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0. Introduction

In the present notes we study skins made up by finitely many material particles in
IR3. The picture we have in mind is a very large collection of material particles which
interact such that we see a skin from the macroscopic point of view. In particular we

are interested in the case where each particle acts only with its nearest neighbours.

The idealized situation we study is an follows: We have a large but finite collection
P’ of mean locations in IR™ of material particles. The interaction scheme is such that
these locations, i.e. these points are all placed on a smooth, compact, oriented, closed
manifold M’ C IR™ of dim M > 2. The manifold M’ is called the skin. We choose this
dimensional set up because of specific dimensional factors appearing in the forthcoming

formulas. At first, we do not specify the interaction scheme any further.

However, along the line of our development we refine the set up by drawing an edge in
M’ between the location of two interacting particles, i.e. a geodesic segment and require
that the graph obtained in this way is a simplicial oné-complex in M'. This complex
reflects the nearest neighbour interaction scheme: Each point ¢} which is connected by

an edge with ¢ is a nearest neighbour of gq.

M' C IR™ represents the continuum, the one-complex visualizes the large collection of

interacting particles.

The study of this interaction scheme in relation to the geometric and topological
properties of the skin is one of the main purposes of these notes. However, we will
study at first the interaction between P’ and the skin M’ without specifying any
interaction scheme in order to keep the full generality and to see how the nearest

neighbour interaction influences the set up.

In the following part of this introduction we will describe the topological and geomet-

rical frame work more closely.

Since both M’ and P’ ¢ M’ will be deformed in IR™ we replace M’ and P’ by

intrinsic objects, this is to say by a smooth, compact, oriented, closed manifold M and
a collection of points P C M. Both M’ and P’ will be obtained from M and P by
a smooth embedding j : M — IR™ namely by M’ = j(M) and P’ = j(P). Passing
from j to another embedding j; describes a deformation from j(M) to j1(M).




-3-

Thus the configuration space of our medium is E(M, IR™), the collection of all smooth
embeddings from M into IR"™. Endowed with the C*°-topology E(M, IR™) is a smooth
Fréchet manifold (cf. [Bi,Sn,Fi]). It is an open subset of C*°(M,R"™), the IR-vector
space of all smooth IR "-valued maps of M endowed with the C*°-topology. Restricting
each j € E(M,IR™) onto the collection P yields a configuration of P. By E*(P,IR"™)
we denote the collection of all these restrictions. This configuration space of P is
an open set of the finite dimensional space F(P,IR"™) of all IR™-valued maps of P.
We will use E(M,R"™) for the description of the continuum and E*(P,IR™) for the
description of the discrete medium. The link between E(M,IR™) and E°(P,IR") i.e.

the restriction map will then be used to link the two different descriptions.

So far we sketched the topological situation. Let us next show how we characterize the

medium forming the skin j(M), a continuum.
First of all we assume that no external force densities are present.

The medium considered as a continuum at the configuration j is classified by its
internal force density ®(j) resisting a deformation /. (For simplicity we let ® depend
on 7 only). The classification of media with the help of internal force densities is a rather
rough scheme. Both ®(j) and [ are assumed to be smooth, i.e. ®(j),l € C>*(M,R").
Since ®(j) is of internal nature (and hence invariant under the translation group IR"
of IR™) it does not cause any work against a constant distortion z € JR™. Hence

[y < @),z > u(j) = 0. Here u(j) is the Riemannian volume caused by the Rie-
mannian metric j* <,>, the pull back by j of the fixed scalar product <,> on IR".
Therefore [,, ®(j)u(j) = 0. This means, however, that

®(5) = A(HH() (0.1)

has a solution H(j), where A(j) is the Laplacian on M determined by j* <,> and
H(j) € C®(M,IR™) is smooth in j. Here j varies in an open subset O C E(M, IR™).
The virtual work A determined by ® is a one-form on E(M, IR™) introduced in chapter
one. We will linearize it and study in particular exact linearized one-forms on O (cf.
sections one and four). Here we will see that these sorts of virtual works are charac-
terized by - what we call - the structural capillarity a and the area functional A both

defined on O. So far we have neglected P.

To elaborate a physical interpretation of H(j) and to exhibit some of its main properties

will be major tasks of our paper.
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We will do so in particular within the frame work of nearest neighbour interaction,
L.e. we take the simplicial structure of P into account. It will turn out that H(j)(q) —
H(7)(q;) is linked to the interaction force within the medium of the particle at ¢ with
the one at g;, a nearest neighbour of ¢. This will be seen in section three. As we will

see, the geometry may hinder the direct sight to the interaction mechanism.

This interpretation, however, requires that we have a natural way to describe the
discrete medium as a continuum. In doing so, we need to understand which part of the
formalism requires the nearest neighbour interaction séheme. Therefore we treat first
the situation of an arbitrary interaction scheme within the collection of particles and
show how to describe naturally the discrete medium as a continuum, i.e. by formalisms

associated with the continuum.

To this end we consider in section 2 the restriction map r : C*°(M,R") — F(P,IR™)
and construct a space F*(M,R") C C*°(M,IR™) on which r is an isomorphism.
The force density ®(j) is then said to be produced by the finitely many particles
if ®(j) € F(M,IR™). The finite dimensional vector space F®(M,R™) will be a
special choice of a complement to ker r (since there is now canonical complement). The
motivation of the choice is based on (0.1) and on a fixed configuration jo € E(M,R"™),
called a reference configuration, thought of as an equilibrium configuration. We will

rewrite the above equation for the internal force density as
(7) = A(jo)H(5)- (0.2)

Here A(jo) is fixed, while H still depends on j € O. The complement F*°(M,IR™)
to ker r is such that it is generated by finitely many eigenvectors of A(jg), imply-
ing that F°°(M,IR™) is preserved by this Laplace operator. The map r restricted to
Fe(M,IR") is called r.

The link with the discrete regime is made up as follows: Since there is a natural metric
Gp on the space F(P,IR™), there is a natural metric on F*>°(M, IR™) namely its pull
back r* Gp to F*°(M,IR"™). It has to be compared with the given Ly-metric G(jo)
defined by j§ <,> on M. We call jo metrically well fitting if G(jo) = 7% Gp. This kind
of equilibrium configuration jy for low dimensional ambient space IR™ does not exist
in general (cf. [G,R]).
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The virtual work Ap on a closed neighbourhood W(j3) of a configuration j$ €
E>(P,IR™), caused by distorting the finite collection of interacting particles, will
be pulled back to W*(jp) € E(M,IR™) and there represented by an internal force
density in the sense of 0.2. Here roo(W>(jo)) C E(M,IR"™) with ro(jo) = j%
and W>(jg) — jo € F*°(M,R"™) is a closed neighbourhood of zero. The pull back

A :=r? Ap is hence the virtual work on the continuum; H¥ is its constitutive map.

In case of a first neighbour interactions the force ®p causing the virtual work Ap is
itself of the form 0.2 on W(;j%); however, A(jo) has to be replaced by the topological
Laplacian Ay determined by the simplicial structure. In addition H will have to be
replaced by Hp, say. Since Hp(jp)(q) — Hp(jpr)(g:) reflects for any jp € W(;%) the
interaction force within the medium between the particle at any ¢ with the one at g;,
a nearest neighbour of ¢, the difference ﬁy(j)(q) - ﬁf‘f(y)(qz) hence does so too, for
any j € W(jo) provided that jo is metrically well fitting. Here ®¥ := A(jo)H is the
force density of A. The internal force ®p(jp)(g) is the resulting force of the interaction
force between the particle at ¢ with all its nearest neighbours; vice versa any internal

force has to be of this form. This interpretation holds accordingly for ®¥ (5)(q).

Since 7% A is defined on a finite dimensional neighbourhood W (jo) we will use the
Neumann splitting to exhibit in section 2.2 its exact part ID F, the differential of what
we call the free energy F and will see that F' = r*_Fp. Here Fp is the free energy of the
discrete regime (constructed with the help of the Neumann boundary value problem,
t00). In this context a metrically well fitting configuration will be called good fitting

if ID F(jo) = 0, i.e. if jo is a stationary configuration of F.

Fixing a temperature T, a Gibbs state p. and an observable I are defined on W (jo),
such that the free energy of I is F. In this sense the term ’free energy’ from above has
to be understood in these notes. Here again W (jj) is assumed to be that small that
any distortion within W (jg) — jo does not affect T from the physical point of view.
A more realistic version of this mechanism would have to be done on W (jo) x IR
(ct. [Bi6]).

In the last chapter we study the whole apparatus in the frame work of the linearized
situation and exhibit the influence of the structural capillarity - a constitutive entity
- to the equilibrium configuration.

I am indepted to G. Schwarz and D. Socolescu for valuable discussions and reading

through the manuskript.
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1. Description of deformable continua
1.1 The constitutive law on a continuum

Let M be a smooth, connected, oriented and compact manifold. M shall be equipped
with a mass density p,,, a smooth real valued function on M (cf. appendix 2). The
manifold together with this mass distribution is referred to as the standard body. In

what follows we refer to the items [B1], to [Bi6] as well as to [Bi, Fi 2] in the references.

We begin by specifying what we mean by a configuration and the space of configura-
tions. Let M be embeddable into IR"™. Any smooth embedding

j: M — IR"

is called a configurations of M. The space of all configuration is called E(M,R");
it shall be endowed with the C*-topology. E(M,IR™) is thus a Fréchet manifold
(cf. [Bi,Sn,Fi], [Fr,Kr] and [Bi,Fil]). In fact it is an open subset of the collection
C>*(M,IR™) of all IR"-valued smooth functions of M endowed with the C*°-topology.

Let us fix a scalar product on JR"™ in order to introduce metric concepts on M. Each j €
E(M,IR") defines a Riemannian metric m(j), the pull back of <, > by j. Moreover
m(j) and the given orientation determine the Riemannian volume form u(j). For
any two j, jo € E(M,IR"™) with fixed jo the metrics m(j) and m(jo) respectively their

associated volume forms u(7) and u(jo) are related by
m(j§) (v, w) = m(jo) (f*(j)v,w) Vv,w e TM

and
u(j) = det f(5) - u(jo) Vo, w e TM (1.1.1)

where f2(j) is a uniquely determined strong smooth bundle isomorphism on TM

selfadjoint with respect to m(jo) (cf. appendix 1).

Next let us specify what is meant here by a constitutive law. (Throughout the paper
we neglect external force densities) By a constitutive law of a medium we mean in
these notes the prescription of either the internal force density ®(j) (to be specified
below) at a configuration j varying in an open set O C E(M,IR™) or any ingredient

out of which ®(j) can be derived. For simplicity we let O = E(M,IR™) in this section.
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Therefore, we point out that a medium is characterized here only in as far as it deter-

mines the internal force density.

By a smooth internal force density ®(j) at the configuration j € EF(M, IR™) we mean

a smooth map
o(j): M — R" (1.1.2)

depending smoothly on j € E(M,R™) and satisfying the following two requirements
0 [ eGui) =0 vieEOLR"), (113

saying that ®(j) is Lo(j )-orthog(')nal to the collection of all constant maps and
(41) P(j+2)=9(j) Vie E(M,R") and VzeR" (1.1.4)
reflecting the invariance of ® under the translation group IR"™ of IR"™. Hence an internal

force density ®(j) at j depends on dj only!

The constraint (¢) an internal force density has to satisfy, is directly related to the
centre of mass defined with respect to the mass density p,, (cf. appendix 2): For a

given embedding j € E(M,IR"™) the centre z,,(j) of mass is defined by

ini) [ om0 = [ pn)-i (i) (1.1.5)

For any z € IR"™, the map j + z is a smooth embedding and its centre of mass is

2m(j) + z. Obviously, an internal force density has to satisfy

/M < B(), 2m(G) > p(G) = 0 (1.1.6)

for j € E(M,IR™), implying (1.1.3). In terms of the Le-metric G(j) on C*°(M,R"™)
(cf. appendix 1) equation (1.1.6) reads as

G(5)(®(j), 2m) = 0. (1.1.7)
Let ® be given internal force density. By (1.1.3) we find a smooth map
H:EM,R") — C®(M,R™) (1.1.8)

such that
AGYH(G) = B(j) Vi € E(M,R™). (1.1.9)
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Here A(j) is the Laplace operator on M determined by m(j). (cf. [Mal,[L,M] or

[G,H,L]). Vice versa, for any smooth map
H: E(M,R™) — C®(M,R")

the map
®: E(M,R") — C®(M,R")

defined by
8(j) := A(jYH(j) Vj € E(M,R") (1.1.10)

is a smooth internal force density. The smooth map H is called the constitutive map.

A constitutive law on M is therefore specified by a constitutive (smooth) map
H:EM,R") — C*(M,R").
Hence ®(j) is an internal force density for all j € E(M,R™) iff (1.1.4) and
| B(j) = AGYHG) Vi € B, R (1111

hold. The virtual work A(j)(!) € IR the internal force density ®(j) causes against a
distortion | € C*°(M,IR™) at any j € E(M,IR™) is given by

G0 = |

< ®(j), 1> u(j) = / < AGYHG) > u(5). (1.1.12)
M

M

( The general study of the virtual work can be found in [E,S] and [He]). Using the

metric gj(5) in appendix 1 we hence can rewrite A(j)(I) as
AG)D = o) (@), D) = [ aH() e diuts) (1113)
for any j € E(M,IR"™) and any [ € C>*°(M,R"™).

For convenience A is refered to as a constitutive law, too.

The internal force density ®(j) : M — IR"™ splits pointwise into parts ®y(j) and
®7(j), normal respectively tangential to j(M ), this is to say

2(j) = en(j) + 27 (); (1.1.14)
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the normal part ®x(j) is determined via the virtual work A via

AGMG) = |

AH() o df W (Go)u(s) = / <BG)NG) > uG)  (1115)
M

M

Here N(j): M — IR"™ is the pointwise defined unit normal to T;7TM and W (j,) €
End TM, the Weingarten map, is given by

dN(5) = dj W (jo) (1.1.16)

and e is as in appendix 1. jo € E(M,IR"™) is called an equilibrium configuration if

A(jo) = 0 this is to say if ®(jo) = 0. Hence jo is an equilibrium configuration iff
@T(jo) =0 and (I)N(jo) =0. (1.1.17)

To perform calculations involving configurations near a fixed one jo € E(M,R"™) it
is convenient to replace the right hand side of ®(j) = A(j)H(y) by an expression

involving A(jo) only. To do so we proceed as follows: Using (1.1.1) we have

/ S()ulj) = / &(j)detf (7o) (1.1.18)
M M
and by (1.1.11) hence

O(j) = detf1(5) - A(jo) - H(j) Vj € B(M,R™). (1.1.19)

The equation admits a solution ﬁ(j ) smooth in j and uniquely determined up to a

constant and the virtual work associated with 7:2 is
AG)(D) = 6G) (@), 1) = /M < B(5),1> u(j)
= g(jo)(A(jo)ﬁ(j), )
Let C®°(M,R"™);, :={l € C*°(M,IR™)|lLy,(;)IR"} where L, ) means orthogonal

with respect to the Lo-metric G(jo) assigning to each pair h,l € C*°(M,R"™) the value

G(jo)(h,1) =/ < h, 1> p(jo)- (1.1.20)
M

Definition 1.1.1:

Let H be called G(jo)-normalized if

o~

G(jo)(H(5),2) =0 (1.1.21)

forall z € R™ i.e. if H(j) € C*®(M,IR");, for all j in the domain of H.
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In summarizing we state (for ¢ cf. appendix 1):

Lemma 1.1.2:

Let jo € E(M,IR™) be fixed and ® be an internal force density. For each j € E(M,R"™)

the equation
B(j) := detf(5) - B(j) = A(jo)H(j) (1.1.22)

has a unique G(jo)-normalized solution H(j) in C°°(M, IR"). Moreover
G3)(2G)) = [ <®Gh>ui) = [ <8k > uio

_ /M A(j())ﬁ(j),hw(f) (1.1.23)

Since (1.1.23) involves a fixed Laplacian we may use Fourier expansions associated
with jo: Let €1, €3, ... be the eigenvectors of A(jy) having respective eigenvalues
0< A1 < X2 < ... Let H satisfy (1.1.21). Then

H(G) =)’ (e (1.1.24)
=1
where ®¢ is the it* Fourier coefficient of ﬁ( /) for all j in the domain of H; obviously

i j (1.1.25)

The real number &*(j) will be called the i*" global coefficients at the configura-
tion j. In general these Fourier coefficients regarded as IR-valued maps will not be

independent from each other.
Clearly ®(jo) = 0 iff K(jo)! =0 for alls =1,...,00

To prepare the study of the area sensitive part of the virtual work we introduce the

area map

A:E(M,R") — R
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given by

AG) = /M u(j) Vie E(M,R") (1.1.26)

where p(j) is the Riemannian volume form. As it is easily seen (cf. appendix 1)

D AG)® = |

[ 4o dhut) =/ < AGYj k> u(j) Vi€ E(M,R™ (1.1.27)

M

holds true. In addition we have
A(j)j = —tr S(j) Vje E(M,IR"™) (1.1.28)

where S(7) is the second fundamental tensor (cf.[Bi,Sn,Fi] or [G,K,M]). (For the cal-

cules on Fréchet spaces we refer to [Bi,Sn,Fi] or [Fr,Kr].) In case of 1 + dim M =n

A@G)s = H(G)N() (1.1.29)

where H(j) is the trace of the Weingarten map W (j) and N(j) is the oriented
unit normal of j(M) along j (cf. 1.1.16). This is the motivation for calling A(7)j in
(1.1.28) the mean curvature tensor.

Clearly A(j)j (and hence H(j)N(j) in case of codim M = 1) is the value of the
G-gradient GradgA of A at j. For G consult appendix 1.

Let us study next the component (formed with respect to ¢)(j)) along dj of the dif-
ferential dH(3j), of any constitutive map H : E(M,R") — C*(M,IR™). To this end
we point out that due to (1.1.4) the differential dH(j) depends on dj only rather than
7! We form

@) (@), 4) = [ dHG)edin) Vi BB
(cf. appendix 1). Since the square of the gj(j)-norm of dj is
o(i)(dj,dj) = dim M - A(j) Vje E(M,R")
we write
a(5)(dH(j), dj) = a(j) - dim M - A(j) Vje E(M,R"). (1.1.30)
Therefore dH(j) splits for any j € E(M,R") into

dH(j) = a(j) - dj + dH1(5) (1.1.31)

with o(5)(dH1(j),dj) = 0. (At this point we have used the dj dependence of dH(j)).
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Here a : E(M,IR™) — IR given by (1.1.31) for all j € E(M,IR"™) is an IR "-invariant
smooth map called the structural capillarity (cf. [Bi2] and [Bi3]). (It is the coefficient
of the surface tension (Kapillaritdtskonstante)). If A and A; are the virtual works

determined by ‘H and H; respectively, then
A(G)() = a() - D AG)(R) + A1) (R) (1.1.32)

for all the variables j and h, saying that a - ID A is the area sensitive part of A and

A; is not sensitive to the distortion of the volume. If A(j) = 0 then
a(j)=0 and A:1(j)=0 (1.1.33)
since ID A(j)(j) = A(j) - dim M. Hence the structural capillarity a is determined by

A(7)(4) = a(g) - D A(5)(5)- (1.1.34)

Clearly (1.1.31) shows that a is of a constitutive nature. The following is obvious:

Lemma 1.1.3:
The area sensitive part of a virtual work A defined on an open neighbourhood O of
jo € E(M,IR™) is determined by the structural capillarity a. This capillarity is given
by

Ao+ D(Go + 1) = dim M - a(jo +1) - A(jo +1) (1.1.35)

Approximating both sides at jo up to terms of order two yields

A(jo)(jo) + A(jo) (1) + ID A(5o) (1) (o) + ID A(Go) (1) (1)

. . . . 1, . (1.1.36)
= dim M - (a(jo) - A(jo) + ID (a - A)(jo)(I) + 5D (a- A)(Go) (1, 1))
The constitutive law is called linear if
A(jo + 1)(h) = A(jo) + ID A(Go)(1)(h) (1.1.37)

for all I € O — jo where O is an open neighbourhood of jo € E(M,IR"™). In this case

the constitutive map is given by

H(jo + 1) = H(jo) + DH3o)(1) VIe O —jo. (1.1.38)
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Moreover we call a constitutive law A to be exact if A = ID F, where F is a smooth
IR -valued map defined on some open set of E(M,R"). (In section 2.2 we will split off

the exact part of any virtual work A “ caused by finitely many particles 7).
If A= IDF with ID F(jo) = 0 saying that jo is a stationary configuration for F
then the linearity of A implies
D F(jo + h)(k) = D>*F(j0)(h, k) Yh, k€O — j.
If A= IDF and linear in addition (cf. 1.1.35) then F on O is given by
Fjo + h) = F(jo) + 310 *F(jio)(h,h) Vh € O~ jo
Lemma 1.1.3 yields therefore :

Theorem 1.1.4:

Let F be a smooth real-valued map defined on some open neighbourhood O of jg €
E(M,R™) for which ID F admits a constitutive map Hz: O — C*°(M,IR"™). Then

D F(jo+ 1)(jo +1) =dim M -a(jo+1)- AQjo+1) VI€O - jo. (1.1.39)

Let IDF be linear on O with ID F(jo) = 0. Then

dimM_]DQ

D*F(jo)(h k) = ==

(a- A)Go)(h,k) VIe O —jo (1.1.40)

and

D *F(jo)(jo, h) = dim M - D (a - A)(jo)(h) Y1e€ O —jo (1.1.41)
hold true for all h,k € C*°(M,IR™). If D F is linear on O then a(jo) = 0, provided
ID F(jo) = 0; if ID F(jo) = 0 then for each | € O — jo the value of F(jo +1) is

dm M 2. A)Go) (1) (1.1.42)

Fljo +1) = Flio) + 30 *F(io)(1.1) = Fljio) +

and a is the structural capillarity of D F, i.e.

. _ 1 2 . : .
a(]0+l)_dimM-A(jo+l) D - Ao)(,jo+1) YIieO —jo. (1.1.43)

Since ID F admits a constitutive map, Hy say, the G-gradient at j € O is GradgF(j) =
A(jYHz(j). Therefore Hy(jo + 1) is determined for each | € O — jo by

A(jo + HE(o + 1) = A(jo) - ID (Gradg a)(jo) (1) (1.1.44)
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provided ID F(jo) =0 (since a(jo) = 0).

Theorem 1.1.4 requires us to investigate the relationship between F and the structural

capillarity a more closely. Let ID F be linear. By (1.1.42) we conclude for ID F'
dim M(a - A)(jo+1) = D*F(jo)(, 4o +1)

dim M ) )
= S D% (e A)(io) (oo + 1)
dim M
2

. dim M

D@ Ao, 1) +

D?*a- A1)

On the other hand the Taylor expansion up to order two of a - A at jo implies that no

higher order terms are present and that

SD(a- A)(jo,1) = D (- A)jo)(}) V1€ O~ jo

Hence
D *a(jo)(jo, 1) - A(jo) + ID a(jo)(Jo) - ID A(jo) (1) + dimn M - ID a(jo)(I) - A(jo)
= 2. D (a- AlGo)(D).

We therefore have

Proposition 1.1.5:

Let F be a real-valued smooth map on a neighbourhood O of jo € E(M,R"),
admitting a constitutive map Hy and satisfying (1.1.42). The structural capillarity
a: O — IR satisfies then

D@ Ao, 1) = D (a- A)(o)() Y10~ jo (1.1.45)
implying

D *a(30)(jo, 1) - A(jo) + ID a(jo)(jo) - ID A(jo)(1) = (2 — dim M) - ID a(3jo)(1) - A(jo)
' (1.1.46)
If hence dim M = 2 then

D ?a(jo)(jo, 1) - A(jo) = —ID a(jo)(jo) - ID A(jo)(1) (1.1.47)

holds for alll € O — jp.
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The following is an immediate consequence of (1.1.30) and the definition of B}, for any

heC>®(M,R™) given in Al.1

Lemma 1.1.6:

The map
a:E(M,R") — R

in (1.1.30) admits the density assigning to each j € O the value _tr Bu() o

dim M-A(})
o) = [ G iuti) Vi€ B(M,R") (1.1.48)

or . .
a(j) = /M deyﬂgztfﬁ%@)u(]‘o) Vj e E(M,R™) (1.1.49)

if jo € E(M,IR") is a fixed configuration. Hence a(j) = 0 iff [, trBy(j)u(j) = 0 or
equivalently a(j) = 0 iff D A(5)(H(j5)) = 0.

Lemma 1.1.6 suggests to write (1.1.39) in the form
DF(]O + l)(]o + l) = a(jo + l) . .A(jo + l) ~dim M = / tr BH(jo -+ l)/,L(jo —+ l)
M
or in view of A1.3 as

DW%HWHW=/

y tr Br(jo +1) - det f(jo+1) - u(jo)-

Hence (1.1.42) implies for all I € O — jo

Dﬁmmm+mﬁmww=AWBmmnm+wmm

and therefore

zwﬁmmszm%ﬂWMﬁmmwwm»
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Thus we have shown the following

Proposition 1.1.7:
IfF: 0 — IR has the form

F(jo+1) =F(jo) + %DQf(jO)(l,l) Vie O —jg
and ID F admits a constitutive map Hz: O — C*(M,IR"™) then
D F(jo + (o +1) = a(jo +1)- A(jo +1) Vi€ O —jo
for some smooth map a : O — IR implying
F(jo+1) = F(jo) + i ‘ /MDZ(tr By - det £)(50)(1,1) - u(do) YI€ O — jo. (1.1.50)

Therefore F' admits a density F' meaning

F(jo + l) = /M F(]O + l),u(]o) Vie O — j. (1.1.51)
with
F(jo+1) = igz; + i D%(tr By -det (Go)L,1) VIeO—jo  (1.1.52)

where we may assume that By (jo) = 0. Hence

F(o+1) = ig‘;; + i(tr ID*By(jo)(1,1) + tr By(jo) - tr By) (1.1.53)

for all | € O — jo, showing that F depends on the symmetric endomorphisms B, and

B; only.

From here one obtains the form of the free energy in [L,L] if one assumes that
By (jo + 1) depends on B; only. We will investigate the nature of the constitutive map
of the type ID F in chapter three.
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1.2 The Ricci-sensitive part and a topological condition for the equilibrium

Let dimM = 2 and IR™ = IR*>. We consider the Ricci tensor Ric(j) of m(j). Denoting
by W (j) the Weingarten map of the smooth embedding j, then the equation of Gauss
(cf. [Bi,Sn,Fi] or [G,K,M]) yields for any j € E(M, R"™) immediately

Rie(j)(X,Y) = m(j) ((HGIW () = W2(j)) X, V) (12.1)

for all smooth vector field X,Y on M. Here H(j) = trW (j) (cf. section 1.1). Let R(j)

denote the symmetric operator such that
Ric(j)(X,Y) = m(§)(R(5), X, Y) (1.2.2)

then R(j), being an intrinsic object of m(j), is expressed by the extrinsic object W (j)
as

R(j) = HGW (5) — W2(j). (1.2.3)
In particular the scalar curvature A(j), being the trace of R(j), is

A(j) = H(j)? = trw?(j). (1.2.4)

Using the Cayley Hamilton theorem for W (j) we easily derive
A

k(j) = —% (1.2.5)
where k(7) := detW(j) is the Gaussian curvature. Since M is two dimensional we

can assume that

holds true (cf. [B,G]).

Clearly 5(27—) .dj is in general not a differential. It is easy to see (cf. [Bi3]) that A—(le - dj

is a differential iff A(j) is a constant map on M. Hence 3‘—(2& -dj is not exact in general.

Let us call the exact part of djR(j) by dr(j). We are interested in particular in the

component of dj R(j) along dj formed with respect to (). This is to say we form
A7) . N g .
%dj = K(j) - dj +7(J) (1.2.6)

with K(j) € IR and

[ 2 geqiuti) = KG) [ diedi nii) (1.2.7)
M M
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has to hold for each j € E(M,IR™) and ~(3) is a IR "-valued one-form on M smoothly
depending on j € E(M,IR™). Obviously we have f,, &212 2u(j) =2-K(j) - A(j) with
A(j) being the area of M. By the theorem of Gauss-Bonnet we conclude

X =2-K(j)-AG) VjeE(M,R") (1.2.8)

which determines the map K : E(M,IR") — IR as

1
S AG)

with X the Euler-characteristic of M.

K(j) or A(j):87TK(j) Vje E(M,R") (1.2.9)

Using (1.2.9) the following is immediate:

Lemma 1.2.1:

The one-form K - ID A is exact all of E(M,IR"™), in fact

X
K -DA=— DinA (1.2.10)

Given a constitutive map H we split dH at j € E(M, IR™) with respect to g(j) into

a component along dj and a component dH; perpendicular to it yielding
dH(j) = a,(j) - dr + dH2(j) (1.2.11)

with
ar: E(M,R") — IR"

being smooth (where dH2(j) is determined by the equation just above) since dr(j)
depends on dj rather than j itself. a, - dr is the curvature sensitive part of dH.for

the structural capillarity (cf. 1.1.31)
a(j) = ar(5) - K(4) + u(j)

for some smooth map u : E(M,IR™) — IR™. This shows how the structural capillarity

is affected by the map K. The force ®,.(j) density sensitive to djR(j) is

8.) = 4 (DAG)() = a - divdi R =~ - djgrad A+ TG 1) - N )
(1.2.12)
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Comparing (1.1.14), (1.2.12) with (1.1.17) yields

br(j) = -0 dj grad A+ @4() and  @w(i) = %-AG)-HG)-NG)+BHG).

(1.2.13)
The gradient is taken with respect to m(j). Here ®1. and ®4 are defined via (1.2.12),
and do not depend on the scalar curvature A(j). In summarizing we state the following

lemma and corollary to it:

Lemma 1.2.2:
At each j € E(M,IR"™) the structural capillarity splits into

a(j) = ar(j) - K(5) + u(j) (1.2.14)

or

a(j) = ar(j) - =AG) +u(i) (1.2.15)

with dH(j) = a(j) - dj + dH1(j) for each j € E(M,IR™).

Corollary 1.2.3:

At an equilibrium configuration jo € E(M, IR™) the structural capillarity vanishes, i.e.

- a(jo) = 0 and therefore a.(jo) and u(jo) are related by

X

ar(jo) - 87 A(o) = —u(Jo), (1.2.16)

showing that a,(jo) = 0 iff u(jo) = 0, provided M is not diffeomorphic to a torus. If
M is a torus then u(jo) = 0. Moreover the equilibrium condition for jg reads in terms

of the force densities as

®4(i0) = ~ 290 g grad AGio) and  #8(Go) =~ A(io) - H(jo) - N(jo)
(1.2.17)
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Description of a discrete medium on a continuum
2.1 Internal force densities on the contiuum caused by finitely many

particles

Let P C M be a collection of finitely many points on M. We think of the elements of
P as the mean location of material particles on M. On the other hand M is regarded

as a manifold passing through P.

We suppose furthermore that some of this particles interact with each other, but
we do not specify any sort of interactions, yet. (We will do so in sections three and
four.) These particles, together with a presupposed interaction scheme will be called

a discrete medium, here. No exterior forces shall be present.

The space of configuration of these particles is E(P,IR™), the collection of all injec-
tive maps from P to IR™. The set E(P,IR™) is an open subset of the finite dimen-
sional linear space F(P,IR"™), the collection of all maps from P to IR™. Moreover
r(E(M,IR"™)) C E(P,IR™) is open as well, we denote it by E>(P,R").

The principle of virtual work on M presented in section 1 is easily transferred to
P C M. This is done as follows: Let W(j%) C E*°(P, IR™) be an open neighbourhood
of some ;7% € E*°(P,IR™) and

Ap : W) x F(P,R"™) — R (2.1.1)
be a smooth one-form. Clearly
Ap(jp)(hp) = Gp(®p(jp), hp) Vjp € E*(P,R"™) (2.1.2)
for some well defined map
dp: W(GS) — F(P,R™), (2.1.3)

called the internal force. Here Gp is the metric defined in appendix 3 on the collection
of all IR"-valued zero cochains (cf. A3.18), i.e. on F(P,IR™). In particular we require

that for all z € IR™ the constant map z : P — IR"™ does not cause any work, i.e.

Ap(jp)(z) = 0.
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and moreover that Ap is IR "-invariant, this is to say that
Ap(jp+2)(lp)=0 VzeR" and Vipe F(P,R"™)

has to hold.

If ®p is an internal force caused by the interaction of the material particles we call Ap
the virtual work of this discrete medium. As in the previous section we characterize
this discrete medium in as far only, as it affects the virtual work, i.e. we classify the

medium by its internal force density only. Clearly this is a rather rough classification.

To describe the discrete medium on M, we would like to form r*Ap the pull back of
Ap by 7 to r~1W(j%) and interpret this one-form as a virtual work on the continuum.
Having this approach in mind we pose the question as to whether r* Ap admits a force
density in C°(M,R™).

Let therefore jo € r~*W(5%) C E(M;R”) be such that 7(jo) = j% and
®:r'W(r(j%)) — C*(M,R™) be a smooth map such that
r*Ap(§)(h) = G(jo) (®(j),h) Vjer 'W(r(j3)) VheC®(M,R"). (2.1.4)

®(4), if it exists, is uniquely determined for any j in the domain of ¢ and characterizes
the discrete medium as a continuum. This kind of force density, however, does not
exist in general as we see as follows: Let 2y, ..., 2, be the canonical basis of IR™. Then

®(j), if it were existent, would decompose for each 7 € r7IW(52) into
e(j) =) () =
i=1

where ®(j) € C=(M, IR) for all i. Hence ®(j) exists iff ®*(j) exists for all ¢. Therefore
we may assume that n = 1. For simplicity let P = {q} for some ¢ € M. Without loss

of generality we may assume that
r*Ap(j): C®°(M,R") — R

has the form
r*Ap(j)(h) = hq) Vhe C®(M, R").
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Thus r*A(j) is a point evaluation, i.e. a §-functional. As it is well known such linear
maps do not admit a density (cf. [Bi,Sn,Fi]). Hence there is no ®(j) € C>*°(M,R")
satisfying (2.1.4) in general.

This shows that we have to give up the idea that internal force densities ®(j) are
in the G(jg)-orthogonal complement of the kernel ker r of the restriction map r :
C>°(M,R"™) — F(P,IR™) as (2.1.4) would require. Therefore, if we intend to describe
internal force densities on the continuum produced by finitely many particles, we have

to proceed differently. We base our procedure on (1.1.22) and (1.1.25).

To begin with, we assume that & : 771W(j%) — C°°(M,R"™) is a smooth internal
force density in the sense of section one. We know by (1.1.19) and (1.1.25) that

®(j) = A(jo) H(5) Z NRG)E: Vie WD) (2.1.5)
where €1, ... are those (G(jo)-orthonormed) eigenvectors in C*°(M,IR™) admitting

non-vanishing eigenvalues. Here jo € 7~'W(j%) is such that 7(jo) = jp.
Since r : C*°(M,IR") — F(P,IR™) is continous

r(8() = YARG) - r(@) Vi erWip) (2.1.6)

Clearly {r(€;)|i = 1,...} generates (P, IR™) since r is surjective. Hence, we can choose

a basis among {r-€;|i=1,...}.

The motivation of the construction below is that the eigenvalues of A(jo) grow to infin-
ity as 7 does so; hence the contributions of ¥¢(5) to ®(j) have to diminish. In addition we
have to consider only finitely many terms in the series (2.1.6) since dim F(P,IR™) < oo.
Here is how we proceed further:

We will define a finite dimensional subspace F ©(M,R™) C C®(M,IR"™) generated
by IR™ and by eigenvectors of the Laplacian A(jg) of a fixed jo € E(M, IR™) such that

a) A(jo)F<(M,R"™)C F*(M,R™)
b) r:F*(M,R") — F*°(P,IR™) is an isomorphism

for a given embedding jo € E(M,R").
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This subspace is obtained as follows: The eigenvectors €y,€s,... in C*(M,R™) of
A(jo) on C°(M,IR™) are ordered such that the respective eigenvalues of A(jo) satisfy
0 < )\1. < Ay < .... Let €, be the first among the above eigenvectors for which
€., |P # 0. At this point we have to make a choice. Next we chose e;,, among the
complement of {€;, } in {€1,...,€;,+1,...} with the smallest index for which €;,|P and

€;, | P are linearly independent.

Continuing this way we obtain a linearly independent set
{€i1r- 1 8igsy_1yn} CC™(M,R™)

where sg is the number of all points in P. Let us replace the symbol €;, by eg for
simplicity. The eigenvectors ey, ..., e(s,—1).n of A(jo) With respective eigenvalues 0 <

A1 < .o < A(sp—1)-n generate a subspace F§e(M,R™) C C*(M,IR"™). By construction
r: FEM,R)® R" — F(P,IR") (2.1.7)

is an isomorphism. Let us denote F§°(M,R™) & IR™ by F>°(M,IR™). Moreover the
map in (2.1.7) will be denoted by 7o in the sequel. The space F*°(M,IR™) will be
our smooth analogon to F(P,IR"™). Clearly F>(M,IR™) will not be G(jo)-orthogonal
to kerr, in general. The metrics G(jo) and 7*Gp on F°(P,IR"™) will differ, in general.
Having related them, we will prepare the study of the notion of virtual work on both
F(P,IR™) and F>°(P,IR").

But first we have to construct the analogon of W(r(jo)) C E*(P,R™) on E(M,R™).

To this end we introduce
K:={{j} x F*(P,IR™)|j € EM,R")CEM,R")xC>*(M,R"™) = TE(M,RR™)},

a distribution on E(M,R"™) (cf. [Bi,Sn,Fi]).
This distribution is integrable, since j +O C E(M,IR") for all j € E(M,IR™) for any
closed small enough neighbourhood O’ of zero in F*°(M,IR™). Let

W(jp) =7 W(jp) N (jo + O').

Clearly W(] ) is a closed neighbourhood of jo € F*°(M,R") and is a slice in
“L(W(52)) = W=(jo) + ker 7. The whole formalism in section 1.1 can be trans-

fered to W°° (jo) in a straight forward manner.
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We begin the investigation of the relation between the scalar products Gp on F(P, IR™)
and G(jo) on F(M,IR™) by exhibiting a natural basis on F(P,IR"). For each basis

vector z, of the natural basis in IR™ let
21: P— R™
be the map assigning z, on ¢ € P and zero elsewhere. Clearly
{zllv=1,...,n;9 € P} (2.1.8)

is a Gp-orthonormed basis of F(P,IR"™).

Now rZ Gp, the pull back of Gp to F*°(M,R™), is a scalar product related with G(jo)
by
rX Gp(h,1) = G(jo)(©(jo)h, 1) Yh,le F*(P,IR") (2.1.9)

where ©(jo) is a G(jo)-selfadjoint isomorphism. Since the vectors in (2.1.8) are all
orthonormed {r3'zd|v = 1,...,n;q € P} is an 73 Gp-orthonormed eigensystem of
©(jo). Hence .
O (joyrziat = €2(q)20. (2.1.10)

Associated with ©(jy) are thus the functions
§S:P—>R v=1,...,n.
Clearly, the G(jo)-norm ||zZ||g(;,) of each 2 is

122llgGo) = €v(0)™"

The following is crucial for our further studies:

Lemma 2.1.1:

There is a real-valued function £ € F(P,IR™) such that
€&, =6 Yv=1,..,n (2.1.11)
Proof: At first we observe that

2l=14-2, VgeP and v=1,..,n
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where 1, is the characteristic function of {¢q} (cf. appendix 3). Moreover we have
FR(M,R™)=&,_1F°(M,R) -z, (2.1.12)

where F°(M,R) C C*(M,IR™) is constructed exactly in an analogous way as we
obtained F>°(P,IR™); hence F*(M,R") = F(M,IR") ® IR™ (cf. 2.1.7). The re-
striction map defined on F°°(M, IR) onto F(P, IR) is denoted by 7., too. Hence

rtzl=(r}1,) 2, Vv=1,..,n and VgeP

Since C®°(M,R™) = ®7_,C®(M,IR) - z, we have due to (2.1.12)

g(jO)(gl/ *Zyy Gyt ZV’) = (/ qu - gu’.uf(j)) : 61/,1/’

M

for any choices of g,, g, € C®°(M,R") and z,, z,» € IR™. Accordingly,
Sy =1*Gp(rogt 2,5t 2) / OR (Jo)r ™' 1q - 755 1g11(jo)) - bu v

has to hold for some endomorphism O g (jo) on F>°(M,R). Thus r'1, where ¢
varies in P, is an eigensystem of O on F*°(P, IR) with respective eigenvalue £2(q),

say. Hence
©(jo) = &1OR (Jo)

and
€2(q)=&*(q) VqeP

showing our claim.

We now choose some p € C°(M, IR ), positive everywhere but such that
r(p?) = €.
Then
r(p% rtz?) =r(p%) 21 = €229 = €%(q)2? Yv=1,..,n Vqg€P
Thusif h=3_, adr 29 then

r) = Yol ) = D odela)a.

Hence we may write on F*°(P,IR™)

r*Gp(h,1) = G(jo)(P* - h,I) Vh,1€ C®(M,R").
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This establishes the following lemma, basic to our investigations. (For a density map

and the metric B(p) we refer to A2.4 and A2.5 respectively in appendix 2).

Lemma 2.1.2:

There is a density map
p: E(M,R") — C*(M,R)

such that
r*Gp(h,1) = G(jo){(p(jo) - h,1) Vh,le F*(P,IR"). (2.1.13)

This is to say that

r*Gp = B(p) on F*(M,R™) (2.1.14)

along the foliation defined by the distribution K. Moreover p can be chosen such that
fM p(30)p(jo) = (so — 1) - n holds true.

The nature of p will become evident as we study the virtual work below.

Let us pause to study the freedom in choosing p(jo). To this end let p: M — IR be
a smooth map such that

p' = p(jo) + 0

where p’ satisfies (2.1.14) as well. Hence p|P = 0. Obviously we have the following :

Lemma 2.1.3:
In order that p’ > 0 the map p has to vary in an open set O, C kerr. If we require in

addition that [,, p(jo)u fM( p(jo) + p(jo)) p(jo) = const. Then [,, p(jo)u(jo) =
0, this is to say p varies in O Nker [, ... 1(jo)-

Now let us turn back to the virtual work (2.1.1). The internal force density
Op: W(2) — F(P,R™) lifts to W™ (jo) as

rlo®pory : W(jo) — F*(P,R™)
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(here we assumed that r(jo) = j% and that r(W>(jo)) = W(j%)). Hence for all
Jj € W*®(jo) and any h € F*(P,R")

Gp(@p(r(3),7(h))
= Ap( )(’r h))
)

Instead of rZ! o ®p o r we will write r’ ®p as a shorthand. Clearly 735, ®p(j) €
Fo(M,R"™) for all j € W>(jo). Since for any j € W*(jo) and any h € F<(P,IR"™)

Gp(®p(roo(s)), oo (R)) = B(p)(r%®p(5), h) = G(jo) (p(jo) - 72 Pp(5), h)

we first observe that p(jo) - %, ®p(j) is G(jo)-orthogonal to the constant maps in
C>®(M,IR™). Therefore p(jo) - r3! o ®p o roo is an internal force density on W (jo)
with values in C°°(M, IR™). Next let us take the component ®¥ (j) in F§°(P, R"™) of
p(jo) - v @ p(j) for each j € W*(jo) defined by

ri Ap(5)(h) = G(jo) (B¥ (), h) Vhe€ F®(M,R™). (2.1.15)

Since Gp is defined via a sum and G(jo) via an integral, p converts the force r_; Lo® pory
into a force density p(jo) Tt o ®por. This fact reveals the nature of p; in particular p
can not be thought of as being a mass density. Equation (2.1.15) shows that ®YM does

not depend on the particular choice of p(jo).

®M () € Fg° (M, IR™) is represented by some well defined G(jo)-normalized constitu-
tive map HM (j) € F°(M,R"™) for any j € W™ (jo) as

¥ () = Ao HY () (21.16)

It will be convenient to work also with the Fourier expansion of H¥ (5), namely

(so—1)n
HEG)= > R.(e VieW (o). (2.1.17)

=1
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Hence the uniquely determined force density ®¥ : W™= (jo) — F>°(M,R™) is given
by

(so—1)n
G = D, Xi-Ro(e Vie WS (jo). (2.1.18)
=1
Clearly
r* Ap()IFF(M,R") = 15, Ap(j). (2.1.19)

However, A(jo)kerr ¢ kerr.
Referring to appendix 2 for B(p) once more we therefore state:

Theorem 2.1.4:
Given an internal force density ®p then ®Y and r’ ®p : W>(jo) — F>°(M,R"™)
satisfy
12 Ap(§)(h) = Gp (b (reo(s))s o)
— B(p) (r2®p(5), h) (2.1.20)
=G(jo) (2K (), h) VheF=(P,R")
on W (jo). Hence
®Y = Prop(jo) -1, 0 ®p (2.1.21)

holds true. Here Pr denotes the G(jo)-orthogonal projection onto F>°(M,IR™).

Both force densities ®¥ and 7% ®p in (2.1.20) admit constitutive maps, namely HM
and H, both map into the G(jo)-orthogonal complement of IR™ C F°°(M,IR™) that
is into FS°(M,R™). The force density ®¥ (j) on W>(jo) does not depend on the
particular choice of p for any j € W (jo).

The following corollary is immediate:

Corollary 2.1.5:
A smooth map ® : W™ (jo) — F°(P,R"™) satisfies
T3 AP(3)(R) = G(jo) (®(4), h)

for all h € F*(P,R™) iff ® = ®¥.
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Corollary 2.1.5 motivates the following

Definition 2.1.6:

r Ap is the virtual work and ®¥ its associated internal force density on W (j,) C
E(M,IR™) caused by the smooth medium made up by finitely many particles which

is characterized by either one Ap, its internal force ®p or by H¥.

Since F>°(M,R™)+ker r = C*(M,IR"), we extend A = 7 Ap to all of r=1(W(5%))
by setting

A+ k) = A2 () ) @)
for all j € 7=1W(;%) all l € F°(M,R") and all k € ker 7. Clearly r*A # A. In the

sequel we will work on the slice W (jo) of r=1 (W(;%)) exclusively, however.
We conclude this section by investigating p- r5 ®p a little further.

Equation (2.1.20) shows that there is a uniquely determined F§°(M, IR™)-valued con-
stitutive map H on W>(jo) such that

o~

Prop(jo) - m5®p = A(jo)HY on W™ (jo),

saying that

G (o) (Pr o p(jo) - r5®p(4),7) = G(jo) (AGo)HY (5), h)
VieW™>(o) VYheFO(M,R™).

In the special case dimM = 2 we rewrite (2.1.14) on W(jo) for each j € W (jo)

re AG)(R) = B(o)(r2.®p(j), h) = /M <r2.8p() k> plio)n(io)

= / < AHL(5) b >
M

for any h € F°°(M,IR"™). The Riemannian metric m, := 07 (j0)m(jo) with u, as its
volume form has p(jo)_TlA as its Laplacian A,,. Since 7%, A(j)(2) = 0 for each z € IR™

we conclude the following:
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Proposition 2.1.7:

There is a constitutive map ﬁﬁ‘f on W (jo) such that for all j € W™ (4o)
Prp(jo)ri®p(5) = A(jo)HY (7) (2.1.22)

holds true. If dim M = 2 there is a constitutive map 7-7,, : W (jo) — F°(M,IR™)
with
r&@p(i) = A H,(5) = p(G0) T - Ao} Ho(d) V5 € W™ (o),

where A, is the Laplacian of the Riemannian metric m, given by

m,(v,w) =< p(jo)idjov, p(jo)idjow > Vwv,we TgM and Vg€ M.

Let dim M = 2. In general (M, m,) can not be globally and smoothly embedded, i.e.
in general there is no embedding j; € E(M, IR™) such that

m, = m(j1) (2.1.23)

for small n. More explicitly m, is a pull back by a C*°-embedding if n = 10 (cf.[G,R]).
If, however, the scalar curvature A, of m,, is strictly positive, then M has to be isometric
to an embedded sphere in IR® (cf.[B,G]). If M is diffeomorphic to a sphere then j
exists.if n = 7 (cf. [G,R]). For the local embedding of (M, m,) confirm [G,S].

If n is large enough however, then j; € E(M,IR™) exists. Therefore proposition 2.1.7

motivates us to call a configuration j; € E(M, R™) to fit metrically well if
m, =m(j1) and hence r*Gp = G(j1) (2.1.24)

along W(j%).

It is easy to see that if jg is an equilibrium configuration then j; is one too and vice

versa. If j; exists we may hence assume, without loss of generality, that j; = jo.
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2.2 The exact part of the virtual work of a smooth medium made up by

finitely many particles and the free energy associated with it

The goal of this section is to split off in a geometric fashion an exact part ID F of the
virtual work. This part is called the exact part of the virtual work of a smooth medium
made up by finitely many particles. It will be interpreted as the differential of the free
energy F associated to an adapted statistics (cf. [B,St],[Bi6],[Str],[L,L] and [M,H]).
The geometric setting based on theorem 2.1.4 yielding this exact part (via a Neumann
splitting) is the following one:

Let jo € E(M,R"™) be fixed and W*(jo) C E(M,IR") be a closed ball centred
about jo. The motivation of restricting us to W (jp) is clearly the Neumann splitting,
however it will become entirely clear from a physical point of view in chapter three.
Moreover to prepare the geometric tool we let p denote a density map such that the
scalar product B(p) on F*°(M,R"™) (cf. A2.5)

satisfies

r*Gp(h, k) = B(p)(hy k) = /M plio) < hy k> u(jo) (2.2.1)

for any h,k € F>°(M,IR™). This kind of density exists by (2.1.14) in lemma 2.1.2. We
set p(jo) = po, for simplicity.

Next let A be virtual work, i.e. a one-form A on W (jo). This one-form is assumed to
be of the form 7%, Ap for some one-form Ap on ro, (W™ (jo)) = W(5%); here r(jo) = j.

We decompose A on W (jo) into
A=DF+V
in the sense of Neumann by solving the following elliptic boundary value problem:
divgA = AgF
A(np) = D F(ng)

where np is the oriented normal to the sphere bounding W (jg), formed with respect
to the scalar product B(p). The operators divg and Ag are respectively the divergence
and the Laplacian of B(p) on F>°(M, IR™). Next we will construct a G(jo)-normalized

constitutive map ﬁf of DF.

The gradient Gradg(jO)F of F formed with respect to G(jo) can be represented as

Gradg(jo)?‘— = Gradg(jo)Fo + zF
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where 2z is a constant IR"-valued function on W™ (jo), and Gradg;,,Fo is perpen-
dicular to the constant maps on W (jo) formed with respect to G(jo).

Similarly, we may represent the one-form U as
¥ = G(jo)(Ve, . -.)
for some well defined vector field Vg on W (jo) and split it into
Vg =V + 2y
for zg € IR™. Since A(j)(z) =0 for all j € W™ (jo) and z € IR™ we find
2y = — 27,

therefore we can assume 2z = zg = 0 and set F' = F respectively Vg = V?I,. Hence
Gradg(jo)F : W*(jo) — F°(M, R") satisfies

(Gradg ;o F)(j) = AHF(7) Y5 € W>(jo) (2.2.2)

for some well defined smooth G(jo)-normalized map Hr : W (jo) — F>(M,RR™)
fulfilling the boundary condition

g(jo)(G’r’adg(jo)ﬁ,aww(jo), nB) =D HF(nB). (2.2.3)

Thus we have :

Theorem 2.2.1:
Let Ap be any virtual work on ro (W™ (jo)) C E®(P,IR™), and F><(M,IR") be
equipped with the metric B(p), satisfying (2.2.1). Moreover let po := p(jo) for some
jo € E*(P,IR"™).
The virtual work A := r* Ap splits uniquely on a closed ball W™ (jo) centred about
Jo into

A=DF+ 7V (2.2.4)

where F satisfies

— 1 ~ —
dliUBA = ¢BF = dl’i’l)B ‘;—AHF and A(nB) = DF(HB). (2.2.5)
0

Moreover, GradgF, the gradient of F' formed with respect to B(p) and Gradg;,) are
related by
Gradgjo,F = Pr - po - GradgF = Az (2.2.6)
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where Pr is the G(jo)-orthogonal projection omto F*°(M,IR"™) and ﬁf(j) €
F(M,IR™) for each j € W*(jo). The operators divg and Ap are the divergence
and Laplacian on F*°(M,IR"™) formed with respect to B(p). Both H and F depend
smoothly on j € W*(jo).

Now we turn to the discrete level again. Ap splits on W(j3) := 7o (W (jo)) accord-

ingly into

Ap=DFp+¥p
i.e.

dl’i’UpAp = Apﬁp
and

A(np) = Df(np)

have to hold. Here divp, Ap and (np), the outward directed unit normal field of
W(j%), are all formed with respect to Gp (cf.[Ma]). Due to (2.2.1) we immediately

deduce:
Theorem 2.2.2:
Let A=r* A on W*>(jo). Then

F=rFp+const. and ¥ =r;¥p. (2.2.7)

Next we will construct a natural density F : W™ (jo) — C°(M, R"™) for F exhibited

in the theorem above, i.e.

F(j) = /M FG)ule) Vi€ We(io).

=l

Obviously F admits many densities, e.g.F := % is one. We will construct one which is

based on the gradient of F, and hence differs from % in general: To this end we will

write
DF = g(jo)(G’r‘adg(jo)F, )

which implies the Fourier decomposition

— oF
GradgjF' = Z e (2.2.8)




-34-

where X; is the 1" coordinate function defined by e; € F$°(M, IR™). The one-form w
with
w(h) :=< Gradg;jF,h > Vhe F(P,R")

on W*(jp) (having values in the finite dimensional subspace of C*°(M, IR™) generated
by {< ei,er > |i,7 =1,...,(so — 1) - n}) splits into

w=IDF+ Vg,
in the sense of Neumann on W (jp). This is to say both equation
dli’l)g(jo) w = M

and
w(N)=ID F(N)

hold true, where N is the oriented (outward directed) G(jo)-unit normal along

OW>(jo) and A and dlivg(j,) are the Laplacian and divergence both formed with
respect it G(jo) (cf. [Ma]). Clearly

o*F
divg ;) w = Z o2 < e, e >

Thus ’

&= [ Fut)= [ AFutio
M M

showing that F and [ v F1u(jo) differ by a constant. Moreover

DT = /M D Fu(jo) = /M < Grad T, ...> u(jo)

which implies in particular

sz /]DF(J (o) Vi=1,..,(s0—1)-n

on all of W*°(jp). This shows that

/M Ue, (W)uljo) =0 Vh e F=(M,R").
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We therefore have

Proposition 2.2.3:
The function F' € C* (W (jo), R) of the exact part ID F admits a density F, i.e.

F= /M Fu(jo) (2.2.9)

satisfying
DF = / ID Fu(jo) = / < GradF, ... > p(jo). (2.2.10)
M M

on W (jo). Moreover the following equations hold:

< Gmdg(jo)F, w.>=IDF + Vg,

< Gradg(j)F,N >= ID F(N) (2.2.11)
ﬁ = dli’vg(jo)(< Gradg(jo)F, >)
| varmutio) =0, (2:2.12)
M

VYh € F(M,IR"). Here N is the outward directed G(jo) unit normal along OW(jo).

Next we will show that F admits an observable I € C® (W°° (jo),]R) at a fixed
prescribed temperature T such that the partition function Z, formed with respect

to an equilibrium state p. (cf. appendix 2, A2.16), will satisfy
11—
In Z .= ~-=F. 2.2.13
n - (2.2.13)

The state p. has to be determined. To this end let F' be a density of F. To relate the
density F' with the observable we set

1
e ln 2 = —— 2.2.14
pe - In T ( )
L.
e; InZ=—=F
or
6_711""'[ = e_%'F . £
F

if F is nowhere zero. Hence (2.2.14) implies obviously (2.2.13). We therefore have the

following :
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Theorem 2.2.4:

Associated with the map F, for which IDF is the exact part of a constitutive law
A W>=(jo)x F(M,IR™) — IR made up by finitely many particles and any a density
F of F,ie amap F: W>®(jy) — C=(M, R) with

F= /M Fu(jo), C (2215)

there is an observable I such that F is the free energy of the Gibbs state

e * (2.2.16)
Pe i= . 2.
fM e_%IN(JO)
at a fixed temperature T'; Hence
pe = et F-D), (2.2.17)
This observable I is given by B .
F+TinF
I=— 2.2.1
- (2.2.18)
The density F is related to F by
F=p.F. (2.2.19)

(2.2.18) shows that I depends on the choice of the density F.

The above theorem motivates us to call F, a real-valued function on W (jo), the free
energy of the medium (cf. appendix 2). Here again W(jo) has to be small in order to
fit reality some what.

Let us point out that if the second law in thermodynamics holds, then the free energy

defined in a thermodynamical setting satisfies (2.2.4) (cf.[Bi6]).
From (2.2.14) and (2.2.19) we immediately deduce
T -pe-lnZ=—ps-I—T-pcln pe (2.2.20)

or equivalently
F=p., - I-T:-5

with S := —peln p. the entropy density associated with I and T (cf. appendix 2).
Integrating both sides yields
- F=I-T-S. (2.2.21)
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This formula shows that I can be identified with the internal energy (cf.[B,St] or
[L,L]). In fact we have 222 = _T, saying again that T is the internal energy (cf.

oF

(B,St]). On the other hand (2.2.21) implies
DF=D(p.-I)-T-DS (2.2.22)
and hence (2.2.10) yields
< Gradg(j)F,..>=D (pe-1)—T-ID S + Vg, (2.2.23)
Since moreover _
oF

GTadg(jo)F = Z )\17{\%/6\1 = g €5

We therefore have shown the following:

Proposition 2.2.5:

At a fixed temperature T the densities F',I and S of the free energy, the internal energy
and the entropy are related by

F=p.-I-T-8S (2.2.24)
implying
F = / peIp(jo) = T - / peln pep(jo) =1 —T- S (2.2.25)
M M
and therefore
A=DF+3¥=DI-T-DS+ 7 (2.2.26)

for fixed T. Since the gradient Gradg(;,)F of F formed with respect to G(jo) is

oF

G'radg(jo)F = ;/\zﬁ%ez = . 8—E - €y (2.2.27)
saying that .
i OF :
Ak = %, Vi=1,..,(sp—1):n (2.2.28)
we have in addition for eachi=1,...,(so —1)-n
oy (I —-TS) . 0(I-TS)
K < €, >= T—l— < We;,e; > or Ko = _3—E_ (2.2.29)

In particular, if ID F(jo) =0

oI as
=T.
0X; ox;

E%( jo) =0 or equivalently
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Now we turn to the statistical set up on the discrete level. Here too Fp admits a

natural density Fp:

Proposition 2.2.6:

The constitutive law Ap has a uniquely determined exact part ID Fp. The map Fp :

W(3%) — IR admits a density map
Fp:W(%) — F(P,R)
smoothly depending on jp € W(j$) such that
Fp(ip) =Y Fr(jp)(a) Vi€ W(53) (2.2.31)
qeM
and ID F is the exact part of < GradFp, ... > for which
AF(jp) = ) fpFr(ip) (2.2.32)
qeP

holds. Here Ap is the Laplacian determined Gp on F(P,IR™).

Proof: The proof follows exactly the same pattern as the one of proposition (2.2.3). F

admits a gradient GradpF p. The divergence of
< GradpFp,...>: W(%)p — F(P,R)

yields for each jp € W(j%) a map Fp(jp) : W(j%)p — F(P,IR™) which can be
chosen such that Fp(jp) is perpendicular to R™ C F(P,IR™) for all jp € W(;j2).
Thus Fp is uniquely determined and satisfies ApF(jp) = Ap > p F(jp)(q), showing

the lemma.

Let us point out here, that theorem 2.2.4 holds accordingly for Ap and F p exhibited
in theorem 2.2.2; the respective maps on W(;%) are denoted by Ip,1p,Sp and Sp.

The integral [,, has to be replaced by 3 cp.
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Therefore we have the following:

Theorem 2.2.7:

To Fp : Wp(j%) — IR and any density Fp : W(j3)x P — IR, there is an observable
Ip : Wp(j%) x P — IR such that

1 _
pf  Fp = —5in Zp =TFp (2.2.33)
_ 1 —
where Zp(q) = S e~ TP (g) and pf = ¢ ZTPIP . Moreover Fp = —-In Zp is the

free energy of Ip at a fixed temperature T. The observable Ip is given by
Ip:= FP-I—TZ’I’L FP/FP. (2.2.34)

Again as in the continuum case, the above theorem motivates us to call Fp the free

energy of the virtual work of the discrete medium.

The functions F, Z, Fp and Zp are linked by construction in the following manner

Corollary 2.2.8:

Let Fp be the free energy associated with a virtual work Ap. The free energy F and

the partition function Z on W (jo) are related to Fp and Zp on W(rus(jo)) by

F=7r*Fp and hence Z=r"Zp (2.2.35)

for fixed temperature T'.
Finally let us make examples to the statistical set up on M:

Example: 1) We consider the area function
A= [ w)= [ det fiuio) Vi€ W= (o)

Here A = F and det f(j) = F, in the sense of theorem 2.2.4.

If j and jo are close to each other then

det f(j) = e\ (2.2.36)
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Hence the density F is det f(j). Let T be fixed. Then

Z(j) = e" A0 5 e W= (jo). (2.2.37)
Hence
I=A()—-T-ln A(j) =T - tro(y). (2.2.38)
To compute the Fourier coefficients of H A, the constitutive map of .4 we use (2.2.27)
and get
s 1 0A
AT NI

On the other hand we have in case of n =1+ dim M
GradgA=H-N

where H is as in (1.1.29) and N is the oriented m(jo)-unit normal vector field along
the embedded manifold (cf.(1.1.29)). Thus

76\1;4 = g(]())(H . N, ei) Vi= 1, ...(80 - 1) ‘N

(cf. section 2.1) showing

DA

ox;

H-G(j0)(N,e;) Vi=1,..(so—1) n.
2) We consider the i*" coordinate function
X W*=(jo) — R
determined by e;. Clearly
dx; = /M < €gy... > p(jo) = G(Jo)(Gradgjo)Xi, -.-)
- /M po < o e . > u(jo) = Bloo) (o3 ess )

Thus Prpg'e; is the gradient of X; with respect to B(p), and dX;(l) is the ith
Fourier coefficient of | € F>*°(M,R"™). Here Pr is the G(jo)-orthogonal projection
onto F°(M,IR™). The density map x; of X; is given by

X; =< €5y ... >

Therefore we have

X; = /M x;4(Jo)
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and obviously dx; = fM dx;u(jo). Given any F : W™ (jo) — IR we have
- OF __
IDF = el
; 8xi Z / dlxz
Hence the density map F of F in theorem 2.2.3 satisfies

OF _ :
[ Scdxutio) = [ D Fuio).

Following the construction of F out of F' we may set

oF
s = divg ;) o dX; = — en > .
AL PG G0) g, < 0%,0%; S ener >

In all the formulas the coordinate system ey, ..., €(s,—1).n can be replaced by any other
G(jo)-orthonormed one.
Moreover F and F in (2.2.15) have the form

F = Z—F.L and FIZFl

with F;( = [y Fi(j)u(jo) for all j € W>(45) due to the construction of F'. Then
F=% F,- and
— O*F
A=

i
This equation has a solution F; up to a constant. To associate a component I; of the

observable I given by F via (2.2.17) we set

L
Fiand  pb:= eZT Vi=1,..,(s0—1)n

%

+

Zi =e
Then Z =[], Z; and p. = [, p%; therefore
I ;= —T(In Z; + In p})

implying

I=)"L Vi=1,.,(s0—-1)n
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3) Nearest neighbour interaction
3.1 Nearest neighbour interaction

So far we did not specify any interaction type among the material particles of which the
mean locations are the points of P C M. In this section we implement an interaction
structure as follows: Let L C M be a connected simplicial complex consisting of zero-
and one-simplices only, the zero simplices being the points in P and the one-simplices
being segments connecting points in P. In the terminology of appendix 3 we have

P = Ly. Our IR™-valued cochain complex associated with L has the form
0 1
R % cow) L clw).

All points g; which are connected with g € P, say, are called nearest neighbours of g.
Instead of C°(L) we write F(P,IR™). The number of nearest neighbours of ¢ is called
k(q). Furthermore we assume that all nearest neighbours of any ¢ € P are within the
domain of a Riemannian normal chart about ¢g. The Riemannian metric being m(jo)
for some fixed jo € E(M, IR™), a reference configuration. The distances between ¢ and
its nearest neighbours shall all be extremely small, which means that so, the number of
points in P is rather large for a large diameter of M. Any q € P is supposed to interact

only with its nearest neighbours, i.e. we have a nearest neighbour interaction.

No external fields shall be present at all.

Let W(j%) be a closed ball in E*°(P, IR™) centred about j% := r(j) and let us assume

that
dp: W(jp) — F(P,R™)

is an internal force, i.e. the following holds for all jp € W(5%):

> ®p(jp)(@)=0 and  ®p(jp+2)=Pp(jr) YVzeR". (3.1.1)
g€Lo

Hence there is a map Hp : W(j%) — F(P,IR™) such that
Op(jp) = ArHp(jp) Vip € W(ip), (3.1.2)

where Ar is the Laplacian associated with the complex L on the level of 7(P,IR"™)

(cf. appendix3, [B], compare also [Ch,St]).
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We call Hp the constitutive map.
Hp is Gp-normalized provided that Gp (H(jp),z) = 0 for all z € IR™ and all jp €
W(j$). Clearly (3.1.2) admits a unique Gp-normalized solution Hp.

By the definition of Az (cf. appendix 3) we observe that Hp(q) — Hp(g;) is the
interaction force within the medium of the particle at ¢ with its nearest neighbour
at ¢; for all 1 = 1, ..., k(q) and each ¢ € P. These interaction forces might be given by

potentials (cf. lemma 3.1.1 below)

Letel, ..., e%’;O_l).n be the Gp-orthogonal eigenvectors of At in F(P, IR™) having eigen-

values 0 < )\{ < )\g <...< )\%;0_1)%. Then

(so—1)n
Hp(jp)= Y. C(ip)-el Vip € W(5B) (3.1.3)
=1
and
(80—1)~1'L )
ep(jp) = Y. MC(ip)-el  Vip e W(HD); (3.1.4)
=1

here ¢* : W(j%) — IR are smooth for each i = 1,...,(s0 — 1) - m.

Proceeding as in the previous section we verify that associated with Fp and a fixed

temperature T there is an equilibrium state (as already pointed out in section 2.2).

Let us assume that the interaction force between the particle at ¢ and the one at g; is
derivable from a potential in the ambient space IR™. This is to say that we assume a
potential
V:PxR"{0} — R

which is smooth in the variable z € IR™\{0} and which does not depend on jp €
W(i$)-
Therefore the interaction force Hp(jp)(¢) — Hp(jr)(¢;) has the form

Hp(ip)(q) — Hp(ip) (@) = gradr-V (jr(a) — jr(@)) Vie € W(p)  (3.1.5)

where gradr~ means the gradient formed in JR™\{0}. Hence

k(q)
ArHp(5)(g) = Y _ gradr-V (jr(q) — jr(@:))- (3.1.6)

=1
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Therefore we have the following

Lemma 3.1.1:

Let V : Px R™"\{0} — IR be a potential for the interaction forces. The constitutive

map satisfies

Hp(ip)(a) - Hp(ip)(a:) = (gradm=V) (i(a) — j(a:))
Vge P and Vi=1,..k(q),Vip € W( ).

Moreover the Fourier coefficients and their derivatives are determined by

k(q)

G(iP) =17 Z > DV (jp(q) — jr(a:)) (e ()

'L geP i=1
for all jp € W(32), for alli =1, ...,k(q) and for all ¢ € P. Hence
k(q)

9G:(ip APZZW ip(g —JP(qz))<( (0).¢1(@))

y.s g€EP i=1

Vi,s=1,..,k(q) and VqeP

where y; is the coordinate function defined of eI . Here D denotes the Fréchet derivative

in R™.

The presence of a potential requires us to restrict the constitutive map Hp to a neigh-
bourhood W(j%) of some configuration of j3 € E(P,IR™). To show this let us assume
that V|g x IR™\{0} grows rapidly to infinite near zero. Then the nearest neighbours
of ¢ € P react with g only. Let 5%(g;), ..., 7%(gr(q)) be these nearest neighbours. If the
distances between jp(q) and jp(qi),...,Jp (qk(q)) are made sufficiently large, then at
least some of jp(q1), ...,jp(qk(q)) need not to be nearest neighbours jp(q) any more.
This is precisely why we restrict us to W(j$) from the beginning on. In presence of a
potential , W(5%) is supposed to consist of those configuration jp only for which j(qi)
are the nearest neighbours of j(g) for all i =1,...,k(¢) and all ¢ € P.
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3.2 Nearest neighbour interactions described on a smooth manifold

In this section we will relate the description of the nearest neighbour interaction on
a one-complex L considered in section 3.1 with the description on a smooth manifold

M containing the one-complex.

In contrast to section 2.1 we have a Laplacian Ap on F(P, IR™) given by the interaction

pattern. Hence we have constitutive maps, as seen in section 3.1.

One goal of this section will therefore be to relate the constitutive map on P namely
Hp : W(3%) — F>(M,IR"), constructed in section 3.1, with the constitutive map

on the continuum M, this is to say with Hf‘,” , considered in section 2.1.

The relation of these two descriptions will be established via the restriction map
r:C®°M,R") — F(P,IR").

In particular we will use ro, : F*(M,R") — F(P,IR"™), a surjection (cf. sec 2.1)
given by r*° := r|F>°(M,IR"™). We therefore consider again the integrable distribution

K:={j+F°(M,R")|j € E(M,R™)}.

In particular we consider a leaf W*°(j) = j+O where O is a closed ball in F*°(M,R™)
centred about jo such that ro (W (jo)) = W(jp). Here jo € E(M,IR™) a reference
configuration such that 7°°(jo) = j%. Again A(jo) will be denoted by A.

Throughout this section we assume that j» is an equilibrium configuration for the
virtual work Ap on W(j%) or at least a stationary point of the free energy Fp (cf.

section 2.1).

We assume furthermore that all nearest neighbours of any ¢ are within a distance
smaller than the injectivity radius determined by the metric m(jo). In fact we require
that there is a covering (Uy|g € P) of M of open sets each of which has a diameter
smaller than e which itself is smaller than the injectivity radius of exp at ¢ and suppose

that U, contains all the nearest neighbours of ¢ in P. The real number ¢ itself shall be

extremely small.




- 46 -
Finally let p be a density map satisfying
r*Gp = B(p) (3.2.1)

on the leaf W™ (jo), (cf. lemma 2.1.2). Again we write pg instead of p(jg).
No external forces shall be present on W(5%).

We begin by an internal force
Op: W(jp) — F(P,R") |

which by definition is pointwise Gp-orthogonal to IR™. This force determines a virtual

work Ap, say. Hence
bp = ArHp (3.2.2)

for an uniquely determined smooth map Hp : W(j$) — F(P,IR"), pointwise Gp-

orthogonal to IR™ as seen in the previous section. Since
G(0)(por @ pros,l...) = B(p)(r®preo,l...) = 1*Gp(r ' ®prec, ! . ..)
for all [ € F(P,IR™) we know by proposition 2.1.7 that
Pro por;l oPpory, = A’I-A(y

for an uniquely determined smooth 7"\(%’[ pointwise Gp-orthogonal to IR™ with Pr the
G(jo)-orthogonal projection to F>°(M,IR™). Clearly ﬁ%[ is uniquely determined by
Hp. Thus

M .= Propy-rlo®pory

is the uniquely determined force density on W™ (jo)(with rjo = j$) for which r} Ap
is the virtual work. Vice versa if we start with an internal force density
@ : W*(jo) — F>(M,IR")

for which the virtual work is Az, say. Then

1
Pp =70 Pro—Por !

Po
is an internal force density causing a virtual work Ap, say, for which Aps = r*Ap. We

therefore have:
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Theorem 3.2.1:

There is a one to one correspondence between constitutive Gp-normalized constitutive
maps Hp on W(;j%) and G(jo)-normalized constitutive maps Er{y on W (jo) such

that the internal force densities on W (jo) are related by
Proport o ApHp oree = AHY (3.2.3)

where Pr is the G(jo) orthogonal projection onto F(M,IR™). The virtual works Ap
and A determined by Hp and HY respectively satisfy

A=r*Ap. (3.2.4)

This theorem shows that a medium determined by finitely many particles are equiva-
lently described on W*(jo) and W(re(jo)) by H¥ and Hp respectively.

Now let us show that both F and Fp associated with > Ap and Ap respectively
(both exhibited in section 2.2) admit constitutive maps and show how these maps are

related to each other. Let us consider a smooth constitutive map
Hp : W(%) c F(P,R™) — R".

We form the virtual work Ap and exhibit the free energy F'p on W(5%) as in (theorem
2.2.2). Then we set F := r% Fp on W (jo). Since r%,Gp = B(p) the map F is the free
energy of r> Ap. The gradient Gradg(jo)F of F formed with respect to G(jg) allows

us to determine the constitutive map 7/{\7 of F as follows: The one-form
DDF : W) x F*(M,R") — R

vanishes on IR™ since ID Fp does so. Hence GTCLdg(jO)F is G(jo)-perpendicular to the

constants IR™ implying
GTadg(jo )—F(]) = AHF(])

with ’I:Zf(j) € C°(M,IR™) and in turn
DF(5)(h) = G(jo) (AFH7(5), )

for all j € W>(jo) and all h € F*(M,IR™). On the other hand Grad,-g, F satisfies
for any j € W™ (jo) and h € F*(M,R").

o~

B(p) (GradT*gPF, h) = g(JO) (p(jo)Gradr*gPF_, h) = g(]()) (AHF(])’ h’)
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(cf. 3.2.1). If Pr denotes the G(jo)-orthogonal projection onto F*°(M, IR™) then
Pr o p(jo) - Gradu-g, F = AH% (3.2.5)
or due to 7*Gp = B(p)
Prop(jo)-rto AT,’:ZFP OToo = A’I:ZF
where H  is the constitutive map of D Fp.

The theorem above together with the theorems 2.1.4, 2.2.1, and lemma 2.2.3 immedi-
ately yield the following:

Corollary 3.2.2:

Let Fp be the free energy associated with a virtual work Ap. The free energy F
and Fp on W™(jo) respectively on W(rjq) related by F = r*Fp and both admit

constitutive maps Hg and Hy respectively. These maps are related by

Prop(jo)rzt o ATHE, 0 Too = A?T(F (3.2.6)
and are such that
Pr o p(jo)Grad.-gF = Afp = Gradg(;o) F (3.2.7)
or equivalently
Prop(jo) 12! 0 ArHz, 0Tee = ATl (3.2.8)

Now let dim M = 2. By proposition (2.1.7) we conclude (cf. proposition 2.1.7)
Gp(Arr(Hp(5)),h) = B(p)(r52p (i), h)

-=/ <5 ®p(i),h > o
M

(3.2.9)
= / <A HH () h > pp
M
= B(p)(ApHp(4), h >)
and hence
A H,(5) = 5 ArHPp(5) Vi€ W (jo) (3.2.10)

have to hold for some smooth map H, : W (jo) — C°(M,IR").
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Furthermore, as we have shown in appendices 1 and 3
d'd= A,
formed with respect to m, ( cf. section 2.1) and
drdr = Ar.

Since d = dp+higher order terms we have on W™ (jo) C F*°(M,R") the equation
d* = d} up to higher order terms. Both sides are formed with respect to r%,Gp = B(p).
Therefore the following holds:

Theorem 3.2.3:

In case of dim M = 2 the Laplacians 1l o Arore, and A, on F°(M,R™) are related
on W (jo) by
A, =717 oAror, +higher order terms. (3.2.11)

Therefore the Gp respectively the B(p)-normalized constitutive maps Hp on W(j%)
and H, on W (jo) of ®p and r*®p respectively, both formed with respect to At and
A, satisfy

Hp =ro 0 H, +higher order terms. (3.2.12)

Similarly F admits a B(p)-normalized constitutive map ﬁ% such that
DF()(k) = B(p)(A,Hp(i), k) VieW™(jo) VheF=(M,R")  (3.2.13)
which is related to Hg, by

Hg, =roH, +higher order terms on W= (Jo)- (3.2.14)

Definition 3.2.4:

In case of dim M = 2 we call a configuration jy a good fit for the discrete medium if
m(jo) =m, and IDF(jo) =0 (3.2.15)

where F :=r’ Fp.

Theorem 3.2.3 implies the following:
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Corollary 3.2.5:

Let dim M = 2 and jo € E(M,IR™) with 7o(jo) = j% be a good fit for the discrete
medium. The Laplacians Ar or and A are related on W*(j,) by

AT 076 =Too ©A  +higher order terms. (3.2.16)
The constitutive maps HY and H, as well as Hg, and ﬁf are related by
Hz, (oo (J0)) = Too (ﬁf(jo)) +higher order terms on W(jp) (3.2.17)
and
HY (reo(jo)) = roo(H,(jo))  +higher order terms on W™ (jo). (3.2.18)

The above corollary has the following consequences :

Theorem 3.2.6:

Let jo be a good fit. Then the internal force
Too (AHE (5))(¢) = ArH7(reo(5))(¢)  up to higher order terms

can be interpreted in first order as the interaction force between q and all its nearest

neighbours for any q € P. Vice versa any internal force on P is of this form.

Remark

If jo is not a good fit corollary 3.2.5 is not valid. The geometry on M inherited by
jo disturbs the direct sight to the physical situation, even though this situation is

equivalently described as shown by theorem 2.1.4 or theorem 3.2.1.
Corollary 3.2.5 and equation (1.1.29) together yield

Corollary 3.2.7:
Let jo fit metrically well then 1.1.29 applied to any q € P reads as

k(q)
H(j0)(q) - N(jo)(q) = k(g)jolq) — Zjo(qi) VgeP

up to higher order terms, with H(jo) being the mean curvature of jo, (the trace of the

Weingarten map).
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4) Linearizations

4.1 Linearized virtual work

In this section we will determine the free energy F™ of the linearization A" of the
virtual work A, presented in (1.1.35) in lemma 1.1.3. Here we assume that A = r*Ap,
where Ap is a virtual work on W(j%) C E<(P, R"™).

Again we will work on W°(jg) as in the previous section. jo € E(M, IR™) is assumed to
be an equilibrium configuration of A, i.e. A(jo) = 0. Let j% = 7(jo). Hence Ap(j%) =0

as well.

The linearization A%" of A reads hence for each [ € W*(jo) — jo
A(jo + 1)(h) = D A(jo)(1)(h) Vhe F=(M,R"), (4.1.1)

(cf. 1.1.35).

To determine the free energy F " of A% we derive from (2.2.4) and (2.2.5) by differ-

entiation at jo
D A(jo)())(h) = D *F(jo)(l, k) + ID ¥ (jo) (1) () (4.1.2)

together with
D A(jo)()(np) = D *F(jo)(l,np) (4.1.3)

for each I € W™ (jo) — jo, all h € F°(M,IR"). Here F is the free energy of A, (cf.
theorem 2.4.2).

Applying diivg (cf. section 2.2) on both sides of (2.5.2) yieids
- Z D A(jo)(ui)(ui) = —(Z D *F(jo)(us)(us) + Z D ¥ (jo) (ui)(ui))
(divp A)(jo) = AsF(jo) and  divp¥(jo) =0 (4.1.4)

where 3, ...U(s,—1).n 15 @ B(p)-orthonormal frame on W (Jo), i-e. a B(p)-orthonormal
basis in F§°(M, R"™) (cf. 2.1.7). Due to the definition of the free energy (cf. section

2.2) the following is therefore immediate:




- 59.

Theorem 4.1.1:
Let A =r} Ap on W*>(jo), where Ap is a virtual work on W(j%) with 7 (jo) = j%.
The linearization A“" of A at the equilibrium jq is for each I € W™ (jo) — jo

A" (jo + 1)(h) = D A(o)()(h) Yh e F*(M,R").

Its free energy F is given by

—lin

: =/ . | e 0o/ .
F(Jo+1) = F(jo) + §D2F(30)(U) Vie W>(jo) — jo- (4.1.5)
Here F is the free energy of A and is of the form F = r*Fp, where Fp is the free
energy of Ap on W(j%). Hence A""(jo) = 0 implies ]D-F-lm(jo) = 0. Moreover

—=lin

AeF" (jo + 1) = (4sID *F)(jo)(1) (4.1.6)

(The constant F(jo) is arbitrarily chosen).
. —lin
The structures of A" and F' are determined by lemma 1.1.3 and theorem 1.1.4.

The eigenvalues of ID*F(j,) are called the modes of the medium made up by
finitely many particles (cf. [Ch,St}). These modes are obviously of a global and

classical nature.

To show the roles of this sort of modes let G € EndF§°(M,IR™) be such that

L DIF ()41 = GG LY Ve W) (4.1.7)

The following is obvious:

Lemma 4.1.2:

Let wi, ..., W(s,—1).n be an orthonormed system of eigenvectors of G and 71, ..., ¥(so—1) n
be the respective eigenvalues of G, this is to say the modes. Moreover if z, denotes the

coordinate function defined by w;, then
—=lin , . = 2 oo/ + .
F Go+)=Fo+ Y, 7-12 Vie (W (j)— o) (4.1.8)

where h = S h,w,, provided that ID F(jo) = 0. Moreover

8°F (jo) :
97,0z, 0is Vi,s=1,..,(s0—1) n. (4.1.9)

=+, and
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Combining theorem 4.1.1 with lemma 4.1.3 and theorem 2.4.3 yields immediately:

Corollary 4.1.3:

Let Agtin be the structural capillarity of ID T The constitutive map Hfun assigning
to each | € W*(jo) — jo the value

7/{\f“"(jo +1) = D Hz(j0) (1)

satisfies
D *(agun - A)(Go) (1, b) = G(jo) (A(Go) D H(jo) (1), b

for each h € F*°(M,IR™), implying that
ID (Gradgjo)(agiin - A)) (jo) (1) = D H(jo) (1).
In case of dim M = 2 and if jo is a good fit (cf. def 2.4.4) then
r(ID Gradgjy) (agiin - A)(jo)) = D Mg, (reo (o)) (ree (1))
If in addition H, is given by a potential (cf. section 3.1) then

ToodD Gmdg(jo)(afun . A)(]o)((]) = DHFP (7'00(]0)) (roo(l))(q)
k(q)
=S Dgradr-V (jolg) — jola)) ((a:)) Va €< P.

=1

Finally let us express the constitutive map ﬁﬁlin in terms of the modes of F At
first we observe by corollary 4.1.3 that ﬁf!in (jo + 1) depends linearly on ! because of

which we write

Hegiin (o + 1) = L(I) V1€ W>(jo) — o (4.1.10)
with £ € EndF>*(M,IR"). Clearly £ = ID Hpuin(jo). By (4.1.7) we deduce hence
2G1 = A(jo)L(1) (4.1.11)
The equations (1.1.25) and (1.1.24) imply therefore (cf. 2.1.17)
Xi B (Jo+ 1) = 2G(j0)(Gl, e;) (4.1.12)
and in turn for all,s = 1,...,(so— 1) - n

~i g 2 _
Roo(do +Ws) = 5= 75 - G(jo)(Ws, 1) (4.1.13)
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Therefore we may summarizing this little analysis by the following two lemmata:

Proposition 4.1.4:
The constitutive map H pin Of " s given by
Heztin (jo + 1) = 2- A7 (jo) 0 G (4.1.14)

and the Fourier coefficients are hence

Fri /. 2 . .
K‘flm(JO +ws) = v Vs G(Jo)(Ws,€5) Vi, s=1,..,(s0— 1) n.
wFlin (j .
If in particular Gry (o) ;s Vi,s=1,...,(sp— 1) -n then
X ’
T s - Vi .
K; " (Jo +1) =2-x-li i,8s=1,...,(s0— 1) n. (4.1.15)

Lemma 4.1.5:

. . -~ =bn ..
The constitutive map Hziin of F*™" is given by

Hein (o + 1) = 2- A7 (jo) 0 Gl (4.1.16)
showing
D Hegiin (o) = 2- A7 (jo) 0 G. (4.1.17)
Hence the modes of F'"™ the medium determines the constitutive map of 7 entirely
and vice versa. Therefore the Fourier coefficients are for eachi=1,...,(so — 1) -n
—lin 2 (30"‘1)'71
RE (Go+1) = * > vals - Gljo) (W, €:) (4.1.18)
and hence
M:E-Z’yes-g(j)(w e) Vr=1,..,(s0—1)-n (4.1.19)
5%, A s€r 0)(Ws, € s +++5 (80 L
87;;1117:,

with e, = > elw,. If —*—8% =6, Vi,r =1,...,(s0 — 1) - n, ie. if the Fourier
coefficients are all decoupled from each other. Therefore
—lin 2»77:

®Y (j0+l):T'li
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and

—lin
hold in addition. If hence all Fourier coefficients are decoupled from each other, then

L diagonalizes with respect to the eigenbasis ey, ..., €(5y—~1).n Of A(jo), this is to say

.
2. 0
L= .
O 2 . ’Y(sg—l)-n
A(50—1)-71.

holds showing that £ and A(jg) commute.

The link between the modes of D%F " at an equilibrium configuration jo and the

structural capillarity is made via (1.1.41), i.e. by equation

D *F"*" (jo)(l, jo) = dim M - D (a - A)(50) (1)

yielding
(So—-l)-’n

D F(lo +1)(jo) = dim M - D (a - A)(jo)(1) = 2-G(jo)(Gljo) =2- D 7slsis
s=1

where index s indicates the component formed with respect w,. Therefore we find

Theorem 4.1.6:
The modes of ID 2T affect the structural capillarity by

D ain (o) (1) = dzmMA Z%sgo (4.1.21)

at an equilibrium configuration jo. In particular

2

D a—F—lin (WS) == . 73.78 (41.22)

has to hold. Hence arin and the modes of DF"™ influence the equilibrium configu-

ration directly.

Therefore aziin Is up to higher order terms

agin (jo + 1) = dzmM G Z% s (4.1.23)

where jo is an equilibrium configuration.
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To link the Fourier coefficients of Hiin formed with respect to A with the structural
capillarity we verify
D F(jo + 1)(jo) = dim M - ID (azii» - A)(j0)(1)
~3=lin
= G(j0) (AGoYH™  (jo +1), jo)
~lin
= D A(jo) (K" (jo +1))
—lin .
=Y MRE (Jo+1) - i

with ¢§ the it*-Fourier coefficient of jo. Therefore we deduce by using proposition 4.1.4

Theorem 4.1.7:

cep s . —li
Let jo be an equilibrium configuration for ID F' ". Then

~T=lin
D azin (Go) (1) = D InA(jo) (HT (jo +1)) (4.1.24)
and thus N
Lt —=lin
D a—iin (§o) (1) = L ORE T (o + 1 4.1.25
agin (Jo) (1) i A(JO)K (Jo+1) ( )

If all the Fourier coefficients decouple, then

D ain (jo)(e:) = 2% -1ty i=1,..,(s0— 1) -7, (4.1.26)
in particular if dim M = 2 and jo is a good fit then

Daﬁzin(jo)(r;oe;fr) =2y i=1,..,(50—1)'n (4.1.27)

Wlth ’T‘(jo) = ]?3




Appendix 1

Dirichlet Integral

Here we will present what is called the Dirichlet-integral in to different ways. Let
<,> be a fixed scalar product in IR™. At first we consider h € C*°(M,R") and a
fixed embedding j € E(M,R"™). The differential dh : TM — IR™ can be represented
via dj as

dh =cp - dj + dj(Ch + By) (Al1.1)

which applied to a tangent vector vy € T,M for any q € M reads as
dh vy = cn(q) - dj vg + dj(Crvg + Brvg)

Here ¢, : M — so(n) is a smooth map sending vectors in djT, M into normal vectors
in the orthogonal complement (djT,M )1 and vice versa for any ¢ € M; the maps
C}, and By, are both smooth (strong) bundle endomorphisms of T'M skew-respectively
selfadjoint with respect to the pull back metric j* <,> denoted by m(j). For this
representation we refer to [Bil],[Bi2],[Bi,Fi2] or [Bi,Sn,Fi]. For any ¢ € M ci(q) is a
selfadjoint endomorphism of djT,M respectively (djT,M)*. The part of ¢ mapping
(djT,M) and ¢ into itself is called (ci(q))T. For any two h,k € C*°(M, IR™) we define

1
dhedk := —tr(chock)T—tr CroCr+tr BroBy = —Etr cpocky —tr CpoCy+tr ByoDBy
(Al1.2)

and observe that

ali)(dn k) = [

dh e di u(j) = / < Ah k> u(j) (A41.3)
M

M
where p(j) is the Riemannian volume element of m(j). The operator A(j) is the
Laplace Beltrami operator associated with m(j). For (A.1.2) and (A.1.3) we refer to
[Bi1],[Bi2] or [Bi,Fi2]. Clearly G given by

GG)(h k) = [ <hk>uli) VE(M R

M

is a weak Riemannian metric on E(M,R").
The left hand side of (A1.3) is called the Dirichlet integral usually formulated via

Hodge star operator. Clearly ¢ is a weak Riemannian metric on E(M,IR")/gr~.

Next we will represent this integral in a complete different way. It is based on the

second derivative of m(jo) formed with respect to jo.
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Let jo € E(M, IR™)be fixed and let h € C*°(M, IR™) be such that jo+h € E(M, R™).
Then for any v,w € T;M and any g € M

m(jo+ h)(v,w) = m(jo)(v,w)+ < djo v,dh w > + < dh v,djo w > + < dh v,dh w > .
(A1.4)
Writing
m(jo + h)(v, w) = m(jo) (f*(jo + h)v, w) (AL.5)
for a well defined smooth strong bundle endomorphism f(jo + k) of TM positive
definite with respect to m(jp), we observe by (A1.5) that
. . . 1 .
m(jo + h) = m(jo) + D m(jo)(h) + 5D *m(jo)(h,h) VheC®(M,R")

and hence
m(jo + h)(v,w) = m(jo) (f*(jo + h)v,w)
= m(jo) (v, w) +m(jo) (ID f*(jo)(h)v, w)
+ 3m(o) (Do), Yo, w)
for all v,w € T,M and for all ¢ € M. Using (A.1.1) we conclude that
< dhv,dhw>= < (cy + B+ Ch)lch + Br+ Cr)*djo v, djo w >
where Crdjo and Brdjo are déﬁned by

Crdjo = &joCr,  and By = djoBy,

and the requirement that both C', and B}, vanish on the normal bundle of T;TM. By

* we mean the adjoint. Therefore the following equation holds

< dhv,dh w > =< —cidjo v,djo w > + < djo(Br + Ch)(Br + Cn)*v, djo w >

— %m(jo) (ID 2 £*(j0) (R, R)v, w).

Since cdjo = (c2) T djo we find for all h € C=(M,R"™)

1 . . .
5JD 212(jo)(h, h) = —djg *(cidjo) — C7 + Bi + Cr, By — BrCh,

and
f(jo+ h) = id + 2By — djg *(cidjo) — Cp + Bf + CpBp, — BrCh.

Hence
dh e dh = %tr D2f2(jo)(h, h) = %ﬂ)z(tr £2(j0)) (h, h)
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and by polarization
dh e dk = %tr D?f2(jo)(h, k) = %ﬂ)z(tr £2(j0)) (h, k).
Therefore we may state
Lemma A:
Given any jo € E(M,IR™) and any two h,k € C*°(M,R"™) we have
dh e dk = %ZDz(tr £2Gi0)) (b, k) = %tr D2£2(jo)(h, k)

implying
3+ [ D% PGt Batio) = [ < Alio)hik > (o)

= 9(jo)(dh, dk)
for all h,k € C*°(M,IR™). Hence
[ $ + Wutio) = dim M - Alio) + [ tr D 1) (W)t
M M
+ % /M < A(jo)h, b > p(jo)

has to hold. Here A(jo) := [,, 1(jo)-

Appendix 2
Continuity equation and states
a) Densities

Let
p: E(M,R") — C*(M,IR)

be a smooth map for which the value fM p(7)u(g) is constant in j € E(M,IR™). We
call p a density. A map p of this kind is constructed as follows. Let jo € E(M,IR"™)

be fixed. For each pair 79, j € E(M,IR™) with jo being fixed there is a unique positive

smooth and strong bundle isomorphism (cf. [B.G.H], [Bi2] and appendix 1)
£(5): TM — TM

for which
m(j)(v,w) = m(jo) (f*(§),v,w) Yv,weTM.
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This bundle isomorphism is fibre wise constructed with the help of the theorem of

Fischer-Riesz. Hence we deduce

u(g) = detf(§)ujo)- ' (A2.2)

Let p(jo) € C°(M,IR™) be a non-negative map.
Setting
o(j) = pljo) - detf~1(j) Vj € E(M,R™)

we indeed have

/ o)) = / plio)uljo) Vi€ E(M,R™). (A2.3)
M M

A simple calculation shows that
D p(5)(h) = —p(3) - tr f71(7)D f(5)(h) VheC™(M,R") (A2.4)

holds for all j € E(M,R™). Here ID denotes the derivative on C*°(M,R™) in the
sense of [Bi,Sn,Fi|. If p(jo) > 0 we call this kind of densities, density maps. Equation
(A2.4) is called the continuity equation. Associated with each density map p is the
scalar product B(p) on C*(M,IR™) given by

B(o)(h, k) = /M < hk > p()ul) = /M < hk > plo)uGo) Yh k€ C(M, R™).
(A2.5)

We rewrite a density map as follows: Let us suppose that
p(j) : M — R
assumes only positive values for each j € E(M,R™) . In this case (A.2.4) rewrites as
Dinp(j) = —trf () D £(3). (A2.6)
For any j in some neighbourhood U(jo) C E(M,IR™) we write
f(5) = expp(j) (A2.7)

where ¢(j) : TM — TM is a smooth strong bundle endomorphism, depending

smoothly on j. Hence

detf~1(5) = e=tr*0) V5 € U(jo)
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and thus
p(3) = p(jo) - e~ V5 € U(jo)

yielding
Dinp(j) = —~Dire(j) Vi € U(jo). (42.8)

b) States, equilibrium states

In this section we let W (jo) C E(M,IR"™) be a neighbourhood of j, and
p:W>=(o) — C*(M,R"™)

be any smooth map satisfying

/pmwﬁ:1Wewm=/pmmrmm (42.9)
M M

where jo € E(MIR™) is fixed. In accordance with [B,St] we call p a state. Associated

with the smooth maps
I: W (jo) — C°(M,V)

where V is a given finite dimensional vector space and with a smooth map
v :W=(jo) — V*

we form e=70) 1)

pe(L,7)(J) = T, @10 Vj € W= (jo)- (A2.10)
I corresponds to an observable, v produces at each configuration a functional in V'*.

p(I,7) is called an equilibrium state (cf.[B,St]). For simplicity we replace
Ja €791 by Z(1,7)(5)-

The value
RWZA%@ﬂ@J@MM (A2.11)

is the expectation value of I at the configuration j € W (jo).

Defining the entropy S(p)(j) of I(5) and v(j) at any state by
SUAG) == [ AT GDime(L ) Gut) Vi € W™ (o) (42.12)
then p(I,~)(j) maximizes the entropy subject to the constraint that the expectation

value of
,RW=A%@@@MW%)WGWﬂM (A2.13)
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is kept constant (cf.[B,St]), for each fixed j € W (jo).

Given an equilibrium state p.(I,7) we set

Z(L,)(j) := /M =TG4, (42.14)

1,5(1,~) and Z(I,7) are linked by

p(1,7)(5) = () I() + InZ(1,7) () (A2.15)
as easily deduced from (A2.10). In particular if v = % then

— 1
F(I,7)=~TnZ (A2.16)

is the free energy associated with the observable I. If v = % and I are specified we

just write p, instead of pe(I, ).

Appendix 3
Topological foundations

Generalities on simplicial chain and cochain complexes, the Laplacian At

Let L be an oriented connected, finite, simplicial complex consisting of finitely many
simplices of dimension < m. A generic [-simplex of this complex shall be denoted by
;. If | = 1 the initial and final points of o; (in the sense of the orientation) are denoted
by o and o7 .

The IR-vector space all [-chains is called C;(L); the space of [-cochains is denoted
by CY(L), the IR-vector space of all JR-valued functions on the collection L; of all
[-simplices. We write P instead of L.

The delta function associated with any o; € L; is denoted by 1,,.It is given by

1 ol=¢
1,(c)) := { | = 01 Vo' e L, A3.1
o) 0 otherwise. 7 ! ( )

Clearly L! := {1,, | 0o € L;} is a basis of C'(L).

Obviously CY(L) = C;(L) as linear spaces. Since L; is contained in the dual space
CH(L)’ of C*(L), the vector spaces C;(L) and C*(L)’ are naturally isomorphic.




The associated chain complex of L is

So

C(L) 2 2 0y (1L) 2 (L) -2 R. (A3.2)

The boundary operator J; is defined on the generators as follows. Let the oriented

simplex o; be spanned by (qo,...,q)

l
dor =Y (=1)(q1,--,q% -, ) (A3.3)
s=0

with (q1,...,¢%,...,q) being the | — 1-simplex spanned by all qo,...,q but gs.
Moreover 8y is the zero map, in particular 9; is the linear map given on L by

+

Oo=0"—0" Vo €L . (A3.4)

If therefore ¢t € Ly for i =1,...,7 and

,
c:i= g a'ol
i=1

is a one-chain then

dic = Zaiala’i = Zai((ai)"' — (1)) . (A3.5)

The space of [-cochains is defined by
C'(L) := spanL'.
The natural bilinear evaluation map
ev: CYL) x Cy(L) — IR,

assigning to each 1,, € L! and each o; € L the value 1,,(01), yields a coboundary

operation
141
C(L) = CM(L)
given by
e’u(@”1 cl,cl+1) = ev(cl,é‘l Cri1)
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for each ¢! € C*(L) and each ¢;; € Ci41(L). Denoting the collection of zero simplices
Lo, i.e. the collection of points in L by P, 8'1, with g € P satisfies in particular

(0'14,0) = (14,010) = 14(cT) = 1,(c™) Vg€ P. (A3.6)
Thus 8'1, is determined by

= (D 140011 =D 14(0i7)) - 1,; VgeP. (A3.7)

ottt o
To get a more handy formula let k¥ (q) be the number of + ends matching ¢ of those
simplices, connecting ¢ with its nearest neighbours; i.e. all g; linked by a one-simplex.
k~(q) shall be the number of — ends matching g of all those simplices connecting g

with its nearest neighbours. Hence

', = (k" (q) —k~(¢))14 Vg€ P

Let L be any complex. We define a metric G} on C'(L) as follows:

Let ¢}, cb be two cochains which represented as linear combinations of {-co-simplices

= Zﬁf(cll) 15t and ¢y = Zﬂ;(clz)

The respective metric is given by

GL( Clac2 Z ﬁ1(01 - B5(ch) (A3.8)

o€l

read as

a scalar product used in [E] (cf. [D], however). The metric on C°(L) is denotes by Gp.

Associated with the metric g{ we have a divergence operator ¢ given by the formula
g ( C , Cl— 1) gi(cl, 8l Cl—l) (A3.9)

for each ¢! € C'(L) and each ¢;_; € C—;(L).

Clearly G} is a Dirichlet form. This is apparent if we introduce the topogical Lapla-
cian A% by
— 6l+1(9l + 81—16l

for which we verify

gL(AT 01762) ng(alH , 01t )-I-g (g cll,él 012)
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for each pair ¢!, ¢, € CY(L). This observation immediately yields :

Lemma A3.1:

' is the adjoint of 8' and moreover §'T16! = 0.

Since

gL(loz’al101—1) = Z 101 (J;) : al101—1(0-;)

o, €L,
= Z 1., (U;) ) 101—1(8“72)
o, €L,
= 14,(01) - 16,_, (Q101) = 1oy, (O101) = %1

the following holds :

Lemma A3.2:

(Sllgl = Z 101_1(810'1) . 101_1 Vo€ L,
or-1€L;

holds for each [l in particular

16, = Y 140(0101) - 1o,
oo€Lg
— 1U;L -1 -

%1

(A3.10)

(A3.11)

(A3.12)

(A3.13)

holds for any o1 € Ly. On ¢® € C°(L) the Laplacian has the form Apc® = §*8*c® and

therefore

k
ATCO(O'()) = k(do)CO(Uo) — ZCO(Ué) Vog € Lo
=1

(A3.14)

with k(co) being the number of nearest neighbours of oo in L. (0§ belongs to the

collection of nearest neighbours of o iff it is connected by an edge (i.e. a one-simplex)

with 0'0).

Moreover (A3.14) immediately shows that

Arc®=0 if YeR.

(A3.15)
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As an example let us calculate Ar1,, with 1, being the characteristic function on Lo,

assuming the value one on g € Ly and zero elsewhere. To this end we write

Aqu et Z nqllq/
q'€Lo

and observe
gLo (Aqu, 1q’) = nq'_

Let g1,...,q,(q) be the nearest neighbours of g. Clearly nq' = 0 for all ¢ € Ly with
q #q; and ¢’ # ¢; withi=1,...,k(q) but

Therefore we have :

Lemma A3.3:
For any q € Ly and its characteristic map 14

k

Arly=k(g) 14— 1, (A3.16)
=1

holds.

For any complex L let F(L!, IR®) denote all the IR >-valued maps of L!. Clearly
FLL,R3}=C(L)o R® (A3.17)

the isomorphism being canonical.

For a later case we point out here the following observation: We denote by &( Py, R3)

the collection of all injective maps from Ly = P to IR3. One easily verifies the following

Lemma A3.4:

E(Py, R®) C C°(P,R®)

is open.
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The metrics G on CY(L) ® IR® are defined by
GL (¢t @ w1, ch ®va) = Gh(c, ch) (w1, v2) vi=0,1,2 (A3.18)

for all ¢t, ch € CY(L) and Vi, vy € IR®. Since Ly is denoted by P, we will write just
Gp for G2.

Similarly the operators 8' and ¢' and Ar on CY(L) ® IR® are defined by

' ®v):=d'c v (A3.19)
Slctev) =6dov (A3.20)
and Ar(cdt®@v):=Arct ®v (A3.21)

for all ¢! € C'(L) and all v € IR. We proceed for L accordingly.
Let us observe that the orthogonal Gi-complement (IR>)* of IR® within C'(L) ® R?
is of the form

(R®>»t = (RY) ® R® | (A3.22)

where IR* is the Gi orthogonal complement of R within C'(L,IR). Since Ar is

G%-selfadjoint the equation
ArHp =97

has a solution (unique up to a constant) for a given ® € C(L) iff ® € (IR®)*. We

therefore have

Lemma A3.5:
Given ® € C°(L) = F(P,IR"™) then

ArHp = (A3.23)

has a solution uniquely determined up to a constant map iff € (IR 3)L. The solution
is unique if Hp € (IR®)*.

Again these results hold accordingly on the whole cochain complex of L. Let us point
out that the Laplace equation (A3.23) is of pure topological nature. Hp € (IR>)* does
not depend on (, ) chosen on IR>. This is due to (A3.22). Moreover a Hodge splitting

is easily verified in this context.
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