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1. Introduction. ,
. ." . ~

The present paper is part of aseries devoted to the study of the classical theoryof
Yang-Mills fields. Its aim is to establish the existenceland uniqueness theorem for Yang-
Mills-Dirac fields satisfying modified bag boundary conditions on a contractible bounded
domain M C IR3• Since the domain M is fixed, our res~lt corresponds to a static bag with
zero tension. In Minkowski space the classical Yang-Mills equations have been studied in
refs. [1-3]. The existence and uniqueness result for the!pure Yang-Mills theory under bag
boundary conditions wasobtained in [4]. Here, we extend that result to include minimal
interaction between the Yang-Mills field and the Dirac[field. .

Since.cla~sicalnon-abelian Yang-Millsfields are not observed in nature, one may argue
that the classical Yang-Mills theory is not relevant to physics. However, the understanding
of many physical phenomenain gauge theory, like cohservation laws for colour charges, .
are ~ased on the classical notions for the .Yang-Mills Ith.eory.It is the ~nowledge of the
classlcal structure of the theory, toge~herwIth an appropnate understandmg of the process
of quantization, which :nables one to arrive at a propellr ä.es~ription of possible quantum
.phenomena. . .

One of the most fundamental aspects cf a classical field theory is a complete description
of its phase space..Thisis relatively easy in linear theeries, though the gauge invariance
of electrodynamics leads to some difficulties which we have learned to handle. Yang-Mills .
theory is both nonlinear and gauge invariant. In order tb describe its phase space one needs'
an existence and uniqueness theorem for the evolution part of the Yang-Mills equations as
weIl as the precise knowledge of the structure of the c9nstraints.

Our interest in studying the Yang-Mills-Dirac system on the space-time of the form
X = IR x M, where M is a bounded domain in IR3, i~ motivated by thefollowing argu-
ments. First, the structure of the phase space of the ~lassical Yang-Mills fields exhibits
some remarkable differences between the theory in IR41 and in a tube X = IR x M. The
corresponding results rely on the respective existence and uniqueness theorems for the
classical dynamics, and will be presented in a subsequent paper [5]. Second, there are
several approaches to understand the nature of hadrohs (and nuclei) in terms of a field
theory of the gluon and quark fields in such a tube, aclong these the celebrated MIT bag
model. FinaIly, one might argue that in a real experim~nt the fields are always (spatiaIly)
constrained to a bounded domain M C IR3. I . .

The system we are dealing with here is the standard Yang-Mills-Dirac theory with
minimal coupling : I -

. V':FJ.LI/ = JI/ and(,J.LV': + itn)W = 0, .

~here t~e s.uperscrip~~ refers to the ~auge field A use~1to define t~e operator of covariant
dIfferentiatIOn.Rewntmg these equatIOns as a dynamlqal system Ylelds

I

OtA = E + grad eI>- [eI>,A]
OtE = -curl B - [Ax, B]- [eI>'iE] + J

OtW = -,o(,jV'1 + ,0eI> + im)w
. . . I
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where the gauge field A1J. is split into the scalar pote*tial <J? = Ao and the vector poten-
tial A = (Al, A2, A3), while Ej = FOj and Bj = ~t:j~Fkl denote the "electric" and the
"magnetic" component of the field strength tensor, respectively. We study this dynamical
system under the following boundary conditions. For ~heYang-Mills fields we choose

nA = 0 , nE = 0 and ItB =0 (1.2a)

where nA and nE denote the normal components, and tB the tangential component. On
the spinor fields we impose the conditions 'I

(i'/nkw)18M = WI8M and (i ,/rik(1i>W)) IBM = (VW)18M, !

where V = _,0 (,j Gj + im) is the free Dirac operatorl '
We show that these boundary conditions are prese~vedunder the time evolution. Fur-

thermore they are physically reasonable bY,maintainink the "physical content" of the bag,
in the sense that there is no flux of matter or energy tlrrough &M. They, in fact, turn out
to be a modification of the boundary conditions of theloriginal MIT quark bag model [6].
The MIT bag boundary conditions for t4e Yang-Mills fields coincide with the last two con-
ditions of (1.2aJ The first condition of (1.2a) is a parti~l gauge fixing. The MIT condition
on the Diracfield coincides with the first one in (1.28.).As we shall show this condition

I '
suffices to guarantee that the initial value problem for the free Dirac equation has a unique .
global solution in the Sobolev space HI. To handle thb nonlinearity, however, one has to
demand higher order of differentiability of W, which enforces.the stronger boundary con-
dition (1.2b). Under these conditions the initial value ~roblem for the free Dirac equation
, is uniquely solvable in the Sobolev space H2. I '

Based on that existence, uniqueness and regularity result for the free Dirac equation,
our results on the pure Yang-Mills system [4],and thel theory of nonlinear semigroups [7]
we will prove as the main result of this paper :

The Cauchy problem. for the Yang-Mills-Dirac dynamics given by Eqs. (1.1) under
the boundary conditions (1.2) has, for any initial conäition (A(O), E(O), W(O)), a unique
solution in an appropriate Sobolev spac~. '1 '

In order to obtain this we introduce in section2 t!hephase space for the Yang-Mills-
Dirac equations, written as a dynamical system, by fibeingthe boundary conditions, and
choosing appropriate Sobolev classes for the respective fields A, E and W of the theory. In
section 3 we eliminate the scalar potential ,<Pfrom the dynamical system by choosing an
adequate gauge fixing. Linearizing the system we give p.nexistence and uniqueness result
for the free Yang-Mills evolution equat.ion. In s,ect,ion[4 the existence and uniqueness of
solutions for the free Dirac equation is proven. Together. with the results of [4Jon the
pure Yang-Mills dynamics and some analytic propertie~ of the nonlinearity of the coupled
system we then establish the existence and uniqueness theorem for the nonlinear evolution
in section 5~Section 6 is devoted to the study of the consbrvation of the Gauß law constraint
under the time evolution of that systems. In an apperldix we give a number of estimate
prerequested far the proof of existence of free spinor dybamics, and to apply the theory of
semigroups to the Yang-Mills-Dirac system. . I '

The authors are indebted to R. Racke for his remarks on the choice of boundary
conditions for the Dirac equation., " I _
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(2.3)

(2.2)

2. The Cauchy problem for the bag.

To study the coupled Yang-Mills-Dirac equations we denote by M a fixed contractible
bounded domain in IR3 describing the bag. We considerl here onlystatic bags, which implies
that the part X of the space-time accessible to the £leIdsis the product X = IR x M of the

, . I
time IR and the space M - the usual (3+1)-splitting. ""Ieequip X with a Lotentzian metric
TJJ.LV= diag( +, -, -, - ). For our choice of convention the Dirac matrices obey (,0)t = ,0,
(ri) t = _,i (i -:. 1,2,3), and the anti-commutation rel~tions {,J.L, ,V} = 2TJJ.Lv.

By G we denote the structure group of the thebry and by q] its Lie algebra. The
generators of q], denotedby Ta, act as matrices on al vector space V and the structure
constants aregiven by [Ta, Tb] = JabTe. We assume q] tb be equipped with an ad;.invariant
metric given by the trace of (TJ . Tb), which is used ~o raise and lower the Lie algebra
indices. To formulate the .corresponding gauge theory wieconsider a right principal G-£lbre
bundle over X with Yang-Mills .connection AJ.L = A~Ta and the covariant derivative \7~.
With D~rac spinors ~ :X'-+ (V40V as the matter £lelds\'Ofthetheory, the Yang-Mills-Dirac
system IS

.
\7~FJ.LV = JV 1

1

,

(2.1)
(rJ.L\7~ + im)~ = 0 I'

where FJ.Lv = oJ.LAv - 0vAJ.L + [AJ.L,Av] is the Yang:'MUls £leId strength tensor .and JJ.L =
~t ,O,J.LTa ~Ta is the current density of the matter £leId. '

To study the existence and uniqueness of solutions! of these equations it is convenient
to reformulate them as adynamical system. The(3+1)tsplitting X= IR x M leads to the
usual splitting of the Yang-Mills £leIdA~ into the scala~ potential <pa= Ag and the vector
potential A a = (Al' A2, A3). Similarly, the £leIdstrength F~v splits into the" electric" £leId
Ea and the "magnetic" £leId,Ba with components I

~j = Fgj = ooA; - Oj<pa + [<p, ~j]a ,.

Ba 1 kl Fa (. I;AQ,) ,[ ~ A]a
j =-Ej kl = cur j + ,/;11 x, j

2 '
'I .Here the brackets terms are to be understood as [<p,fj]a = Jb~<pbAj, and [Ax, A]j =

~Jb~ EflA%Af. Furthermore (curlAa)j = EflokA/. The ',fieldsAa, Ea, and Ba are treated
as time dependent vector fields on M. The current denslity JJ.Ldetermines a scalar density
Pa and a 3-current Jt on M given by . • I

. t . t J .
Pa = ~ Ta ~ and' J~= ~ , I,J Ta ~

I
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I
. In terms of the fields (~, A, E, w) and the quant1itiesderived from them, the Yang-

Mills-Dirac equations (2.1) determine a set of evolutidn equations
I .

(2.4a)
(2.4b)

(2.4c ),

5

,

. .1
8tAj = Ej + 8j~a - [~, Aj]~ " .
8tEj = -(curlBa)j - [Ax, B]j - [t,Ej]a + Jja

0, 'l! = '---'I" ( -yi0i + im + -y0<J;aTa ~ -yiAj Ta) 'l!

Eq. (2.1) also contains the(non-dyna~ic~.l) Gauß lawlconstraint

. 8j(Ea)J + [A., E]a = po, , . (2.4d)

'where [A., E]a = fb~ Aj Ecj. In the sequel we will Ski~ the Lie algebra index on all the
fields defined above by identifying A = Aa Ta etc. . i

. To get a complete formulation of the Cauchy prloblem of a dynamical system one
has to specify the boundary behaviour of the fields in~olved. Here we study the existence
and uniqueness of solutions of the Yang-Mills-Dirac system on M under the boundary
conditions given by (1.2). To dear the notion we dend1teby Ti the outward pointing unit
normal vectorfield on 8M. Writing nj for its components, for every vector field W, we
call nW = Ti(WilaMnj) the normal and tW = WlaM -!- nW the tangential component of
W. To get a short not ion for,t~e boundary condition 04 the spinors we furthermore define
the bounda:ry operator B = i"(Jnj acting on the Dirac ~elds restricted to 8M.

. , I . .
To formulate proper existence and uniqueness results for that Cauchy problem we

finally have to impose appropriate differentiability conditions for the fields invo~ved.These
are given in in terms ofthe Sobolevspaces Hk(M), c~nsisting of the Lie algebra valued
vector fields ,and V-valued spinor fields on M, respedively, which are square integrable
together with their derivatives up to order k. The scalar product on these spaces H,k(M) "
is given in terms of the usual scalar product on M C 11R3, the ad-invariant metric on q]

and a q]- i~varia~t scalar product onV. . .. I '
In thlS settmg the ,phase space of our system ISglven by P = Py M X PD, where

~ I

PYM = {(A, E) E H2(M) x H1(M) I nA = 0, t(cJrlA) = 0, nE = O} and
2 . I. (2.5)

. PD = {w E H (M) I BWlaM = WlaM and ß'DwlaM = 'DWlaM}

In view of the bou'ndary conditions (1.2a) we note that hA = 0 implies tB = tcurl A. As a
st.ate of this dassical system we denote a triple (A, E, ~I)E P. It is crucial to note that P
is byits definition a Hilbert space. .."

I

\

I

I
I

\

I
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(3.3)

I
\ .

3. Gauge fixing, linearization and HOdge-d1composition.. . . I . .
In the Yang-Mills-Dirac equations written as a: dynamical system (2.4), the scalar

potential CPdoes not appearas an independent dynarhical degree of freedom. The gauge
group acts transitivelyon the space of scalar potentials\ [1].Hence, using appropriate gauge
transformations; we can fix thefield cPat all times~ The most common gauge fixing for
studies of Yang-Mills fields as a dynamical system is t¥e temporal gauge Ao = O. For our
approach, however, it is much more convenient to use the gauge condition giving the scalar
potential cPto be the solution of the Neumann problerb

" , I
ßCP= -div E and n(grad'cp) = 0 wi~h I cPd3x = 0 (3.1)

. ' \ 1M . .
From the theory of partial differential equations [8]the unique solvability of this problem
is guaranteed by the boundary condition nE -.:0., .\ . .

Linearizing the evolution equations in the fields A, E, and W, and observing that cP
depends linearly on E by construction, we obtain I /.

IGtA = E + grad cP I (3.2a)
GtE = -curlcurlA '. I ' (3.2b)
ßtW= 1)w~= _,0 (,jGj + i1)W (3.2c)

In order to solve (3.2)' under the boundary c;nditioJs imposed here, we will use the
Helmholz-Hodge decomposition theorem [9]for vector fi~lds.Its statement is that each vec-
tor fleld W on the bounded domain M can be uniquely Idecomposed into W = W L + WT

- called in resemblance to electrodynamics the longitudinal and transv~rsal component of
the field - such that . . i

curl W L = 0 and WT = curl U for some vector fieldU with tU = 0 .
, I

In this way we split the gauge fields iIito A = AL +AT a~d E = EL +ET. Observing that
nW = nWL for any vector field W, our specific choice pf the gauge fixing (3.1), and the
uniqueness of the solution of the Neumann problem yield

. . I
grad cP = _EL I

, . I . '
Furthermore (curl curl A) T = curl curl AT because tCil A = O. Since the operator
(-curlcurl) acts as the Laplacian ß on AT, Eqs~ (3.2a?b) split into two linear systems,

. one for the longitudinal and the other for the transvers~l components of the Yang-Mills
fields : \

ätAL = 0 and GtEL = 01

ätAT ""' ET and ätET = ßAT
•. I .

The pure Yang-Mills system under the boundary con<ilitions(1.2a) has been studied by
the authors in [4].Let S be the evolution operator for the ~inearizedsystem,determined by

6
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Eq. (3.3) with S(AL,ATjEL,ET) = Ot(AL,AT;EL,~T). The result of [4] eanbe written
as : .

Proposition 1
The linearized Yang-Mills operator S, deflned by Eq. (3.3) with domain

. !

DYM = {(A, E) E H2(M) x H1(M) I nA = 10, t(eurlA) = 0, nE = O}
I

generates a one-param.eter group exp( tS) o{~nitkry transformations in the Hilbert
'space I

I . .
HyM{(A, E) E H1(M) x L2(M) I AL E H2(M) , 1$LE }j1(M) , nAL = nEL = O} .

This induces a one-parameter group,exp(tS) of cohtinuous linear transformations on
the domain Dy M of S. I. I

4. The Dirac Equation under Bag aoundarJ
1

Conditions.

In order to prove an existenee and uniqueness theorem for the eoupled Yang-Mills-
Dirae system we next study the free Dirae dynamics urlder the boundary eondition given
by Eq. (1. 2b ). Therefore we introduee the Hilbert spaee:s of spinors as

HD = {\lJ E L2(M) } . with sealar produet «S, \lJI\» L2 =1 st . \lJ d3x, (4.1)
, M

where .denotes the q]-invariant produet on V, and t deJotes the Hermitean adjoint. Con-
sidering the boundary eonditions (1.2b) imposed on' \lJ ~e observe that

I

8 := i ,jnj : L2(oM) ---+ Lf(oM)

defines a self-adjoint operator, and 82 = 1. The first of ~he 'eonditions (1.2b) eorresponds
to ehosing the eigenspace I

B+ = {\lJ I 8'lJlaM = \lJlau }
I

. for the Dirae fields. So we let . I
DD = H1(M) nB+ I (4.2)

be the domain. of the Dirae operator V = _,0 (,jOj + irrt) .
, I

I

~ \
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I

From the basic properties of the ')'-matrices, and by in!tegration by parts we get
, . I

«3,Vw »£2 = -1 (('Y°ij3)t .ßjW- (im')'03~t.W)d3x '
. M 1.1 \i w, 3 E l(1(M) . (4.3)

= - «V3, W »£2 - (')'o')'Jnj $) t . Wd2x
. aM . I

Considering theb~undary integral we find by taking t~e Hermitean eonjugate
I . .

(-r"'1'ini 3) t . '11 = +( ('1'0'1'iniil!{ 3)' \ \I '11, 3 E H'(M). (4.4)

On the other hand, if both spinor fields Wand 3 obey\the boundary eondition ßWlaM =
WlaM, we have I

('l'0'1'ini 3) t . '11 = - (hO 3) t . '11 = ~( (~0'1'ini '11) t .3)' . (4.5)
. I

Thus the boundary integral in (4.3) vanishes, what impli~s the skew-symmetry ofthe Dirae
operator, Le. . ' i .

«3, VW »L2= - «V3, W »L2 \ \iw,3 E DD

The boundary operator ß is self-adjoint on ßM,Jnd the deeomposition L2(ßM) =
B+ E9B- is orthogo'nal. Furthermore ')'0 maps ß+ ontol ß-, and ß- onto ß+. Therefore,
the adjoint V* of the Dirae operator is given by I

V* = -V .with domain DD* = {3 E HD 1 V3 E rJ2(M) and ß31aM = 31aM }
1

On the other hand 3 E DD* implies 3 E HI (M), which Ifollowsfrom the estimate

11311H':s C, (IIV311L' + 11311~') . , (4.6)

proven in the appendix. This shows that the Dirae opJrator with domain DD is skew-
adjoint. Also in the appendix we prove that I .

IIwIIH2 :::;C2(IIV'DWII£2'+IIWII£2) I \iw E PD , ,(4.7)

where the spaee PD is given by Eq. (2.5). Since the ode-parameter semigroup exp(tV)
preservesthe domain of its generator, and eommutes wit~ v, Cf. [10]' and sinee VW E DD
for WE PD we get I

IlwIIH~ ~ C31IVVwll£2 = C311 exp(tV)VV,+,IIL2 'IC311vvexP(tV)W"£2

and eonsequently 1

I

IIwIIH2 ~ C4 (1IVVexp(tV)WII£2 + 11 exp(tV)WIIL2) ~ C51Iexp(tV)wIIH2
•. I

I~
\
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(5.1)

lim 11 exp(tV)'11 - wIIH2 = 0t-+O •

I
I
\

\

Thus exp(tV) acts as a family of bounded operator~ on PD' The group properties of
exp(tV) onDD and on PD, respedively, follow from t!he group property on HD. Finally,
using the same arguments as. above -one shows that I

I
'V(WEPD ,
I

which implies that the map t 1--4 exp(tV) determines; a continuous family of bounded
operators in PD' So we have proven : \

P .. 2 ' \_ roposltIon . . .' \.
On the Hilbert space HD the operator V =_,0 (,?Bj + im) with dömain D D given
by (4.2) generates a one-parameter group of unitary transformations .

. I
'11(0) I---t w(t) = exp(tV);w(O)

which preserves the domain DD. This induces a cohtinuous group of bounded trans-
, I

formations in the space PD' I
As it stands this theorem gives a (global) existence ap.d uniqueness result for the Dirac

equation in H1(M) under the boundary condition BwlaM = WlaM' In order to guarantee
a dynamics in H2(M), however, we have to impose the stronger boundary condition. This
. is inevitable in view of the subsequel estimates for the ndnlinear coupling of the spinors '11
to the Yang-Mills £leIds (A, E). I

I
Theorem 1 \
The linearized Yang-Mills-Dirac system (3.2c) and 03.3) defines an operator T given
by . I,

T(AL, AT; EL, ET; '11) = (0, ET; Ol.6.AT; Vw)
. \

which is skew adjoint on the Hilbert space Hy M XI HD and has as its domain the
space D = Dy M X D D. The operator T gellerates a IOne-parameter group exp( tT) of
unitary transformations in HYM x HD. This induce~ a one-parameter group U(t)

I
(A(O), E(O), W(O)) I---t U(t) (A(O), E(O), w(q)) = (A(t), E(t), W(t))

oEcontinuous linear transEormations on the phase sPlce P defined by Eq. (2.5).

. I
5. The non-linear Yang-Mills-Dirac dynamics I

. Considering the nonlinear dynamics we rewrite thel

l
evolution equation for curves

. (A, E, W)t = (A(t), E(t), w(t)) of states as I

Bt(A, E, W)t = T( (A, E,W)t) + F( (A,IE, W)t)
I .
I
I
\

I

9
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with a mapping F = FYM + Fe : P - P given J.s follows': Let FYM describe the
nonlinearity of the pure Yang-Mills theory and the F~ the coupling between Yang-Mills
. field and matter fields. Then we find from (2.4) .i

\ .'

FYM(A, E, '11)= (-[ep,A] ; -[Ax, B] - cu~l [Ax, A] - (ep,E] ; 0)
.' (5.2)

Fe(A, E, '11)= (0; J; "':'ep'1l- "(o"(j Aj'1l J
where the fields Band epare uniquely determined from\A and E by (2.2) and (3;1). First
.we observe that the boundary conditions (1.2) are prese~ved by these nonlinear maps : For
the Yang-Mills term FYM we refer to [4]. Concerning the coupling term it follows from the
argument above (Eq. (4.4) and (4;5)) that \. .

nJ = nj('1It"(o"(j '11) = 0 V'~ E DD
\

On the other hand we observe that (Bep'1l)18M= (epB'1I)\18M,and
\

. . B (,,/ "(j Aj 'Ii) = - ,'I"nA 'Ii+ i)'0 "(j Ar¥' nkr = "(0"(j Aj (B'Ii ) ,

This obviously also holdsfor =: = 1)'11with '11E PD' The statement that F maps the P onto
itself furthermore requires to prove that its components \have values in the right Sobolev .
spaces. To characterize the analyticproperties of F, whfch also includes that statement,
we formulate : \

Proposition 3. \
Tbe nonlinear mapping F = FYM+Fe defined on tbe\pbase space P, witb components
given by (5.2)bas tbe following properties: .'. \
1) Tbe range of tbis map is a subset of P, i.e. F :P ~ P.
2) F is continuous witb respect to tbe norm on P given by

I
. I

II(A, E, '1I)II~= IIAII~2 + IIEII~l + 11'1I11~2
. . 1
3) F is a smootb map witb respect to that norm. _ \

A proof of the properties of the operator FYM, Le. fo~ the pure Yang-Mills case, was
. I •

given in [4].The required estimates for the coupling term Fe can be found in the appendix.
• I

In terms of the continuous one-parameter group U(t) lof linear transformations on P,
deter1mined by Theorem 1, we rewrite the evolution equatidn (5.1) together with the initial
conditibn (A, E, w)o in the integral form \

(A, E, 'Ii), = U(t)(A, E, 'Ii)o+ l'U(t -s) F~(A, E, 'Ii).) ds . (5.3)
.0 . \

On the basis of this we can apply the theory of nonlinear Jemigroups. The corresponding
. statement of [7] ist,hat each initial state Xo E P determine~ a unique curve of solutions of
the integral equation (5.3). Furthermore, since the nonlinea~ity F : P - P of the system is

I
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\

a"differentiable map, the solution curve is also t-differentiable and solves the corresponding
differential equation +. \

Theorem 4 ", \ ' , ", .
For every initial condition (A, E, w)aE P of gauge ¥nd matter fields on M there exists
a unique continuous curve (A, E, w)t in P, satisfying the integral equation(5.3). This
time evolution is well defined for all t E [0, T), wh~rethe maximal time of existence
o < T ~oo is determined by the initial condition. \
Furthermore the curve (A(t), E(t), w(t)) is continupusly differentiable and solves the
Cauchy problem for the Yang-Mills-Dirac evolutidn, given by Eqs. (2.4a-c), for all
t E [0, T) with initial condition iIJ.dicated. _ \ '
One should remark that 'the time evolution for the ¥ang-Mills-Dirac system not only

yields a curve of solutions for any initial condition, but .~lso determines a diffeomorphism
on the phase space P. To see this we differen~iate the m~p (A, E, w)a f-+ (A, E, w)t,given
by Eq. (5.3) in the direction of an arbitrary (a, e, 1/;) E PI. This yields

, .' \

t 'I
(a, e, 1/;) f---+ U(t)(a,e, 1/;) + J U(t - s)D(F((A;, E;W)s))(a, e, 1/;)'ds ,

,~ \

which is a smooth map by Proposition 3. Bince the dyna*ics is reversible, thi~ shows that
the time evoluti(;m determines a diffeomorphism. \

\

\

~ I
6. The Constraint Equation. \

\

tn order to complete our result on the existence and uniqueness of solutions of the
Yang-Mills-Dirac system (2.1) we finally have to study the Ipaußlawconstraint, Eq. (2.4d),

V1Ei - p = 0 \ (6.1)J '. \

under the dynamics determined above. Therefore we comp~te the covariant time derivative
\7~ of that expression, and find direct from the Yang-Mill~ equations (2.4a,b) :

I
\7~(\71Ei - p) = \71(ätEi) + [ätA., E] + ~<P,\71Ei]- \1~p

_ 't"7AJi 't"7Ap' I-Vi -Va '. I ,
This expression vanishes due to the continuity equation fort the current density associated
to the Dirac fields. Since the Hilbert space st:ructure on Hy MX HD relies on an ad-invariant

. I

scalar product in CfJ, we get furthermore \
\

~1I\71Ei - pll1,2 = 2 «\7~(\71Ei - p), \711pi - P »£2 = 0 .-
e I

Thus 11\71Ei - pll"'2 is a constant of motion, and in partidular, the Gauß law constraint
(6.1) is preserved under the ,evolution of the system. \

+ ,In fact it suffices, as proven in [11]' to show that the n~nlinearity F is Lipschitz.
I

11 \
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I
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Appendix.
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\

I
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\

" \ r

In order have a complete proof of Proposition 2 weiare left with proving the estimates
(4.6) and (4.7). In section 4 we introduced the HilbJrt space HD of square integrable
spinor fields with scalar product given by (4.1); and its\subspace DD of fields obeying th~
BwI8M = WI8M, and PD of H2-fields obeying the full IDouridary condition (1.2b).

. . - \ .

Lemma A.l . . I
For the operator V = _,0 (,jBj + im) the follo~in~ estimate hold :

I

i
\

IlwllHl ~ Cl (1IvWII£2 + IIWIIL2) \
IIwIIH2 ~ C2 (II'D(VW)IIL2 +IIWIIL2) 1

1

V'w E PD

\

I
I
1

2 k .' ..1 , 2 .Ilvwll£2 = - «, ,J Bj W, Bk W »£2 tA(w) + m IIwll£2
I

where A(\jf) = im«< ,jBj W,W »£2 - <1 w, ,jBj W »£2)
. 1

Furthermore, ,k,i = - 8kj +~hk"i], and hence !
1

3 I

IIvwIII2 =L IIBjwIII2 - B(w) +\ 1-(W) + m211wll£21

j=l I
where 2B(w) = « [,k, ,j] Bj W, BkW».b

. I

-Since C= (M) is dense in H1 (M) it follows by integratioJ by parts that
I
I

2B(W) = 1 (nkbk,~j]BjW)t.I,Wd2xIBM '. 1

. \

for all W E H1(M), where the surface integral makessense since the restriction of W to
BM is in H1/2(BM). To handle this expression we take '110 E C=(M), and introduce an
orthonormal non-holonomic frame (eI, e2, e3) along the bdundary BM, sucht hat e3 = n.
In terms of this we have [,3, ,S] = 2,3,s. Furthermore ,iBj = ,sV S+ ,3V 3, where Vs
denotes the convariant derivative induced by the Levi-Civi~a connection of the metric grs
on BM. Then we find from the boundary condition (1.2b) fhat

1 tl. 1/2 2B(Wo) = ' (n3,3,sVsWo) . Wo (det(Yrs)) d y
8M '. \'1 (S ) t .( ( )\)1/2 ' 2. ~ , V S Wo . Wo det grs , , d Y
8M' 1

1
I.
I

Proof:
. (i) For any WE DD we compute with (4.1) that

, 12



(A.3)

(AA)

.'
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Hence there is a constant Cl> 0 such that

\

\

1

\

1

I
\

\
, \

Since B(Wo) is real, the integral has to be jmrely imaginary. Ta\dng intö account that ,3
is covariantly coIistant, we obtain by integration by palrts . '

I 'i J'r (,sV' s Wo) t . Wo (det(grs))1/2 d2y = r Wb. '\Is V' s Wo( det(grs)) 1/2 d2;18M, . IBM 1

= Cr (,S~ls Wo)t . Wo (det(grs))1/2 d2y)*IBM \
This implies that the surface integral vanishes for all \1 smooth .spinor fields Wo' on 8M,
satisfying the boundary condition (1.2b). Since COO(M) is dense in H1/2(8M), it follows
that the expression B(W) has to vanish for all '11 E DD.\This shows that

. \ .

Ilwll~[l :::; IIDwII12 + IA(w)1 + 4' 11'111112
The'term A(W) can be estimated by means of the Cauc~y-Schwarz inequality as

. \

IA(W)I :::; 2m IIwIIL2 IlwIIH~1
. \

\

IlwllHl :::;Cl (II'DWII£2 + 11'111112)
I

(ii) In order toprove ,(A,2) we show that theoperator V1f, accompanied by the boundary
conditions (1.2b) is elliptic. The square of the Dirac opera~or corresponds to the Laplacian,
i.e. VVW = (.6. - m2)W. To prove ellipticity we have to sh<!>wthat the boundary conditions
(1.2b) satisfies the LopatinskiI-Sapiro condition [12]* for \the Laplace .operator. Using for
p E SM the coordinates (Ys; Y3) with Y3 parallel to n, wel Fourier transform the equation
.6.'11 = 0 with respect to (Yl, Y2)' This yields " \

2 2 - , I(-I~I + 8y3) '11(6,6, Y3) = 0\ '
, where 1~12 = ~r+ ~~.As the set ofsolution ofthis (ordin~ry) differential equation, which
decay at irifinity, we get \

1

u+ = { ~ exp( -1~IY3)1 ~ E V} .
I

I
Underthe Fourier transformation the boundary conditions\ turn into

, \

3 - -,,~(6, ~2, 0) = -i '11(6,6,~)
1'3 VW(6, 6, 0) = -i VW(6, 6\,0) .

, 1

where the Fourier transformation of VW computes as 1

~ . - 1-
Vw = -i('Y°,s~s + m)w - 'Y0'Y3&y~ '11

. I
\

* See' also [8] for a m'bre explicit version of that condition. 1
• 1

\

I

\
\

\

I
\

i
i



/

Therefore I

,3W = _~(,O,8~8+ m),3\J! + i ,0'Y38Y3 \J!~ i ,O,38Y3 \J!-,08y3\J! ,
. I

lind by using (A.3), the condition (AA) turns into\
, I

i ,o,38Y3 \J!(6, 6, 0) = -,o8Y3 ~(6,6,0) (A.5)
, I

Hence for \J! = ~exp(-I~IY3) E U+, the conditions (A.3)land (A.5) yield
- . I

I
,3~ = -i ~ respectively ,~~= i~

• . I

Thus the (constant) spinor ~ E V has to vanish, what pr~ves ellipticity of,the operator VV
under the boundary imposed. Therefore the inequality' (Iii) follows from the usual a-priori
estimate for elliptic boundary value problems. . 11 ' '. 0

In order to show that the nonlinear coupling term Fe has \the analytic properties. demanded
in Proposition 3 we are left with proving :' \

I
Proposition A.2 \ ' .. \ .
The map Fe (A, E, '1J) = (0, J, -<I>'1J- ,O,l Aj '1J) maps P to P, and is oEdass Coo on
this space with respect to the norm given by \ ;

r
11 (A, E, '1J)II~ = IIAllk2 + IIEllkl t 11'1Jllk2

Proof: ' I

Since, for dimM = 3 the space H2(M) is a Banach al~ebra, cf. [13]' '1J'E H2(M) also
the components of the current J1= '1Jt ,O,j Ta '1J are also of Sobolev dass H2. Hence
JE H2(M) c H1(M). Since also the potential <I>and the\field A are in H2(M), the same.
argument holds for the terms <I>'1Jand ,O,j Aj '1J. Furthermore Fe preserves the boundary
conditions (1.2) and hence maps P onto itself.\ ' ' . .
From the Banach algebra property of H2(M) wealsoimmediately we prove the continuity
of Fe. For '1J,~ E H2(M) we have \ .

, '. . I

IIJ~ - J~llkl = II'1Jt,O,jTa'1J - ~t,O,jTa~lIkl :s; f11l'1Jllk2 1I'1J- ~llk2 .

On the other hand we get with E, E E H1(M) and A,AE\H2(M)
, I

11<I>'1J- ~~llk2 :s; K2 (II<I>-~llk2 11'1Jllk2+ 11'1J- ~llk2 11<I>llk2)

IbO,j Ajq, _,O,j Aj~llk~ :s; K3 (11A- Allk2 11'1Jllk2+ 11'1J- ~llk2 IIAllk2)

Putting these terms together and observing that'lI<I>IIH2 :s; \K4I1EIIHI by" its construction,
we end up with the required estimate \

1
•• ~~. ~ 2 I

IIFe(A, E, '1J)-Fe(A, E, '1J)llp :s; \ (A.7)

Ksll(A,E, '1J) - (A,E, ~)11~(1 +IIEIIHI +\IIAIIH2 + 11'1JIIH2)2 ,
. I

I
14 I
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I
I
I
I
\

!
which proves the continuity of Fe: p ~ P. .\
To show the,difIerentiability of Fe, wewrite (a, e, 'I/J) f<'>rlanarbitrary infinitesimal variation,
and evaluate I.

DFe(A,E, w)(a,e,'I/J) = (0, 'l/Jt,O,jw + wt,O,j'I/J, i(<pW + if!'I/J)-,O,j(ajw + Aj'I/J))
.. . . . \

where A<p = -diV e andng~ad <p = 0 .

Since a, e, <p and 'I/J are of the same Sobolev classes as ~,E, if! and W, respectively, all the
estimates used to provecontinuity of Fe also can be applied here. Hence one shows, literally

I
as above, that DFe(A, E, w)(a, e, 'I/J) is continuous. Analogous arguments also hold for the

.' , . I '
higher derivatives of J. Actuaily, derivatives of Fe of otder ~ 3 vanish identically. 0

I
I
\

I
I
I

\
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