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1. Introduction

. \

When attempting to quantize the electron in 1928, Dirac introduced a first-order
operator the square of which is the so-called wav~-operator (d' Alembertian oper-
ator). Lateron, in the hands of mathematicians keneralizations of this operator,
called 'Dirac operators' - evolved into an importaht tool of modern mathematics,
occuring for example in index theory, gauge theodl' geometric quantisation etc.

More recently, Dirac operators have assumed a significant place in Connes' non-
commutative geometry [C] as the main ingredient in\the definition of a K-cycle. Here
they encode the geometric structure of the underly~ng non-commutative 'quantum-
spaces'. Thus disguised, Dirac operators re-enter rhodern physics, since non-corn-

I
mutative geometry can be used, e.g. to derive the action of the standard model
of elementary particles, as shown in [CL] and [Ki]. Initially, it remains unclear
wether it was possible to also derive the EinsteinJ\Hilbert action of gravity using
this approach. And again, it was a Dirac operator which proved to be the keyto
answer this question. According to Connes [Cl, tue 'usual' Dirac operator D on
the spinor bundle S associated to the Levi-Civita cdnnection on a four-dimensional
spin manifold M is linked to the euc1idian EinsteiJ-Hilbert gravity action viathe
Wodzicki residue of the inverse of D2. This was shdwn in detail in [K2]. A furthet
question that naturally arises is the the dependenc~ of this result from the chosen
Dirac operator D. In other words, does Res(D-2) ~hange if D is a Dirac operator
on S different £rom the 'usual' one ? I
In this paper we answer this question affirmatively. Moreover, in section 3, we
compute the lagrangian of an appropriatly defined ~ravity action

\

ICR(D) := - 2n(2~ _ 1) Res(p-2n+2) (1.1)

\

for the most general Dirac operator D associated tp a metric connection V on a
compact spin manifold M with dirn M = 2n 2: 4. We proceed as follows; Accord-
ing to the main theorem of [KW], there is a relation between the Wodzicki residue
Res(6. -n+l) of a generalized laplacian 6. on a hermitian bundle E over M and
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<Pl(X, X, .6.), whieh denotes the the subleading term of its the heat-kernel expan-
sion. It is well-know that, given any generalized Laplaeian .6. on E, there exists a
e~nnection VE on E and aseetion F of the endomorphisin bundle End(E), such
that .6. deeomposes as

.6. = 6 fv E + F. (1.2)

However, this has a slight flaw. The deeomposition (1.2) neither provides any
method to eonstruet the eonneetion VE nor the endomorphism F explieitly. Nev-
ertheless, it is exaetly this endomorphism F E r(EndE) whieh fully determines
the subleading term <Pl(X, x,.6.) of the heat-kernel-expansion of .6. (cf. [BGV]).
Thus the the problem of eomputing Res(.6. -n+l) is transformed into the problem
of eomputing F.

For an arbitrarygenerallaplaeian, this might prove to be diffieult. However, in the
ease where E = Sand the generallaplaeian 6. is the square jj2 of a Dirae operator
assoeiated to an arbitrary metrie eonneetion \7 on TM, a eonstruetive version of
(1.2) ean be proved. This will be shown in seetion 2. Beeause of its dose relationship
to the well-known Liehnerowiez formula (cf. [L]) we eall our deeomposition formula
a 'generalized Liehnerowiez formula'. We understand it as beein intrinsie to the the
Dirae operators studied in this paper.

As already mentioned, we will compute the lagrangian of (1.1) in section 3, using
our generalized Liehnerowiez formula as the main teehnieal too!. From a physieal
point of view, this lagrangian ean be interpreted as defining a modified (eudidian)
Einstein-Cartan theory.

2. A generalized Lichnerowicz formula

Let M be a spin manifold with dim M = 2n and let us denote its Riemannian metrie
by g .. The Levi-Civita eonneetion \7: r(TM) -+ r(T* M 0 TM) on M induees a a
eonneetion \75: r(S) -+ r(T* M 0 S) on the spinor bundle S whieh is eompatible
with the hermitian metrie < >5 on S. By adding an additional torsion term
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I
t E [21(M, EndTM) we obtain a new covariant de1rivative

I

V:= V +t \ (2.1)

on the tangent bundle TM. Since t is really a one-form on M with values in the
I -bundle of skew endomorphism Sk(T M) (cf. [GHV]), V is in fact compatible with

the Riemannian metric g and therefore also indJces a connection VS = VS + T
on the spinor bundle. Here T E [21(M, EndS) ~enotes the 'lifted' torsion term
t E [21(M, EndTM). However, in general this iJduced connection VS is neither
compatible with the hermitian metric < ., . >S hor compatible with the Clifford

I
action on S. With respect to a local orthonormal frame {eah:::;a:::;2n of TMluCM

we have l
Ve eb = Wabeea t:= abc ea 0 eb 0 ee

"S _ 1 a b tO. e nS _ 1 la b tO. ( + t ) e
v SI - 4" , , SI VY Wabee v SI - 4" '\ ' SI 'U Wabe abc e

where Wabe denotes the components of the Levi-Ciyita connection, {eah:::;a:::;2n the
corresponding dual frame of {eah<a<2n and {sIH<I<dim S a local frame of Slu.
Nnote that we use the following co~ve~tions \ - - .

{-ya, ,,'} = _2~a', [ia, ,,'I = 2"a'

for the representation ,: Ce (T* M) -t End S of die complexified Clifford algebra
of T*M on the spinor bundle.

We now define by D := ,J.LV~ a first order operator D: r(S) -t r(S) associated to
the metric connection V. ~nce D satisfies the relafionshiP [D, LJ= ,J.L :1" for all
f E C=(M) this operator D is a ~irac operator, i.e

l
. its square D2 is a generalized

laplacian (cf. [BGV]). Note that D is also the most general Dirac operator on the
spinor bundle S corresponding to a metric connectibn V on TM.

I
According to the well-known Ricci lemma (cf. [GHYD there is a one-to-one corre-
spondence between metric connections on TM and tlle elements of [21(M, Sk(T M)).
Consequently, the set of all such Dirac operators abting on sections of the spinor

I
bundle S over M is parametrized by tE [21(M,Sk(TM)).
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I

For the square of the Dirac operator D we get the following standard decomposition

(2.2)

If t = 0, which means that \7 is identical with the Levi-Civita connection \7, equation
(2.2) is the first step to compute the well-known Lichnerowicz formula of D2, cf.
[L]. Note that none of the first two terms of (2.2) is covariant in itself but only their
sumo Using (2.1) we can, however, rearrange the decomposition (2.2) such that each
term is manifest covariant. Moreover the derivat ions in the decomposition will then
be arranged according to their degree:

LEMMA 2.1. Let M be a spin mannifold, \7 the Levi-Civita conneetion on TM and
~ denned by ~:= \7 +t with t E 0,l(M,Sk(TM)). Then the square jj2 of the

~ ~
Dirac operator D on the spinor bundle S associated to \7 decomposes as

where B: r(T M 0 EndS) and F' E r(EndS) are denned by

Ba := 2Ta - 'YC[Tc, 'Ya]

F' := ~ R\l . lIEnd S + ,al('\7 an) + ,aTa,bn.

(2.3)

(2.4)

(2.5)

Furthermore R\l denotes the scalar curvature and 6.\l := TJab(\7~\7f - \7~aeJ the

horizontallaplacian on the spinor bundle corresponding to the Levi-Civita connec-
tion \7 with respeet to a local orthonormal frame {eah::;a9n.

PROOF: By inserting ~~ = \7~ + TJ-Lin (2.2) and using the compatibility of the
connection \7s with the Clifford action, so that [\7~, ,0"] = -,'T~J-Lwe get

jj2 = 6.\l + ~ ,J-LV[\7~, \7~] - gJ-LV([\7~,Tv] - r~J-LTO")

- gJ-LVTJ-LTv- gJ-LV(2TJ-L\7~) + ,J-L[TJ-L''YV]\7~ + ~ ,J-LV[TJ-L,Tv] (2.6)

+'YJ-LV[\7~,Tv] +,J-L[TJ-L"V]Tv'
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(2.8)

(2.7)

(2.9)

With the help of the Clifford relation ,J1.,V + ,V"J1. = _2gJ1.V and the first Bianchi
identity Rjkli + Rklij + R1ijk = 0 one can identify the second term in (2.6) with the
'usual' Lichnerowicz term:

~. "VJ1.V[Vs VS] = ~.RV' . 1I
2 I J1.' v 4 \ s.

Ifwe write ,J1.[TJ1."V]Vv = gJ1.V,U[Tu"J1.]Vv, we see that BV is given by the sum of
the fifth together with the sixth term on the rightJ\hand-side. Furthermore we have
the identities

_gJ1.V ([V~, Tv] - r~vTu) = _gJ1.V ((v~nd sTv) - r~vTu) = _gJ1.V('V J1.Tv)

,J1.V[V~, Tv] = ,J1.V((v~nd sTv) - r~vTu) = ,J1.V('V J1.Tv).

Here 'V: r(EndS 0 T*M) --+ r<T*M 0 EndS 0 T*M) denotes the induced connec-
tion 'V := vEnd S 0 J1T* M + lIEnd S 0 V on the tehsor bundle End S 0 T*M. Be-

l
cause V respects the Clifford relation this means that

'V T = ~ "VabVT* M@T* M@T* Mt \ = ~ "Vabt .J1. v 4 I J1. ab1v- 4 I abv,J1.'

Due to the fact that ,pv - gPV = ,P,v we obtain °r result. 0

It is well-know (see [BGV]) that given any generaliJed Laplacian 6 on a hermitian
bundle E over M, there exists a conneetion V E Ion E and a seetion F of the

A I
endomorphism bundle End(E), such that 6. decomposes as

6 = 6.~E +F.

As we have mentioned before, this statement does not offer any possibility of calcu-
lating the endomorphism F explicitly. Since it can ~e shown (cf. [BGV]), however,
that \

A 1 V'ep1( X , x, 6.) = 6" R . 11E :- F,
it is evident that F plays a leading rale in the compltation of the subleading term
ep1 (x, x, 6) in the asymptotic expansion of the heat kernel of 6. Moreover, by the
main theorem the main theorem of [KW] (1)

A 2n - 1 1. A )Res (6.-n+1) = -- * tr(ep1(x,x,6.) ,
2 M I

(1) We denote by * the Hodge-staroperator associated to the RJmannian metric g.

\
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this endomorphism F also determines the Wodzicki residue of 6.-n+l which defines
gravity actions in the case of 6. = jj2.
We shall now prove a theorem which enables us to compute F explicitly in the case
of E = Sand 6. := jj2.

THEOREM 2.2. Let the hypotheses be the same as in lemma 2.1 and let 6. = jj2 be~ ~
the square of the Dirac operator D associated to 'V. Then the covariant derivative
'9's and the endomorphism F E f(EndS) in the decomposition (2.8) are defined as
follows:

'9's := 'Vs + T
F :=F' +~.

(2.10)

(2.11)

(2.12)

(2.13)

With respeet to a local orthonormal frame {eah~a~n of TM, T E ~V(M,EndS)
and ~ E f(EndS) are explicitly given by

. 1 b
Ta = Ta - 2' [n"a]

~ =''VaTa + TaTa,

where F' E f(EndS) is the endomorphism (2.5) of lemma 2.1 .

PROOF: The main ingredient ofthis proof is the global decomposition formula (2.3)
of jj2 as given in lemma 2.1 . Concerning the case of 6. = jj2, equation (2.3) is
but an alternative version of (2.8). We can therefore prove the theorem by inserting
(2.10), (2.11), (2.12) and (2.13) into equation (2.8) which then is identical with
(2.3).

o

Thus we obtain the following formula for the square of the Dirac Operator D:

~2 f:JS 1 ab(') 1 ab.D =6 + 4 R.lIs +, 'VaTb + 2' [Ta,n]

+ ~ [,a[Ta, l], Tb] - ~ ,b[('\7 an), ,a]

+ ~ 1]anC[Tc, ,a]rd[Td, ,b].

6
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3. Euclidian Gravity

\

. In the case of t = 0, ;.e. T ~ 0, this decompLtion obviously reduces to the
usual Lichnerowicz formula D2 = D. 'V + t R'V . 1I1. Consequently, we call (2.14) a
'generalized Lichnerowicz formula'. \

Notice that one has to take into acount that in general it is impossible to find any
Sk(TM)-vallued one-form i E 0,l(M, Sk(TM)) sJch that the endomorphism part
Tx E EndS of T corresponds to ix E Sk(TM) foJ all X E f(TM). Hence, VS is
generally not ind uced by any metric connection vIon TM in general. However, if
t E 0,l(M, Sk(TM) is totally antisymmetrie we obtain the following

. I

LEM~A 2.3. Let!! be a spin mannifold, V the \Levi-Civita connection on TM
and V denned by V := V + t where t E 0,l(M, Sk(TM)) is totally antisymmetrie.
Then T = 3T and consequently VS = VS + 3T.

This can simply derived £rom the deflniton (2.12) 0\ T.

\

\

\

According to Connes [C] there exists a link between \the usual Dirac operator D :=

IJ.LV~ on the spinor bundle S of a four-dimensionifl spin manifold M associated
to the Levi-Civita connection and the euclidian Ein~tein-Hilbert gravity action via

I

the Wodzicki residue Res(D-2) of the inverse of D2• This was explicitly verified
in [KJ. Moreover, as already mentioned, the main theorem of [KWJ states that
the the Wodzicki residue Res( 6. -n+l) of any generalized laplacian 6. acting on

I
sections of an hermitian vector bundle E over an even-dimensional manifold M
with dirn M ~ 2n ~ 4 can be identified with \

2n -1 1 ~\-- *tr(cI>l(x,X,~)).
2 M

Again cI> 1( x, x, 6.) denotes the subleading term of the asymtotic expansion of the
heat-kern~ of 6.. ~n this sense a gravity action ~an be\de~ned~by an arbitrary Dir~c
operator D := IJ.LV~ on S associated to a metnc connectlon V on the base J'vf, thlS
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(3.1)
means

IGR(D):= -21n 1M *tr(q,1(x,x,D2
).

Here 2n = dime S is the complex dimension of the spinor bundle. By using our gen-
eralized Lichnerowicz formula (2.14), we can now easily compute tr(q,1(x,x,D2)).

All that remains to be done is to take traces of ,-matrices. Thus, we obtain the

LEMMA 3.1. Let M be a spin manifold witb dirn M = 2n even and D: reS) -+

r(S) tbe Dirae operator on tbe spinor bundle S assoeiated to ametrie conneetion
'V := 'V + t as above. Tben

witb respeet to a loeal ortbonormal frame of TM.

Note that this result (3.2) holds independently of wether or not the corresponding
Dirac operator D is self-adjoint with respect to the hermitian metric on the spinor
bundle S. In the special case of the torsion tensor being totally anti-symmetrie,
(3.2) reduces to -21n tr(q,1(x,x,D2)) = 112 R'il - 23nt[abe]t[abe] as already shown in
[KW].
In order to find out wether (3.2) defines a pure (euclidian) Einstein-Cartan theory
(2) we express the right-haEd side of (3.2) by the scalar curva!-ure R~ of~. Using
the well-known formula R'il = R'il + d'il t +~[t/\ t], where R'il E 0,2(M, End TM)
denotes the curvature of ~ and d'il is the exterior covariant derivative corresponding
to the Levi-Civita connection 'V, we can rewrite (3.2) as follows

1 ("" ( D-2)) 1 ~ 1 bea 1 abc 1 aeb-- tr 'l'1 x, X, = - R + - tabett - - tabr.t + --1 tabet2n 12 12 2n - 2n-

1 bae 1'V /La+ 12 tab t e - 12 /Lt a .
(3.3)

Without additional mater fields, our result (3.2) obviously reduces to the usual
Einstein theory of gravity. Hence we obtain a result similar to that in [KW]. We also
conclude from (3.3) that it is not possible to obtain a 'pure' Einstein-Cartan theory

(2) By an Einstein-Cartan theory we understand a gravity theory based on the Einstein-Hilbert action.
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4. Conclusion

\

from the square of an arbitrary Dirae operator ~ Jssoeiated to ametrie eonneetion
I

on M by using the Wodzieki residue. \

\

\

\

\

In this paper we proved a generalized version of t~e well-known Liehnerowiez for-
mula for the most general Dirae operator i5 on \the spinor bun~le of an even-
dimensional spin manifold M assoeiated to a metfie eonneetion 'V on TM. Ap-
ply~ng this formula, the subleading term ePl (x, x,.Bp of the heat-kernel expansion
of D2 is easy to eompute. Aeeording to [KW], the triaee of this term plays a key-role
in the definition of a (euc1idian) gravi ty action IG~ (i5) in the eontext of the non-
eommutative differential geometry a introdueed by ponnes [C]. This gravity action
ean be interpreted as defining a modified Einstein-CI:artan theory.

Finally, we would like to add that it is also possible \to derive a eombined Einstein-
Hilbert/Yang-Mills lagrangian from an appropriatly iiefined Dirae operator by using
similar teehniques. Moreover, this Dirae operator eln be eonsidered as a deforma-
tion of the well-known Dirae-Yukawa operator. This Iwill be shown in a fortheoming
paper [AT].
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