la + D 'Da = a, where D~ la = -1 (id’——[&‘l,vl—%ad(r)] a)
(cf. [12, Thm. 5.2.5)).

Then for any f € C*(M)[[v]] there exists a unique element 7(f) € ker(D) N W such that
o(r(f)) = f and 7 : C®(M)[[v]] — ker(D) N W is C[[v]]-linear and referred to as the Fedosov-
Taylor series corresponding to D. In addition 7(f) can be obtained recursively for f € C®(M)
from

") = £+57 (Vr(9) - Jadyr (). ©

Using D! one can also write 7(f) = f — D71(1® df). Since D as constructed above is a o-super-
derivation ker(D) N W is a o-sub-algebra and a new associative product * for C*°(M)][[v]], which
turns out to be a star product, is defined by pull-back of o via .

Observe that in (3) we allowed for an arbitrary element s € W with o(s) = 0 that contains no
terms of total degree lower than 3, as normalization condition for r, i.e. §~!r = s instead of the
usual equation 6 ~!r = 0. In the following we shall refer to the associative product * defined above
as the Fedosov star product (corresponding to (V,(,s)).

Now we shall give a very convenient description of all derivations of the star product * that
will prove very useful for our further considerations. To this end we consider appropriate fibrewise
quasi-inner derivations of the shape

Di = —%ad(h), (7)

where h € W and without loss of generality we assume o(h) = 0. Our aim is to define C[[v]]-linear
derivations of * by C®(M)[[v]] 3 f — o(Dx7(f)) but for an arbitrary element h € W with o(h) = 0
this mapping fails to be a derivation as Dj, does not map elements of ker(D) N W to elements of
ker(D) N W. In order to achieve this one must have that D and Dj, super-commute. As D is a
C][[v]]-linear o-super-derivation we obviously have

[D,D4] = ——ad(Dh)



and hence obviously Dk must be central, i.e. Dh has to be of the shape 1®A with A € T°(T*M)|[V]]
to have [D,Dp| = 0. From D? = 0 we get that the necessary condition for the solvablllty of the
equation Dh = 1 ® A is the closedness of A since D(1 ® A) = 1 ® dA. But as the D-cohomology
is trivial on elements with positive anti-symmetric degree this condition is also sufficient for the
solvability of the equation Dh = 1 ® A and we get the following statement.

Lemma 2.1  i.) For all formal series A € T°(T"M)[[v]] of closed one-forms on M there is a
uniquely determined element ha € W such that Dhy = 1® A and o(hg) = 0. Moreover hy
is explicitly given by ’

ha=D(1® A). (8)

it.) For all A € Z}R(M)[[V]j the mapping D4 : C®(M)[[v]] = C®(M)[[v]], where

D4f 1= 0w, r(f)) = 7 (~Zadlna)r()) ©)

for f € C®(M)[[V]] defines a C[[v]]-linear derivation of + and hence this construction yields
a mapping Zr (M)[[v]] > A~ Dy € Dergyj]] (C(M)[[V]], *)-

PROOF: The fact that hy = D~!(1 ® A) satisfies Dha = 1 ® A is obvious from the homotopy formula for
D and the closedness of A. In addition we have o(ha) = 0 since D! raises the symmetric degree at least
by 1. For the uniqueness of h4 let ha ha be another solution of the equations above, then we obviously have
D(ha — hA) = 0 and hence hy — ha = 7(y) for some ¢ € C®(M)[[]]. Applying o to this equation one
gets ¢ = 0, since g(ha) = a(hA) = 0 and o(7(¢)) = ¢, and hence hy = ha proving that hy is uniquely
determined by the above equations. For the proof of ii.) we just observe that the equation [D,Dp 4] = 0 which
is fulfilled according to i.) implies that Dy, 7(f) = 7(Daf) for all f € C*(M)|[[v]]. Using this equation and
the obvious fact that Dy, is a derivation of o it is straightforward to see using the very definition of * that
D4 as defined above is a derivation of *. The C[[v]]-linearity of D4 is also evident from the C[[v]]-linearity
of 1. ‘ a

Furthermore we now are in the position to show that one even obtains all C[[v]]-linear derivations
of * by varying A in the derivations D4 constructed above.

Proposition 2.2 The mapping

Zi(M)[[V]) 3 A+ Dy € Dergyp) (C=(M)[[V], *)

defined in Lemma 2.1 is a szectzon Moreover, Das is a quasi-inner derivation for all f e
Co(M)[[v]], i.e. Dgy = 1ad.(f) and the induced mapping [A] — [Da] from Hi(M)[v] =
Z3,(M)[[V)]/ B (M)[1] to Dercyuy(C=(M)[[v]] +)/Dertyy €= (M1} ) the space of C[l]]-lin-
ear derivations of * modulo the quasi-inner derivations, also is bijective. '

ProoOF: First we prove the injectivity of the mapping A — Da. To this end let D4 = Dy then we
get from Dy, 7(f) = 7(Daf) and from the analogous equation for A" that ad(hsa — ha/)7(f) = 0 for all
f € C®(M)[[v]] and hence h4 — h 4 must be central (since it commutes with all Fedosov-Taylor series), i.e.
we have hy — ha = ga a € C®°(M)[[v]]. But with o(ha) = o(ha) = 0 this implies g4 4/ = 0 and hence

ha = ha such that we get 1 ® A = Dhy = Dhy = 1® A’ proving the injectivity. For the surJectlwty we
start with an arbitrary derivation D of * and want to find closed one-forms A; such that D = Z =9 VD4,
inductively. Assume that we have found such one-forms for 0 < ¢ < k. — 1 such that D' =D — Z 0 Lyip A;
which obviously is again a derivation of x is of the shape D' = S0, v'D}. The kth order in v of the equation
D'(fxg) = (D'f)xg+ f x(D'g) for f,g € C*(M) yields that D}, is a vector field X3 € I'°(TM). Considering




the anti-symmetric part of D'(f * g) = (D' f) x g+ f x (D’g)-at order k + 1 of v we get that this vector field is
symplectic, i.e. Lx,w = 0 and because of the Cartan formula Aj := —ix,w defines a closed one-form on M.
Considering the derivation D4, it is a straightforward computation using the explicit construction above to
show that D4, f = Xix(f) + O(v) for all f € C*°(M). But then D' — v*Dg,, is again a derivation of * that
starts in order k + 1 of v and hence the surjectivity follows by induction. The fact that Dqs = %ad*( f) for
all f € C®°(M)[[v]] is obvious from the observation that 7(f) = f — D~!(1 ® df) and the obvious fact that
ad(f) = 0. From the above, the well-definedness of the mapping [A] + [D 4] follows and the bijectivity is a
direct consequence of the bijectivity of the mapping A + Da. a

Remark 2.3 Actually it is well-known that for an arbitrary star product  on a symplectic manifold
the space of C[[v]]-linear derivations is in bijection with Z},(M)[[v]] and that the quotient space of
these derivations modulo the quasi-inner derivations is in bijection with Hi (M)[[V]] (cf. [5, Thm.
4.2], observe that the proof given above is just an adaption of the idea of the general proof to our
special situation) but the remarkable thing about Fedosov star products is that these bijections can
be explicitly expressed in terms of D resp. D~ in a very lucid way which will be useful in the
following. '

To conclude this section we shall remove some redundancy in the description of the star products
* by (V, 9, s). This will ease the more detailed analysis in the following section. To this end we shall
recall some well-known facts about symplectic torsion free connections on (M,w). Given two such
connections say V and V' it is obvious that SV~V'(X,Y) := VxY — V%Y where X,Y € I®°(TM)
defines a symmetric tensor field SV‘_V' € F‘"’(V2 T*M ® TM) on M. Defining JV“V'(X, Y,Z):=
w(SV-V'(X,Y), Z) it is easy to see that oV~ V' € ' (\/>T* M) is a totally symmetric tensor field.
Vice versa given an arbitrary element ¢ € l"""(\/3 T*M) and a symplectic torsion free connection
V and defining S° € I'®°(\/2T*M @ TM) by o(X,Y,Z) = w(S°(X,Y),Z) then V° defined by
%Y = VxY — §9(X,Y) again is a symplectic torsion free connection and all such connections
can be obtained this way by varying ¢. Using these relations we shall compare the corresponding
mappings V and V' on W®A in the following lemma.

Lemma 2.4 With the notations from above we have
. . ' ]. !
V-V =—(de/ @dz")is(SV 7V (8;,0;)) = —ad(TV™Y), (10)
V .

where TV=V' € T®(\/*T*M ® T*M) C WRA! is defined by TV-V'(Z,Y; X) := oV-"V(X,Y, Z) =
w(SV‘V'(X, Y), Z). Moreover TV~V' satisfies the equations

S VTV—V' =R —R+ lTV—V' OTV—V’ .

oT =0 and V'TV-V' — R _ R _ ipv-v' { pv-v' (11)
v )

where R = }Zwithkldmi vV dz?! @ dz* A dz! and R’ = }—lwitR';kldmi vdr! ® dqck A dz! denote the

corresponding elements of W®A? that are built from the curvature tensors of V and V'.

ProoF: The proof of (10) is a straightforward computation using the very definitions from above. The first
identity in (11) directly follows from (10) and [, V] = [6, V'] = 0. The other identities in (11) are also easily
obtained squaring equation (10). O

Now we are in the position to compare two Fedosov derivations D and D’ resp. the induced
star products * and *' obtained from (V,Q, s) and (V',Q, s').



Proposition 2.5 The Fedosov derivations.D and D' coincide if and only if TV-V —r4r' =1®9
where 9 € vI'®(T* M)[[v]] which is equivalent to

VvV Rl-s+s =901 and Q-0 =dd. (12)

PROOF: Writing down the definitions of D and D’ using equation (10) the first equivalence is obvious since
TV-V' _r 4+ is central in (W®A, o) if and only if D = D’. For the proof of the second equivalence first
assume that we have TV-V —r + ¢ =1 ® 9. Applying 6! to this equation and using the normalization
condition on  and r’ we obtain the first equation in (12) since 61T~V = ¢V~V' @ 1. In order to obtain
the second equation in (12) we apply é to TV-V' _r 4+ =1®9 and a straightforward computation using
the equations for r and r’ together with the identities from (11) yields the stated result. To prove that the
converse is also true assume that the equations in (12) are satisfied and define B :=r —r' — TV-V' +1@9¢
W, ®AL. Then again a straightforward computation yields that B satisfies DB = —Bo B and 67 'B =0
such that the homotopy formula for § together with o(B) = 0 implies that B is the unique fixed point of
the mapping Wo®A! 3 a — 71 (Va — Lad(r)a+ Laoca) € Wo®Al. But 0 trivially is a fixed point of
this mapping and hence uniqueness implies that B = 0 proving the other direction of the second stated
equivalence. 0
As an important direct consequence of this proposition we get:

Deduction 2.6 For every Fedosov star product * obtained from (V,(,s) with s € W there is
a connection V', a formal series ' of closed two-forms and an element s’ € Wy without terms
of symmetric degree 1 such that the star product obtained from (V', ¥, s") coincides with *, and
hence we may without loss of generality restrict to such normalization conditions when varying the
connection and the formal series of closed two-forms arbitrarily.

PROOF: We write s = s/ + 0 ® 1 — ¥ ® 1 and the preceding proposition states that D coincides with
D’ (and hence the corresponding star products coincide) where D' is obtained from ' = Q — dJ and
V' =V - Lad(é(c ®1)). : O

3 Symplectic Vector Fields as Derivations of

Throughout this and the following section let * denote the Fedosov star product obtained from
(V,Q,s) as in Section 2 where in view of Deduction 2.6 we may assume that s € Wy contains no
part of symmetric degree 1. Furthermore X € I'*™ (T M) shall always denote a symplectic vector
field on (M,w) and the space of all these vector fields shall be denoted by re (M) = {Y €
[°(TM)|Lyw = 0}. It seems to be folklore and actually is not very hard to prove that the
conditions [Lx,V] = 0, Lx = 0 = Lxs are sufficient to guarantee that the Lie derivative with
respect to X is a derivation of *. Besides providing a very simple proof of this fact, our aim in this
section is to prove that the converse is also true, i.e. the conditions given above are also necessary
to have that X defines a derivation of *. Moreover, we find an additional cohomological condition
involving w, Q and X that is equivalent to Lx being even a quasi-inner derivation.

" As an important tool we need the deformed Cartan formula (cf. [19, Appx. A]) that relates the
Lie derivative with respect to a symplectic vector field X with the Fedosov derivation D.

Lemma 3.1 For all X € Iy, (T M) the Lie derivative Lx can be expressed in the following
manner:

1 1
Lx = Dia(X) +ia(X)D — —ad <9X ®1+;D6x ®1- z'a(X)r) , (13)

where D := da*'V Vj, denotes the operator of symmetric covariant derivation and the closed one-
form Ox is defined by Ox = ixw.




PROOF: Sinée the Lie deri\}ative is a local operator it suffices to prove the above identity over any contractible
open subset U of M. But as X is symplectic it is locally Hamiltonian, i.e. over U there is a function
f € C®(U) such that X|y = Xy resp. df = 6x|y. For Hamiltonian vector fields the Cartan formula
as above was proved in [19, Prop. 5] and hence equation (13) is valid for all symplectlc vector fields

X eT®, (TM). , . O
As an immediate consequence of the precedmg lemma we have:
% o(TM) the Lie derivative Lx is a derivation with respect to o. In

addition we have [6, Lx] = [671,Lx] = 0.

Lemma 3.2 For X € I'®

PROOF: The first statement of the lemma is obvious from equation (13) and the commutation relations follow

from the fact that Lx is compatible with contractions and preserves the symmetric and the anti-symmetric

degree. » ' 0O
After these rather technical preparatlons we get

Prop051t10n 3.3 Let X € I"symp(TM) then Lx is a derivation of * if and only if [Lx,D] = 0
which is equivalent to the existence of a formal series Ax € I'°(T*M)|[v]] of closed one-forms such
that D (0x ® 1+ 3D0x ® 1 — ig(X)r) = 1 ® Ax.

PRrOOF: First let us assume that [Lx,D] = 0 then the obvious equation Lx oo = o o Lx implies that
Lx7(f) = 7(Lxf) for all f € C®°(M)[[v]]. But with this equation and the fact that Lx is a deriva-
tion of o it is straightforward to prove that Lx is a derivation of *. Assuming that Lx is a deriva-
tion of * Proposition 2.2 implies that there is a formal series Ax of closed one-forms on M such that
Lxf = o(—Lad(D™'(1® Ax))7(f)) but on the other hand the deformed Cartan formula yields Lx f =
o(—3ad (0x ® 1+ 3D0x ® 1 —ia(X)r) 7(f)) and hence D (1@ Ax)— (0x ® 1 + 1 DOx ® 1 — ig(X)r) has
to be central, i.e. a formal function. Observing that D! raises the symmetric degree at least by 1 and that r
-contains no part of symmetric degree 0 which is due to the special shape of the normalization condition this
implies D~ (10 Ax) = (0x ® 1+ 3D0x ®1 — iy(X)r). Applying D to this equation and using the homotopy
formula for D together with the fact that Ax is closed we get D (0x ® 1+ 1D0x ® 1 — ia(X)r) = 1® Ax.
Assuming finally that this equation is fulfilled, the deformed Cartan formula together with D? = 0 obviously
implies [Lx,D] = 0 since 1 ® Ax is central and hence the proposition is proved. O
We shall now go on by analysing the condition ‘

1
D(Gx®l+§D9){®1-—ia(X)r> =18® Ax, where dAx =0 (14)

in more detail in order to find out whether it gives rise to conditions on (V,$,s) and X.

Lemma 3.4 For all symplectic vector fields X e T, (T'M) we have
1 ) 1
D (ex ®1+:Dx ®1- za(X)r>_ = -1@0x+V (EDOX ® 1) — LxT—ig(X)R—1®ixQ. (15)

PROOF: The proof of this equation is a straightforward computation using the equation that is solved by r

and the deformed Cartan formula (13) once again. O
Next we shall need some detailed formulas that describe [V, Lx] in order to simplify the result

of the above Lemma. The proofs of the following two lemmas are just slight variations of the proofs

of [19, Lemma 3 and Lemma 4].

Lemma 3.5 For all X € T, (T M) the mapping [V, Lx] enjoys the following properties:

symp



i.) In local coordinates one has

[V, £x] = (d2? ® da')is(£xV)5,05) = (do? © da')is(Sx(85,9,)), (16)
- where the tensor field Sx € T°(T*M @ T*M ® TM) is defined by .

Sx(8:,8;) = (LxV)a,0; == LxV8,0; — Vo, Lx0j — V5,0 = R(X,8,)9; + V{5 o X. (17)

ii.) Sx as defined above is symmetric, i.e. Sx € T®(\V2T*M @ TM).
ii.) For all U,V,W € T®°(TM) we have w(W, Sx(U,V)) = —w(Sx(U,W),V).

Now the tensor field Sx naturally gives rise to an element Tx € I'°(\/>T*M ® T*M) of WA'
of symmetric degree 2 and anti-symmetric degree 1 by

Tx(W,U; V) = w(W, Sx(V,U)) B CLY
and we have:
Lemma 3.6 The tensor field Tx as defined in (18) satisfies the following equations:
i.) zad(Tx) = [V, Lx], | | |
i.) Tx = io(X)R—V (3D0x ® 1),
ii.) Tx =0 and VTx =LxR.

" From the preceding lemma we find that the result of Lemma 3.4 simplifies to
1 ,
D (9}( ®1+4+ §D9X ®1 —ia(X)T) =-1®0x —Tx —Lxr —1®ix. (19)

Finally we have to find equations that determine Lx in order to analyse eqﬁation (14).

Lemma 3.7 Let X denote a symplectic vector field then Lxr satisfies the equations
1 1
SLxr =VLxr — ;ad(r)[lxr — ;ad(TX)r +LxR+1QdixQ and 6 'Lxr = Lxs (20)

from which Lxr is uniquely determined and can be computed recursively from
1 1
Lxr=0Lxs+ 5t (Vﬁx’r — ;ad('r),CXr — ;a.d(Tx)’r‘ +LxR+1® dixg> .

ProoF: For the proof of (20) one just has to apply £x to the equations that determine r and to use
the commutation relations of the involved mappings. From these equations it is straightforward to find
the recursion formula for £x using the homotopy formula for §. Using statement iii.) of Lemma 3.6 the
argument for the uniqueness of the solution of these equations is completely analogous to the one used to
prove the uniqueness of 7 and hence we leave it to the reader. : O

After all these preparations we are in the position to formulate the main results of this section.

Theorem 3.8 Let X be a symplectic vector field and let * be the Fedosov star product corresponding
to (V,Q,s), where s € Wy contains no part of symmetric degree 1. Then, Lx is a derivation of *
if and only if Tx =0, LxQ =0 and Lxs =0, i.e. if and only if X is affine with respect to V and
s and Q are invariant with respect to X. '



PrOOF: First let Tx = 0 = LxQ = Lxs then we have LxR = VTx = 0 and dixQ = 0 and hence
Lxr = 61 (VLxr — Lad(r)Lxr). But this implies Lxr = 0 and then obviously [D,Lx] = ~ad(Tx +
Lxr) = 0 such that Proposition 3.3 implies that Lx is a derivation of *. To prove the converse we again
use Proposition 3.3 which says that in case Lx is a derivation of * there is a formal series Ax of closed
one-forms on M such that D (fx ® 1+ 1Dx ® 1 —iq(X)r) = 1® Ax. Together with equation (19) this
yields Lx7 = —(1® (6x + Ax +1ixQ) + Tx). Applying & ~1 to this equation and using the second equation
in (20) we get ‘ ~
‘ : ﬁxsz—(ex-}-AX+ixQ)®1—5_lTx.

Now s and hence Lxs is in Wy and has no part of symmetric degree 1 such that this equation implies
Lxs=0,0x + AX +ixQ =0and §1Tx = 0. Since x and Ax are closed the second of these equations
implies 0 = dixQ = Lx and using the homotopy formula for ¢ together with é7x = 0 the last equation
yields Tx = 0 which is equivalent to X being affine with respect to V according to the Lemmas 3.5 and 3.6.
Finally one can insert the above expression for £xr into the first equation in (20) which turns out to be
satisfied identically, which is just a check for consistency. O

Finally we can give an additional condition for Lx to be even a quasi-inner derivation of x*
which is originally due to Gutt [16].

Proposition 3.9 Let X be a symplectic vector field such that Lx is a derivation of * then Lx is
even quasi-inner if and only if there is a formal function f € C*°(M)[[v]] such that

df =0x +ixQ =ix(w+ Q) (21)

and then Lx = £Xf0 = ~11;ad*(f), where we have written f = fo + fy with fo € C®°(M) and
f+ e vC=(M)[[v]].

PRrOOF: From equation (13) it is obvious that Lx is quasi-inner if and only if there is a formal function
f € C®(M)[[v]] such that 7(f) = f + 6x ® 1 + £DOx ® 1 — iy(X)r but using equation (19) together with
Tx =0, Lxr = 0 and Df = 1 ® df this is equivalent to (21). In fact the necessary condition for the
solvability of this equation is fulfilled since ix {2 is closed according to Theorem 3.8 and fx is closed as X
is symplectic. Moreover, observe that the zeroth order in v of (21) just means that X is Hamiltonian with
Hamiltonian function fg and hence the second statement of the Proposition is immediate. O

4 g-invariant Star Products x and Quantum Momentum Mappings

In this section we shall use the results of Theorem 3.8 to find necessary and sufficient conditions for
the star product * to be invariant with respect to a Lie algebra action. Furthermore Proposition
3.9 gives criteria for the existence of a quantum Hamiltonian and with some little more effort we
shall find a last condition which is necessary and sufficient for this quantum Hamiltonian to define
a quantum momentum mapping for *.

First let us recall some definitions from [26]. Let us consider a finite dimensional real or complex
Lie algebra g and let X. : g — 'S (T'M) : £ — X, denote a Lie algebra anti-homomorphism, i.e.
[Xe, Xn] = —Xjg,y for all §,m € g. Then obviously o(§)f := —Lx, f defines a Lie algebra action of
g on C*°(M) that naturally extends to a Lie algebra action on C®(M)[[v]].

Definition 4.1 With the notations from above a star product * is called g-invariant in case o(§)
is a derivation of x for all £ € g.

From Theorem 3.8 we obviously get:

10




Deduction 4.2 The Fedosov star product x constructed from (V,,s), where s € Wy contains
no part of symmetric degree 1, is g-invariant if and only if X¢ is affine with respect to V for all
£ €g, ie [V,Lx,]=0VE € gand Q) and s are invariant with respect to X¢ for allf € g, i.e
dZX‘fQ £X€Q—0—£X€SV§EQ

Let us introduce some notation: Considering some complex vector space V endowed with a
representation 7 : g — Hom(V,V) of the Lie algebra g in V' we denote the space of V-valued
k-multilinear alternating forms on g by C* (g, V) and the corresponding Chevalley-Eilenberg differ-
ential shall be denoted by d, : C*(g,V) — C**!(g, V). Moreover the spaces of the corresponding
cocycles and coboundaries resp. the corresponding cohomology spaces shall be denoted by Z%(g, V)
and BE(g, V) resp. HE(g,V). '

Now the Lie algebra action ¢ is called Hamiltonian if and only if there is an element Jo €
C'(g,C*(M)) such that X j,(s) = X¢ forall £ € g, i.e. ix,w = dJo(€). In this case o(€)- = {Jo(¢), '}
and Jy is said to be a Hamiltonian for the action g (For applications in physics where typically
g is the real Lie algebra corresponding to a Lie group that acts on M by symplectomorphisms
and where the generating vector fields X, are real-valued the Hamiltonian Jy is assumed to be

real-valued, too.). In case Jy is equivariant with respect to the coadjoint representation of g, i.e.
{J0(8), Jo(n)} = Jo([£, n]) for all £,n € g one calls Jp a classical momentum mapping.

Definition 4.3 Let x be a g-invariant star product, then J = Jy + J; € CY(g,C®(M))([v]] with
Jo € CY(g,C®(M)) and J; € vC'(g,C®(M))[[V]] is called a quantum Hamiltonian for the action

0 in case

N of6) = ;ad (J(§) forall ¢eg, (22)
J is called a quantum momentum mappingv if in addition '
) * T) = T) % I(€) = () (23)

for all &,m € g.

_ Observe that the zeroth order in v of (22) is equivalent to Jo being a Hamiltonian for ¢ and
that the zeroth order in v of (23) just means equivariance of this classical Hamiltonian with respect
to the coadjoint action of g or equivalently that Jo is a classical momentum mapping. For Fedosov
star products the fact that Jp has to be a classical Hamiltonian for o can also be seen directly from
Proposition 3.9 as we have the following: ‘

Deduction 4.4 A g-invariant Fedosov star product for (M,w) obtained ffom (V,9Q,s) admits a
quantum Hamiltonian if and only if there is an element J € C'(g,C=(M))[[V]] such that

dJ(¢) =ix,(w+Q) VEeg < [iXe(w"'Q)]:[O] VéEeg - (29)
and from this equation J is determined (in case it ezists) up to elements in Cl(g,O)[[v])-

Remark 4.5 Observe that the condition HL (M) = 0 is obviously sufficient for the existence of
o quantum Hamiltonian for an arbitrary g-invariant star product x since then any C[[v])-linear
derivation of * is quasi-inner. But for g-invariant Fedosov star products * the condition for the
ezistence of a quantum Hamiltonian is much weaker and more precise since only the cohomology
classes of very special closed one-forms have to vanish and not the complete cohomology

Now recall the definition of a strongly invariant star product from [2]:
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Definition 4.6 Let Jy be a classical momentum mapping for the action ¢. Then a g-invariant star
product is called strongly invariant if and only if J = Jy defines a quantum Hamiltonian for this
action.

Observe that the notion of strong invariance does not depend on the chosen classical momentum
mapping since every classical momentum mapping is of the form Jy+b with b € Z& (g,C) and hence
every classical momentum mapping defines a quantum Hamiltonian for g in case Jy does. Moreover,
in the case of a strongly invariant star product x every classical momentum mapping Jy obviously
yields a quantum momentum mapping J = Jy since Lad.(Jo(€))Jo(n) = {Jo(£), Jo(n)} = Jo([, 7))
for all £,n € g. As an immediate corollary of Deduction 4.4 we have:

Corollary 4.7 Let Jy be a classical momentum mapping for the action o. Then a g-invariant
Fedosov star product x obtained from (V,Q,s) is strongly invariant if and only if

ix, =0 foral f€g. ‘ (25)
In this case every classical momentum mapping defines a quantum momentum mapping for *.

PROOF: According to Deduction 4.4 a classical momentum mapping Jo defines a quantum Hamiltonian for
* if and only if dJo(§) = ix, (w + Q) for all £ € g but because of dJo({) = ix,w this is equivalent to equation
(25). ' ]

Returning to the general case our next aim is to give a further condition involving w, £ and
X. which in addition guarantees that a quantum Hamiltonian J is in fact a quantum momentum

mapping.
Proposition 4.8 Let J be a quantum Hamiltonian for the Fedosov star product x then \ €

C%(g,C>(M))[[v]] defined by

NE ) = 3 (J() = I(m) = () = J() ~ () @9
lies in C%(g, C)[[v]] and is an element of ZZ(g, C)[[v]] which is explicitly given by

M) = (+ Q)(Xe Xp) = I((En]) e

and the cohomology class [\] € H§(g, C)[[v]] does not depend on the choice of J. Moreover quantum
momentum mappings ezist if and only if [\ = [0] € H3(g,C)[[v]] and for every a € C'(g,C)[[v]]
such that dopa = A the element J* := J —a € C'(g,C®(M))[[V]] is a quantum momentum map-
ping for x. Finally, the quantum momentum mapping (if it exists) is unique up to elements in
Z}(g,C)[[v]], and hence we have uniqueness if and only if H}(g,C) = 0.

PROOF: In fact all the statements of the proposition except for the explicit shape of A hold for any g-invariant

star product x according to [26, Prop. 6.3] and are straightforward to prove. It thus remains to prove (27)
but this follows from the following computation using equation (24):

M) + (1€ 7)
— e (@) = ~Lx,I(n) = ~ix I (1) = ixgix, 0+ 0) = (w+ 2)(Xe, X,).

a
Again, for Fedosov star products the second condition for the existence of a quantum momentum
mapping can be formulated more precisely than in the general case since the cocycle A whose
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cohomology class has to vanish to get a quantum momentum mapping can be expressed explicitly

in terms of w,  and X.. Obviously, supposing the existence of a classical Hamiltonian for ¢ the

zeroth order of this condition is equivalent to the existence of a classical momentum mapping.
Let us consider the important example of a semi-simple Lie algebra g in more detail:

Example 4.9 In case g is semi-simple we have the following properties: [g,g] = g(= Hj(g, C) = 0)
and H(g,C) = 0. But then [g,g] = g implies writing £ = Zkel[c(k),n(k)] (the sum ranges over a
finite index set I) with ¢®) nk) e g and using the invariance of w + Q with respect to X and
X, vy that

n

iXE(w + Q) = — Zi[xg(k) ’Xn(k)](w + Q)

kel
==, Lx,gix o (W + ) =d (Z(w + 9)(X¢(k),Xn(k)\))
kel kel

and hence for all £ € g there is a J(£) € C®°(M)[[v]] such that dJ(§) = ix (w + ). Moreover, one
can achieve that J € Cl(g,C®(M))[[v]] implying that J defines a quantum Hamiltonian for * (e.g.

fiz a basis {e;}1<i<dim(g) of 8, write &; = Zke],- [Ci(k),nfk)], define J(e;) := Zkeh (w—i—'Q)(XC_(k), Xn(k))
such that dJ(e;) = ix,, (w + ) holds according to the above computation and ertend J to gl by
linearity yielding J € C(g,C®(M))[[V]] with dJ(§) = ix,(w + Q)VE € g.). This observation
together with the statements of Proposition 4.8 and H}(g,C) = H(g,C) = 0 implies that in this
case there is a unique quantum momentum mapping for every g-invariant Fedosov star product.

Returning to the case of an arbitrary Lie algebra g we also have the following:

Corollary 4.10 Let * be a g-invariant Fedosov star product and assume that there is a classical -
momentum mapping Jo for the action o, then a quantum momentum mapping J exists if and only
if there is an element J1 € vC(g,C°(M))[[v]] such that

ix,2=dJi(§) and QX Xy) =(6J1)(En) YENESD, (28)

and these equations determine Jy up to elements of vZj(g, O)[[V]]-

PROOF: Assuming the existence of a classical momentum mapping it is obvious that (24) and the equation
A&, m) = 0 for all ¢,n € g reduce to ix, 2 = dJ¢(£) and Jo([&, 1) = Q(X¢, X,,) and it is straightforward
to see that these two equations are equivalent to (28). The statement about the ambiguity of J; is obvious
from Proposition 4.8. O

Observe that the condition for the existence of a quantum momentum mapping for g-invariant
Fedosov star products given in the above corollary does not depend on the chosen classical momen-
tum mapping but only on €2 and X.. Moreover, our result shows that the answer to the question
whether existence of a classical momentum mapping implies the existence of a quantum momentum
mapping posed in [26] in general is no if one allows for star products whose characteristic class is
different from i[w] since the conditions above involve the two-form Q that determines this class
(cf. [19]) and that has to be different from zero in this case. One can even construct very simple
examples where Q is even exact and hence the characteristic class is equal to %[w] but nevertheless
there exists no quantum momentum mapping.
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Outlook and open Problems

Let us conclude w1th a few remarks on our results and some p0551b1e generahzatlons and questions
that could be studied in the future:

i. ) It should be possible to adapt our investigations to the case of star products of Wick type

. on Semi-Kahler manifolds by imposing additional conditions on the compatibility of the Lie
algebra action with the complex structure and due to the results of [20] such investigations
would give a complete answer for all such star products. These investigations will be subject
of a future project.

ii.) A second possibility for generalizations could be to weaken the conditions imposed on a

quantum momentum mapping and to drop the condition that Lad,(J(€)) should equal the
Lie derivative with respect to —X¢ but to stick to the condition of quantum covariance
(23) (which is reasonable since this notion behaves properly with respect to equivalence
transformations of star products, which is not the case for the notion of quantum momentum
mappings considered in this paper) and to demand that 2ad,(J(¢)) = —C x¢ +O(v) is merely
a deformation of the classical Lie algebra action p. Actually our results that establish a
strong relation between the characteristic class of the Fedosov star product and the question
of existence of a quantum momentum mapping suggest that such a relation should also exist
- in general. Maybe the fact that any star product is equivalent to a Fedosov star product
together with the results of the present paper can be used to obtain results in this direction.
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