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" YANG-MILLS AND DIRAC FIELDS
'IN THE MINKOWSKI SPACE-TIME

Giinter Schwarz* and Jedrzej Sniat'ycki1L

: Abstract

An existence and uniqueness theorem for the Cauchy problem for the e'volutlon com-
ponent of the coupled Yang-Mills and Dirac equations in the Minkowski space is proved in
~a Sobolev space for the temporal gauge condition. The constraint set C is shown to be a
smooth submanifold of P preserved by the evolution.

The Lie algebra gs(P) of infinitesimal gauge symmetrres of Pis identified. Its topologv
is of Beppo Levi type. The group GS(P) of gauge symmetrres is of L1e type its topolog'v
- is induced by the topology of its Lie algebra. .

The constraint equations define a closed ideal gs(P)o of gs(P). It generates a closed
connected subgroup GS(P)o of GS(P), which is shown to act properly in P. The reduced
‘phase space is the space of GS (P)o orbits in the constraint set C. It is a smooth quotient
manifold of C endowed with an exact symplectrc form. -

+ The quotient group. GS(P)/GS(P)o is isomorphic to the structure group G of the

theory. Its action in the reduced phase space is Hamiltonian. The associated conserved
quantities are colour charges. Only the charges corresponding to the centre of the Lie
algebra gs(P)/gs(P)o admit well defined local charge| densities.
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1. Introduction.

. Anunderstanding of the quantum theory of a phvsmal system is greatly facrhtated by
the knowledge of the classical phase space of the system. The present state of knowledge
of classical Yang-Mills theory, comprehensrvely reviewed in [1], consists of an impressive
array of results obtained under a great variety of assumptions. A systematic study of the
theory under a consistent set of assumptions is lacking.
at least partially, for minimally interacting Yang-Mlll

- space-time.

S and Dlrac ﬁelds in the Mmkowskr

This paper aims at filling this gap, - "

The main stage of the Hamiltonian formulatlon
space. Its choice determines the rest of the structure o

of field theory is its extended phase
f the theory. Let us consider criteria

we could use in order to make a "correct” choice. An obvious criterion is absence of the
second class constraints, [2,3]. Since the extended phase space consists of the Cauchy data
for the field equations, we- require the existence and uniqueness theorems for the evolu-
tion equations. Moreover, gauge invariance implies uniqueness of solutions up to a gauge
transformation, hence the uniqueness results require an imposition of a gauge condition.
Thus, an extended phase space depends on the choice of the Cauchy surface, the
choice of a gauge condition, and the choice of the function space in which we can prove
the existence and uniqueness theorems. Existence and uniqueness problems for the full set
of Yang-Mills equations in the Minkowski space—tlme have been studied in several papers,
[4-8]. We shall use the phase space of [6] and [9], which we enlarge to include the Dlrac
fields. | ,
. Let G be the structure group of the theory, presented as a matrix group, and g 1ts _
Lie algebra. We assume that G is compact, connected and that g is endowed with an’
ad-invariant metric. The usual (3 + 1) splitting « of Minkowski space R* =R x IR® leads
to the splitting of the Yang-\/hlls field

1)

. We choose the temporal .

= (A07A) ' |

A, o
A = A;dr?

into the scalar potential’ Ao and the vector potentiall
gauge condition

AO—O

It leads to a representatlon of the field strength F#,, 1n terms of the 7 electrrc field E-and .
the “magnetic” field B with components ' S

(1.2)

lekl ( UI‘IA) [AX,A]J’ y ><1.3)

where we use the Euclidean metr1c in IR to 1dent1fy ve

ctor fields and forms, and x denotes
the cross product. ' : ,




i
.
|
i
{

" The field equations split into the evolution ecjuatji‘onsﬁ

%A =E, (L)
Bt =curl B - [Ax B]+j, (1.5)
Bt\I/ = -y ( 19; + im+ WJAj)}\I/ s (1.6)
and the constramt equation
divE + [A; E]:-—ji. (1.7) .

Here A, E and B are. treated as time dependent vector fields on JR3 with values in the

structure algebra g of the theory, and ¥ 'is a time dependent spinor field with values in
the space of the fundamental representation of G. Mo:reover [A; E] means the Lie algebra

o system given by Egs. (1.4) -

- bracket contracted over the vector indices. The source terms are given in terms of a basis

{T“} of the Lie algebra g by

o= ol (1o T%)uT, =

In order to handle the noil-linear.terms in the evo
in the Sobolev space H2( %), and E in H'(IR®), [10]
_phase space '

and

> = {(A E, \1/)|A € H2(1R ), E€ Hl(‘Rs),U\IJ € ‘IP(R

in which we estabhsh the existence and uniqueness of s
(1.7). It is endowed: with

(0(A.E. )54, 5B 5@)) / (E.
. R3 -

ol (194% @ T*) 9T, . (1.8)
lution equations we choose A and \Il
Hence we are lead to the extended

N, (1.9)

olutions of the Yang;Mills_ and Dirac
a one form 6 defined by

A+ UT60)dsz , (1.10)

where E - 0 A means the contractlon in both, the vector and the Lie algebra indices. The

exterior diﬁ’erential of 0 S
' w = df

is a weakly symplectic form on P

(1.11)

Following the approach of [11], we define the group GS(P) of gauge symmetries of the
phase space P as a connected group of gauge transformatlons :

A pAS™ + pgradp

where ¢ is a map from IR 3 to the structure group G,

E— ¢E¢,

\Il!—>¢\I/,

(1.12)
which vpreserve P. ‘




The infinitesimal action of the elements & of the Lie a gebra gs(P) of GS (P) is given by
- A A-Dat, EmE-[BE, U —T+el, (113)

where b' ’ | o '

- 'ADAf = grad { + (A, €] - (1.14)

is the covariant differential of £ with respect to the connection defined by A. It gives rise ,
to a vector field {p on P such that '

(A8, 0)= ~(Daf)sy - Bl +€UL . (115)

~ The topology of gs(P) is determined by the requirerrrent that the action (1.14) should
‘preserve P and be continuous. We show that : '

gs(P) = (¢ R3—>@|grad551H2(R?,0J)} )

so that gs(P) is  the 1ntersect10n of three Beppo Levi spaces, [12] Following [13] we topo— :
logize gs(P) by the norm : . ,

el = | tetdso+ bl
1 , . ;

where || - || H? is the norm of the Sobolev H%(IR?), and 31 is.the unit ball in R?’ centred
at the origin.

The topology of the L1e algebra gs P) 1nduces al topology of the group GS(P), cf.
[4,14]. With this topology GS(P) is a group of Lie type, that is the exponential map maps
~a neighbourhood of zero'in gs(P) homeomorphically onto a neighbourhood of identity in
GS(P). Moreover, the action (1 12) is continuous and proper, which ensures the existence
of slices, [15,16]. ' ‘
’ The action of GS(P) preserves the 1-form 6, Eq. (1 10). Hence, it is Harmltoman Wlth )
~the equivariant momentum map J: P> gs(P) such tha.t

I(AE D)) = (Blér (A, B, 1)) = [ E-Dag+elen)as,  @ay)
 where gs(P)’ denotes the (topological) dual of gs(P). For éach £ € gs(P), the momentum
corresponding to £ is a function J¢ : P — IR, given by | R
Je(AE, ) = (J(A,E, D)[¢) | C(119)

Its Hamiltonian vector field comc1des with the vector field £p giving the mﬁmtesmlal action
~of £in P, :
fp J w = dJE . ‘ . ‘ ' (120)




Integrating by parts on the right hand side of Eq. (1.18) we obtain

| (J(A,E,W)|5)=/Rs((diyE.+ [A;E])§+\IJT§;tIJ)d3x—/S; nEde:, BeEN
where | N ' ‘ ‘ ’
/ ‘nE£dS = lim | nE£dS - (1.2:’2)»
Seo ) —00 S, ]

is the flux of the normal component of E{ through the sphere at spatlal infinity. Since

‘IITS U = —50¢ the constraint equation (1. 7) is equlvalent to

" maps from R3 to g, and gs(P) has a decomposmon

that is

_(J(A,E, \11)|g>,= —_/- nE£dS | VE€gs(P). (1.23).

OO

The constraint set of the theory consists of all Cauchy data in P. satlsfymg the con-
straint equation, ,
C={(A,E,'\If)€P|divE+[1iX,E]=j }.oo - (1.24) -

- . | . ) .
It is a smooth co-isotropic submanifold of P preserved by the evolution. We define

95(P)o = (€ € gs(P)(J(A, B, V)[E) =0 V(A,E,¥) € C} . (125)

As shown in [11], gs(P)o is a closed ideal in gs(P). Using the results of [13], we will show
that gs(P)g is the closure in the norm (1.17) of the spa'ce of smooth, compactly supported

gs(P)=gs(Plo@a), | (1.26)

where g is interpreted as the spaces of constant maps from IR3 to the structure algebra.

GS(P)o is the closed connected subgroup of GS(P) with the Lie algebra gs(P)o.
Its action in P is Hamiltonian with the momentum map Jy : P — gs(P)} given by the
composition of J : P — gs(P)’ with the dual of the inclusion map of gs(P)o into gs(P).
By construction, cf. (1.25), the constraint set C is the gerb level of Jy,

, C=Js40). | o (1.27)
The reduced phase space is the space .f’ of GS (P); orbits in C, -

P=C/GS(P)o. | | (1.28)

We show that P is a Hausdorff mamfold and the pI‘O.]eCtl‘On map p C—-Pisa submersmn
The restrictions of forms # and w to C push forward to forms 6 and @ on P, respectively,

f|IC=p*0 ~ and ."w|C = p*0 . S (1.29) |




Moreover, w is a weakly symplectic form on P, and

o

Thus, the reduced phase space of the theory is a symplectxc manifold with an exact sym—.i

' pleCth form.

On the constraint set C the evolutlon equatlons are Hamlltoman with H gwen by the

' usual expression
-H'z / | %(E.E+B;B)+\IIT7°(7 (a,c+Ak)+m)\If)d3'x | (1 31)

Since the Hamiltonian H is 1nvar1ant under the actlon of GS(P)O, it follows that its
restriction to C pushes forward to a functxon H on the reduced phase space P, that is

HIC‘—p*H 3

The field equations in the reduced phase space are Hamiltonian, with respect to the weak -

- symplectic form &, with Hamiltonian H.

The subalgebra gs(P)o is an ideal in gs(P). It follows that GS(P)o is a. normal sub-
group of GS(P). The quotlent group A ) :

COzour(P)z' (‘)/Gs*(P)g S ‘(1.33')

acts in the reduced phase space P and thxs actlon is Hamﬂtoman For each (¢ [ ] in the Lie
algebra : 1 : . o
T colour(P) = gs( )/gs(P)o y o (1.34)

the corresponding conserved quantity 1s the colour charge J[§] Given p e P and [{]
colour(P), HE :
| Jig(®) = (J(AE D)) , | o (1.35)
for any (A,E, \Il) € C projecting to p, and any & € |gs(P) projecting to [£]." By (1.26)

colour(P) is isomorphic to the structure algebra g so that the colour charges can be
parametrized by elements of q In partlcular taking into account Eq. (1.23), we can write

Je®) = - /S nEgd{s; ‘_ - (130)

where ¢ is the constant component of ¢ in the decomposmon (1. 26) In view of thls the

colour charge is a global quantity expressing the asymiptotlc behaviour of the fields. It is

~of interest to find out if they can be expressed as integrals of well defined colour charge

densities. We have shown in [11] that such well deﬁned colour charge densities, depending
locally on the fields (A, E, ¥), exist if and only if [€] is in the centre of colour(P) that is
if ¢ is in the centre of g.

- The above result shows that only the colour charges correspondmg to the elements
of the centre of the colour algebra admit gauge invariant colour charge densities, which »

o=d§. | . o (1.30)




2. Existence and uniqueness results

satisfy local Poisson bracket rolations._If ¢ is not in the centre of g, we cannot construct
a corresponding gauge invariant colour charge density which would satisfy local Poisson
bracket relations. Upon quantization, such a colour charge density cannot be considered

- to be an observable, since it would violate the locality axiom of Quantum Field Theory,

a7) o
This paper is organized as follows. In Section 2 we prove the existence and uniqueness

‘theorems for the evolution equations in our phase space P. Section 3 is devoted to the

study of the gauge symmetry group. Constraints and reduction are, discussed in Section 4
Dynamlcal variables are con51dered in Section 5. :

B
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To study of evolution- equatlons we use the Helmholtz decomposmon of vector fields .
in the Sobolev space H*(IR? ) ‘ : . .

CX=xt4xT, L (2))
where XI is the longitudinal, and XT is the transverse paft‘ of X, i.e.

~curl XE =0 and . divXTzO’. g : T (2:2)

7 XL and XT are umquely determmed by-div X and curl X, respectively. For details see the

Appendix. - , :
Followmg the approach of Eardley and Moncnef 6], we solve the constraint equation
and obtain a curl-free field E€ € H 2(R ), depending on A, E and ¥, such that

4ivEC(A,E, ) = \IIT(I®T“)\ITG—[A;E]. L @23)

Since the lon‘gi'tudinal part EL of Eis _uniquely‘determined by the divergence of E, we can
replace E” in Eq. (1.4) by E¢(A,E, ) and obtain : - -
. 8,A=EC(A,E,¥)+ET . (2.4)

The system (2.3), (2.4), (1.5), and (1.6) is equivalent to the original systom (1.5) - (17)
Linearizing the evolution.equations (2.4), (1.5) and (1.6), and splitting A and E into
their longltudlnal a.nd tra,nsverse components we obtain : '

dt_[EL] [0} ©odt {ET] T(A E ) dtg/-_ S _ (2:5)
where | ) " '
| 'TT_\O,L AT
T(A%,ET) = [A 0 ] [ET] (2:6)
~and DY = - ('y 19 +im)¥ . | | (2




, Proposmxon 2.1

We s‘hall study the linearized equations in the Hilbert; spaces

H; = {(A%,EL) e HA(R®) x HlN(IRS)}L,_‘ | (28)
- {(AT ETe HYRY x IR}, - (29)
= {Ve LYRY}, | | (2.10)
endowed with the scalar products ' '
(ALY, (LB, = (AL KD + (BB . 21)
(ATET) AT E)r = (AT A + (BT,ED) ., (219
@ o= (0. @

The linearized dynamics for the longitudinal components is trivial. The time evolutions of
the transverse part and the Dirac ﬁeld is determmed by|the operators T and D respectively.

The operator 7 with domam I 1 N ’
" Dy = {(AT. /ET) € HQ(R yx H(R®} (2.14)
is the generator of a continuous group of transformations in Hr. '

Proof o
‘Consider first the operator

’7",={2 (1)} - | ’ o - (215)

|

~ on the full space H(IR*)x L2(IR®) with domain H2(IR®) x Hl(ﬁ ). It is the infinitesimal

_generator corresponding to the wave equatlon By standard arguments [18], we 1nfer that
T is d1551pat1ve ‘and that

range(T /\I) H (Rs)xLz( 3 an<;1 ker(T /\I) = {0} - (2.18) ..

for some A >. 0. For each pair of transversal fields \XT YT) € Hr there exists some

(A, E) C H*(R 3) x H'(IR®) such that. N
(F-A)A,E) =xT,¥T). e

|
A~

Since A maintains the Helmholtz decomposition of (A, E)_: (AT + AL ET + EL); this

implies that - o : R , ‘
: (AL EF) eker(T—AI)={0}. (218

Therefore since 7 = T |DT,'

range (7 — /\I) = range(T M)lpr =Hr . B - (2.19)




(i) The operator D, w1th domain

Moreover, T is dissipative on the Hilbert space Hr. Thlén the Lummer-Phillips theorem im-
plies that T generates a one parameter semigroup of contlnuous transformations exp(t7T).

QED L

PrOposition 2.2.

DD_{lIleH(B)},‘ h 2o

is the generator of a contmuous group of (unitary) transformations exp(tD) in Hp.

(ii) exp(t’D)‘;estncts to-a group of continuous transformations in the Hilbert space H A(R3).

Proof

. (i) We know from: [19] that the opérator D with doma n Dp is skew-adjoint in H D. Thﬁs,-
D generates a group exp(tD) of unitary transformations in Hp. .

(1) The operator D : H 1(EZ_‘n’)»v>—>'L2(E23)- is continuods and its square

D% = A - m?: H}(R3) —= L2(1R ) o (2.21)

. is contlnuous and elhptlc With the elhpt1c a pr10r1 estlmate this 1mp11es that

*for all ¥ € H2(IR®), where

CUDBus < N < CoID oo+ W) . (222)
" Moreover, from the 1dent1ty 7 7 = —5“‘ + [ we obtain ‘
. HD‘I’_”%2 Z 1195 ‘I’HLz - A(Y )+m2|_l‘1’||%2 | - (223)

T) = Z'r([vf",‘vk]ﬁkﬁ/sﬁj‘l’,)m o )

jk=1.

Integratlon by parts shows that A(lll) va.mshes for all ¥ in C°°( R3*nN H L(IR®). Thus, by
a density argument, A(¥) =0 forall ¥ € H 1(R3). Therefore ' -

csnwnms||wum,scumum' S (2.25) -

and | : o
- Nl < Cs(||D2‘I’||L2 + HD‘I’Hm) o ‘ (2.26)
Smce exp(tD) is a un1tary operator, which commutes og the domain Dp Wlth 1ts generator
D, cf. [20] ‘we can estimate for all ¥ € H 2( oo | :

|| exp(tD)¥|| g2 < C5(l|’D2 exp(t’D)\IlHLz + ||D exp(tD)\IlHLz)

, (2.27)
= C5(||D*¥|| 2 + |D¥|zz) < Csl|¥lm2 - .

QED.




The results obtained up to now are summarized below.

Corollary 2.3
The operators 7 and ’D define a hnear operator

—OGBTGBD

(2.28)

inH= HL x Hr x Hp with domain D = H; x Dp x DD, which generates a one
parameter group exp(tS) of continuous transformations in H. The action of exp(tS)

“in H preserves the domain D of S. The extended
a dense subspace of D, and it is preserved by ex

phase space P, defined by (1.9), is
(tS): The restriction of exp(tS) to

Pisa contmuous one parameter group U(t) of continuous transformations in P,

|
Ut) = exp(tS)|p P—P such that (A, E, ¥) — U(t)(A,E, ) .

(A(t), E(t),
tions (2. 5) (2.

(1))

6) and (2.7) with initial condition (|

Having solved the linearized problem, we return t
With

(2.29)

U(t)(A,E, T) is the unique sc'.‘)lutlon of the linear evolutlon equa-

A,E, ).

) the full set of evolution equations.

(A,E, 0). = (A(t), E(), ¥(1)) (2:30)
we can rewrite Eqs. (2.4), (1.5), (1.6) in an'abstraet form as -
_di(A E,0); = S(A,E, o), ~ F((A,E, ¥),), (2.31)

- where F describes the nonlinearity of the theory. We spht the nonlmear term F=Fym+
Fc into the pure Yang-Mills part Fypr ‘and the couphng part Fo descrrbmg the 1nteract10n
between the Yang-Mrlls field and the Dirac field, Where

Fym(A,E, ) =
Fo(A,B,¥) =

(E(A,E, ¥); —-[Ax,
05 5; —°YA;90) .
Here B and j are given by (1.3) and (1 8), respectlvely

we apply the method of nonlinear semigroups, cf. [21]
analytic properties of the nonlinearity.

Proposition 2.4 ,
- F maps P to P, and is continuous, Llpschltz and

I(A B, D)3 = IIAII?{z +IEl%

10

B|— eu'rl [Ax,A] ;0), (2.32)
(2. 33) '

In order to solve the system (2.31)
It requrres the knowledge of some -

smooth with respect to the norm

Sikdire (2.35)




Rl s S e e e

|

coupling term Fg¢ it was'established in [22]. (The proof given there under bag boundary

. ‘conditions literally generalizes to JR 3.) This enables us ‘to infer the existence and uniqueness

of solutions of minimally coupled Yang-Mills and Dirac equations from the corresponding

This result was proved for the pure Yang-Mills: part Fya of F in [\6]‘, and for the -

results for-nonlinear semigroups, which can be summarized as follows : If S generates a

~ one parameter semigroup on P, and 7 : P —» P is LlI!)SChltZ then, for each initial data. in

P, the dynamical system (2. 31) has a umque solution, [23]. Thus we have

‘Theorem 2.5. B ’ | ' o L

For every initial condltlon (A E, \I') eP of gauge and matter fields in IR 3, there exists
a unique continuous curve (A(t), E(t), ¥(t)) in P satisfying the ‘modified Yang-Mills
and Dirac equations (2.4), (1.5) and (1.6). This time evolution is well defined for all
t € [0,T), where the maximal txme of éxistence T '€ (0, co] is determined by the initial
condition. : o ‘ |

It has been established in [6] that this evolution preserves the constraint equation |

(1.7), and that the modified evolution equations (2.4), (1.5) and (1.6), and the original

equations (1.4) through (1.6) coincide on solutions of the constraint equation.

"Observe that the modified time evolution of the Yang-Mills-Dirac system dlscussed 7

here gives rise to local dlﬁeomorphlsms of the phase space P. To see this, we consider the
map ' :

(AE, B) - (A,E, \If)t _' U (A B, T)+ /Otua—s) (AE, 1), s . (2.36)

Differentiation this map in the ;directvion of an arbitrary vector (6A, 6E, §¥) in P we obtain

((A,E,0),(54,6E,69)) —

U(t)(6A, 6B, 6T) + / tu(t — 5)D(F((A,E, ¥),))(6A, 6E, §¥)ds
. : 0. : ‘ : ,

~ ‘which is cohtinuous,_éince F is smooth. A correspondiﬁg argument for the higher"derivati'\?es

implies that the time evolution (2.36) is smooth. Since the dynamics is reversible, this shows
that it is a local diffeomorphism. It should be emphasized that this local diffeomorphism is
not a symplectomorphism. The obtained evolution is Hamiltonian only on the constraint
set. ' ' ' "

3. Gauge symmetrles

The group GS (P) of gauge symmetnes of the phase space P consists of the gauge

“transformations (1.12) which preserve the extended phase space P. The action of its Lie -

algebra gs(P) is given by (1. 13) Since the Yang—Mllls potentials A in P are of Sobolev
class H2(IR®), it follows from’(1.14) and (1.15) with A = 0 that { € gs(P) only if

11

(2.37)



grad¢ € H }(R®,q). Thus, 'gs’(P)’ is contained in the, intersection of three Beppo Levi
' spaces, o ' ‘ l _ : -

w(P)C () BLn(A(RSa), G

m=1 l

" where BL,, (L*(R 3 q)) is the space of g-valued distributions on R?® with square integrable

- partial derivatives of order m, cf. [12]. The space BLl(L2(IR3,q)) has decomposmon of
Alkawa type [13], ‘ _

- BLI(L2(RS,OJ)) HY(R®,q)0q, | - (32)

see also Lemma A.1 of the Appendlx Here g is mterpreted as the spaces of constant maps

from IR 3 to the structure algebra For the intersection of three Beppo Levi spaces we write

. S -
B (R%q):= [ BLm(E2(R3,OJ))- N C X
| R
" This space is topologized by the norm . l
C el = [ et letadels . G4)

~ As shown in Proposition A.2 of the Appe_ndix, the dilecomposition (3.2) implies that
23053 3 | ' '
| BY(R?® q) = H}(R® QJ)@OJ - - (35)
Therefore each £-€ gsA(P) splits uniquely into \ ' '

§=+C . where €o€H3(l{R3,0J) andCE@ o (36)

By the Sobolev. embedding theorem & is in C}(IR?,q), so that all £ € B3(IR?,g) are -
. continuous maps from IR 3 the structure Lie algebra g Wi_th continuous first derivatives.

Proposition 3.1 ' e BRI

QS(P) 33(11?3,@9 , - .' (3.7)
and 1ts actlon in P is contmuous ' ' v '

12 -




~!
l

Proof. ‘ l
Slnce 63(R3, g) C CY{R?3, q) we can estlmate

A, e < 2”€“L°|°||A||Hz | |
II[E e < 2||€IIL7IIEIIH1 o NGRS
IIE“I'IIHz < ”§”L°°”‘I’”H2 : |

- Moreover, ||£||p= < C [|§ g3, by Proposition A.2. Th1s implies that the 1nﬁn1te51mal action
of £ € B3(IR®, @) given by (1.13) preserves P, so that B3(IR®,q) C gs(P). This, and the

~inclusion (3.1) implies (3.7). The estlmates (3 8), then also ensure the continuity of the

action. I S : Q.E.D.

Since H 3(11-23,0]) is the closure of the set of: c.ompactly supported maps in the H3
topology, it follows from (1.23) that for all & in the H 3‘(JR3, g)-component of gs(P)

(J(A,E, ‘I‘)Iéo)TO o - (3.9)

if (A,E, ¥) € C. Let gs(P)o be the ideal defined by
© (3.9) implies that gs(P)o C H3(IR3, g). In turn, if ¢ le @ is a constant Lie algebra, element
then (J(A, E, \Il)|C) =0on Cif and only of ¢ = 0. ?onsequently : :

 gs(P) H3(1R3lq1 @)

‘ Proposition 3.2 -

Summarizing this\, we have ] : ]
The symmetry algebra gs(P) decomposes into l

N

95(P) =gs(P)o®q, | I (311)

and the topology of the Lie algebra gs(P)g is equlvalent to the H 3 (IRS, ) topblogy.

VCorollary 3.3 ' o l
The mﬁnltesimal action of gs(P)o in P is free. |

Proof. L '
’ Suppose that the mﬁmtesnnal action of &o € gL(P) has a fixed point (A, E, \If) It

- follows from (1.13) that & is covarlantly constant Wlth respect to the connection glven by,
A .

kDAé-O =0. ] " | (3.12)

Since the scalar pfodu'ct in é].vis ad-invariant, this implies that-|€y(x)|? = const., and

Néollz = o0 \ »
This contradicts Eq. (3.10). .~ | B , Q.E.D.

T

the ‘constra‘ints' Eq (1.27). Then Eq‘v ;

(3.13)



: Prop051t10n 3.4

-and

The topology of the gauge group oﬁ non—compact mamfolds with a Sobolev L1e algebra

- has been studied in [4] and [14] Here we adapt the approach of [4] to our case. Let the

structure group be G C Mf, where M} denotes the space of k x k matrices, and let -
C>(IR®, MF) be the space of smooth maps ¢ : R3 — M which are constant outside

a compact set. The set C°°(B‘°’ G) forms a group under a pointwise. multlphcatmn We -

denote by e the identity in C°(R3,G), that is thle map associating to-each z €. IR> the
identity in G. The norm ||-|| s, given by (3.4), naturally extends to the space of M} valued
maps on IR 3. Therefore it also defines-a norm on the space C'°°(R3 G). ' '

One parameter subgroups of C>(IR3,G) are :of the form exp(t¢), where € is in the

~ dense subalgebra C°°(R3, @) of gs(P). The topology of gs(P), given by the norm (3.4),

introduces a uniform- structure in C*®(R3,Q), w1th | a neighbourhood basis at e con31st1ng

. of the sets . l

Ne = {exp( £)1€ € C2(R%,q), l€llg < &) withe>0. (3.14)

In order to show that the completion of C>®(IR3, G.’) in this uniform structure is a topo-

_loglcal group, relatively to the canonlcally extendedlmultlphcatlon we need to show :

I

The mapping exp(§) +— exp(§) ™" is umformly clontlnuous relatlve to N;. That is, for
every ¢ > 0, there exists é > 0 such that, for every exp(§) € Ny,

-1

B L exple)” N,s_exp(_f)lg.Ne. | (3.15)

. l
Proof. : ‘ ' - |
Let p € N, C C°°(1R3 G) then '

-

p=exp(é) =) — \E_"; o (316

: n=0 .

and 1. | L
grad¢> grad exp(f Z Z —f* grad§ 5”“'“‘1 . | (3.17)
n=1 k= 0 ’ )

Using the estlmates of Lemma. A 3 th1s implies that 1

Hgl‘ad¢>|lH2<eXP(C||€1|33)|lgrad€HH2 1wy
l .

| . ‘
||¢||33 < § ;-n— cngnaa \l< . - (3.19)
=0 | _ ,

For each ¢ E gs(P) we then obtain by using Lemma A\ .3 once more :

lexp(§)™F ¢ exp(¢ e < C2||€Xp(—§)||83|!C_HB{”GT(P( )llss < C% 206“(“33 (3.20)

This proves (3.15) with § = ¢(CeC¢)~2. A . QED.



‘union of the sets

 with e — 0as k goes to inﬁnity. Eq. (3.23) yields .|

| \

By a result of [24] Proposition 3.4 1mp11es that the completlon of C°°(IR3 G) in

this uniform structure is a topological group, relatlvely to the canonically extended mul-
tiplication. It is a Banach-Lie group, whose Lie algebra is canomcally 1somorph1c to the

Banach-Lie algebra 9s(P). In view of this we set : '1

Deﬁmtlon 3.5 ‘ B : l~

The group GS(P) of gauge symmetries is the clompletlon of the group C’°°(R3 G) in ,.

the umforrn structure defined by the topology of the Lie algebra gs(P).

The exponential map exp : gs(P) — GS(P) maps the unit ball in gs(P) onto the
neighbourhood of identity given by the completlon N of N1 Since G is connected, it
follows that C*(IR3,G) is connected and GS(P) 1s connected. Therefore, GS(P ) is the

Nl - {¢1 ¢2 ¢m|¢l)z € Nl} . . V (321)
The mequahty (3.18) together with (3.21) 1mphes that, for each ¢> € G’S (P),.
. | S
grad¢ € HYR®). -~ . (3.22)

l

- Moreover, since G is compact, it is bounded in M, ,’:, and the Sobolev embedding theorem ‘

implies that each ¢ € GS(P) is a bounded continuous map. Hence, |¢||: is finite for every

¢ inGS(P). We can glve an alternative characterrzatlon of the topology of GS(P).

Prop osition 3.6 |

A sequence ¢r € GS(P) converges to ¢ in GS(P l\) if and only if the sequence of maps
Ok : R3 -G converges to ¢-in the topology defined by the norm || - ||s. '

- 'Proof. ” ' ' A | '

| o
" Suppose that Ok converges to ¢ in the unlform 1topology of GS (P). For sufficiently

- large k,

b= demlE) | | (3.23)

where the sequence & converges to zero in the topyolo\‘gy of gs(P). The estimate (A.24) of

Lemma A.3 implies that - _ |

e | ,
|l¢k—¢||ssscn¢|lss Zl,(sk)" -s‘c‘ll_¢l|ss|1—ec“fk“asl. - (324)

- For §¢ — 0 in the norm topology of gs(P) this converges to zero, Wthh 1mphes that b — ©

in the topology defined by || - ||5z.

Conversely, suppose that ||¢x — ¢|[gs — 0. Then ‘

|
. lle—07 gkllps el - (3.25)

| - .
& =log(¢™ px) =~ ——\i—?i)— . - (3.26)

= |

|
l
15 ll
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for k sufficiently large. ..Theréfore by (A 24), .' . l\

C 1 3 !

1 A ' B
ol log(1 — Cex) . (3.27)

1
l
. |
. ‘ : | } _ o
~ This implies that cfk — 0 in the topology of gs(P), and hence ¢ — ¢ in the uniform
topology of GS(P). , S l : . Q.E.D.
Theorem 3.7 ‘ I 1 ' |
The action of GS(P) in’ P, given by (1.13), is C(ll)ntinuous and proper.
Proof. . ‘ | - | >
Let é,, be a sequence in GS (P) converging to qﬁ, and p, = (A,,E,, ¥,) a sequence

converging to p = (A, E, ¥). From (1.13) we obtain by using the estimate (A.23) and the

* fact that the i inversion ¢ — ¢~lin GS(P) is contlnuti)us

' : : l .
(60 Angi + Gugradg?) ~ (949~ — dgrad 67") | BN CED)
< 0nAndt = GuAG s + 60 AGT! — Gn MG 2 + 90 AGT — $AS

+l6ngrad 67" = ngrad ol + | dngrad 67" = drad 67 1
= O(I6nlBolAnAllr + (16l + 1 ¢lae) | A6 — bl

bl lgrad gn = grad $lr + 6 bl grod ol )

Writing symbolically ¢p for the a,ctlon of qS on p, and (¢p) A for 1ts A component thls
1mphes that . \

l|(¢npn)A—(¢P)A|lH2 < C'(IAn - Allge + 60 =67 ), (3.29)
l
l
(énpa)e — (@P)Elle < C'([En Eum T {dn — 6 las)

1(6npn)e = (¢P)alln2 < C’(II‘Il - ‘I’llnl2 +lon — ¢ i) -

Therefore ||¢rnprn — ngpH‘ — 0 as n — oo, which proves the contmulty of the action.

: Let p, = (An,E,, ¥y) converge" in Ptop= (A E,¥), and ¢, be a sequence in
: GS(P) such that ¢,pnconverges to p. It is to show thdt ¢, converges to ¢ € GS(P) and
P = ¢p. The argument used in [22] for compact domains implies that, for every compact

~domain M C_ IR3, the restrictions ¢,|M converge in 1HQ(M) to a map ¢y € H2(M).

- Since, M C M implies that qblM restricted to M commides with ¢az, it follows that there

exists a continuous map ¢ : IR 3—G such that qu is the restriction of ¢ to M. The proof

since |¢n|| B3 is bounded Correspondmgly we estimate with (A.22) and (A.23),

(3.30)

that grad ¢,, converges to grad ¢ in the H 2(R ) topology is the same as in the compact
case, {22]. Hence, Proposxtlon 3.6 1mphes that d)n converges to ¢ in the uniform topology. -

l Q.E.D.
l A
|
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Let C§°(IR®, G) be the subgroup of C2°(R 3, G) consisting of maps ¢ : IR®> — G which

are the identity in G outside a compact set. . | ' : | _

Definition 3.8 [
GS(P)g is the closure of C§°(IR 3, G) in the un|1form topology

Proposition 3.9 :
v GS( )0 is a closed subgroup of GS(P) with Lie algebra gs(P)o.

" Proof. ‘ l : : .

By construction, GS(P)o is a closed subgroup of GS(P). The result of Proposition 3.6
1mphes that its Lie algebra is the closure in the B3 topology of the Lie algebra C§° (R3, a)
of smooth maps € : R3 > g with compact support. By Aikawa’s decomposition (Lemma
A.1) and Eq. (3 10) this coincides with gs(P)o. Q.E.D.

|
Theorem 3.10 B fL l
The actron of GS’(P)O in P is proper and free |

Proof ' | | ‘ )

' Since GS (P)o is a closed subgroup of GS ( ) whw.ic'h acts properly in P, it follows that
the action of GS(P) in P is proper. In order to prove that the action of GS(P), is free we .
observe from Corollary 3.3 that the infinitesimal action is free. Smce GS (P)O is connected,

every ¢ € GS(P)g is of the form ' |

(eXp §1) - (exp &) .. ~i(exp €n)

for some &;,...&, in gs(P')o. Hence the action of GS%P.)Q is free. - : - Q.E.D.

|

4. The reduced phase space and dynamlcal varl'lables

" The constraint set C is the zero level of the momentum mapprng for the Hamlltomanv
action of the group GS(P)o in P. According to Eq. (1 27) C =.J, 1(0) where Jy : P —
gs(P)g is given by the composition of the momentum map J : P — ¢gs(P) with the dual
of the inclusion map of gs(P)g into gs(P). - =

Since the Lie algebra gs(P)o has the Sobolev H E\"(R ,q) topology, and its action in
P is free, one can use the general theory on momentum map constructions, [25]. A direct
‘proof of this result for Yang-Mills fields, given in [Q]l extends without major changes to
interacting Yang-Mﬂls and Dirac fields. In part1cular, Jo is GS(P)¢ equivariant, which
. implies. _ - ‘ R '

Proposrtlon 4.1 : | :
The constraint set C = JO Lo ) is a smooth submanrfold of, the extended phase space
P, .and the action of GS(P)o in P preserves C. |
: |

|
|

. - |

AN



* |

| o
Smce C is the Zero level of the momentum- map Jp for the Hamiltonian actlon of

GS(P)o in P, it is natural to define the reduced phase space. P as the space of GS(P)g

orb1ts in C, l

P = C/GS(P) . (4.1)
‘We denote by p : C — P the canonical pro;ectlon associating to each point p € C the

. GS(P)g orbit through p. Since C is a submanifold of P, and the action of GS(P)p in Pis -

free and proper, the characterization of Theorem 4 xof [16] literally applies the case under
consideration with the normal subalgebra h C g bemg the trivial algebra {0}. This implies
the following theorem, which is analogous to the results of Mitter and Vialet obtained
under different assumptlons [26] : , |

- \
Theorem 4.2 ' g

P is a smooth mamfold and the prOJectron map p:C —Pisa submersion. The
restrictions to C.of the forms ¢ and w on P push forward to P, giving rise to forms 6
and @ such that - ‘ o
| . 7 v
fiIC=7"0 .and w|C=n - (4.2)
‘Moreover w = dé and w is weakly symplectlc. \ '
The full gauge symmetry group G'S (P) preservels the constraint set C, so one could
consider the space of GS(P) orbits in C as a candidate for the reduced phase space. This.
choice would not be as natural as the one we made, since the conserved quantities Jo
corresponding to.constant maps ¢ : R3 — g need not vanish. Conceptually, dividing C
by GS(P) would be analogous to dividing C by all the symmetries of the theory including
translations and rotations in IR . Moreover, the actlon of GS(P) need not be free and the
space C / GS(P) need not be a manifold. 1 ‘ ‘ '

5. Dynamical variables | | ‘

The most commonly discussed dynamical varrables in Yang-Mills theory are energy,’
hnear momenta and colour charges. They correspond to time translations, Euclidean mo-
tions in JR3 and gauge transformations, respectively. \ -

- The time evolution'in P is GS (P)O invariant, and it 1nduces a l-parameter group of
dlffeomorphlsms of the reduced phase space space P. The modified evolution equations in -
P are GS(P)y invariant and Hamiltonian on the constralnt set C. The Hamiltonian H,

- given by (1.31) is GS(P)o invariant, and it pushes forward to a function H on P such that

H(p(A, E’w),):/ ;(E E+B- B)—i—\IIT'yO[fy\’“(zak+Ak)+m]\Ifd3x ~ (5.1)
. R3

. 1 .
The time evolution 1nduces al- parameter group of symplectomorphlsms of (P,®) gener-
ated by H. \ -

|
\

8 b




Since GS (Po. is a normal subgroup of GS’(P)I,, the quotienr grouo'
: Colour(P) = GS(P .r/GS'( P)o ‘ _ (5.2)
~acts in P. Prop051t10n 3.2 1mphes that its Lie alge'tl)ra is 1somorph1c to g, that is

colour(P) = gs(P )/gs(P)o ~ - " (5:3)

The action is Hamiltonian w1th the momentum map J P = colour(P)* such that,

- J¢|C J[ﬂ op where ¢e [é] Therefore, for each [E] € colour(P) and each p € P,

Ja@=ke, O

, g - :
where C € [¢] is the physical colour charge labeled by [¢] € colour(P) in the classical state
pEp” Y(p ) Eq. (1. 25) implies that o o . . ' : '
- . o
. | ' . .y
- J[s](p(A, B¥) = - | nE¢as veeld (53)
' Js. o .
- Using Stokes’ Theorem and the constraint equatron we can rewrite the expression for the
colour charge as a volume integral : L

| ,
T (ol B, 9) = /B (-E-Da¢ +-‘}I'T¢_\v)d3a: veeld (5.6)
| '-
Tt is the same expression as (1.18). The mtegrand on the right hand side depends on the °
. choice of ¢ € [£]. However, due to the constraint equatlon (1.7), the mtegral depends only
" on the class [€] € colour(P). _ \

The express1on (5.1) for the Hamlltoman is given by an 1ntegra1 over IR® in which
the integrands are GS(P)o invariant local functions -of the fields. The same holds for the
expressions for the linear momenta. Hence, these integrands push forward to functlons
on the reduced phase space P describing physically observable quantities, namely energy
density and the linear momentum density. Since they are given by local functions of the
field variables, they satisfy local Poisson bracket relatlons

. Itis temptlng to consider the integrand on the rlght hand side of (5. 6) as a functlon
Gl P—»LI(IR ) such that O

~

] - :
d(p(A,E, 7)) = —B- DA£+\I!T§\I! BN Ay

descrlbes the physical den51ty of the colour charge labeled by [€] in the classical state

p(A,E, ¥). For §(p(A,E, ¥)) to be well defined it should be independent of the choice of
(A, E, ¥) in the GS(P)g orbit p(A, E, ¥) and of the choice of ¢ € [¢]. The right hand side
of (5. 7) depends on these choices, but it is invariant under the joint action of GS(P)o in
the orbit p(A, E, ¥) and in the coset [¢]. Hence q(p(A E, ¥)) is well defined only if (is a_
function of (A,E, T), ,

l‘
sz[ﬁl(A’E’\Il)a\

L
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o
which intertwines the action of GS(P)O in the orb1t p(A E, \If) and the adJomt action in
- [€]- In [11] we have shown 1

‘Lemma 5.1 ' o

| _
A function f g : C — ¢ which mtertwmes the action of GS (P)o in the orbit

p(A,E, ¥) and the adjoint action in [¢], that is
\

¢ fig(A,E, 0)p = f[51(¢‘1A¢+¢“ grad ¢, 9™ 'Eg, o) (5.8)

for every ¢ € GS(P)o, can locally depend on the fields (A E, \Il) only if [¢] is in the

centre of colour(P) 1

If [£] is not in the centre of colour( ), then e\}ery choice of fig : C — [€ dep'ends
in a non-local way on the fields (A, E, ¥). In this case the corresponding colour charge
density gj¢) -depends also non-locally on (A, E, ¥). Hence upon quantization, which maps
the Poisson brackets to the commutation relations up to local Schwinger terms, the corre-
sponding quantum operator cannot be consxdered an local observable since 1t would violate -
the locality axiom of field theory. o ‘

.. The above argument does not prevent: observable colour charge density operators for )
[€] in the centre of colour(P), if we choose f[ﬂ depending locally on (A, E, ¥). Actually,
the only such choice i isa constant map, that is ¢ = f[g](A E, ¥) independent of (A,E, ).
Moreover, by (5.3), ¢ € [¢] implies that ¢ is a constant map from.JR3 to g, and it follows
that the value of ¢ is in the centre of q7 In this case, for every Yang—\/hlls potential A,

\

DAC—O . - (59)
\ : B

and . v , ' ' 11 o
Wasm =i )
.- | ) : N

is the usual expression for the charge density of the matter fields. This suggests that the

- phenomenon analogous to the confinement of non-central colour charges appears already

on the classical level, {11]. t

\
S
\

Appendlx Aikawa’s decomp051t10n and estlmates for Beppo Levi spaces

Let S denote the Schwarz space of vector valued smooth fast falhng distributions on
IR®. The Fourier transformation X + F(X) is a homeomorphism from S to S which
extends to a unitary map from L*(IR 3) to L2(IR3). Gi\l./en a vector field X € S, we write
X=7F (X) and split this field into . o '

X=XL+XT | " (4.1)

20 _\l,




- 'BLl(LQ(R?’ V) is topologlzed by the norm 5

i M A

A A

S '~ o
(XE(R)); = ﬁ Zkixg&(k:)f | | (A.2)
v S S o ’ :
s S kikiNe , o | |
(XT(0); = 3 (85 = o) Kelh) (A3)
’ =1 R .
The Helmholtz decomposition X = XL 4+XT is deﬁn‘Fd via inverse Fourier transformation
| XL=FYXY) cand  XT=rF'&T). (A4) -
) ) o . .
Since |XL( )| < |X( )| we can estimate . .
X = / (1 + [kf*)"1X |dsk < / (L4 [Bf2)" Rldsk = | X[l ,  (A5)
and similarly | S | . | \
S XTI <X S )
- Furthermore : | , : 5
F(divX)=> kXi(k) andi F curlX Z e”lk X ( C(AT)
- i=1 ’ : - ,] =1 : p

\..

This shows that X% and X7 are uni’quely determinedlby divX and éurlX, respeé'tiVely. _

. Let BL{(L%*(IR3,V)) be the first Beppb Levi‘s\pace of -distributions with values
in a normed vector space 'V which have a square integrable gradlent [12]. The space

1

lgls: #/19 |g|d3x+ IIgradglle s (A8
a 1 ' .
Lemma Al ' - 1 :
The space BLl(L2(R3 )) has a direct sum decompos1t10n (Alkawa [13]
\ _ ‘
‘ BLy(L¥(R3,V)) = BioV T (A9)

where V is considered as the space of consta.nt fupctlons from R® to V and By is
the closure of the space C§° (R3 V') of smooth compactly supported functions in the
topology of BL1(L2(IR3,V)) glven by the norm. (Aw 8). Moreover

: _ - t

. ’BO:HI(R{V)" . \

|
\
|




Proof. ' : o . ' ‘
Given f € BLl(L2(R3 V), let'fn. be a sequehce in with grad f, € CP(R3, V) c S

" such that

||gradfn . gradeLzl—»O o B (A.10)

a ertmg Y = grad s the Helmholtz decomposrtlon 1mphes that Y, Y , and by (A.2)"

<?j<k))n=‘|—kl'—22k<?]<k>) (A1)

l

Since (Y(k)) € S we can perform a Taylor expansmn at k =0. Wlth Eq. (A.11) we obtain |

(?;-(k)) =t ks + (k) o (4.12)

P

where the sequence b, of Taylor coefﬁments is Cauchy, since the. sequence Y convergeo in

the L? norm. Hence the sequence |

) T 1 L
:k_z ](k S ‘(A.13)
=1

/1s umformly bounded by a Cauchy sequence dn in'a neighborhood of k¥ = 0, that is
A (k)] < d, for |k| < e. By an inverse Fourier transformatlon of hn(k) we define

hy 1= F~ (hn(k))ﬁ. I | (A.14) .

'Denotingv by B. the ball of radius € < 1 in k-Space we \\get
Il = [+ WOB@PGE

l

| 1 . \
<@ [ arkPiaks (1+3) [ kPRaDPdk

R3\B

~3or 1 C T . (A4.15)
T 2 L v 27 1 -

< — ,
s =) [ e wask
5 . 327 _ ' !

sl (14 ) lsrad falie -

|

Th1s 1mphes that h, is a H 1 Cauchy sequence. Furthermore grad frn = grad hn, so that

fn = hn +cn with ¢, € V. By Eq. (A.10) implies that hp — hin HY(IR3,V) and ¢;, — ¢
inV. Therefore hn — h and ¢, — c in the topology of BLl(R , V), given by the norm
- (A.8), and hence f = h + c. This prove the Aikawa’s decomposition (A.9).

Moreover, by the argument above, h, — h also in the norm topology of H 1(R3 V). |

Since C{°(IR3,V) is dense, this proves that By(IR 3, V) HI(R3 vy, Q.E.D.
0 ' } PTO '
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Let the intersection of three Beppo Levi sp-ace‘s be denoted by

. BY(R®V):= (| BLa(L}R3,V)) ." o (A.16)
. : ) . . m=1 o : ' .
. o - o |
end topologized by the norm |
lellss = [ Jeldso + lrad €l S (a1
1 C ’
Poposition A.2 » o . |
_ The space B3(IR®, V) splits into \ ‘
33(r-'c3 V) H3(1R3 V)eav : (A1)

Moreover each f € 83(1R3 V) is continuous and contmuously dlfferentlable, and .
| v

Wlem <OMls (419
Proof. - ‘ | ' | |

T o LT Te N - o I A e AR

B

Intersecting the decomposition (A.9) Wrth the twol Beppo Lev1 spaces BLg(LQ(IR 3 V))ﬂ =

BL3(L* (R, V)) lmphes that : \ | _
| f=fotcs | where . - foe Hs(ﬂ%\?’,V) and cy € V. ('A,.ZO_)

" This establishes the decomposition (A.18) algebraicé“lly. Sinee V is finite- dimensional it

is a split subspace, and its complement is closed. This establishes (A.18). The Sobolev |

imbedding theorem implies.that fo is continuous and contmuously differentiable. Therefore
33(1123 V) c CYIR?3, V). ‘ |

Moreover, the prOJectlons pry lS’3(JR3 V) - H3R®, V) and pry: B3(R3 V) -V
'~ are continuous. Together with the Sobolev embeddmg\theorem this 1mphes that

I£lls> 2 Cllprafln +rofl) = (o= +ler) = Clfo+eslim (A2)
This prove the estimate (A.19). : o ' QED

Lemma A.3 ' ‘ \ - .
"Let f and g be maps from R® to normed vector spaces, and f e g any pointwise

mult1phcat1on thh values in a normed vector spaoe If feB3(IR3, V) then

1

uf-gnm<cluf||saug||ag. Vgeiﬂl(_ms,w),_ C(A)
If ellam < Collflmliglin Vg€ HARALW), - (428)

| : °
Ifogls < Callfllssligss Vg€ BARSW). (A24)

l

|




" References : ¢ ’ : ‘

o

Proof. 7 ' o L

l ' '
Since f € 33(R3 V) 1mphes that || f||z is ﬁmte, it is obv1ous that

If o glize < fllz=llgllzs Vg e R W). (A.25)
Wlth an approprlately deﬁned pointwise product e on the right hand side we have |

grad (f *g) = grad(f) °g+f°grad( ) : (A.26)
For fe 33(R3 V) the Cauchy—Schwarz inequality and (A. 25) imply that

~ lgrad (f e g)llz2 < ngadem”gHLz + l|f||L°°l|g1‘adg||L2 .- (A.27)
‘and hence by (A. 19) o ) l

If e glla < ||f”L°°”g”L2 + llgrad fl|z2[lgllz= + llflILwllgradglle < Cl||f||83l|9|lH1
|

This proves (A.22) leferentlatlng (A.26), we get |

l

Dgrad(feg) = Dgra.d(f)og+2gra.d(f) grad(g)+f Dgrad() (A.28)

As above feB(R?, V) implies that : 1 :

|Dgrad(f e Q)HL2 < IID gradfllellglle +2 llgrad fllmllgradgllm '
: | +|If||L°°I|Dgrad9|IL2 -

Therefore by (A 22) and (A 19) : - L !

l

I 2ol < Cullelglan +2lgrad flln bl + 1 le=lolln (430

Wthh implies (A.23). Flnally the estimates given above yleld

Il feglls: < llf.llLoo/ |g|d3r+|lfI|Lwllgradgllm +||@||Lwl|gradf|IHz' R
' ) B, o (A.31)
| + 2llgmd fllmllgradgllm :
Since ||fllz= < C||fllge this proves (A.24). L QED.
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