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1. Introduction.

\

The present paper is part of a series devoted to the study of the classical theory of
Yang-Mills fields. Its aim is to establish the existence|and uniqueness theorem for Yang-
Mills-Dirac fields satisfying modified bag boundary conditions on a contractible bounded
 domain M C IR®. Since the domain M is fixed, our result corresponds to a static bag with
zero tension. In Minkowski space the classical Yang-Mllls equations have been studied in
refs. [1-3]. The existence and uniqueness result for the! pure Yang-Mills theory under bag
boundary conditions was obtained in [4]. Here, we extend that result to include minimal
interaction between the Yang-Mills field and the Diracl field.

Since classical non-abelian Yang-Mills fields are not observed in nature, one may argue
that the classical Yang-Mills theory is not relevant to physics. However, the understanding
of many physical phenomena in gauge theory, like conservation laws for colour charges,
are based on the classical notions for the Yang-Mills ’theory. It is the knowledge of the
classical structure of the theory, together with an appropriate understanding of the process

of quantization, Wthh enables one to arrive at a proper description of possible quantum

- phenomena.

One of the most fundamental aspects of a classical ﬁeld theory is a complete description
of its phase space. This.is relatively easy in linear thelorles, though the gauge invariance
- of electrodynamics leads to some difficulties which we have learned to handle. Yang-Mills
theory is both nonlinear and gauge invariant. In order to describe its phase space one needs’
an existence and uniqueness theorem for the evolution part of the Yang-Mills equa,tlons as -
well as the precise knowledge of the structure of the cqnstralnts

Our interest in studying the Yang-Mills-Dirac system on the space-time of the form
X = R x M, where M is a bounded domain in R3, is motivated by the following argu-
ments. First, the structure of the phase space of the plassical Yang-Mills fields exhibits
some remarkable differences between the theory in R? and in a tube X = IR x M. The
corresponding results rely on the respective existence| and uniqueness theorems for the
classical dynamics, and will be presented in a subsequent paper [5]. Second, there are
several approaches to understand the nature of hadrons (and nuclei) in terms of a field -
theory of the gluon and quark fields in such a tube, among these the celebrated MIT bag
model. Finally, one might argue that in a real experlment the fields are always (spamally) "
constrained to a bounded domain M C R®. |

" The system we are dealing with here is the standard Yang-Mllls Dirac theory W1th

minimal coupling :
CVAFPM =] and (YAVA+im)T =0
where the superscript 4 refers to the gauge field A used,to define the operator of covariant
differentiation. Rewrltmg these equatlons as a dynamlcal system yields
0iA=FE+grad® — [<I> A] A
. O&E=-cwlB-[Ax,B|-[®E|+J , (1.1)
8,0 = —1° (VA ++°® +im)¥




where the gauge field A, is split into the scalar potentlal <I> AO and the vector poten-
tial A = (A1, Az, Ag), while E; = Fy; and B; = 1 ’“’Fk, denote the "electric” and the
“magnetic” component of the ﬁeld strength tensor, respectwely We study this dynamical
system under the following boundary conditions. For t‘,he Yang-Mills fields we choose .

nA=0 ,nE=0 a.nd tB =0

(1.2a)

where nA and nFE denote the normal components and tB the tangential component On
the spinor fields we impose the conditions

T))lomr = (D¥)lom (1.2b)

(i7" ¥) o = ¥lop and  (ir" nk(T
where D = —7°(778; + im) is the free Dirac operator | |
* We show that these boundary conditions are preserved under the time evolution. Fur-
thermore they are physically reasonable by maintaining the ”physical content” of the bag,
in the sense that there is no flux of matter or energy through M. They, in fact, turn out
to be a modification of the boundary conditions of the‘ original MIT quark bag model [6].
The MIT bag boundary conditions for the Yang-Mills fields coincide with the last two con-
ditions of (1.2a). The first condition of (1.2a) is a f)arti'al gauge fixing. The MIT condition
on the Dirac field coincides with the first one in (1. 2a.) As we shall show this condition
suffices to guarantee that the initial value problem for the free Dirac equation has a unique .
global solution in the Sobolev space H!. To handle thte nonlinearity, however, one has to
demand higher order of differentiability of ¥, which enforces the stronger boundary con-
dition (1.2b). Under these conditions the 1n1t1al value problem for the free Dirac equation
" is uniquely solvable in the Sobolev space H?2.
Based on that existence, uniqueness and regularity result for the free Dirac equation,
our results on the pure Yang-Mills system [4], and the\theory of nonlinear semlgroups [7]
we Wlll prove as the main result of this paper : : '

The Cauchy problem for the Yang-Mills-Dirac dynamics given by Egs. (1. 1) under
the boundary conditions (1.2) has, for any initial condition (A(0), E(0), ¥(0)), a unique
solution in an appropriate Sobolev space.

 Dirac equations, written as a dynamical system, by fi

In order to obtain this we introduce in section 2 t

choosing appropriate Sobolev classes for the respective
" section 3 we eliminate the scalar potential ® from the

he phase space for the Yang-Mills-
xing the boundary conditions and.
fields A, F and ¥ of the theory. In
dynamical system by choosing an

adequate gauge fixing. Linearizing the system we give an existence and uniqueness result
for the free Yang-Mills evolution equation. In section 4 the existence and uniqueness of
solutions for the free Dirac equation.is proven. Together with the results of [4] on the
pure Yang-Mills dynamics and some analytic properties of the nonlinearity of the coupled
system we then establish the existence and uniqueness theorem for the nonlinear evolution
in section 5. Section 6 is devoted to the study of the conservation of the Gauf} law constraint
under the time evolution of that systems. In an appendix we give a number of estimate
- prerequested for the proof of existence of free spinor dynamlcs and to apply the theory of

semigroups to the Yang-Mills-Dirac system.
The authors are indebted to R. Racke for his re

marks on the choice of boundary
- conditions for the Dirac equation. '




| - 2. The Cauchy problem for the bag.

To study the coupled Yang-Mills-Dirac equations we denote by M a fixed contractible
bounded domain in JR® describing the bag. We consider here only static bags, which implies
that the part X of the space-time accessible to the ﬁelds is the product X = IR x M of the
time IR and the space M — the usual (341)-splitting. W.e equip X with a Lorentzian metric

N = d1ag(+, - = —) For our choice of convention the Dirac matrices obey (v O)T =49,

(v W= —yi (i = 1 2,3), and the anti-commutation relations {y#,v*} = 2n#.

By G we denote the structure group of the theory and by g its Lie algebra. The
generators of ¢, denoted by Ty, act as matrices on al vector space V and the structure
constants are given by [Ta, Ts] = f5T.. We assume g to be equipped with an ad-invariant

metric given by the trace of (T -Tb), which is used to raise and lower the Lie algebra
indices. To formulate the corresponding gauge theory ‘we consider a right principal G-fibre
~ bundle over X with Yang-Mills connection A, = A“T and the covariant derivative VA
With Dirac spinors ¥ : X — @’4®V as the matter ﬁelds
system is.

VAFW = v |

o (7"Vﬁ+im)‘l’=0 ‘,

where FW = 8,A, — 0, A, + [Au, A is the Yang’-Mills field strength tensor and J* =
ot YOyHPT,UT* is the current density of the matter field. ' '

To study the existence and uniqueness of solutlonsl of these equations it is convenient
to reformulate them as a'dynamical system. The: (3+1) splitting X = Rx M leads to the
usual splitting of the Yang-Mills field A7, into the scalar potential ®* = A and the vector
potential A% = ( s A“) Similarly, the field strength F¢, splits into the "electric” field
E? and the ”magnetlc” field B* with components - '

E? = F§; = 8oA% — aq>a+[<1>1A]a

(21)

e 1
B} = 5 sz sz (curlA ); + [/ilx , Al
Here the brackets terms are to be. understood as (D, A, j1* = f,2®%AS, and [Ax, A} =

1f,ae H AL Af. Furthermore (curl A%); = /'O, A} The' ‘ﬁelds A“ Ee, and B? are treated
as time dependent vector fields on M. The current density J* determmes a scalar density
pe and a 3-current JJ on M glven by - . .

—\IITT U and  JI=0ly0iT, 0 . (2.3)

of the theory, the Yang—Mllls—Dlrac

(22)



In terms of the fields (®, A, E, ¥) and the quantities derived from them the Yang—
Mills-Dirac equations (2.1) determine a set of evolutlo‘n equations

}

8,A% = B +0;0° — (0,457 , .‘ (2.40)

9,B% = —(curl B*); — [Ax, B]? - [ci E; ]“+J“ . (2.48)
8,¥ = —° (w’aj +im+ 7000 T, b9 A2 Ta>\I! o (2.4¢).

Eq. (2.1) also contains the (non—dynamiéal) Gauf law constraint _
| 8;(E*Y +[A:, E]* = p* | - (2.4d)

‘where [A-, E]* = f,2A2 E%. In the sequel we will skip the Lie algebra index on all the
fields defined above by identifying A = A% T, etc. |

To get a complete formulation of the Cauchy problem of a dynamical system one

has to specify the boundary behaviour of the fields involved. Here we study the existence
and uniqueness of solutions of the Yang-Mills-Dirac s‘ystem on M under the boundary
conditions given by (1.2). To clear the notion we dénote by 7 the outward pointing unit
normal vector field on M. Writing n; for its components, for every vector field W, we
call nW = fi(leaMnj) the normal and tW' = Wlsp I nW the tangential component of
W. To get a short notion for the boundary condition OIil the spinors we furthermore define

the boundary operator B = iy’n; acting on the Dlrac ﬁelds restricted to M.

To formulate proper existence and uniqueness re?ults for that Cauchy problem we
ﬁnally have to impose appropriate differentiability conditions for the fields involved. These
are given in in terms of the Sobolev spaces H*(M), consisting of the Lie algebra valued

vector fields and V-valued SpanI‘ fields on M, respect!lvely, which are square integrable

together with their derivatives up to order k. The scalar product on these spaces H*(M) "
is given in terms of the usual scalar product on M C }IR3 the ad-mvarlant metric on g .

. and a g-invariant scalar product on V. _
“In this setting the phase space of our system is given by P = Py M X Pp, where

Pyu = {(4, E)e H*(M)x H' (M) | nA =0, t(cu‘rlA)—O nE=0} and

PD = {\I/ € Hz(M) I B‘IIIBM = ‘I’IBM and B'D‘I’IaM D\If|aM}
In view of the boundary conditions (1.2a) we note that nA = 0 implies tB = tcurl A. As a

state of this classical system we denote a triple (A, E, ¥) € P. It is crumal to note that P
_ is by its definition a Hilbert space. i :

(2.5)-




3. Gaugé fixing, linea;‘iZatiOn and Hodge-decomposition.

In the Yang-Mills-Dirac equations written as a dynamical system (2.4), the scalar
potential & does not appear as an independent dynamical degree of freedom. The gauge
group acts transitively on the space of scalar potentials/[1]. Hence, using appropriate gauge -
transformations; we can fix the field ® at all times:. The most common gauge fixing for
studies of Yang-Mills fields as a dynamical system is the temporal gauge Ag = 0. For our
approach, however, it is much more convenient to use. the gauge condition g1v1ng the scalar
potential <I> to be the solution of the Neumann problem

A® = —divE and n(grad'®)=0 Wi’c!h /@d%:o . (3.1)
M

From the theory of partial differential equations [8] the unlque solvability of thlS problem
is guaranteed by the boundary condition nE = 0. ‘l

Linearizing the evolution equatlons in the fields A, E, and ¥, and observing that & -

depends linearly on E by construction, we obtain = ! .
O A=E+gad® , | L (3.2a)
OFE = —curlcurlA , l o (3.2d)
0¥ = D = —° (7j8- + Hria>\Il . | (3.2¢)

In order to solve (3.2) under the boundary COIldlthIl[S imposed here, we will use the
Helmholz-Hodge decomposition theorem [9] for vector ﬁelds Its statement is that each vec-
tor field W on the bounded domain M can be uniquely ldecomposed into W =wWZL4+wT
— called in resemblance to electrodynamics the longitudinal and transversal component of
the field — such that |

curlWl =0 and WT =curlU for some vector field U with tU =0

In this way we split the gauge fields into A = AL + AT a’nd E = EL + ET. Observing that
nW = nWL for any vector field W, our specific choice 'pf the gauge fixing (3.1), and the
uniqueness of the solution of the Neumann problem yield

|
grad® = —EY . |

Furthermore (curlcurl A)T = curlcurl AT because tc]urlA = 0. Since the operator
(—curlcurl) acts as the Laplaman A on AT, Egs. (3. Za‘ b) split into two linear systems,
“one for the longitudinal and the other for the transversal components of the Yang-Mllls
fields : : S » l

8,A =0 and 8EL=0 |
8,AT = ET and 8,ET = AAT

The pure Yang-Mills system under the boundary conditions (1.2a) has been studied by
the authors in {4]. Let S be the evolution operator for the linearized system, determined by

(3.3)




Eq. (3.3) with S(A%, AT; EL, ET) = 8, (AL, AT; EX, ET). The result of [4] can be written
as: - C ‘

.Proposition' 1 ;
The linearized Yang-Mills operator S, defined by klEq'. (3.3) with domain
' Dywm ={(A,E) € H*(M) x H'(M) | nA =0, t(curl 4) = 0, nE = 0}

 generates a one-parameter gi'oup exp(tS) of "ﬁnit“ary transformations in the Hilbert
space ' :

Hyum{(A, E) € H'(M)x LX(M) | A € HX(M), E* € H'(M), nA* = nEL = 0}

This induces a one-parameter group exp(tS) of continuous linear transformations on
the domain Dy s of S.

4. The Dirac Equation under Bag Boundary Conditions.

In order to prove an existence and uniqueness theorem for the coupled Yang-Mills-
Dirac system we next study the free Dirac dynamics under the boundary condition given
- by Eq. (1.2b). Therefore we introduce the Hilbert spac_e‘,s of spinors as :

Hp = { ¥ € L2(M)} with scalar product < E, \I/ll >>p2 =/ =toodse | (41)
A \ . M ,

where - denotes the g-invariant product on V, and f der‘lotes the Hermitean adjoint. Con-

s1der1ng the boundary conditions (1 2b) imposed on R4 v]ve observe that

B =17 'n; : L:2(OM) —>L2(8M)

: deﬁnes a self-adjoint operator, and B? = 1. The first of the condltlons (1. 2b) corresponds
to chosing the eigenspace

* =,{‘I’ | BZ|onr = Clonr }

o for the Dirac fields. So we let - l ,
' Dp = Hl(M) NBY | \ (4.2)

be the domain of the Dirac operator D = —7' (77 9; +im).




|

From the bas1c properties of the 7-matr1ces and by mtegratlon by parts we get

KEDE >y = — / ((+° viE)t . 8,0 — (im0 =) -\r)d%
M v | . VU,Z€ HY(M) . (4.3)
=K DE,\II S>> 2 _—/ (707771]-‘_?) U d?z '
BM

Considering the. boundary lntegral we find by taking the Hermltean conjugate

|
(v%ﬂ‘n-s)f.\p=+((7°7fn~¢f)"-E’)* \/vw;aeHl(M) S

On the other hand, if both spinor fields ¥ and = obeylthe boundary condition B¥|sp =
U|on, we have : |

(,Yo,yjnjE)T.\I):;(Z',YOE)T.\I,z_((,])./O,an.\I,)T.E)* — (4.5)
!

Thus the boundary integral in (4.3) vamshes what implies the skew-symmetry of the Dirac
operator, i.e. ‘
<<_,D\I/ >>L2_—<<D_,\II >z | VYY,ZE€Dp

The boundary operator B is self—adjomt on OM, a‘nd the decomposmon LQ(BM ) =

Bt @ B~ is orthogonal. Furthermore v° maps B+ onto]B and B~ onto BT. Therefore,
the adjomt D* of the Dirac operator is given by . ‘

D* = —D- " with domain DD»- = {E € HD | D=e L]lz(M) and BE|3M =E|3M} .

On the other hand E € Dp- implies = € H (M), which ‘follows from the estimate

e < (IP3he + 12 HJe) - @)

proven in the appendix. This shows that the Dirac operator w1th domain Dp is skew-
adjoint. Also in the appendix we prove that -~ \

1l < Ca(IDDUz2 + 11 llquePD ’, (@)

where the space Pp is given by Eq. (2.5). Since the one-parameter semigroup exp(tD)
‘preserves the domain of its generator, and commutes with D, cf. [10], and since D¥ € Dp
for ¥ € Pp we get ) :

€|z > Cs | DDY||z2 = Cs || exp(tD)DDY| 1 ='llcs IDD exp(tD) ¥ 1x
and consequently . - ) |

|

1¥lle > O (IDDexp(eD)lzz + || exp(tD)¥lz2) 2 G | exp(eD)¥

|
-

|
|
|
|
| -
|
|




\
'l
|
|
|

|

Thus exp(tD) acts as a family of bounded operators on Pp. The group properties of

exp(tD) on Dp and on Pp, respectively, follow from the group property on Hp. Finally,

usmg the same arguments as above.one shows that |
. |

hm||exp(tD)\I{—\Il||Hz =0 VANS PD
i

which implies that the map ¢ — exp(tD) deterrnmes a contlnuous famlly of bounded
operators in Pp. So we have proven : .

|

%

Proposition 2

. On the Hilbert space Hp the operator D=—y ( 10; + zm) with domain Dp g1ven

. by (4.2) generates a one-parameter group of umtar'y transformatmns

T(0) — T(t) = exp(t'D)l‘\If(O)

b

which' preserves the domain Dp. This induces a coLtmuous group of bounded trans- -

formations in the space Pp. l

As it stands this theorem gives a (global) existence and uniqueness result for the Dirac
equation in H'(M) under the boundary condition B¥|sp = ¥|orr. In order to guarantee

a dynamics in H2(M), however, we have to impose the si\:ronger boundary condition. This

- is inevitable in view of the subsequel estimates for the nonlinear coupling of the spinors ¥ -

‘to the Yang-Mills fields (A, E). |
Theorem 1 i \
The Imeanzed Yang-Mills-Dirac system (3. 2c) and (1 3. 3) deﬁnes an operator T given
by

T(4L, AT, EE, BT; ©) = (0, ET; 0 AAT DY)

. thch is skew adjoint on the H11bert space Hyy x| Hp and has as its domain the

space D = Dy x Dp. The operator T generates a jone-parameter group exp(t7T) of |

unitary transformations in Hy p¢ X Hp. This induce$ a one-parameter group U (t)

(A(O), E(0), ¥(0)) — U(t)(A(0), E(0), \If(Ol\)) = (A(t), E(t), ¥(¢))

of continuous linear transformations on the phase Spaluce P defined by Eq. (2.5).

|

5. The nbn—linear Yang-Mills—Dirac dynamics \
Cons1der1ng the nonlinear dynamics we rewrite the\ evolution equation for curves
(A, E, ), = (A(t), E(t), ¥(t)) of states as |

| 8,(A,E, ), = T((A,E,¥),) + ((A,lE, 0),) (5

|
|
|
1

|
|
|
|
|
|
|
|
)

e U




with a mappmg F=Fyy+F:P > P given al,'s follows: : Let Fy pr describe the
‘nonlinearity of the pure Yang-Mills theory and the Fg the coupling between Yang—Mllls
" field and matter fields. Then we find from (2.4) |
l |
Fyum(A,E, ) = (—[<1>,-A] —[Ax, B]—curl[Ax A] [2, E]; 0)
’ (5.2) .
Fo(A, E, ¥) = (o; J; —®0 — ~ nyAj\Il) ,

where the fields B and ® are uniquely determined fromllA and E by (2.2) and (3.1). First.
‘we observe that the boundary conditions (1.2) are preserved by these nonlinear maps : For
the Yang-Mills term Fy ps we refer to [4]. Concerning the coupling term it follows from the
argument above (Eq (4.4) and (4 5)) that | '

| nJ—n(\Iﬁv 71\11)—0 v‘l\peDD
On the other hand we observe that (B<I>\Il)|aM (®BY) \|3M, and
B(’y 73Aj\Il) —°nA¥ +i4° 77Aﬂ nkl\Il v 'yjA (B\IJ) ,

This obviously also holds for = = DU with ¥ € Pp. The statement that. F' maps the P onto
itself furthermore requires to prove that its components have values in the right Sobolev
spaces. To characterize the analytic properties of F, which also includes that statement,
we formulate : - ' . |

Proposition 3. - ' \

.The nonlinear mapping F' = Fy M+Fc defined on the) phase space P, with components
given by (5.2) has the following properties : | '
‘1) The range of this map is a subset of P, i.e. F:P I P.
2) F is continuous with respect to the norm on P g1ven by

P2

II(A E, D)3 = |4l}= + | Elf: + II‘I’IIH2
3) F' is a smooth map with respect to that norm. l .

A proof of the properties of the operator Fy ur, i.e. for the pure Yang-Mills case, was
given in [4]. The required estlmates for the coupling term Fc can be found in the appendix.

In terms of the continuous one-parameter group U(t) lof linear transformations on P,
~ determined by Theorem 1, we rewrite the evolutlon equation (5. 1) together with the initial
condition (A, E, ¥)p in the 1ntegra1 form |
(A B, )0 = U(E)(A, B, Vo + / U(t - 5) F((A, B, 0)) ds . (5.3)
o ]
On the basis of this we can apply the theory of nonlinear s‘emlgroups The corresponding - :
. statement of [7] is that each initial state zo € P determines a unique curve of solutions of

- the integral equation (5.3). Furthermore, since the nonhneaﬁty F : P — P of the system is

1

|

10

|
o
|
|
|




l
l
:
a.differentiable map, the solution curve is also ¢-differentiable and solves the corresponding
differential equation™. ' _ ll :
Theorem 4 - E : ll ‘ :
For every initial condition (A, E, ¥)o € P of gauge and matter fields on M there exists
a unique continuous curve (A, E, ¥), in P, satisfying the integral equation (5.3). This
time evolution is well defined for all t € [0,T), where the maximal time of existence
0 < T < oo is determined by the initial condition: | '
Furthermore the curve (A(t), E(t), ¥(t)) is continuously differentiable and solves the

Cauchy problem for the Yang-Mills-Dirac evo]ut1on, given by Egs. (2.4a-c), for all
t € [0,T) with initial condition indicated. l :

One should remark that the time evolution for the Yang-Mills-Dirac system not only
yields a curve of solutions for any initial condition, but. lalso determines a diffeomorphism
on the phase space P. To see this we differentiate the map (A,E, VU)o — (A, E,¥),, given
by Eq. (5.3) in the direction of an arbitrary (a e, ) € Pgl This ylelds

t ' |
(a,€,9) — U(t)(a,e,¥) + / Ut - S)D(F((AL E, ‘I')s))(a, e;¥)ds
0
which is a smooth map. by Proposition 3. Since the dynakacs is revers1b1e thlS shows that
the time evolution determines a diffeomorphism. 1

l

|

6. The Constraint Equ;tlon l
In order to complete our result on the existence and uniqueness of solutlons of the
Yang—Mllls-Dlrac system (2 1) we finally have to study the lGra,uﬁ law constraint, Eq. (2.4d),
VAE! —p=0 Ll (6.1)

- under the dynamics determined above. Therefore we complzlte the covariant time derivative -
V§ of that expression, and find direct from the Yang-Mllls equations (2.4a b)

Va(VAE —p) = VH(0E) + [0:A-, E] + E VAR - Vip

|
_ A 7i A .
-—VjJJ—VOp,. l\
This expression vanishes due to the continuity equation for the current density associated
to the Dirac fields. Since the Hilbert space structure on Hy M X Hp relies on an ad-invariant

" scalar product in g, we get furthermore : l
o T

. . P .
(-ﬁnv;.‘EJ ~pllfe =2 < V¢ (v;*EJ - p)  VAE — p>>pa = 0

Thus ||V§‘Ej — pl|s2 is a constant of motion, and in particular, the Gaufl law constraint
~(6.1) is preserved under the evolution of the system. o

+ .In fact it suffices, as proven in [11], to, show that the nc&»nlinearity F is Lipschitz.
| _ v

11 -
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|

l

l

l
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i

- Appendix. l

In order have a complete proof of Proposition 2 wel are left with proving the estlmates
(4.6) and (4.7). In section 4 we introduced the Hllbél‘t space Hp of square integrable
spinor fields with scalar product given by (4.1); and ltslsubspace Dp of fields obeying the
BY|s M= U|onm, and Pp of H?2-fields obeylng the full hl>ounda.ry condition (1.2b).

" Lemma A.1 1

For the operator D=—9° ('yj 9; + im) the fo]]ov&}inl‘g estimate hold :

| | .
[¥ < O (1Dl +1¥llzs) | - vEEDp
1e]|= < Cs (||Dv(1>\1’f)||m+n\IfuLz)l V¥ePp - (A2)
Proof : |

|
|
(i) For any ¥ € Dp we compute with (4 1) that ll

l A .
ID|2, = - < 7Fy? 8 v, 8k\11 S>> TA(\I/) +m2||\I/|[L2

where A(¥) = im (<< fy_J W, ¥>>r2— <~< T, ~7 ;¥ >>L2)
Furthermore, v*y7 = — 68 + 1 ['y 7 ], and hence o
. - |-

v .3 \ :

DT =118, %)17. — B(¥) +HA(‘I’) + m?|| | s

— | I

where 2B(¥) = << [v%,97]10; ¥, 0¥ > |2
' ' \

-Since C®(M) is dense in H'(M) it follows by integrationl; by parts that

_ : .
250)= [ (b1, 0)! v

‘ _ , oM \l
for all ¥ € H'(M), where the surface mtegral makes sense since the restriction of ¥ to
OM is in HY2(8M). To handle this expression we take ¥o € C°(M), and introduce an
orthonormal non-holonomic frame (€, é: ez, €3) along the bqundary_aM , such that €3 = 7.
In terms of this we have [v3,7°] = 243y°. Furthermore 7/8; = v*V, + 7 3V 3, where V,
denotes the convariant derivative induced by the Lev1-Clv1ta connection of the metric g,
on OM. Then we find from the boundary condition (1.2b) that

0 v \ ' .
B(¥) = /aM (nsv® ’YSVs "I’o) - ¥y (det(lgrs))l/z d%y

. ] s |
T = Z/ (7°Vs ‘I’O)Jf <Yy (det(grs))1/2
oM ‘
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Smce B(%¥y) is real, the integral has to be purely i 1mag1nary Takmg into account that 3

is covariantly constant, we obtain by 1ntegrat1on by parts

: / (r'Vs ¥o)" - o (det(grs)) V2 gy = / 28 7l8V To (det(grs))1/2d2y
oM : : oM

. l ’ *
- ( / (7Y o) - Wo (det(g,.)) 2 )
oM l ) ]

~ This implies that the surface integral vanishes for all\\ smooth spinor fields \Ifé' on aM
- satisfying the boundary condition (1.2b). Since C*(M ) is dense in H/2(M), it follows
that the expression B(¥) has to vanish for all ¥ € Dp. 1Th1s shows that

19l < DU + A + 2

The term A(T) can be estimated by means of the Caucllmy-Schwafz inequality as
: ' |
|AMD)| < 2m 9|l II‘I’HH1

_ |
Hence there is a constant C; > 0 such that ) l\
12l < G (D2 + 1122 )

\
(ii) In order to ‘prove (A 2) we show that the operator 'D’D accompanied by the boundary

‘conditions (1.2b) is elhptlc The square of the Dirac operator corresponds to the Laplacian,
ie. DDV = (A —-m?)T. To prove ellipticity we have to show that the boundary conditions
(1.2b) satisfies the Lopatinskii-Sapiro condition [12]* for llthe Laplace operator. Using for )

p € M the coordinates (ys; y3) with y3 parallel to 7, we\ Fourier transform the equatlon
A\If = 0 with respect to (y1,y2). This yields ) l

_ \
(—IEI2 +02) U(é1,82,ys) :0\ :

. where [£]? = £2 + £2. As the set of solution of this (ordmary) differential equation, which
decay at mﬁmty, we get’ : l

: ‘ l
ut = { exp(-lelys) 1 T € V
Under the Fourier transformation the boundary conditions\ turn inté
7V’ 0(61,65,0) = —i %1,52,(%) N )
7° D¥(&1,£2,0) = — D‘I’(€1,§2ll, 0) - | - (A4)
where the Fourier transformation of D¥ computeé as ll

o~

DU = —i(v°7°& + m)T —1%7%9,, ¥

l
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* See also [8] for a mbre explicit version of that condition. |
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 Therefore

:
’ By
3DT = — ( e, + m)y 30 +1+°9%8,, T - —‘l i7°9%8,, 0 —1°8,, ¥
and by using (A.3) the condition (A.4) turns into ll
, | 5 ,
1‘7 Y ay.aql(§1,€2a ) = —'7an3\11,(€1,€2, ) : (As)

Hence for ¥ = U exp(—|€]ys) € Ut the conditions (A.3)‘fand (A.5) yield
~ - . | -
73‘1{ =¥ “_res_pectively 73-1\11 =3
Thus the (constant) spinor ¥ € V has to vanish, what prloves ellipticity of the eperator DD

under the boundary imposed. Therefore the inequality’ (111) follows from the usual a-priori

~ estimate for elliptic boundary value problems. o 7 R

In order to show that the nonlinear coupling term F¢ has l1the analytic properties.demanded

in Proposition 3 we are left with proving : . o
‘ |

Propositioh A2 ' - - \l - ,
The map Fo(A,E,¥) = (0, J, =®¥ — 4°47A;¥) maps P to P, and is of class C*° on

this space with respect to the norm given by B ‘l

(A B, 9) 1 = | Allz +‘IIEII§11 12 e

Proof : 1

_ Since, for dimM = 3 the space H*(M) is a Banach algebra cf. [13], ¥ € H?*(M) also

the components of the current JI = \IJT'y YT, ¥ are also of Sobolev class H2. Hence

J € H2(M) c HY(M). Since also the potentlal ® and the 1ﬁeld A are in H?(M), the same

argument holds for the terms ®¥ and v 'yJA . Furthermore F¢o preserves the boundary
conditions (1.2) and hence maps P onto itself. |

From the Banach algebra property of H2(M) we also 1mm<-l3d1ately we prove the contmulty‘

of F. For ¥, ¥ € HQ(M) we have : 1

13 = T3 = (210 T, - BT PP TG < mnwnm 1 — 3% .

On the other hand we get with E, E € Hl(M) and 4, A E\Hz( M)

2% - 8% |3 < Ko (112 - BllEe 121% + 1 - 12 1)
7o Ay = 7077 A5l < Ko (14 - Al 11 + 1% - @13 lAll%:)

l
Putting these terms together and observing that || ®|| g2z < K4l El| i by its construction,

we end up with the required estlmate l1
’ B
”FC(AaE)\I,)—FC(A’E,\I,)“P = |

Ks||(4, B, ¥) — (A E, D)lpA + Bl +ill Az +1¥0a2)"

14 \
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- |
which proves the contmulty of Fo: P — P. l

To show the differentiability of F, we write (a, e, 9) forlan arbitrary infinitesimal variation,
and evaluate N

| L
DFo(4,E, )(a,e,4) = (0, 0570 + U202, (0 + B0) = 070 + Ay0)
where A(p = —dive and ngr&adcp =0
Since a, e,y and 7 are of the same Sobolev classes as ,14 E,® and ¥, fespectively, all the
estimates used to prove continuity of F- also can be apphed here. Hence one shows, literally
as above, that DF¢ (A, E, ¥)(a, e, ) is continuous. Analogous arguments also hold for the
~ higher derivatives of J. Actually, derivatives of Fc of order > 3 vanish ldentlcally

O
|
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