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o. Introduction

In the present notes we study skins made up by finitely many material particles in

IR 3. The picture we have in mind is a very large collection of material particles which

interact such that we see a skin from the macroscopic point of view. In particular we

are interested in the case where each particle acts only with its nearest neighbours.

The idealized situation we study is an follows: We have a large but finite collection

P' of mean locations in IR n of material particles. The interaction scheme is such that

these locations, i.e. these points are all placed on a smooth, compact, oriented, closed

manifold M' c IR n of dirn M 2: 2. The manifold M' is called the skin. We choose this

dimensional set up because of specific dimensional factors appearing in the forthcoming

formulas. At first, we do not specify the interaction seheme any further.

However, along the line of our development we refine the set up by drawing an edge in

M' between the location of two interacting particles, i.e. a geodesie segment and require

that the graph obtained in this way is a simplicial one-complex in M'. This complex

reflects the nearest neighbour interaction scheme: Each point q: which is connected by

an edge with q is a nearest neighbour of q.

M' c IR n represents the continuum, the one-complex visualizes the large collection of

interacting particles.

The study of this interaction scheme in relation to the geometrie and topological

properties of the skin is one of themain purposes of these notes. However, we will

study at first the interaction between P' and the skin M' without specifying any

interaction seheme in order to keep the full generality and to see how the nearest

neighbour interaction influences the set up.

In the following part of this introduction we will describe the topological and geomet-

rical frame work more closely.

Since both M' and P' c M' will be deformed in IR n we replace M' and P' by

intrinsic objects, this is to say by a smooth, compact, oriented, closed manifold M and

a collection of points P c M. Both M' and P' will be obtained from M and P by

a smooth embedding j : M ---+ IRn namely by M' = j(M) and P' = j(P). Passing

from j to another embedding j1 describes adeformation from j(M) to j1(M).
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Thus the configuration space of our medium is E(M, IRn), the collection of all smooth

embeddings from M into IR n. Endowed with the Coo-topology E(M, IR n) is a smooth

Frechet manifold (cf. [Bi,Sn,FiJ). It is an open subset of Coo(M, IRn), the IR-vector

space of all smooth IR n-valued maps of M endowed with the Coo-topology. Restricting

each j E E(M, IRn) onto the collection P yields a configuration of P. By Eoo(P, IRn)

we denote the collection of all these restrictions. This configuration space of P is

an open set of the finite dimensional space F(P, IRn) of allIRn-valued maps of P.
We will use E(M, IRn) for the description of the continuum and Eoo(P, IRn) for the

description of the discrete medium. The link between E(M, IRn) and Eoo(P, IRn) i.e.

the restriction map will then be used to link the two different descriptions.

So far we sketched the topological situation. Let us next show how we characterize the

medium forming the skin j (M), a continuum.

First of all we assurne that no external force densities are present.

The medium considered as a continuum at the configuration j is classified by its

internal force density q,(j) resisting adeformation l. (For simplicity we let q, depend
on j only). The classification of media with the help of internal force densities is a rat her

rough scheme. Both q,(j) and l are assumed to be smooth, i.e. q,(j), l E Coo(M, IRn).

Since q,(j) is of internal nature (and hence invariant und er the translation group IR n
of IR n) it does not cause any work against a constant distortion z E IR n. Hence

IM < q,(j), Z > j.L(j) = o. Here j.L(j) is the Riemannian volume caused by the Rie-

mannian metric j * <, >, the pull back by j of the fixed scalar prod uct <, > on IR n .
Therefore IM q,(j)j.L(j) = o. This means, however, that

q,(j) = ß(j)1i(j) (0.1)

has a solution 1i(j), where ß(j) is the Laplacian on M determined by j* <, > and

1i(j) E Coo(M, IRn) is smooth in j. Here j varies in an open subset 0 c E(M, IRn).

The virtual work A determined by q, is a one-form on E(M, IRn) introduced in chapter

one. We willlinearize it and study in particular exact linearized one-forms on 0 (cf.

sections one and four). Here we will see that these sorts of virtual works are charac-

terized by - what we call - the structural capillarity a and the area functional A both

defined on o. So far we have neglected P.

To elaborate a physical interpretation of 1i(j) and to exhibit some of its main properties

will be major tasks of our paper.
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We will do so in particular within the frame work of nearest neighbour interaction,

i.e. we take the simplicial structure of P into account. It will turn out that 1i(j)(q) -
1i(j)(qi) is linked to the interaction force within the medium of the particle at q with

the one at qi, a nearest neighbour of q. This will be seen in section three. As we will

see, the geometry may hinder the direct sight to the interaction mechanism.

This interpretation, however, requires that we have a natural way to describe the

discrete medium as a continuum. In doing so, we need to understand which part of the

formalism requires the nearest neighbour interaction scheme. Therefore we treat first

the situation of an arbitrary interaction scheme within the collection of particles and

show how to describe naturally the discrete medium as a continuum, i.e. by formalisms

associated with the continuum.

To this end we consider in section 2 the restriction map r : Coo (M, !R n) -? F( P, !R n)
and construct aspace Foo (M, !R n) C Coo (M, !R n) on which r is an isomorphism.

The force density if!(j) is then said to be produced by the finitely many particles

if if!(j) E FOO(M, !Rn). The finite dimensional vector space FOO(M, !Rn) will be a

special choice of a complement to ker r (since there is now canonical complement). The

motivation of the choice is based on (0.1) and on a fixed configuration ja E E(M, !Rn),
called a reference configuration, thought of as an equilibrium configuration. We will

rewrite the above equation for the internal force density as

(0.2)

Here .6.(ja) is fixed, while ii still depends on j E O. The complement FOO(M, !Rn)
to ker r is such that it is generated by finitely many eigenvectors of .6.(ja), imply-

ing that FOO (M, !R n) is preserved by this Laplace operator. The map r restricted to

FOO(M, !Rn) is called roo,

The link with the discrete regime is made up as follows: Since there is a natural metric

Qp on the space F(P, !Rn), there is a natural metric on FOO(M, !Rn) namely its pull

back r~Qp to FOO(M, !Rn). It has to be compared with the given L2-metric Q(ja)

defined by jü <, > on M. We call ja metrically weIl fitting if QUa) = r~Qp. This kind

of equilibrium configuration ja for low dimensional ambient space !R n does not exist

in general (cf. [G,RJ).



- 5 -

The virtual work Ap on a closed neighbourhood W(j~) of a configuration j~ E

E= (P, JRn), caused by distorting the finite collection of interacting particles, will

be pulled back to W=(jo) C E(M, JRn) and there represented by an internal force

density in the sense of 0.2. Here r=(W=(jo)) C E(M,JRn) with r=(jo) = j~
and W=(jo) - jo E F=(M, JRn) is a closed neighbourhood of zero. The pull back

A := r~Ap is hence the virtual work on the continuum; 7-{!j is its constitutive map.

In case of a first neighbour interactions the force <I> p causing the virtual work Ap is

itself of the form 0.2 on W(j~); however, ~(jo) has to be replaced by the topological

Laplacian ~T determined by the simplicial structure. In addition il will have to be

replaced by7-{p, say. Since 7-{p(jp)(q) -7-{p(jp)(qi) refiects for any jp E W(j~) the

interaction force within the medium between the particle at any q with the one at qi,
a nearest neighbour of q, the difference il!j (j)(q) - il!j(j) (qi) hence does so too, for

any j E W(jo) provided that jo is metrically weIl fitting. Here <I>!j:= ~(jo)il!j is the

force density of A. The internal force <I> p (jp ) (q) is the resulting force of the interaction

force between the particle at q with all its nearest neighbours; vice versa any internal

force has to be of this form. This interpretation holds accordingly for <I>!j(j) (q) .

Since r~A is defined on a finite dimensional neighbourhood W=(jo) we will use the

Neumann splitting to exhibit in section 2.2 its exact part m F, the differential of what

we call the free energy Fand will see that F = r~Fp. Here Fp is the free energy ofthe

discrete regime (constructed with the help of the Neumann boundary value problem,

too). In this context a metrically weIl fitting configuration will be called good fitting

if m F(jo) = 0, Le. if jo is a stationary configuration of F.

Fixing a temperature T, a Gibbs state Pe and an observable I are defined on W=(jo),
such that the free energy of I is F. In this sense the term 'free energy' from above has

to be understood in these notes. Here again W=(jo) is assumed to be that small that

any distortion within W= (jo) - jo does not affect T from the physical point of view.

A more realistic version of this mechanism would have to be done on W= (jo) x JR

(cf. [Bi6]).

In the last chapter we study the whole apparatus in the frame work of the linearized

situation and exhibit the infiuence of the structural capillarity - a constitutive entity

- to the equilibrium configuration.

I am indepted to G. Schwarz and D. Socolescu for valuable discussions and reading

through the manuskript.
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1. Description of deformable continua

1.1 The constitutive law on a continuum

Let M be a smooth, connected, oriented and compact manifold. M shall be equipped

with a mass density Pm, a smooth real valued function on M (cf. appendix 2). The

manifold together with this mass distribution is referred to as the standard body. In

what follows we refer to the items [B1]' to [Bi6] as weIl as to [Bi, Fi 2] in the references.

We begin by specifying what we mean by a configuration and the space of configura-

tions. Let M be embeddable into IR n. Any smooth embedding

is called a configurations of M. The space of all configuration is called E(M, IRn);

it shall be endowed with the COO-topology. E(M, IRn) is thus a Frechet manifold

(cf. [Bi,Sn,Fi], [Fr,Kr] and [Bi,Fi1]). In fact it is an open subset of the collection

Coo(M, IR n) of all IR n -valued smooth functions of M endowed with the COO-topology.

Let us fix a scalar product on IR n in order to introduce metric concepts on M. Each j E

E(M, IRn) defines a Riemannian metric m(j), the pull back of <, > by j. Moreover

mU) and the given orientation determine the Riemannian volume form /LU). For

any two j,jo E E(M, IRn) with fixed ja the metrics mU) and mUo) respectively their

associated volume forms /LU) and /LUo) are related by

m(j)(v,w) = mUo)(f2U)v,w) Vv,w E TM

and

/LU) = det fU) . /LUo) "Iv, w E TM (1.1.1)

where f2U) is a uniquely determined strong smooth bundle isomorphism on TM

selfadjoint with respect to mUo) (cf. appendix 1).

Next let us specify what is meant here by a constitutive law. (Throughout the paper

we neglect external force densities) By a constitutive law of a medium we mean in

these notes the prescription of either the internal force density <PU) (to be specified

below) at a configuration j varying in an open set 0 C E(M, IRn) or any ingredient

out of which <PU) can be derived. For simplicity we let 0 = E(M, IRn) in this section.
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Therefore, we point out that a medium is cbaracterized bere only in as far as it deter-

mines tbe internal force density.

By a smooth internal force density <.P(j)at the configuration j E E(M, IR n) we mean

a smooth map

<.P(j): M ----> IR n (1.1.2)

depending smoothly on j E E(M, IRn
) and satisfying the following two requirements

(i) (1.1.3)

saying that <.P(j)is L2(j)-orthogonal to the collection of all constant maps and

(ii) <.P(j+ z) = <.P(j) Vj E E(M, IRn) and Vz E IRn (1.1.4)

reflecting the invariance of <.Pund er the translation group IR n of IR n. Hence an internal

force density <.p(j)at j depends on dj only!

The constraint (i) an internal force density has to satisfy, is directly related to the

centre of mass defined with respect to the mass density Pm (cf. appendix 2): For a

given embedding j E E(M, IRn) thecentre Zm(j) of mass is defined by

(1.1.5)

(1.1.6)

For any Z E IR n, the map j + z is a smooth embedding and its centre of mass is

Zm(j) + z. Obviously, an internal force density has to satisfy

1M < <.p(j),zm(j) > j1(j) = 0

for j E E(M, IRn
), implying (1.1.3). In terms of the L2-metric Q(j) on COO(M, IRn

)

(cf. appendix 1) equation (1.1.6) reads as

Q (j) (<.P(j ), Zm) = O.

Let <.Pbe given internal force density. By (1.1.3) we find a smooth map

such that

ß(j)1-l(j) = <.P(j) Vj E E(M, IRn
).

(1.1. 7)

(1.1.8)

(1.1.9)
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Here b.(j) is the Laplace operator on M determined by m(j). (cf. [Ma],[L,M] or

[G,H,LJ). Vice versa, for any smooth map

the map

defined by

<P(j) := b.(j)'H(j) Vj E E(M, IRn) (1.1.10)

is a smooth internal force density. The smooth map 'H is called the constitutive map.

A constitutive law on M is therefore specified by a constitutive (smooth) map

Hence <P(j) is an internal force density far all j E E(M, IRn) iff (1.1.4) and

<P(j) = b.(j)'H(j) V j E E(M, IRn) (1.1.11)

hold. The virtual work A(j)(l) E IR the internal force density <P(j) causes against a

distortion I E COO(M, IRn) at any j E E(M, IRn) is given by

A(j)(l) = 1M < <P(j), I > !-t(j) = 1M < b.(j)'H(j), I > !-t(j). (1.1.12)

( The general study of the virtual work can be found in [E,S] and [He]). Using the

metric C!J(j) in appendix 1 we hence can rewrite A(j)(l) as

A(j)(l) = C!J(j) (d'H(j), d(l)) = 1M d'H(j) • d1!-t(j)

for any j E E(M, IRn) and any I E COO(M, IRn).

For convenience A is refered to as a constitutive law, too.

(1.1.13)

The internal force density <P(j) : M -----+ IRn splits pointwise into parts <PN(j) and

<PT(j), normal respectively tangential to j(M), this is to say

(1.1.14)
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the normal part <PN (j) is determined via the virtual work A via

A(j) (N(j)) = 1M d1i(j) • dj W(jo)/L(j) = 1M < <P(j), N(j) > /L(j) (1.1.15)

Here N (j) : M --+ JRn is the pointwise defined unit normal to Tj TM and W (jo) E

End TM, the Weingarten map, is given by

dN(j) = dj W(jo) (1.1.16)

and • is as in appendix 1. jo E E(M, JRn) is called an equilibrium configuration if

A(jo) = 0 this is to say if <P(jo) = O. Hence jo is an equilibrium configuration iff

(1.1.17)

To perform calculations involving configurations near a fixed one jo E E(M, JRn) it

is convenient to replace the right hand side of <P(j) = tl(j)1i(j) by an expression

involving tl(jo) only. To do so we proceed as folIows: Using (1.1.1) we have

(1.1.18)

and by (1.1.11) hence

(1.1.19)

The equation admits a solution H(j) smooth in j and uniquely determined up to a
~

constant and the virtual work associated with 1i is

A(j)(l) = Q(j) (<p(j), l) = 1M < <P(j), l > /L(j)

= Q(jo) (tl(jo)H(j), l)

Let COO(M, JRn)jo := {l E COO(M, JRn)lll_L2Uo)JRn} where -.LL2Uo) means orthogonal

with respect to the L2-metric Q(jo) assigning to each pair h, l E COO(M, JRn) the value

Q(jo)(h, l) = 1M < h, l > /L(jo).

Definition 1.1.1:

Let H be called Q(jo)-normalized if

Q(jo) (H(j), z) = 0

for all z E JRn i.e. ifH(j) E COO(M,JRn)jo for all j in the domain ofH.

(1.1.20)

(1.1.21)
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In summarizing we state (for ({)cf. appendix 1):

Lemma 1.1.2:

Let jo E E(M, lRn) be fixed and <l>be an internal force density. For each j E E(M, lRn)
the equation

<I>(j) := detf(j) . <l>(j) = tl(jo)H(j)

has a unique Q(jo)-normalized solution H(j) in COO(M, lRn). Moreover

Q(j)(<l>(j), h) = 1M < <l>(j), h > fL(j) = 1M < <I>(j), h > fL(jo)

= 1M < tl(jo)H(j), h > fL(j)

= Q(jo) (tl(jo)H(j), h)

= ((}(jo) (dH(j), dl).

(1.1.22)

(1.1.23)

Since (1.1.23) involves a fixed Laplacian we may use Fourier expansions associated

with jo: Let ei, e2, ... be the eigenvectors of tl(jo) having respective eigenvalues

0< Al :::;A2 :::;.... Let 1{ satisfy (1.1.21). Then

00

H(j) = L~i(j)ei
i=l

(1.1.24)

where ~i is the ith Fourier coefficient of H(j) for all j in the domain of H; obviously

00

<I>(j) = L Ai~i(j)ei'
i=l

(1.1.25)

The real number ~i(j) will be called the ith global coefficients at the configura-

tion j. In general these Fourier coefficients regarded as lR-valued maps will not be

independent from each other.

Clearly <l>(jo) = 0 iff ~(jO)i = 0 for all i = 1, ... ,00.

To prepare the study of the area sensitive part of the virtual work we introduce the

area map
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given by

(1.1.26)

where f.1(j) is the Riemannian volume form. As it is easily seen (cf. appendix 1)

DJ A(j)(h) = IM dj. dhf.1(j) = IM < ß(j)j, h > f.1(j) \j j E E(M, IRn) (1.1.27)

holds true. In addition we have

ß(j)j = -tr S(j) \j j E E(M, IRn) (1.1.28)

where S(j) is the second fundamental tensor (cf.[Bi,Sn,Fij or [G,K,MJ). (For the cal-

cules on Frechet spaces we refer to [Bi,Sn,Fij or [Fr,Krj.) In case of 1 + dim M = n

ß(j)j = ll(j)JV(j) (1.1.29)

where 1l(j) is the trace of the Weingarten map W(j) and JV(j) is the oriented

unit normal of j(M) along j (cf. 1.1.16). This is the motivation for calling ß(j)j in

(1.1.28) the mean curvature tensor.

Clearly ß(j)j (and hence ll(j)JV(j) in case of codim M = 1) is the value of the

Q-gradient GradgA of A at j. For Q consult appendix 1.

Let us study next the component (formed with respect to QJ(j)) along dj of the dif-

ferential dH(j), of any constitutive map H : E(M, IRn) --t COO(M,IRn). To this end

we point out that due to (1.1.4) the differential dH(j) depends on dj only rat her than

j! We form

QJ(j) (dH(j), dj) = IM dH(j) • djf.1(j) \j j E E(M, IRn)

(cf. appendix 1). Since the square of the QJ(j)-norm of dj is

QJ(j)(dj, dj) = dim M . A(j) \j j E E(M, IRn)

we write

QJ(j) (dH(j), dj) = a(j) . dim M . A(j) \j j E E(M, IR n).

Therefore dH(j) splits for any j E E(M, IRn) into

dH(j) = a(j) . dj + dH1(j)

(1.1.30)

(1.1.31)

with QJ(j)(dH1(j),dj) = O. (At this point we have used the dj dependence of dH(j)).
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Here a : E(M, IRn) -----+ IR given by (1.1.31) for all j E E(M, IRn) is an IR n-invariant

smooth map called the structural capillarity (cf. [Bi2] and [Bi3]). (It is the coefficient

of the surface tension (Kapillaritätskonstante)). 1£ A and Al are the virtual works

determined by 1i and 1iI respectively, then

A(j)(h) = a(j) . 1D A(j)(h) + Al (j)(h) (1.1.32)

for all the variables j and h, saying that a . 1DA is the area sensitive part of A and

Al is not sensitive to the distortion of the volume. 1£A(j) = 0 then

d(j) = 0 and AI(j) = 0 (1.1.33)

since 1D A(j)(j) = A(j) . dirn M. Hence the structural capillarity a is determined by

A(j)(j) = a(j) . 1D A(j)(j). (1.1.34)

Clearly (1.1.31) shows that a is of a constitutive nature. The following is obvious:

Lemma 1.1.3:

The area sensitive part oi a virtual work A denned on an open neighbourhood 0 oi
jo E E(M, IRn) is determined by the structural capillarity a. This capillarity is given
by

A(jo + l)(jo + l) = dirn M . a(jo + I) . A(jo + I)

Approximating both sides at jo up to terms oi order two yields

A(jo)(jo) + A(jo)(l) + 1D A(jo)(l)(jo) + 1D A(jo)(l)(l)
1

= dirn M. (a(jo) . A(jo) + 1D (a . A)(jo)(l) + 21D 2(a . A)(jo)(l, I))

The constitutive law is called linear if

A(jo + l)(h) = A(jo) + 1D A(jo)(l)(h)

(1.1.35)

(1.1.36)

(1.1.37)

for all I E 0 - jo where 0 is an open neighbourhood of jo E E(M, IRn). In this case

the constitutive map is given by

H(jo + I) = H(jo) + 1D H(jo)(l) \;j I E 0 - jo. (1.1.38)
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Moreover we call a constitutive law A to be exact if A = IDF, where F is a smooth

lR-valued map defined on some open set of E(M, lRn). (In section 2.2 we will split off

the exact part of any virtual work A " caused by finitely many particles").

If A = ID F with ID F(jo) = 0 saying that jo is a stationary configuration far F
then the linearity of A implies

ID F(jo + h)(k) = ID 2F(jo)(h, k) V h, k E 0 - jo.

If A = ID Fand linear in addition (cf. 1.1.35) then F on 0 is given by

F(jo + h) = F(jo) + ~ID 2F(jo)(h, h) V hE 0 - jo.

Lemma 1.1.3 yields therefore :

Theorem 1.1.4:

Let F be a smooth real-valued map defined on some open neighbourhood 0 of jo E

E(M, lRn) for which ID F admits a constitutive map HF : 0 ---t C=(M, lRn). Then

ID F(jo + l)(jo + l) = dirn M . a(jo + l) . A(jo + l) V l E 0 - jo.

Let ID F be linear on 0 with ID F(jo) = O. Then

ID 2F(jo)(h, k) = di~ M . ID 2(a. A)(jo)(h, k) V l E 0 - jo

and
ID 2F(jo)(jo, h) = dirn M . ID (a. A)(jo)(h) V l E 0 - jo

(1.1.39)

(1.1.40)

(1.1.41)

hold true for all h, k E C=(M, lRn). If ID F is linear on 0 then a(jo) = 0, provided

ID F(jo) = 0; if ID F(jo) = 0 then for each l E 0 - jo the value of F(jo + l) is

- - 1 2- . - dirn M 2
F(jo + l) = F(jo) + 2ID F(jo)(l, l) = F(jo) + 4 ID (a. A)(jo)(l, l) (1.1.42)

and a is the structural capillarity of ID F, i.e.

(1.1.43)

Since ID F admits a constitutive map, HF say, the Q-gradient at j E 0 is GradgF(j) =

ß(j)HF(j). Therefore HF(jo + l) is determined for each l E 0 - jo by

ß(jo + l)HF(jo + l) = A(jo) . ID (Gradg a)(jo)(l) (1.1.44)
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provided ID F(jo) = 0 (since a(jo) = 0).

Theorem 1.1.4 requires us to investigate the relationship between Fand the structural

capillaritya more c1osely. Let ID F be linear. By (1.1.42) we conc1ude für ID F

dirn M(a . A)(jo + l) = ID 2F(jo)(l, jo + l)

= di~ MID 2(a . A)(jo)(l, jo + l)

= di~ MID 2(a. A)(jo, l) + di~ MID 2(a. A)(l, l)

On the other hand the Taylor expansion up to order two of a .A at jo implies that no

higher order terms are present and that

~ID 2(a. A)(jo, l) = ID (a. A)(jo)(l) \;f l E 0 - jo.

Hence

ID 2a(jO)(jo, l) . A(jo) + ID a(jo)(jo) . ID A(jo)(l) + dirn M .ID a(jo)(l) . A(jo)

= 2. ID (a. A)(jo)(l).

We therefore have

Proposition 1.1.5:

Let F be a real-valued smootb map on a neigbbourbood 0 of jo E E(M, IRn),
admitting a constitutive map Hp and satisfying (1.1.42). Tbe structural capillarity
a :0 ---t IR satisnes tben

implying

ID 2(a. A)(jo, l) = ID (a. A)(jo)(l) \;f l E 0 - jo (1.1.45)

ID 2a(jO)(jo, l) . A(jo) + ID a(jo)(jo) . ID A(jo)(l) = (2 - dirn M) . ID a(jo)(l) . A(jo).
(1.1.46)

If bence dirn M = 2 tben

ID 2a(jO)(jO, l) . A(jo) = -ID a(jo)(jo) . ID A(jo)(l)

bolds for alll E 0 - jo.

(1.1.47)
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The following is an immediate consequence of (1.1.30) and the definition of Bh for any

hE COO(M, ]Rn) given in ALl

Lemma 1.1.6:

Tbe map

in (1.1.30) admits tbe density assigning to eacb j E 0 tbe value di~ ~~(j) i.e.

or

( ') r tr BH(j) (') w' E(M ]Rn)
a) = 1M dirn M. A(j)M ) v) E , (1.1.48)

( ') = r det f(j) . tr BH(j) (') V' E(M ]Rn) ( )
a) 1M dirn M. A(j) M)o ) E, 1.1.49

if jo E E(M, ]Rn) is a fixed configuration. Hence a(j) = 0 Hf IM trBH(j)M(j) = 0 or

fquivalently a(j) = 0 iff ][) A(j) (1i(j)) = O.

Lemma 1.1.6 suggests to write (1.1.39) in the form

][) F(jo + l)(jo + l) = a(jo + l) . A(jo + l) . dirn M = 1M tr BH(jo + l)M(jo + l)

or in view of A1.3 as

][) F(jo + l)(jo + l) =1tr BH(jO + l) . det f(jo + l) . M(jo).
M.

Hence (1.1.42) implies for alll E 0 - jo

][) 2F(jo)(l, jo) + ][) 2F(jo)(l, l) = 1M(tr BH . det f)(jo + l) . M(jo)

and therefore

2 .][) 2F(jo)(h, k) = 1M][) 2(tr BH . det f)(jo)(h, k) . M(jo).
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Thus we have shown the following

Proposition 1.1.7:

If F : 0 ~ IR has the form

F(jo + I) = F(jo) + ~1D 2F(jo)(/, I) VI E 0 - jo

and 1DF admits a eonstitutive map Hp :0 ~ C=(M, IRn) then

1DF(jo + I)(jo + I) = a(jo + I) . A(jo + I) VI E 0 - jo

for some smooth map a : 0 ~ IR implying

F(jo + I) = F(jo) + ~. r 1D2(tr BH . dei j)(jo)(/, I) . /-l(jo) VI E 0 - jo. (1.1.50)
4 1M

Therefore F admits a density F meaning

F(jo + l) = 1M F(jo + I)/-l(jo) VI E 0 - jo.

with

(1.1.51)

( . ) F(jo) 1 2( )(')( )F Jo + 1 = A(jo) + "4 .1D ir BH . dei f Jo 1,1

where we may assume that BH(jo) = O. Henee

VI E 0 - jo (1.1.52)

(1.1.53)

for all 1 E 0 - jo, showing that F depends on the symmetrie endomorphisms BH and

Blonly.

From here one obtains the form of the free energy in [L,L] if one assumes that

BH(jo + l) depends on BI only. We will investigate the nature of the constitutive map

of the type 1DF in chapter three.
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1.2 The Rieci-sensitive part and a topological eondition for the equilibriurn

Let dimM = 2 and JRn = JR3. We eonsider the Rieci tensor Ric(j) ofm(j). Denoting

by W(j) the Weingarten map of the smooth embedding j, then the equation of Gauss

(cf. [Bi,Sn,Fij or [G,K,M]) yields for any j E E(M, JRn) immediately

Ric(j)(X, Y) = m(j) ( (H(j)W(j) - W2(j) )X, Y) (1.2.1)

for all smooth vector field X, Y on M. Here H(j) = trW(j) (cf. seetion 1.1). Let R(j)

denote the symmetrie operator sueh that

Ric(j)(X, Y) = m(j) (R(j), X, Y) (1.2.2)

then R(j), being an intrinsie objeet of m(j), is expressed by the extrinsie objeet W(j)

as

R(j) = H(j)W(j) - W2(j).

In partieular the sealar eurvature :A(j), being the traee of R(j), is

Using the Cayley Hamilton theorem for W(j) we easily derive

,,(j) = :A(j)
2

(1.2.3)

(1.2.4)

(1.2.5)

where ,,(j) := detW(j) is the Gaussian eurvature. Sinee M is two dimensional we

ean assume that
R(j) = :A(j) . id

2

holds true (cf. [B,Gj).

Clearly >.~) . dj is in general not a differential. It is easy to see (cf. [Bi3]) that >.~) . dj

is a differential iff :A(j) is a eonstant map on M. Hence >.~) .dj is not exact in general.

Let us eall the exaet part of djR(j) by dr(j). We are interested in partieular in the

eomponent of djR(j) along dj formed with respeet to OJ(j). This is to say we form

with K(j) E JR and

:A(j) dj = K(j) . dj + "((j)
2

r :A(j). dj. djf-l(j) = K(j) r dj. dj f-l(j),1M 2 1M

(1.2.6)

(1.2.7)
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has to hold for each j E E(M, }Rn) and "((j) is a }Rn-valued one-form on M smoothly

depending on j E E(M, }Rn). Obviously we have IM >'V) .2f.-l(j) = 2. K(j). A(j) with

A(j) being the area of M. By the theorem of Gauss-Bonnet we conc1ude

1
41r X = 2. K(j) . A(j) V j E E(M, }Rn)

which determines the map K : E(M, }Rn) --+ }R as

K(j) = 81r' ~(j) . X or
. X

A(J) = 81rK(j) Vj E E(M,}Rn) (1.2.9)

with X the Euler-charaeteristic of M.

Using (1.2.9) the following is immediate:

Lemma 1.2.1:

The one-form K . JDAis exact all of E(M, }Rn), in fact

X
K . JDA = - .JDlnA

81r
(1.2.10)

Given a constitutive map H we split dH at j E E(M, JRn) with respect to QJ(j) into

a component along dj and a component dH1 perpendicular to it yielding

(1.2.11)

with
ar : E(M, JRn) --+ JRn

being smooth (where dH2(j) is determined by the equation just above) since dr(j)
depends on dj rather than j itself. ar . dr is the curvature sensitive part of dH.for
the structural capillarity (cf. 1.1.31)

a(j) = ar(j) . K(j) + u(j)

for some smooth map u: E(M, JRn) --+ JRn. This shows how the structural capillarity

is affected by the map K. The force <Pr(j) density sensitive to djR(j) is

<Pr(j) = ar(j)ß(j)r(j) = ar . divdjR = - a; . djgrad ~ + ar~j) . ~(j) . H(j) . N(j)
(1.2.12)
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Comparing (1.1.14), (1.2.12) with (1.1.17) yields

iPT(j) = - ar~j) . dj grad ~ + iP~(j) and iPN(j) = ~ .~(j). H(j) . N(j) + iPIJ (j).

(1.2.13)

The gradient is taken with respect to m(j). Here iP~ and iPIJ are defined via (1.2.12),

and do not depend on the scalar curvature ~(j). In summarizing we state the following

lemma and corollary to it:

Lemma 1.2.2:

At each j E E(M, ]Rn) the structural capillarity splits into

a(j) = ar(j) . K(j) + u(j)

or
a(j) = ar(j) . 471"~(j) + u(j)

with dH(j) = a(j) . dj + dH1(j) for each j E E(M, ]Rn).

(1.2.14)

(1.2.15)

(1.2.16)

Corollary 1.2.3:

At an equilibrium configuration jo E E(M, ]Rn)the structural capillarity vanishes, i.e.

a(jo) = 0 and therefore ar(jo) and u(jo) are related by

ar(jo) . 871" ~jo) = -u(jo),

showing that ar(jo) = 0 iff u(jo) = 0, provided M is not diffeomorphic to a torus. Jf

M is a torus then u(jo) = O. Moreover the equilibrium condition for jo reads in terms

of the force densities as

iP1 (' ) ar(jo) d' d ~(') andT Jo = - 2 . '() gra Jo iPII( . ) ar(jo) ~(') H(') N(')N Jo = - 2 . Jo' Jo' Jo

(1.2.17)
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Description of a discrete medium on a continuum
2.1 Internal force densities on the contiuum caused by finitely many

particles

Let P c M be a collection of finitely many points on M. We think of the elements of

P as the mean location of material particles on M. On the other hand M is regarded

as a manifold passing through P.

We suppose furthermore that some of this particles interact with each other, but

we do not specify any sort of interactions, yet. (We will do so in sections three and

four.) These partic1es, together with a presupposed interaction scheme will be called

a discrete medium, here. No exterior forces shall be present.

The space of configuration of these particles is E(P, lRn), the collection of all injec-

tive maps from P to lR n. The set E (P, lR n) is an open subset of the finite dimen-

sional linear space F( P, lR n), the collection of all maps from P to lR n. Moreover

r(E(M, lRn)) c E(P, lRn) is open as weIl, we denote it by EOO(P, lRn).

The principle of virtual work on M presented in section 1 is easily transferred to

P c M. This is done as follows: Let W(j~) c Eoo (P, lR n) be an open neighbourhood

of some j~ E EOO(P, lRn) and

Ap : W(j~) x F(P, lRn) ----+ lR

be a smooth one-form. Clearly

Ap(jp )(hp) = yp (1' p(jp), hp) V jp E EOO(P, lR n)

for some weIl defined map

l'p : W(j~) ----+ F(P, lRn),

(2.1.1)

(2.1.2)

(2.1.3)

called the internal force. Here y p is the metric defined in appendix 3 on the collection

of aIllRn-valued zero cochains (cf. A3.18), i.e. on F(P, lRn). In particular we require

that for all z E lR n the constant map z : P ----+ lR n does not cause any work, i.e.

Ap(jp )(z) = o.
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and moreover that Ap is lRn-invariant, this is to say that

has to hold.

Ap(jp + z)(lp) = 0 Yz E lRn and Ylp E F(P,lRn)

1£<.p p is an internal force caused by the interaction of the material particles we call Ap

the virtual work of this discrete medium. As in the previous section we characterize

this discrete medium in as far only, as it affects the virtual work, i.e. we classify the

medium by its internal force density only. Clearly this is a rat her rough classification.

To describe the discrete medium on M, we would like to form r* Ap the pull back of

Ap by r to r-1W(j~) and interpret this one-form as a virtual work on the continuum.

Having this approach in mind we pose the quest ion as to whether r* Ap admits a force

density in COO(M, lRn).

Let thereforejo E r-lW(j~) C E(M,lRn) be such that r(jo) = j~ and

<.p: r-lW(r(j~)) ----+ COO(M, lRn) be a smooth map such that

r* Ap(j)(h) = Q(jo)(<.p(j), h) Y j E r-lW(r(j~)) Y hE COO(M, lRn). (2.1.4)

<.p(j), if it exists, is uniquely determined for any j in the domain of <.pand characterizes

the discrete medium as a continuum. This kind of force density, however, does not

exist in general as we see as follows: Let Zl, ... , Zn be the canonical basis of lR n. Then

<.p(j), if it were existent, would decompose for each j E r-lW(j~) into

n

<.p(j) =L <'pi(j) . Zi
i=l

where <'pi(j) E Coo (M, lR) for all i. Hence <.p(j) exists iff <'pi(j) exists for all i. Therefore

we may assume that n = 1. For simplicity let P = {q} for some q E M. Without loss

of generality we may assume that

r* Ap(j) : COO(M, lRn) ----+ lR

has the form

r* Ap(j)(h) = h(q) Y hE COO(M, lRn).



- 22 -

Thus r* A(j) is a point evaluation, Le. a D-functional. As it is wen known such linear

maps do not admit a density (cf. [Bi,Sn,Fi]). Hence there is no <I>(j)E COO(M,IRn)
satisfying (2.1.4) in general.

This shows that we have to give up the idea that internal force densities <I>(j)are

in the Q(jo)-orthogonal complement of the kernel ker r of the restriction map r :
COO(M, IRn) ---t F(P, IRn) as (2.1.4) would require. Therefore, ifwe intend to describe

internal force densities on the continuum produced by finitely many partic1es, we have

to proceed differently. We base our procedure on (1.1.22) and (1.1.25).

To begin with, we assume that <I>: r-IW(j~) ---t COO(M,IRn) is a smooth internal

force density in the sense of section one. We know by (1.1.19) and (1.1.25) that

00

<I>(j)= ß(jo) R(j) = L AiKi(j)ei Vj E W(j~) (2.1.5)
i=1

where el,'" are those (Q(jo)-orthonormed) eigenvectors in COO(M, IRn) admitting

non-vanishing eigenvalues. Here jo E r-IW(j~) is such that r(jo) = j~.
Since r : COO(M, IRn) ---t F(P, IRn) is continous

00

r(<I>(j)) =L AiKi(j) . r(ei) V j E r-IW(j~)
i=1

(2.1.6)

Clearly {r(ei)/i = 1, ... } generates F(P, IRn) since r is surjective. Hence, we can choose

a basis among {r . eil i= 1, ... }.

The motivation of the construction below is that the eigenvalues of ß(jo) grow to infin-

ity as i does so; hence the contributions OfKi(j) to <I>(j)have to diminish. In addition we

have to consider only finitely many terms in the series (2.1.6) since dim F(P, IRn) < 00.

Here is how we proceed further:

We will define a finite dimensional subspace FOO(M, IRn) c COO(M, IRn) generated

by IR n and by eigenvectors of the Laplacian ß (jo) of a fixed jo E E (M, IR n) such that

a) ß(jo)FOO(M, IRn) c FOO(M, IRn)

b) r: FOO(M, IRn) ---t FOO(P, IRn)

for a given embedding jo E E(M, IRn).

is an isomorphism
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This subspace is obtained as follows: The eigenvectors el, e2, ... in Coo(M, ]R n) of

.6.(jo) on Coo(M, ]R n) are ordered such that the respective eigenvalues of .6.(jo) satisfy

o < Al ~ A2 ~ .... Let eil be the first among the above eigenvectors for which

eillP # O. At this point we have to make a choice. Next we chose ei2' among the

complement of {eil} in {eIl' .. , eidll ... } with the smallest index for which ei21P and

eillP are linearly independent.

Continuing this way we obtain a linearly independent set

{eil' ... , ei(SO-l)'n}c COO(M,]R n)

where So is the number of all points in P. Let us replace the symbol eis by es for

simplicity. The eigenvectors el, ... , e(so-l).n of .6.(jo) with respective eigenvalues 0 <
Al ~ ... ~ A(so-l).n generate a subspace Fü(M, ]Rn) c COO(M, ]Rn). By construction

r : Fü(M,]R) EB]Rn -+ F(P, ]Rn) (2.1.7)

is an isomorphism. Let us denote Fü (M, ]R n) EB ]R n by Foo (M, ]R n). Moreover the

map in (2.1.7) will be denoted by roo in the sequel. The space FOO(M, ]Rn) will be

our smooth analogon to F(P, ]Rn). Clearly FOO(M, ]Rn) will not be 9(jo)-orthogonal

to ker r, in general. The metrics 9 (jo) and r* 9p on FOO(P, ]R n) will differ, in general.
Having related them, we will prepare the study of the not ion of virtual work on both

F(P, ]Rn) and FOO(P, ]Rn).

But first we have to construct the analogon of W(r(jo)) c EOO(P, ]Rn) on E(M, ]Rn).
To this end we introduce

J(:= {{j}xFoo(p,]Rn)lj E E(M,]Rn) c E(M,]Rn)xCoo(M,]Rn) = TE(M,]Rn)},

a distribution on E(M, ]Rn) (cf. [Bi,Sn,Fi]).

This distribution is integrable, since j +0 c E(M, ]Rn) for all j E E(M, ]Rn) for any

c10sed small enough neighbourhood 0' of zero in FOO(M, ]Rn). Let

W(j~) := r-lW(j~) n (jo + 0').

Clearly W(j]?,) is a c10sed neighbourhood of jo E FOO(M, ]Rn) and is a slice in

r-l (W(j~)) = woo(jo) + ker r. The whole formalism in section 1.1 can be trans-

fered to WOO (jo) in a straight forward manner.
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We begin the investigation ofthe relation between the scalar products Qp on F(P, !Rn)
and Q(jo) on FOO(M, !Rn) by exhibiting a natural basis on F(P, !Rn). For each basis
vector Zv of the natural basis in !Rniet

Z~ : P ---* !R n

be the map assigning Zv on q E P and zero elsewhere. Clearly

{z~lv = 1, ... , n; q E P}

is a Qp-orthonormed basis of F(P, !Rn).

(2.1.8)

Now r~Qp, the pull back of Qp to FOO(M, !Rn), is a scalar product related with Q(jo)

by
r~Qp(h,l) = Q(jo)(8(jo)h,l) Vh,l E Foo(P,!Rn) (2.1.9)

where 8(jo) is a Q(jo)-selfadjoint isomorphism. Since the vectors in (2.1.8) are all

orthonormed {r~1zZlv = 1, ... , n; q E P} is an r~Qp-orthonormed eigensystem of

8(jo). Hence
8(' ) -1 q - C2( ) qJo r 00 Zv - <"v q zv'

Associated with 8(jo) are thus the functions

e :P ---*!R v = 1, ... ,n.

Clearly, the Q(jo)-norm IlzZIIQ(jo) of each zZ is

Ilz~IIQ(jo) = ~v(q)-1

The following is crucial for our furt her studies:

Lemma 2.1.1:

Tbere is a real-valued function ~ E F(P, !Rn) sucb tbat

~v = ~ V v = 1, ... , n.

Proof: At first we observe that

(2.1.10)

(2.1.11)

z~ = 1q . Zv Vq E P and v = 1, ... ,n
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where 1 q is the characteristic function of {q} (cf. appendix 3). Moreover we have

FOO(M,JRn) = tB~=lFOO(M,JR). Zv (2.1.12)

where Foo (M, JR) c Coo (M, JR n) is constructed exactly in an analogous way as we

obtained FOO(P, JRn); hence FOO(M, JRn) = Fü(M, JRn) EBJRn (cf. 2.1.7). The re-

striction map defined on Foo (M, JR) onto F( P, JR) is denoted by r00' too. Hence

-1 q - ( -11 ) '.-/ - 1roozv- roo q 'Zv vv- , ...,n and Vq E P.

Since COO(M, JR n) = tB~=lCOO(M, JR) . Zv we have due to (2.1.12)

(}(jo )(gv . zv, gv' . zv') = (1M gv . gv' p,(j)) . 0v,v'

for any choices of gv, gv' E Coo (M, JR n) and zv, Zv' E JR n. Accordingly,

i: _ *(} ( -1 q -1 q ) _ ( ( e (') -11 -11 (')) i:vv,v' - r p r 00 zv' r 00 zv' - } M IR Jo r q . r 00 qP, Jo . vv,v'

has to hold for some endomorphism eIR (jo) on FOO(M, JR). Thus r~11q where q
varies in P, is an eigensystem of eIR on Foo (P, JR) with respective eigenvalue e(q),
say. Hence

e(jo) = tB~eIR(jo)
and

e~(q) = e(q) V q E P

showing OUf claim.

We now choose some 15E COO(M, JR), positive everywhere but such that

r(152) = e.
Then

(-2. -1 q) _ (-2). q _ c2 q - C2( ) q '.-/ - 1 '.-/ Pr p r 00 Zv - r p Zv - <" Zv - <" q Zv v V - , ... , n v q E .

Thus if h = ~ a:qr-1zq then0v,q v 00 v

r(152h) = 2:a:~152r'~}(zn = 2:a:~e~(q)zv.
Hence we may write on Foo (P, JR n)

r*(}p(h, I) = (}(jO)(152 . h, l) V h, I E COO(M, JRn).
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This establishes the following lemma, basic to our investigations. (For a density map

and the metric B(p) we refer to A2.4 and A2.5 respectively in appendix 2).

Lemma 2.1.2:

There is a density map

p: E(M,lRn) ----t COO(M,lR)

such that
r*Qp(h, l) = Q(jo) (p(jo) . h, l) \:j h, l E FOO(P, lRn).

This is to say that
r*Qp = B(p) on FOO(M, lRn)

(2.1.13)

(2.1.14)

along the foliation denned by the distribution /C. Moreover p can be chosen such that

IM p(jo)/J(jo) = (so - 1) . n holds true.

The nature of p will become evident as we study the virtual work below.

Let us pause to study the freedom in choosing p(jo). To this end let p: M ----t lR be

a smooth map such that

p' = p(jo) + p

where p' satisfies (2.1.14) as weIl. Hence plP = O. Obviously we have the following :

Lemma 2.1.3:

In order that p' > 0 the map p has to vary in an open set 0p C ker r. If we require in

addition that IM p(jo)/J(jo) = IM (p(jo) + p(jo))/J(jo) = const. Then IM p(jo)/J(jo) =

0, this is to say p varies in Op n ker IM'" /J(jo).

Now let us turn back to the virtual work (2.1.1). The internal force density

<Pp: W(j~) ----t F(P,lRn) lifts to woo(jo) as

r~l 0 <Pp 0 roo : woo(jo) ----t FOO(P, lRn)
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(here we assumed that r(ja) = j~ and that r(Woo(ja))
j E Woo(ja) and any h E FOO(P, JRn)

Qp(<I>p(r(j)),r(h))

= A p (j) (1' ( h))

= r~Ap(j)(h)

= B(p) (r~l<I> p (r(j)), h).

W(j~)). Hence for aIl

Instead of r~l 0 <Pp 0 l' we will write r~<I>p as a shorthand. Clearly r~<Pp(j) E

Foo (M, JRn) for aIl j E Woo(ja). Since for any j E Woo(ja) and any h E Foo (P, JRn)

Qp (<pP (roo(j)), roo(h)) = B(p)(r~<I>p(j), h) = Q(ja) (p(ja) . r~<I>p(j), h)

we first observe that p(ja) . r~ <I>p (j) is Q (ja )-orthogonal to the constant maps in

COO(M, JRn). Therefore p(ja) . r~l 0 <I>p01'00 is an internal force density on Woo(ja)

with values in COO(M, JRn). Next let us take the component <I>1j1(j) in Fü(P, JRn) of

p(ja)' r;;}<I>p(j) for each j E Woo(ja) defined by

r~Ap(j)(h) = Q(ja) (<I>1j1(j), h) V h E FOO(M, JR n). (2.1.15)

Since Qp is defined via a sum and Q(ja) via an integral, p converts the force r~lo<I> pOToo
into a force density p(ja) . r~l 0 <PpOT. This fact reveals the nature of p; in particular p
can not be thought of as being a mass density. Equation (2.1.15) shows that <I>1j1does

not depend on the particular choice of p(ja).

<I>1j1(j) E Fü(M, JRn) is represented by some weIl defined Q(ja)-normalized constitu-

tive map ii1jf (j) E FOO(M, JRn) for any j E Woo(ja) as

<I>1j1(j) = D..(ja)H1j1 (j). (2.1.16)

It will be convenient to work also with the Fourier expansion of H1j1 (j), namely

(so-l)'n

H1j1 (j) = L fi~(j)ei Vj E Woo(ja).
i=l

(2.1.17)
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Hence the uniquely determined force density ipl)f : Woo (ja) ---t Foo (M, IR n) is given
by

(sa-1).n

ip1j!(j) = L Ai' ~~(j)ei \f j E Woo(ja).
i=l

(2.1.18)

Clearly

(2.1.19)

However, l:i.(ja)ker r ct ker r.

Referring to appendix 2 for B(p) once more we therefore state:

Theorem 2.1.4:

(2.1.20)

r~Ap(j)(h) = Qp (ipp(roo(j)), rooh)

= B(p)(r~ipp(j),h)

= Q(ja)(ip1j!(j),h) \fh E Foo(P,IRn
)

Given an internal force density ipp then ipl)f and r~ipp : Woo(ja) ---t FOO(M,IRn
)

satisfy

on Woo (ja). Hence
ip1j! = Pr 0 p(ja) . r~ 0 ipp (2.1.21)

holds true. Here Pr denotes the Q(ja) -orthogonal projection onto Foo (M, IR n).

Both force densities ipl)f and r~ipp in (2.1.20) admit constitutive maps, namely Hljf
and H, both map into the Q(ja)-arthogonal complement of IRn c FOO(M, IRn) that

is into Fü(M, IRn). The force density ipljf (j) on Woo(ja) does not depend on the

particular choice of p far any j E Woo (ja).

The following corollary is immediate:

Corollary 2.1.5:

A smooth map ip : Woo (ja) ---t Foo (P, IR n) satisfies

r~Ap(j)(h) = Q(ja) (ip(j), h)
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Corollary 2.1.5 motivates the following

Definition 2.1.6:

r~Ap is the virtual work and ipp! its associated internal force density on woo(jo) C
E(M, lRn) caused by the smooth medium made up by finitely many partic1es which
is characterized by either one Ap, its internal force ipp or by HP!.

Since FOO(M, lR n) + ker r = COO(M, lRn), we extend A = r~Ap to all of r-1 (W(jj?,))
by setting

A(j)(l + k) := A(r~l(r(j))) (l)

for all j E r-1W(jj?,) alll E FOO(M, lRn) and all k E ker r. Clearly r*A i- A. In the

sequel we will work on the slice woo(jo) of r-1(W(jj?,)) exclusively, however.

We conclude this section by investigating p . r~ ipp a little furt her.

.Equation (2.1.20) shows that there is a uniquely determined Fü(M, lRn)-valued con-

stitutive map HP! on woo(jo) such that

saying that

Q(jo) (Pr 0 p(jo) . r~ ipp(j), j) = Q(jo)(ß(jo)HP! (j), h)

\:;f j E woo(jo) \:;f hE FOO(M, lRn).

In the special case dimM = 2 we rewrite (2.1.14) on woo(jo) for each j E woo(jo)

r~A(j)(h) = B(p)(r~CPp(j), h) = 1M < r~CPp(j), h > p(jo)/-l(jo)

= 1M < ßpHp(j), h > /-lp

for any h E Foo(M,lRn). The Riemannian metric mp := p~(jo)m(jo) with /-lp as its

volume form has p(jo) ~1 ß as its Laplacian ßp. Since r~A(j)(z) = 0 for each z E lRn
we conclude the following:
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Proposition 2.1.7:

There is a constitutive map H!j on Woo(ja) such that for all j E Woö(ja)

(2.1.22)

holds true. If dim M = 2 there is a constitutive map Hp : WOO(ja) --+ FOO(M, lRn)

with

where ßp is the Laplacian of the Riemannian metric mp given by

1 1

mp( v, w) =< p(ja) 4 djav, p(ja) 4 djaw > Vv, w E TqM and Vq E M.

Let dim M = 2. In general (M, mp) can not be globally and smoothly embedded, i.e.

in general there is no embedding jl E E(M, lRn) such that

(2.1.23)

for small n. More explicitly mp is a pull back by a Coo-embedding if n = 10 (cf. [G,R]).

If, however, the scalar curvature Ap of mp is strictly positive, then M has to be isometrie

to an embedded sphere in lR3 (cf. [B,G]). If M is diffeomorphic to a sphere then jl

existsif n = 7 (cf. [G,R]). For the local embedding of (M,mp) confirm [G,SJ.

If n is large enough however, then jl E E(M, lRn) exist~. Therefore proposition 2.1.7

motivates us to call a configuration jl E E(M, lRn) to fit metricaHy weH if

(2.1.24)

along W(j~).

It is easy to see that if ja is an equilibrium configuration then jl is one too and vice

versa. If jl exists we may hence assume, without loss of generality, that jl = ja.
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2.2 The exaet part of the virtual work of a smooth medium made up by

finitely many particles and the free energy associated with it

The goal of this seetion is to split off in a geometrie fashion an exaet part JD F of the

virtual work. This part is ealled the exaet part of the virtual work of a smooth medium

made up by finitely many particles. It will be interpreted as the differential of the free

energy F assoeiated to an adapted statisties (cf. [B,St]'[Bi6]'[Str]'[L,L] and [M,H]).

The geometrie setting based on theorem 2.1.4 yielding this exaet part (via a Neumann

splitting) is the following one:

Let jo E E(M, lRn) be fixed and woo(jo) c E(M, lRn) be a closed ball centred

about jo. The motivation of restrieting us to WOO(jo) is clearly the Neumann splitting,

however it will beeome entirely clear from a physieal point of view in ehapter three.

Moreover to prepare the geometrie tool we let p denote a density map such that the

sealar produet B(p) on FOO(M, lRn) (cf. A2.5)

satisfies

r*Qp(h, k) = B(p)(h, k) = 1M p(jo) < h, k > /-l(jo) (2.2.1)

for any h, k E FOO(M, lRn). This kind of density exists by (2.1.14) in lemma 2.1.2. We

set p(jo) = Po, for simplieity.

Next let A be virtual work, i.e. a one-form A on woo(jo). This one-form is assumed to

be ofthe form r~Ap for some one-form Ap on roo (woo(jo)) = W(j~); here r(jo) = j~.
We deeompose A on woo(jo) into

A=JDF+'IJ

in the sense of Neumann by solving the following elliptie boundary value problem:

dlivBA = $BF

A(nB) = JDF(nB)

where nB is the oriented normal to the sphere bounding woo(jo), formed with respeet

to the sealar produet B(p). The operators dlivB and $B are respectively the divergenee

and the Laplaeian of B(p) on FOO(M, lRn). Next we will eonstruct a Q(jo)-normalized
~ -

eonstitutive map HF of JDF.

The gradient GradQ(jo)F of F formed with respeet to Q(jo) ean be represented as
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where ZF is a constant mn-valued function on woo(jo), and GradgUo)Fo is perpen-

dicular to the constant maps on woo(jo) formed with respect to Q(jo).

Similarly, we may represent the one-form \]I as

\]I = Q(jo)(V w, ... )

far some weIl defined vector field V w on WOO (jo) and split it into

Vw = V~ + Zw

for Zw E mn. Since A(j)(z) = 0 for aIl jE woo(jo) and z E mn we find

Zw = -zF'

therefore we can ass urne zF = Zw = 0 and set F = F 0 respectively V w = V~. Hence

GradgUo)F: woo(jo) --+ ;::OO(M,mn) satisfies

(2.2.2)

for some weIl defined smooth Q(jo)-normalized map HF : woo(jo) --+ ;::OO(M,mn)

fulfilling the boundary condition

(2.2.3)

Thus we have :

Theorem 2.2.1:

Let Ap be any virtual work on roo(Woo(jo)) C EOO(P,mn), and ;::OO(M,mn) be

equipped with the metric B(p), satisfying (2.2.1). Moreover let Po := p(jo) for some

jo E EOO(P, mn).
The virtual work A := r~Ap splits uniquely on a c10sed ball woo(jo) centred about

jo into
(2.2.4)

(2.2.5)

where F satisfies

- 1 ~
dlivBA = fP.BF= dlivB-~HF and

Po

Moreover, GradBF, the gradient oEF formed with respect to B(p) and Gradg(jo) are

related by
(2.2.6)
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where Pr is the 9(jo)-orthogonal projection onto :PXJ(M, ]Rn) and Hp(j) E

FOO(M, lRn) for each j E woo(jo). The operators dlivB and !p..Bare the divergence

and Laplacian on FOO(M, ]Rn) formed with respect to B(p). Both Hand F depend

smoothly on j E woo (jo) .

Now we turn to the discrete level again. Ap splits on W(j~) := roo(Woo(jo)) accord-

ingly into

i.e.

and
A(np) = lD F(np)

have to hold. Here dlivp, !p..pand (np), the outward directed unit normal field of

W(j~), are all formed with respect to 9p (d.[Ma]). Due to (2.2.1) we immediately

deduce:

Theorem 2.2.2:

Let A = r~A on woo(jo). Then

F = r~F p + const. and (2.2.7)

Next we will construct a natural density F :woo(jo) ---+ COO(M, ]Rn) for F exhibited

in the theorem above, i.e.

Obviously F admits many densities, e.g.F := ~ is one. We will construct one which is

based on the gradient of F, and hence differs from ~ in general: To this end we will

write
lD F = 9(jo)(Gradg(jo)F, ... )

which implies the Fourier decomposition

- 2:ßFGrad,,(. )F = - .e-
'" Ja ßx. t

. t
t

(2.2.8)
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where Xi is the ith coordinate function defined by ei E Fü(M, JRn). The one-form w

with

on woo(jo) (having values in the finite dimensional subspace of COO(M, JRn) generated

by {< ei, er > li, r = 1, ... , (so - 1) . n}) splits into

w = IDF+ \¥Gr

in the sense of Neumann on WOO (jo). This is to say both equation

and

w(N) = lD F(N)

hold true, where N is the oriented (outward directed) g(jo)-unit normal along

ßwoo(jo) and $. and dlivQ(jo) are the Laplacian and divergence both formed with

respect it g(jo) (cf. [Mal). Clearly

Thus

$F = $.1M F/J(jo) = 1M $F/J(jo)

showing that Fand IM F/J(jo) differ by a constant. Moreover

lD F = 1M lD F/J(jo) = 1M < Grad F, ... > /J(jo)

which implies in particular

on all of WOO (jo). This shows that
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We therefore have

Proposition 2.2.3:

The function F E C= (W= (ja), IR) of the exact part ][) F admits a density F, i.e.

satisfying

][) F = 1M ][) Ff.1(ja) = 1M < GradF, ... > f.1(ja).

on W=(ja). Moreover the following equations hold:

< Gradg(jo)F, ... >= ][)F + WCr

(2.2.9)

(2.2.10)

< Gradg(jo)F, N >= ][)F(N) (2.2.11)

!f.F = dlivg(jo) « Gradg(jo)F, ... »

1M wCr(h)f.1(ja) = O. (2.2.12)

\:j hE F=(M, IRn). Here N is the outward directed Q(ja) unit normal along aW=(ja).

Next we will show that F admits an observable I E C=(W=(ja),IR) ~t a fixed

prescribed temperature T such that the partition function Z, formed with respect

to an equilibrium state Pe (cf. appendix 2, A2.16), will satisfy

1-ln Z:= --F.
T

(2.2.13)

The state Pe has to be determined. To this end let F be a density of F. To relate the

density F with the observable we set

or

1
Pe .ln Z = --F

T

e-+'[ 1
--ln Z=--FZ T

(2.2.14)

_1...[ _1...p Fe T =e T .=
F

if F is nowhere zero. Hence (2.2.14) implies obviously (2.2.13). We therefore have the

following :
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Theorem 2.2.4:

Associated with the map F, for which ßJ F is the exact part of a constitutive law
A :woo(jo) x F(M, IRn) ---t IR made up by nnitely many particles and any a density
F of F, i.e. a map F : woo(jo) ---t COO(M, IR) with

F = 1M F/-l(jo),

there is an observable I such that F is the free energy of the Gibbs state

e-tI
Pe:= IM e-tI/-l(jo)

at a nxed temperature T; Hence

Pe = et(F-I).

This observable I is given by

The density F is related to F by

F = Pe' F.

(2.2.18) shows that I depends on the choice of the density F.

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

The above theorem motivates us to call F, a real-valued function on woo(jo), the free

energy of the medium (cf. appendix 2). Here again W(jo) has to be small in order to

fit reality some what.

Let us point out that if the second law in thermodynamics holds, then the free energy

defined in a thermodynamical setting satisfies (2.2.4) (cf.[Bi6]).

From (2.2.14) and (2.2.19) we immediately deduce

T. Pe . Zn Z = -Pe' I - T . PeZn Pe

or equivalently

F = Pe' 1- T. S

(2.2.20)

with S := -PeZn Pe the entropy density associated with land T (cf. appendix 2).

Integrating both sides yields
F = I -T.S. (2.2.21)
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This formula shows that I can be identified with the interna1 energy (cf. [B,St ] or

[L,LJ). In fact we have a~lz = -I, saying again that I is the internal energy (cf.
T

[B,StJ). On the other hand (2.2.21) implies

JD F = JD (Pe . 1) - T . JD S

and hence (2.2.10) yields

< GradQ(jo)F, ... >= JD (Pe' 1) - T. JD S + WOr'

Since moreover
- ~ ~i ~ ~ 8F ~

GradQ(jo)F = L Ai/'l,Fei = L 8Xi . ei.

We therefore have shown the following:

(2.2.22)

(2.2.23)

Proposition 2.2.5:

At a fixed temperature T the densities F,I and S ofthe free energy, the internal energy

and the entropy are related by

implying

and therefore

F = Pe' I - T. S

A = JD F + W = JD 1- T. JD S + W

(2.2.24)

(2.2.25)

(2.2.26)

for fixed T. Since the gradient GradQ(jo)F of F formed with respect to Q(jo) is

saying that

Aih;~ = Z~ Vi = 1, ... , (so - 1). n

we have in addition for each i = 1, ... , (so - 1) . n

(2.2.27)

(2.2.28)

In particular, if JD F(jo) = 0

or
~i 8(1 - TS)
/'l,F = 8Xi . (2.2.29)

h;~(jo) = 0 or equivalently
81 8S- = T. - Vi = 1, ... , (so -1). n
8Xi 8Xi

(2.2.30)
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Now we turn to the statistical set up on the discrete level. Here too F p admits a

natural density Fp:

Proposition 2.2.6:

The constitutive law Ap has a uniquely determined exact part JDFp. The map Fp :
W(j~) ---+ JR admits a density map

Fp : W(j~) ---+ F(P, JR)

smoothly depending on jp E W(j~) such that

Fp(jp) = 2: Fp(jp )(q) Vj E W(j~)
qEM

and JDF is the exact part of< GradFp, ... > for which

!f.F(jp) = 2: $.pFp(jp)
qEP

holds. Here $.p is the Laplacian determined Qp on F(P, JRn).

(2.2.31)

(2.2.32)

Proof: The proof follows exactly the same pattern as the one of proposition (2.2.3). F

admits a gradient GradpF p. The divergence of

- .0< GradpFp, ... >: W(Jp)p ---+ F(P, JR)

yields for each jp E W(j~) a map Fp(jp) : W(j~)p ---+ F(P, JRn) which can be

chosen such that Fp(jp) is perpendicular to JRn C F(p,JRn) for all jp E W(j~).
Thus Fp is uniquely determined and satisfies $.pF(jp) = $.p 2:p F(jp )(q), showing

the lemma.

Let us point out here, that theorem 2.2.4 holds accordingly for Ap and F p exhibited

in theorem 2.2.2; the respective maps on W(j~) are denoted by Ip, Ip, Sp and Sp.
The integral JM has to be replaced by 2:qEP.
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Therefore we have the following:

Theorem 2.2.7:

ToFp : Wp(j~) --+ IR and any density Fp :W(j~) xP --+ IR, there is an observable
Ip : Wp(j~) x P --+ IR such that

p 1 -
Pe . Fp = - Tln Zp = Fp

where Zp(q) = :L e-1dp (q) and P~ := e-tIP• Moreover Fp = -~ .ln Zp is the
free energy of Ip at a fixed temperature T. The observable Ip is given by

(2.2.34)

Again as in the continuum case, the above theorem motivates us to call F p the free

energy of the virtual work of the discrete medium.

The functions F, Z, Fp and Zp are linked by construction in the following manner

Corollary 2.2.8:

Let Fp be the free energy associated with a virtual work Ap. The free energy Fand
the partition function Z on woo(jo) are related to Fp and Zp on W(roo(jo)) by

F = r* Fp and hence

for fixed temperature T.

Z = r*Zp (2.2.35)

Finally let us make ex am pies to the statistical set up on M:

Example: 1)We consider the area function

Here A = Fand dei f(j) = F, in the sense of theorem 2.2.4.

If j and jo are dose to each other then

dei f(j) = etr<p(j) (2.2.36)
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Hence the density F is det f(j). Let T be fixed. Then

Z(j) = e-tA(j) Vj E woo(jo). (2.2.37)

Hence

1= A(j) - T . Zn A(j) - T . tr<p(j). (2.2.38)

~i 1 [jA
K,A = '[j_ .Ai Xi

On the other hand we have in case of n = 1 + dim M

To compute the Fourier coefficients of HA, the constitutive map of A we use (2.2.27)

and get

GradgA= H. N

where H is as in (1.1.29) and N is the oriented m(jo)-unit normal vector field along

the embedded manifold (cf.(1.1.29)). Thus

~~= CJ(jo)(H . N, ei) Vi = 1, ... (so - 1) . n

(cf. section 2.1) showing

[j
[j~ = H . CJ(jo)(N, ei) Vi = 1, ... (so - 1) . n.
Xi

2) We consider the ith coordinate function

determined by ei. Clearly

cRXi = 1M < ei, ... > M(jo) = CJ(jo) (Gradg(jo)Xi, )

= 1M Po < Polei, ... > M(jo)= B(po)(POlei, )

Thus PrpOlei is the gradient of Xi with respect to B(p), and cRXi(Z) is the ith

Fourier coefficient of Z E FOO(M, JRn). Here Pr is the CJ(jo)-orthogonal projection

onto FOO(M, JRn). The density map Xi of Xi is given by

Therefore we have
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and obviously d1.Xi = IM d1.xiJ.l(jO)' Given any F : woo(jo) ---t IR we have

Hence the density map F of F in theorem 2.2.3 satisfies

Following the construction of F out of F we may set

. aF _ (so-I).n a2F
!fJi'i = d1.zvQ(jo) -a d1.xi = - L a < ei, e.,. > .

Xi . ax.,. Xi
2=1

In all the formulas the coordinate system el, ... , e(so-I).n can be replaced by any other

9(jo)-orthonormed one.

Moreover Fand F in (2.2.15) have the form

with Fi(j) := IM Fi(j)J.l(jo) for all j E woo(jo) due to the construction of F. Then

F = ~Fi and _ a2F
!fJi'i = --a 2X.

1

This equation has a solution Fi up to a constant. To associate a component Ii of the

observable I given by F via (2.2.17) we set

. e-,J,/i
P~ := ---z:- Vi = 1, .", (so - 1). n

Then Z = TIi Zi and Pe = TIi P~; therefore

implying
1= L Ii Vi = 1, .. " (so - 1) , n
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3) Nearest neighbour interaction

3.1 Nearest neighbour interaction

So far we did not specify any interaction type among the material particles of which the

mean locations are the points of P c M. In this section we implement an interaction

structure as follows: Let L c M be a connected simplicial complex consisting of zero-

and one-simplices only, the zero simplices being the points in P and the one-simplices

being segments connecting points in P. In the terminology of appendix 3 we have

P = Lo. Gur lRn-valued cochain complex associated with L has the form

All points qi which are connected with q E P, say, are called nearest neighbours of q.

Instead of CO(L) we write F(P, lRn). The number of nearest neighbours of q is called

k(q). Furthermore we assurne that all nearest neighbours of any q E P are within the

domain of a Riemannian normal chart about q. The Riemannian metric being m(jo)
for some £lxed jo E E(M, lRn), a reference configuration. The distances between q and

its nearest neighbours shall all be extremely small, which means that So, the number of

points in P is rather large for a large diameter of M. Any q E P is supposed to interact

only with its nearest neighbours, i.e. we have a nearest neighbour interaction.

No external £leIds shall be present at all.

Let W(j~) be a closed ball in EOO(P, lRn) centred about j~ := r(j) and let us assurne

that

is an internal force, i.e. the following holds for all jp E W(j~):

L ipp (j p ) (q) = 0 and
qELo

(3.1.1)

Hence there is a map Hp : W(j~) ---t F(P, lRn) such that

(3.1.2)

where ßT is the Laplacian associated with the complex L on the level of F(P, lRn)

(cf. appendix3, [B]' compare also [Ch,St]).
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We call 1{p the constitutive map.

1{p is Qp- normalized provided that Qp (1{(jp ), z) = 0 for all z E IR n and all jp E

W(j~). Clearly (3.1.2) admits a unique Qp-normalized solution 1{p.

By the definition of !:i.T (cf. appendix 3) we observe that 1{p(q) - 1{P(qi) is the

interaetion force within the medium of the particle at q with its nearest neighbour

at qi for all i = 1, ... , k(q) and each q E P. These interaction forces might be given by

potentials (cf. lemma 3.1.1 below)

Let er, ... , efso-l).n be the Qp-orthogonal eigenvectors of!:i.T in F(P, IR n) having eigen-

values 0 < Ar :::;Ar :::;... :::;Afso-l).n' Then

(so-1)-n

1{p(jp) = L (i(jp). er '1/ jp E W(j~)
i=l

and
(so-l).n

Cf>p(jp) = L Ar (i(jp) . er '1/ jp E W(j~);
i=l

here (i :W(j~) -+ IR are smooth for each i = 1, ... , (so - 1) . n.

(3.1.3)

(3.1.4)

Proceeding as in the previous section we verify that associated with F p and a fixed

temperature T there is an equilibrium state (as already pointed out in section 2.2).

Let us assume that the interaction force between the particle at q and the one at qi is
derivable from a potential in the ambient space IR n. This is to say that we assume a

potential

which is smooth in the variable z E IRn\{O} and which does not depend on jp E

W(j~).
Therefore the inter action force 1{p (jp ) (q) - 1{p (jp ) (qi) has the form

where gradIRn means the gradient formed in IRn\{O}. Hence

k(q)

!:i.T1{p(j)(q) = LgradIRn V(jp(q) - jp(qi))'
i=l

(3.1.5)

(3.1.6)
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Therefore we have the following

Lemma 3.1.1:

Let V : P x IR n \ {O} ---+ IR be a potential for the interaction forces. The constitutive
map satisfies

Vq E P and Vi = 1, ... , k(q), Vjp E W(j~).

Moreover the Fourier coeflicients and their derivatives are determined by

for all jp E W(j~), for all i = 1, ... , k(q) and for all q E P. Hence

. k(q)

a~(J:) = >.~LLD2V(jp(q) -jp(qi)) ((eT(q),e;(q)))
Y ~ qEP i=l

Vi, s = 1, ... , k (q) and Vq E P

where Yi is the coordinate function defined of er. Here D denotes the Frechet derivative

in IRn.

The presenee of a potential requires us to restriet the eonstitutive map Hp to a neigh-

bourhood W(j~) of same configuration of j~ E E(P, IRn). To show this let us assurne

that V Iq x IR n \ {O} grows rapidly to infinite near zero. Then the nearest neighbours

of q E P reaet with q only. Let j~(qi), ,j~(qk(q)) be these nearest neighbours. If the

distanees between jp(q) and jp(ql)' ,jp(qk(q)) are made suffieiently large, then at

least some of jp(ql), ... ,jp(qk(q)) need not to be nearest neighbours jp(q) any more.

This is preeisely why we rest riet us to W(j~) from the beginning on. In presenee of a

potential , W(j~) is supposed to eonsist of those configuration jp only for whieh j(qi)
are the nearest neighbours of j (q) for all i = 1, ... , k (q) and all q E P.
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3.2 Nearest neighbour interactions described on a smooth manifold

In this section we will relate the description of the nearest neighbour interaction on

a one-complex L considered in section 3.1 with the description on a smooth manifold

M containing the one-complex.

In contrast to section 2.1 we have a Laplacian l::i.Ton F(P, IRn) given by the interaction

pattern. Hence we have constitutive maps, as seen in section 3.1.

One goal of this section will therefore be to relate the constitutive map on P namely

Hp : W(j~) ----t F=(M, IRn), constructed in section 3.1, with the constitutive map

on the continuum M, this is to say with Hl)f, considered in section 2.1.

The relation of these two descriptions will be established via the rest riet ion map

In particular we will use r= : F=(M, IRn) ----t F(P, IRn), a surjection (cf. sec 2.1)

given by r= := rIF=(M, IRn). We therefore consider again the integrable distribution

In particular we consider a leaf W= (j) = j +0 where 0 is a closed ball in F= (M, IRn)
centred about jo such that r=(W=(jo)) = W(j~). Here jo E E(M,IRn) a reference

configuration such that r=(jo) = j~. Again l::i.(jo)will be denoted by l::i..

Throughout this section we assume that j~ is an equilibrium configuration for the

virtual work Ap on W(j~) or at least a stationary point of the free energy F p (cf.

section 2.1).

We assume furthermore that all nearest neighbours of any q are within a distance

smaller than the injectivity radius determined by the metric m(jo). In fact we require

that there is a covering (Uqlq E P) of M of open sets each of which has a diameter

smaller than E which itself is smaller than the injectivity radius of exp at q and suppose

that Uq contains all the nearest neighbours of q in P. The real number E itself shall be

extremely small.
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Finally let P be a density map satisfying

r*yp = B(p)

on the leaf W=(jo), (cf. lemma 2.1.2). Again we write Po instead of p(jo).

No external forces shall be present on W(j~).

We begin by an internal force

(3.2.1)

which by definition is pointwise yp-orthogonal to JR n. This force determines a virtual

work Ap, say. Hence

(3.2.2)

for an uniquely determined smooth map 'Hp : W(j~) -----+ F(P, JRn), pointwise yp-
orthogonal to JR n as seen in the previous section. Since

for alll E F(P, JRn) we know by proposition 2.1.7 that

-1 ~MPr ° por= ocI>por==ß'Hp

for an uniquely determined smooth Rlj pointwise yp-orthogonal to JR n with Pr the

y(jo)-orthogonal projection to F=(M, JRn). Clearly Rlj is uniquely determined by

'Hp. Thus

is the uniquely determined force density on W=(jo)(with rjo = j~) for which r~Ap

is the virtual work. Vice versa if we start with an internal force density

for which the virtual work is AM, say. Then

1 -1cI>p:=r=o Pro-cI>or=
Po

is an internal force density causing a virtual work Ap, say, for which AM = r*Ap. We

therefore have:
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Theorem 3.2.1:

There is a one to one correspondence between constitutive Qp-normalized constitutive

maps Hp on W(j~) and Q(jo)-normalized constitutive maps Hf! on woo(jo) such

that the internal force densities on woo(jo) are related by

(3.2.3)

where Pr is the Q(jo) orthogonal projection onto F(M, JRn). The virtual works Ap

and A determined by Hp and H.t;! respectively satisfy

A = r*Ap. (3.2.4)

This theorem shows that a medium determined by finitely many particles are equiva-

lently described on woo(jo) and W(roo(jo)) by H.t;! and Hp respectively.

Now let us show that both Fand Fp associated with r~Ap and Ap respectively

(both exhibited in section 2.2) admit constitutive maps and show how these maps are

related to each other. Let us consider a smooth constitutive map

We form the virtual work Ap and exhibit the free energy Fp on W(j~) as in (theorem

2.2.2). Then we set F := r~Fp on woo(jo). Since r~Qp = B(p) the map F is the free

energy of r~Ap. The gradient GradQ(jo)F of F formed with respect to Q(jo) allows

us to determine the constitutive map Hp of F as follows: The one-form

vanishes on JRn since JDFp does so. Hence GradQ(jo)F is Q(jo)-perpendicular to the

constants JR n implying

GradQ(jo)F(j) = 6:..Hp(j)

with Hp(j) E COO(M, JRn) and in turn

for all j E woo(jo) and all h E FOO(M, JRn). On the other hand Gradr*QpF satisfies

for any j E woo(jo) and hE FOO(M, JRn).



- 48 -

(cf. 3.2.1). If Pr denotes the Q(jo)-orthogonal projection onto F=(M, !Rn) then

(3.2.5)

or due to r*Qp = B(p)

where Hpp is the constitutive map of IDFp.

The theorem above together with the theorems 2.1.4, 2.2.1, and lemma 2.2.3 immedi-

ately yield the following:

Corollary 3.2.2:

Let Fp be the [ree energy associated with a virtual work Ap. The [ree energy F

and Fp on W=(jo) respectivelyon W(rjo) related by F = r* Fp and both admit

constitutive maps HFand Hp respectively. These maps are related by
p .

(3.2.6)

and are such that

(3.2.7)

or equivalently

Now let dirn M = 2. By proposition (2.1.7) we conclude (cf. proposition 2.1.7)

Qp(ßTr(Hp(j)), h) = B(p)(r~if!p(j), h)

= 1M < r~if!p(j), h > Mp

= 1M < ßpHp(j), h > Mp

= B(p)(ßpHp(j),h »

and hence

(3.2.8)

(3.2.9)

(3.2.10)

have to hold for some smooth map Hp :w= (jo) ---+ c= (M, !R n).
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Furthermore, as we have shown in appendices 1 and 3

d*d = ßp

formed with respect to mp ( cf. section 2.1) and

Since d = dr+higher order terms we have on W=(jo) C F=(M, ]Rn) the equation

d* = dT up to higher order terms. Both sides are formed with respect to r~Qp = B(p).

Therefore the following holds:

Theorem 3.2.3:

In case of dim M = 2 the Laplacians r;;} 0ßr 0 r= and ßp on F= (M, ]R n) are related

on W=(jo) by

ßp = r;;} 0 ßr 0 r= +higher order terms. (3.2.11)

Therefore the Qp respectively the B(p)-normalized constitutive maps Hp on W(j~)

and Hp on W=(jo) ofif>p and r*if>p respectively, both formed with respect to ßr and

ßp satisfy

Hp = r= 0 Hp +higher order terms.

Similarly F admits a B(p )-normalized constitutive map ii.~such that

which is related to HF p by

HFp = r 0 Hp +higher order terms on W=(jo).

Definition 3.2.4:

(3.2.12)

(3.2.13)

(3.2.14)

In case of dim M = 2 we call a connguration jo a good fit for the discrete medium if

m(jo) = mp and

where F := r~Fp.

Theorem 3.2.3 implies the following:

lD F(jo) = 0 (3.2.15)
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Corollary 3.2.5:

Let dirn M = 2 and ja E E(M, ]Rn) with roo(ja) = j~ be a good fit for the discrete

medium. The Laplacians ßT 0 rand ß are related on Woo(ja) by

ßT 0 roo = roo 0 ß +higher order terms.

The constitutive maps 'HJ/ and Hp as well as HFp and Hp are related by

and

The above corollary has the following consequences :

Theorem 3.2.6:

Let ja be a good fit. Then the internal force

roo(ßH1J1 (j))(q) = ßTHT (roo(j)) (q) up to high er order terms

(3.2.16)

(3.2.17)

(3.2.18)

can be interpreted in first order as the interaction force between q and all its nearest

neighbours for any q E P. Vice versa any internal force on P is of this form.

Remark

If ja is not a good fit corollary 3.2.5 is not valid. The geometry on M inherited by

ja disturbs the direct sight to the physical situation, even though this situation is

equivalently described as shown by theorem 2.1.4 or theorem 3.2.1.

Corollary 3.2.5 and equation (1.1.29) together yield

Corollary 3.2.7:

Let ja fit metrically well then 1.1.29 applied to any q E P reads as

k(q)

H(ja)(q) . N(ja)(q) = k(q)ja(q) - Lja(qi) V q E P

up to high er order terms, with H(ja) being the mean curvature of ja, (the trace of the

Weingarten map).
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4) Linearizations

4.1 Linearized virtual work

In this section we will determine the free energy F1in of the linearization A1in of the

virtual work A, presented in (1.1.35) in lemma 1.1.3. Here we assurne that A = r* Ap,
where Ap is a virtual work on W(j~) c EOO(P, IRn).

Again we will work on woo(jo) as in the previous section. jo E E(M, IRn) is assumed to

be an equilibrium configuration of A, i.e. A(jo) = O.Let j~ = r(jo). Hence Ap(j~) = 0

as weIl.

The linearization A1in of A reads hence for each l E woo(jo) - jo

(4.1.1)

(cf. 1.1.35).

To determine the free energy F1in of A1in we derive from (2.2.4) and (2.2.5) by differ-

entiation at jo

together with

lD A(jo)(l)(h) = lD 2F(jo)(l, h) + lD \JJ(jo)(l)(h) (4.1.2)

(4.1.3)

for each l E WOO (jo) - jo, all h E Foo (M, IR n). Here F is the free energy of A, (cf.

theorem 2.4.2).

Applying dlivB (cf. section 2.2) on both sides of (2.5.2) yields

- LIDA(jo)(ui)(ui) = -CL,ID2F(j0)(ui)(ui) + LID\JJ(jo)(ui)(ui))
i i i

or
(4.1.4)

where Ul, ",U(sa-1).n is a B(p)-orthonormal frame on woo(jo), i.e. a B(p)-orthonormal

basis in Fü(M, IRn) (cf. 2.1.7). Due to the definition of the free energy (cf. section

2.2) the following is therefore immediate:



- 52 -

Theorem 4.1.1:

Let A = r~Ap on woo(jo), where Ap is a virtual work on W(j~) with roo(jo) = j~.

The linearization A1in of A at the equilibrium jo is for each I E woo(jo) - jo

A1in(jo + l)(h) = lD A(jo)(l)(h) V hE FOO(M, JRn).

Its free energy F is given by

(4.1.5)

Here F is the free energy of A and is of the form F = r* Fp, where Fp is the free

energy of Ap on W(j~). Hence A1in(jo) = 0 implies lD F1in(jO) = O. Moreover

(4.1.6)

(The constant F(jo) is arbitrarily chosen).

The structures of A1in and F1in are determined by lemma 1.1.3 and theorem 1.1.4.

The eigenvalues of lD 2F(jo) are called the modes of the medium made up by

finitely many particles (cf. [Ch,St]). These modes are obviously of aglobai and

classical nature.

To show the roles of this sort of modes let G E EndFü(M, JRn) be such that

~ .1D 2F1in(jo)(I, I) = Q(jo)(G I, I) V I E woo(jo).

The following is obvious:

Lemma 4.1.2:

(4.1. 7)

Let Wl, ... ,W(sa-1).n be an orthonormed system of eigenvectors ofG and '1'1, ... , 'Y(sa-1).n

be the respective eigenvalues of G, this is to say the modes. Moreover ifzi denotes the

coordinate function defined by w i, then

(sa-l).n
F1in(jO + I) = Fo + L 'Ys.1; V I E (woo(jo) - jo)

s

where h = "'£hsws, provided that IDF(jo) = O. Moreover

(4.1.8)

and Vi, s = 1, ... , (so -1). n. (4.1.9)
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Combining theorem 4.1.1 with lemma 4.1.3 and theorem 2.4.3 yields immediately:

Corollary 4.1.3:

Let aplin be the structural capillarity of ID Flin. The constitutive map Hplin assigning
to each l E Woo (jo) - jo the value

satisfies

for each h E Foo (M, IR n), implying that

In case of dirn M = 2 and if jo is a good fit (cf. def 2.4.4) then

If in addition Hpp is given by a potential (cf section 3.1) then

rooID GradQUo) (aplin . A)(jo)(q) = IDHpp (roo(jo)) (roo(l))(q)
k(q)

= ~IDgradJRnV(jo(q) -jo(qi))(l(qi)) Vq E P.
i=l

Finally let us express the constitutive map Hplin in terms of the modes of Flin. At

first we observe by corollary 4.1.3 that Hplin (jo + l) depends linearly on l because of

which we write

Hplin (jo + l) = £(l) V l E WOO(jo) - jo (4.1.10)

with £ E EndFOO(M,IRn). Clearly £ = IDHplin(jo). By (4.1.7) we deduce hence

2Gl = ß(jo)£(l)

The equations (1.1.25) and (1.1.24) imply therefore (cf. 2.1.17)

and in turn for all i, s = 1, ... , (so - 1) . n

I?~(jo + ws) = ;i ."(s . Q(jo)(w s, ei)

(4.1.11)

(4.1.12)

(4.1.13)
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Therefore we may summarizing this little analysis by the following two lemmata:

Proposition 4.1.4:

The constitutive map H Flin of F1in is given by

(4.1.14)

and the Fourier coefIicients are hence

8~Flin (' )
If in particuiar "'i8- Jo = 8i s Vi, s = 1, ... , (so - 1) . n then

Xs '

~Fl. (' l) 2 "Ii l' 1 ( 1)""i tn Ja + = . Ai . i Z, S = ,..., So - . n.

Lemma 4.1.5:

The constitutive map HFlin of F1in is given by

showing

(4.1.15)

(4.1.16)

(4.1.17)

Hence the modes of F1in the medium determines the constitutive map of F1inentirely

and vice versa. Therefore the Fourier coefIicients are for each i = 1, ... , (so - 1) . n

and hence

(so-l).n

/itin (ja + l) = ;. L "Isls. g(jo)(W s, ei)
2 .

2

(4.1.18)

(4.1.19)

............Fiin

. h - '\' s LI 8"'i (jo) - ~ W • - 1 ( 1) . 'f th D .Wlt er - DS erWs' 8x
r

- Ur,i v Z,r - , ... , So - • n, l.e. 1 e rouner

coefIicients are all decoupled from each other. Therefore



- 55 -

and
-lin8~r (jo) = 2 'Yi
8Xi Ai i= 1, ..., (so - 1). n (4.1.20)

hold in addition. 1£ hence all Fourier coefIicients are decoupled from each other, then

£, diagonalizes with respect to the eigen basis el, ... , e(so-I).n of ß(jo), this is to say

(

2 . .TI.
Ai

£,=

o

holds showing that £, and ß(jo) commute.

The link between the modes of JD 2F1in at an equilibrium configuration jo and the

structural capillarity is made via (1.1.41), i.e. byequation

JD 2F1in(jo)(l, jo) = dirn M . JD (a. A)(jo)(l)

yielding

(so-l).n
JDF(lo + l)(jo) = dirn M . JD (a. A)(jo)(l) = 2. 9(jo)(Gl,jo) = 2. L 'Yslsj~

s=1

where index s indicates the component formed with respect ws' Therefore we find

Theorem 4.1.6:

The modes of JD 2F1in afIect the structural capillarity by

at an equilibrium configuration jo. In particular

()
2 .s

JD aplin Ws = dirn M . A(jo) . 'YsJo

(4.1.21)

(4.1.22)

has to hold. Hence aplin and the modes of JDF1in inBuence the equilibrium configu-

ration directly.

Therefore aplin is up to higher order terms

(4.1.23)

where jo is an equilibrium configuration.
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To link the Fourier coefficients of Hplin formed with respect to ~ with the structural

capillarity we verify

ID F(jo + 1)(jo) = dirn M . ID (aplin . A)(jo)(1)
~plin

= g(jo)(~(jo)H (jo + 1),jo)
-.-lin

= ID A(jo) (HF (jo + 1))

=LAitit
in

(jo + 1) . ,,~
i

with "b the ith-Fourier coefficient of jo. Therefore we deduce by using proposition 4.1.4

Theorem 4.1.7:

Let jo be an equilibrium configuration for ID F1in. Then

and thus

~plin
IDaplin(jo)(1) = ID1nA(jo)(H (jo + 1))

""' A' . "b plinIDaplin(jo)(1) = Li A~(' )tii (jo + 1)
i Jo

If all the Fourier coefIicients decouple, then

in particular if dirn M = 2 and jo is a good fit then

with r(jo) = j~.

(4.1.24)

(4.1.25)

(4.1.26)

(4.1.27)
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Appendix 1

Dirichlet Integral

Here we will present what is called the Dirichlet-integral in to different ways. Let

<, > be a fixed scalar prod uct in IR n. At first we consider h E Coo (M, IR n) and a

fixed embedding j E E (M, IR n). The differential dh : TM ------t IR n can be represented

via dj as

(A1.l)

which applied to a tangent vector vq E TqM for any q E M reads as

Here Ch : M ------t so( n) is a smooth map sending vectors in djTqM into normal vectors

in the orthogonal complement (djTqM)l.. and vice versa for any q E M; the maps

Ch and Bh are both smooth (strong) bundle endomorphisms of TM skew-respectively

selfadjoint with respect to the pull back metric j* <, > denoted by m(j). For this

representation we refer to [Bil], [Bi2],[Bi,Fi2] or [Bi,Sn,Fi]. For any q E M c~(q) is a

selfadjoint endomorphism of djTqM respectively (djTqM)l... The part of c~ mapping

(djTqM) and c~ into itself is called (C~(q)) T. For any two h, k E Coo (M, IR n) we define

T 1dh.dk := -tr(chock) -tr ChoCk+tr BhoBk = -2tr Chock-tr ChoCk+tr BhoBk
(A1.2)

and observe that

OJ(j)(dh, dk):= 1M dh. dk p,(j) = 1M < ß(j)h, k > p,(j) (A1.3)

where p,(j) is the Riemannian volume element of m(j). The operator ß(j) is the

Laplace Beltrami operator associated with m(j). For (A.1.2) and (A.1.3) we refer to

[Bil],[Bi2] or [Bi,Fi2]. Clearly 9 given by

9(j)(h, k) = 1M < h, k > p,(j) V E(M, IRn
)

is a weak Riemannian metric on E(M, IRn).

The left hand side of (A1.3) is called the Dirichlet integral usually formulated via

Hodge star operator. Clearly OJ is a weak Riemannian metric on E( M, IR n) / IR n •

Next we will represent this integral in a complete different way. It is based on the

second derivative of m(ja) formed with respect to ja.
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Let jo E E(M, lRn)be fixed and let h E COO(M, lRn) be such that jo +h E E(M, lRn).
Then for any v, w E TqM and any q E M

m(jo+h)(v,w) = m(jo)(v,w)+ < djo v,dh w > + < dh v,djo w > + < dh v,dh w >.
(A1.4)

Writing

m(jo + h)( v, w) = m(jo) (J2(jo + h)v, w) (A1.5)

far a weIl defined smooth strang bundle endomarphism j (jo + h) of TM positive

definite with respect to m(jo), we observe by (A1.5) that

m(jo + h) = m(jo) + JD m(jo)(h) + ~JD 2m(jo)(h, h) V hE COO(M, lRn)

and hence

m(jo + h)(v,w) = m(jo) (J2(jO + h)v,w)

= m(jo)( v, w) +m(jo) (JD j2(jo)(h)v, w)

+ ~m(jo)(JD 2 j2(jo)(h, h)v, w)

for all v, w E TqM and for all q E M. Using (A.1.1) we conc1ude that

and the requirement that both Chand B h vanish on the normal bundle of Tj TM. By

* we mean the adjoint. Therefore the following equation holds

< dh v, dh w > =< -c~djo v, djo w > + < djo(Bh + Ch)(Bh + Ch)*v, djo w >

= }m(jo)(JD2j2(jo)(h,h)V,w).

Since c~djo = (c~)T djo we find for all h E COO(M, lRn)

!JD 2 j2(jo)(h, h) = -djOl(C~djo) - C~+ B~ + ChBh - BhCh
2

and

Hence
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and by polarization

Therefore we may state

Lemma A:

Given any ja E E(M, lRn) and any two h, k E C=(M, lRn) we have

1 1dh.dk = 2J[)2(tr f2(ja))(h,k) = 2tr J[)2f2(ja)(h,k)

implying

~ . 1M J[) 2tr f2(ja)(h, k)j1(ja) = 1M < !1(ja)h, k > j1(ja)

= OJ(ja) (dh, dk)

for all h, k E C= (M, lRn). Hence

1M tr f(ja + h)j1(ja) = dim M . A(ja) + 1M tr J[) f(j)(h)j1(ja)

+ ~1M < !1(ja)h, h > j1(ja)

has to hold. Here A(ja) := IM j1(ja).

Appendix 2

Continuity equation and states

a) Densities

Let

be a smooth map for which the value IM p(j)j1(j) is constant in j E E(M, lRn). We

call p a density. A map p of this kind is constructed as follows. Let ja E E(M, lRn)
be fixed. For each pair ja, j E E(M, lRn) with ja being fixed there is a unique positive

smooth and strong bundle isomorphism (cf. [B.G.H], [Bi2] and appendix 1)

f(j) : TM ---+ TM

for which
m(j)( v, w) = m(ja) (J2(j), v, w) \:j v, w E TM. (A2.1)
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This bundle isomorphism is fibre wise constructed with the help of the theorem of

Fischer-Riesz. Hence we deduce

(A2.2)

Let p(jo) E COO(M, IRn
) be a non-negative map.

Setting

p(j) := p(jo) . detj-l(j) V j E E(M, IRn)

we indeed have

A simple calculation shows that

ID p(j)(h) = -p(j) . tr j-l(j)ID j(j)(h) VhE COO(M, IRn)

(A2.3)

(A2.4)

holds for all j E E(M, IRn
). Here ID denotes the derivative on COO(M, IRn

) in the

sense of [Bi,Sn,FiJ. If p(jo) > 0 we call this kind of densities, density maps. Equation

(A2.4) is called the continuity equation. Associated with each density map p is the

scalar product B(p) on COO(M, IRn) given by

B(p)(h, k) = 1M < h, k > p(j)/J(j) = 1M < h, k > p(jo)/J(jo) V h, k E COO(M, IRn
).

(A2.5)
We rewrite a density map as follows: Let us suppose that

p(j) : M ----t IR

assumes only positive values for each j E E(M, IRn
) . In this case (A.2.4) rewrites as

ID lnp(j) = -tr j-l(j)ID j(j).

For any j in some neighbourhood U(jo) C E(M, IRn) we write

j(j) = exp<p(j)

(A2.6)

(A2.7)

where <p(j) : TM ----t TM is a smooth strong bundle endomorphism, depending

smoothly on j. Hence
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and thus

p(j) = p(ja) . e-trepCi) Vj E U(ja)

yielding

J[) lnp(j) = -J[) ir<p(j) Vj E U(ja).

b) States, equilibrium states

In this section we let Woo(ja) C E(M, lRn) be a neighbourhood of ja and

be any smooth map satisfying

(A2.8)

(A2.9)

where ja E E(MlRn) is fixed. In accordance with [B,St] we call pastate. Associated

with the smooth maps

where V is a given finite dimensional vector space and with a smooth map

"( : Woo (ja) ---* V*

we form e --y(j). I (j)

Pe(I, "()(j) = I --YCi).I(j) Vj E Woo(ja).
Me

(A2.10)

I corresponds to an observable, "(pro duces at each configuration a functional in V*.

p(I, "() is called an equilibrium state (cf.[B,St]). For simplicity we replace

IM e--YCi).ICi) by Z(I, "()(j).

The value

I(j):= 1M Pe(I, "()(j) . I(j)/J(ja)

is the expectation value of I at the configuration j E Woo (ja).

Defining the entropy S(p)(j) of I(j) and "((j) at any state by

S(I, "()(j) := -l p(I, "()(j)lnp(I, "()(j)/J(ja) V j E Woo(ja)

(A2.11)

(A2.12)

then p(I, "()(j) maximizes the entropy subject to the constraint that the expectation

value of
(A2.13)
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is kept constant (cf.[B,St]), for eaeh fixed jE W=(ja).

Given an equilibrium state Pe(I, ,) we set

Z(I, ,)(j):= 1M e-,(j)I(j) M(ja).

J, S(I, ,) and Z(I, ,) are linked by

75(I, ,)(j) = ,(j)J(j) + lnZ(I, ,)(j)

as easily deduced from (A2.10). In partieular if, = ;J; then

- 1
F(I, T) := -T ln Z

(A2.14)

(A2.15)

(A2.16)

(A3.1)

is the free energy assoeiated with the observable I. If, = ;J; and I are speeified we

just write Pe instead of Pe(I, ;J;).

Appendix 3

Topological foundations

Generalities on simplicial chain and cochain complexes, the Laplacian t::q

Let L be an oriented eonneeted, finite, simplicial complex eonsisting of finitely many

simplices of dimension :S m. A generie l-simplex of this eomplex shall be denoted by

O"l. If l = 1 the initial and final points of 0"1 (in the sense of the orient at ion) are denoted

by O"i and 0"1'
The lR-veetor space alll-chains is called Cl(L); the spaee of l-cochains is denoted

by Cl(L), the lR-veetor spaee of all lR-valued functions on the eolleetion Ll of all

l-simpliees. We write P instead of La.

The delta funetion associated with any O"l E Ll is denoted by lal.It is given by

ll(O"D:= {I O"f = O"l '1/0"' E Llo otherwise.

Clearly Ll := {lao I O"a E Ll} is a basis of Cl(L).

Obviously Cl(L) ~ Cl(L) as linear spaees. Sinee Ll is eontained in the dual spaee

Cl (L)' of Cl (L), the veetor spaees Cl (L) and Cl (L)' are naturally isomorphie.
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The associated chain complex of L is

(A3.2)

The boundary operator 8z is defined on the generators as follows. Let the oriented

simplex O"z be spanned by (qo, ... , qz)

z

8wz = I)-1)(ql, ... , q~ , ..• , qz)
s=o

(A3.3)

with (ql"'" q~, ... , qz) being the 1 - I-simplex spanned by all qo, ... , qz but qs.

Moreover 80 is the zero map, in particular 81 is the linear map given on LI by

(A3.4)

If therefore 0"1 E LI for i = 1, ... , rand

r

C :=L 0/0"1
i=1

is a one-chain then
r r

8 '"""' i8 i '"""' i(( i)+ (i)-)lC = ~ 0: 10"1 = ~ 0: 0"1 - 0"1

i=1 i=1

The space of l-cochains is defined by

The natural bilinear evaluation map

ev : GZ(L) x Gz(L) ----t IR,

(A3.5)

assigning to each leTl E LZ and each O"z E LZ the value leTl (O"z), yields a coboundary

operation

given by
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for each cl E Cl(L) and each CHI E Cl+I(L). Denoting the collection of zero simplices

Lo, i.e. the collection of points in L by P, öllq with q E P satisfies in particular

(A3.6)

Thus öllq is determined by

(A3.7)

To get a more handy formula let k+(q) be the number of + ends matching q of those

simplices, connecting q with its nearest neighbours, i.e. all qi linked by a one-simplex.

k-(q) shall be the number of - ends matching q of all those simplices connecting q

with its nearest neighbours. Hence

Let L be any complex. We define ametrie g1. on Cl (L) as follows:

Let ci, c~ be two cochains which represented as linear combinations of l-co-simplices

read as

r

The respective metric is given by

and
r

gi(ci, c~) := L ßl(ci) . ß;(c~) ,
(TELL

(A3.8)

a scalar product used in [EJ (cf. [D]' however). The metric on CO(L) is denotes by gp.

Associated with the metric gL we have a divergence operator {)l given by the formula

(A3.9)

for each cl E Cl(L) and each Cl-I E Cl-I(L).

Clearly gL is a Dirichlet form. This is apparent if we introduce the topogical Lapla-

cian ß~ by

for which we verify
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for each pair ci, c~E CI(L). This observation immediately yields :

Lemma A3.1:

(jl is the adjoint of öl and moreover (jl+l(jl = O.

Since

QL(10-I'Öl10-1_1) = L 10-1((Tf). öl10-1_1((Tf)
o-!ELI

= L 10-1 ((Tf) . 10-1_1 (öwf)
0-!EL1

the following holds :

Lemma A3.2:

(jl10-1 = L 10-1_1 (öwz) . 10-1_1 'V (Tl E LI
0-1-lELl-1

holds for each l in particular

(j110-1 = L 10-0 (Ö1(T1) .10-0
o-oELo

= 1+ -1 -0-
1

0-
1

(A3.10)

(A3.11)

(A3.12)

(A3.13)

holds for any (Tl E LI' On cO E CO(L) the Laplacian has the form !::i.Tco = 81ö1CO and

therefore
k

o 0 ""'" 0 .!::i.Tc ((To) = k((To)c ((To) - LJ C ((To)
i=l

'V(TO E Lo (A3.14)

with k((To) being the number of nearest neighbours of (To in L. ((Tb belongs to the

collection of nearest neighbours of (To iff it is connected byan edge (i.e. a one-simplex)

with (To),
Moreover (A3.14) immediately shows that

(A3.15)
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As an example let us calculate ßTlq, with lq being the characteristic function on La,

assuming the value one on q E La and zero elsewhere. To this end we write

ßT lq = L r/lq,
q/ELo

and observe

YLo(ßTlq, lq,) = r/.
Let ql, ... , qv(q) be the nearest neighbours of q. Clearly r]q/ = 0 for all q' E La with

q' -:j:. qi and q' -:j:. qi with i= 1, ... , k(q) but

r]q = v(q) and

Therefore we have :

Lemma A3.3:

r]qi = -1 Vi= 1, ... , v(q).

For any q E La and its characteristic map lq

k

ßTlq = k(q) . lq - L lqi
i=l

holds.

(A3.16)

For any complex L let F(LI, IR 3) denote all the IR 3-valued maps of LI. Clearly

the isomorphism being canonical.

(A3.17)

For a later case we point out here the following observation: We denote by [(Pa, IR 3)
the collection of all injective maps from La = P to IR 3. One easily verifies the following

Lemma A3.4:

is open.
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The metrics gi on Cl (L) 0 IR 3 are defined by

V[ = 0,1,2 (A3.18)

for an ei, e~ E Cl (L) and VVl, V2 E IR 3. Since Lo is denoted by P, we will write just

gp for g~.

Similarly the operators al and 81 and ßT on Cl (L) 0 IR 3 are defined by

and

al(el 0 v) := alel Q9 v

81(el Q9 v) := 81el 0 v

ßT(el Q9 v) := ßTel 0 v

(A3.19)

(A3.20)

(A3.21)

for an el E Cl (L) and an v E IR. We proceed for L accordingly.

Let us observe that the orthogonal gi-complement (IR3).l of IR3 within Cl(L) 0 IR3

is of the form

(A3.22)

where IR.l is the gi orthogonal complement of IR within Cl (L, IR). Since ßT is

g~-selfadjoint the equation

ßTHp = <I>

has a solution (unique up to a constant) for a given <I>E CO (L) iff <I>E (IR 3).l. We

therefore have

Lemma A3.5:

Given<I> E CO(L) F(P, IRn
) tben

(A3.23)

bas a solution uniquely determined up to a eonstant map iff <I>E (IR 3).l. Tbe solution
is unique ifHp E (IR3).l.

Again these results hold accordingly on the whole cochain complex of L. Let us point

out that the Laplace equation (A3.23) is of pure topological nature. Hp E (IR 3).l does

not depend on ( , ) chosen on IR 3. This is due to (A3.22). Moreover a Hodge splitting

is easily verified in this context.
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