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Symmetric'Properties in Linear Programming Problems

Werner OETTLI and Maretsugu YAMASAKI

Let X and X be real linear spaces which are in duality with respect to a
- bilinear functional (-, ) Likewise let Y and Y be real linear spaces which are in
duality with respect to another bilinear functional, for simplicity also denoted by
(-,-). We assume that the topologies on X,X and Y,Y are such that X* = X,
X*=X,Y"=Y,Y*=Y. Let A: X — Y be # continuous linear mapping.
The adjoint A* : Y — X is determined by thé relation (A*y,z) := (Az,y) for
all z € X, y € Y. We require that A* is continuous and (A*)* = A. For any

nonvoid closed convex cone @ C X we denote by ot the polar cone of a, i.e.,
ot = {€ € X| (£,z) > 0for all z € a}.

According to the bipolar theorem, (a*)* = «. Furthermore if oy C a3, then
af Caf,andifz € @, z #0,and £ € int oF, then (£,2) > 0. Likewise for any

nonvoid closed convex cone B CY we denote by ﬁ"'v the polar cone of 3, i.e.,
Bt :={ne¥|(ny)>0foralye f}.

. The same comments as for at apply.

Let P C X be a fixed nonvoid closed convex cone with int P* # @. Let
@ C Y be a fixed nonvoid closed convex cone with int QFf # 0. Let P be a
family of nonvoid closed convex cones « C P with o # {0}, and let @ be a family

of nonvoid closed convex cones 8 C Q with § # {0}. Finally let f € int P* and

g € int QF be given. For « € P, § € Q we consider the following mathematical

programming problems:

(1) M(a,f):=sup {(f,2)] 2 € o, Az +g € B*},

(2) M(a,B) :=sup {{g,¥)| y€ B, A"y + fea*}.
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We remark that problems (1) and (2) are not dual to each other in the usual

linear programming sense. Rather, the standard dual of (1) is given by

(3) M*(a,B):=inf {{(g,y)| y € 8, A"y + f€ —a™},

and the standard dual of (2) is given by
(4) M*(a,8) :=inf {{f,z)| z € a, Az +g€ -FT}.
Let us deﬁn;e
M(P,Q):=sup {M(e,8)| € P, B € Q},
M(P,Q):=sup {M(a,8)| a € P, §€Q}.
We shall study the symmetric property M(P,Q) = M(’P, Q).

Lemma 1. M(a,8) > 0 and M(a,8)>0 forallaeP,BE Q.
- Proof: Let # € a, # # 0. Since g € int QT C int B+ we can choose A > 0

so small that AAZ + g € B1. Set 2o := AZ. Then ¢ satisfies the constraints of -

(1), and from z¢ € @, 29 # 0, f € int P C int a* follows (f,zo) > 0. Thus

M(a,3) > 0. A symmetric argument shows M(a,ﬁ) > 0. g.e.d.

We introduce several conditions:

(Al)Forallae P,ifz €a, 2 #£0, £ € —a+,> (£,z) = 0, then there exists

& € P such that £ € a*.

(A2) Forall € Q, iy €B, y#0, ne —F%, (ny) =0, then there exists

B € Q such that 7 € g+,
Condition (A.1) will be satisfied in particular, if P contains all cones of the type
a(T) = {AE| A > 0} with T € P, T # 0. Indeed, in this case, if z and € obey
the hypothesis of (A.1), then with & := a(z) we have & € P and £ € at, as
requested. Likewise condition (A.2) will be satisfied, if Q contains all cones of
the type (%) := {AJl A > 0} with 5 € @, T # 0.
(B.1) For all @ € P, B € Q the duality theorem holds for (1) and (3), i.e., the
linear programming problems (1) and (3) have optimal solutions, and

the optimal values M(a,8) and M*(«,3) are equal.
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(B.2) Forall @ € P, B € Q the duality theorem holds for (2) and (4), i.e., the
linear programming problems (2) and (4) have optimal solutions, and
the optimal values M(a,3) and M*(e,() are equal. |

Couditions (B.1) and (B.2) will be discussed below.

v

equality M(P,Q) = M(P,Q) holds.
Proof: Let « € P, 3 € Q. Then from (B.1) problem (1) has an optimal

Theorem 1. If conditions (A.1), (A.2), (B.1), (B.2) are fulfilled, then the

solution Z, problem (3) has an optimal solution ¥, and
(f:7) = M(ef) = M (e, ) = (9.7)

From Lemma 1 follows Z # 0. From the constraints of (1) and (3) follows
(f,7) £ —(A"3,%) = —(4Z,9) < (9,7

Combined with (f,%) = (g,7) this-gives (A*y + f,Z) = 0. SinceT € o, T # 0
and A" + f € —at, it follows from (A.1) that A*y + f € & for some & € P.

From this and 7 € B follows

M(a,B) = {g,7) <sup {{9,9)| y€ B, A"y + f € &*}
= M(&B) < M(P,Q).

Hence M(P,Q) < M(P,Q). A symmetric argument, using (A.2) and (B.2), gives
M(P,Q) < M(P,Q). Therefore M(P,Q) = M(P,Q). g.e.d.

Now we look for a condition which ensures that (B.1) and (B.2) are satisfied

simultaneously.
Lemma 2. The following conditions are equivalent:

(C.1) A*ye int (-PT) forallye @, y #0;

(C.2) | Az € int (-QT) forallz e P,z #0.
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Proof: Because of symmetry it suffices to show that (C.2) implies (C.1).
Let (C.2) hold. Assume, for contradiction, that there exists ¥y € Q, y# 0 with
A™y ¢ int (= PT). Then from the separation theorem for convex sets there exists

z € (X*)* =X, z #0, such that
(z,A*y) > 0> (2,6) forall £ € —P+,

This implies (Az,y) > 0 and z € (P*)* = P. But from (C.2) follows then
Az € int (-Q1), and therefore (Az,y) < 0, a contradiction. g.e.d.

Theorem 2. Let (C.1) or (C.2) hold. Then both conditions (B.1) and (B.2)
are salisfied. _

Proof: From Lemma 2 we may assume that both (C.1) and (C.2) are satisfied.
Let @€ P, # € Q. a) Choose zg := 0. Then zy € o and Azg + g = g € int QF.
Now choose § € 3, § # 0. Then § € Q, and by (C.1), A*§+ U C int (—P7) for
some neighborhood U of the origin. Choose A > 0 so large that f € AU, and set
Yo := Ay. Then yg € B and A*yo+ f € AA*§+ AU C int (—=P*). Since P* C ot
and Qt C B* we have altogether obtained g,y such that A

To €, Azg+ g € int ,8"',

Yo €6, ATy + f € int (=at).
These are the regularity conditions which ensure that the duality theorem holds
for (1) and (3) - see [2, p. 164], [3]. Hence (B.1) is satisfied. b) Using (C.2)

instead of (C.1) we obtain yy and zy such that
yOE/Ba A*y0+f€ int C¥+,

To €@, Azrg+g€ int (-47).

These are the regularity conditions which ensure that the duality theorem holds

for (2) and (4). Hence (B.2) is satisfied . q.e.d.

We turn now to the situation where ¥ = X, ¥ = X, so that A : X — X

and A* : X — X. Instead of simply specializing the previous results we consider
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a somewhat different problem. From now on let P be a family of nonvoid closed
convex cones @ C X. Let f € X, g € X be given arbitrarily. For all & € P we

~ consider the problems

(5) - L(a):=sup {(f,z)| s € @, Az +g € o'},

(6) L(e):=sup {(g,y)] y € a, A"y + f e a™}.

The linear programming dual of (5) is given by

(7) | L*(a):=inf {{g,y)l y €@, A"y + [ € —a™},
and the linear programming dual of (6) is givén by

(8) L*(e):=inf {(f,z)|z€a, Az+gE€ ~at}.
We define

(9) L(P) := sup {L(a)] a € P},

(10) » E(’P) = sup {z(a)l a € P},

and we want to establish the equality L(P) = L(P). We require the following
conditions:
(D) For all @ € P and all z € a there exists @ € P such that z € & C «
and, whenever £ € —a* and (£,2) = 0, then £ € a*.
(E) For all & € P with L(a) > —co the duality theorem holds for (5) and
(7), and for all @ € P with L(a) > —50 the duality theorem holds for
(6) and (8).
(F') The suprema occﬁring in (9) and (10) are finite, and are assumed some-
where on P.

Now we have:
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Theorem 3. Let conditions (D), (E), (F) be satisfied. Then L(P)= L(P).

Proof: In accordance with condition (F) let oy € P be optimal for L(P),
so that L(P) = L(ay). In accordance with condition (E) let T be optimal for
L{ay), so that L(a;) = (f,Z). Given z := T and a := oy fix & in accordance
with condition (D). Then T € @ C ;. From the constraints of L(c;) one has
AT 4+ g € of C &*. Thus 7 satisfies also the constraints of L(&), and therefore
(f,7) < L(&). But since L(P) = (f,T) it follows that (f,Z) = L(&), and 7 is also
optimal for L(&). In accordance with condition (E) let 7 be optimal f'ox' the dual

L*(&), so that

Then A*T+ f € —a™, and as in the proof of Theorem 1 follows (A7 + f,Z) = 0.
From condition (D) follows A*y + f € a™. Consequently Y satisfies also the
constraints of L(&), and therefore (g,7) < L(@) < z;(’P) Since L(P) = (g,7) it
follows L(P) < L(P). A symmmetric argument gives L(P) < L(P). Hence the

claimed equality is true. q.e.d.

Let us discuss condition (D). It is satisfied for instance, if « C P forall « € P

and P contains all cones of the type a(Z) := {AT| A > 0}, T € P, where P C X
is a given nonvoid closed convex cone. Indeed, if z € « for some o € P, then
choosing & := «(z) one hasa € P,z €acC a, and if (£,2) = 0, then £ € at

(z = 0 is permitted here since @ = {0} is not excluded). Hence (D) is satisfied.

Another situation where (D) is satisfied is the following. Let K be a finite
set and X := RX, P be the family of all coneé of the type d(A) = {z €
R\ z; Z. Oforalli € A, z; = Oforalli € K \ A}, where A runs overall
subsets of K. Then (a(A))* = {y € RX| y; > 0foralli € A}. Forz € R

let supp z := {1 € K| z; > 0}. Now il z € a(A), then choosing & := a(supp z)

we have & € P and z € @ C a(A). Moreover, if £ € —at and (£,z) = 0, then
& = 0 for all i € supp z, hence £ € @t : (D) is satisfied. In this situation the

6



conclusion of Theorem 3 is equivalent with
sup {(f,2)] z € RE, (Az+ ¢); > 0 forall i € supp z}
=sup {(g.9)l y € R, (Ay + f); > 0 for all j € supp y},
provided that both suprema are finite and are assumed. An infinite-dimensional
analog of this result with K a compact Hausdorff space and z,y Radon measures

over K, has been given by Ohtsuka [4], and motivated the present investigation.
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