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ABSTRACT

Among the foundations of continuum mechanics is the description of constitutive
forces in terms of a symmetric tensor. Noll showed that this is a consequence of the
axiom of material frame indifference [Nol,Tru], what in turn means a local invariance of
the system under the Euklidean group. Here we will prove that the assumption of locality
in this axiom is redundant to obtain the same result. We model a non-local system by
means of a virtual work [AnOs,EpSe]. Under the global demand that this functional does
not respond on rigid infintesimal motions, we show the existance of a symmetric stress
tensor as a local result. As the mathematical tool for the localization we use the Hodge
theory on manifolds with boundary.




1. Introduction

By means of differential geometric methods several progress has been made in the field
of continuum mechanics within in the last two decades, cf. [AMR,Mar] and references
therein. The purpose of this paper is to use this framework to study. the symmetry under
the Euklidean group of rigid motions and its consequences for the tensorial description of
a system.

To formulate kinematics in continuum mechanics, we use the embeddings of a Riemannian
manifold B into the R™ as ambient space, where B describes a material body, cf. [HuMa].

We denote by E(B, R"™) the set of all embeddings, J s B — R™, which itself carries the
structure of an infinite-dimensional manifold. In the classical notation such J is also called
a placement of the body and an element A € T;E(B, R"™) of the tangent space is referred
to as a virtual displacements. In this setting dynamics means to formulate continuum
mechanics in terms of curves J(t) of embeddings. To explore the geometrical structure of
the theory, however, we restrict ourselves to statics.

In order to formulate the balance laws for the system, we investigate the principle of virtual
work [Hel,AnOs] in the geometric formulation of [EpSe] : They introduce the virtual work
at the configuration J as a linear functional Fy on TyE(B,IR"™). The work done to the
system by some virtual displacement A then is given by its evaluation on that functional,
i.e. by F7(A), and the content of the (static) principle of virtual work is to demand :

J € E(B,IR") is an equilibrium configuration & F;(A) = 0 for all A € T;E(B, R™).

This. form of the virtual work principle is general enough to include a description of all
possible force fields affecting the body : The constitutive and external forces as well as
tractions on the boundary. Denoting by <, >pg» the scalar product on IR™ we may write
under considerable functional analytic restrictions

f;(A)=/<<I>““(J),A >Rn u3+/<¢J-,A >Rn u3+/<<pJ,A >grn ps (1.1)
B B , o8B

where 1 ; and ¢ ; stand for the external body and boundary force, respectively. The primer
integral describes the constitutive part of the virtual work, where the internal force field
®'nt(J) may have a general non-linear and non-local constitutive dependence on J. As a
special case (1.1) includes the description of hyperelasticity, where the equations of contin-
uum mechanics can be derived from a local energy functional or a Lagrangian [HuMa,TrTo].
Proceeding from the virtual work functional F; we will investigate the effect of infinites-
imal rigid motions on the equations of continuum mechanics : As a matter of experience
we observe that at least a part of F; vanishes on all virtual displacements, which are
infinitesimal motions of the whole body in IR™. To formalize this idea we introduce Lie
algebra e(n) of the Euclidean group describing all rigid translations and rotations in the
ambient space IR ". The action of some g(, c) € e(n) on an configuration J € E(B R™)is

given as




9 o)ld] = C-(J +2) (1.2)

where C € so(n) is a constant anti-symmetric matrix, z € IR™ and the multiplication and
addition act pointwise. We now call F to be e(n)-invariant, iff v

o Fi(9(z,0)[J]) =0 Yg(:,c) € e(n) . (1.3).

Considering the classical approach to continuum mechanics [Tru], the concept of an e(n)-
invariant virtual work seems to be closely related to Noll’s axiom of material frame indif-
ference of working. Originally posed in terms of the mechanical power of a motion, this
axiom is equivalent to the demand that no work is done against any virtual displacement,
which is a rigid e(n)-action restricted to an arbitrary subbody. This means

/ < (@™(T)+ 1), 9¢,0)[I] >R 4B =0 Vg(z ) € e(n) (1.4)
J - SO

- for any U C B. We observe that this is a local demand, in contrast to (1.3), where only
the integral over the whole body B has the desired property.

Noll’s celebrate result {Nol,Tru] is to prove the existence of a symmetric stress tensor from
the local assumption (1.4). The central result of this paper is to show that the locality is
redundant for the existence of a symmetric stress tensor, but it suffies to start with the
weaker global demand (1.3) on the virtual work F;. '

After formalizing these ideas in section 2 we introduce in section 3 vector-valued differential
form, needed as a technical tool for the proof. These forms may alternatively be considered
“as two-point tensors, well know in continuum mechanics [Eri,HuMa], e.g. to describe the
deformation gradient or the 1°* Piola-Kirchhoff tensor. The motivation for using differential
forms instead of tensor calculus lies in the fact that there is a Hodge theory, which serves
as powerful tool for solving boundary value problems. Generalizing some classical results
[Mo056,62] we derive a lemma concerning special boundary value problem for vector-valued
differential forms.

In section 4 we then prove the tensorial character of the stress from the global demand
of invariance of virtual work under infinitesimal rigid translations, which is a consequence
of (1.3). To do so we need the solution of a Neumann problem for an IR"-valued one
form, which becomes the 1°* Piola-Kirchhoff tensor. Performing a Piola transformation in
section 5 we then derive the weak form of Cauchy’s equation for the coresponding stress
tensor from the principle of virtual work (1.1). We observe that this tensor is not uniquely
determined from the F, but it owns a gauge freedom.

In section 6 we will solve another boundary value problem to show the existence of a
symmetric stress tensor from the physical demand of invariance of the virtual work under
rigid rotations. By Noll’s theorem the existence of a symmetric stress tensor is equivalent
to the local demand (1.3) of frame indifference. Hence the use of Hodge theory, required
for our proof, may be considered as a localization of the global invariance. Finally we can
prove a theorem, splitting any given F into a constant total force and a constant torque,
plus a term describing deformation forces via a symmetric stress tensor.




2. The Virtual Work and the Euklidean Group in Continuum Mechanics

In this paper we will describe mechanical properties of a continuous medium in terms of
embeddings of a Riemannian manifold, as presented e.g. in [HuMa]. For the physical space,
i.e. the ambient space of the embeddings, we take the Euclidean IR"; a generalization to
other ambient manifolds is possible, but requires more effort [BiFi]. To fix the notation we
introduce the following definitions :

By a body B we mean a compact orientable Riemannian C*-manifold with boundary,
where the dimension dim B < n. We denote by G the Riemannian metric on B, by N the
(outward pointing) unite normal field on the boundary 0B C B and have the Riemannian
volume elements pg on B and ps = ixps on OB. Points of B are refered to as material
points; they manifest themselves by their configurations in the ambient physical space
R™. By a configuration (or placement) of the body B we then mean a C*-embedding
J:B— R" and call

E(B,R™):={J:B— R"|J isa C*— embedding } (2.1)

the configuration space of the system. Althoﬁg’h";fdfiigfnboth configurations are important
we restrict our interest to C*-embeddings with k > 2 or k = co. The set E(B,R"™) carries
the structure of an infinite dimensional:manifold with

TEB,R")={A:B— TR"|A isa C*— map, Igr~oA€ E(B,R")} (2.2)

as tangent bundle [BSF,Mar]. A point in that bundle i.e.some A € TyE(B,IR"), is called
a virtual displacement of the configuration J.

- In order to formulate the balance laws we start with the principle of virtual work [AnOs],
first introduced in continuum mechanics as d’Alamberts principle by Hellinger [Hel]. The
appropriate version of that principle in the framework of (the infinite-dimensional manifold)
E(B,IR™) as configuration space of a system is due to Epstein and Segev [EpSe]. They

- generalized the notion of classical mechanics [Arn] in a straightforward way calling an
element F; € T3E(B,IR™) a generalized force affecting the configuration J. The work
done to the system under the action of a virtual displacement A € T;E(B,IR") is given
as the evaluation of F; on that displacement, i.e. by the value F;(A).

On this general level, where the co-vector ;5 € T7E(B,IR"™) describes all physical force
fields attaching the body, i.e. the constitutive and external forces as well as tractions on
the boundary, we formulate the principle of virtual work (for a static problem) as

J € E(B,IR"™) is an equilibrium configuration < Fj(A) =0 forall A € T;E(B,R").

In principle it is possible to solve the weak boundary value problem of elastostatics by
searching for equilibrium solutions in the above sense. For practical applications, or even for
structural investigations, however, this approach is too abstract; the notion of a generalized
force requires a refinement. Therefore we restrict the infinite-dimensional co-tangent space
T3E(B,R™) to the space of co-vectors having a special L?-representation on the bounded
manifold B, i.e. to those linear functionals F; : T;E(B,IR") — IR which are realized in
the form

[




fJ(A)=/<<I‘int(J),A >R ,us+/<1/1J,A >Rn u3+/<¢J,A >mr» po (2.3).
B o B o8B

- Here <,>pgn is the Euclidean scalar product on IR"™. Physically the functions ¢; €
Ck(B; R")and ¢;€C k(8B; R™) are understood to characterize the external force den-
sity affecting body and the traction force density on its boundary in the conﬁguratlon
J, respectively. The primer integral then describes the effect of the funbalanced) inter-
nal forces, associated to the configuration J on the virtual displacement A; its density
dint(J) € C*¥(B;R") is given from the constitutive laws of the material. To determine
the constitutive function of a system means in this context to describe the internal force
density by a (Frechet-)smooth map

3" . E(B,R") — C*B;R™) (2.4).

The virtual work (2.3) is a very general one, since the linear functional F; encodes all
information about the constitutive nature of the body as well as the external and boundary
forces. Furthermore it allows for an arbitrary non- local and non-linear constitutive behavior
of the material under consideration. A different constitutive behavior of the boundary
material can also be described by adding an appropriate extra term in (2.3). To impose
boundary conditions of placement, however, one has to modify the configuration space
E(B,R"™). We remark that any hyperelastic model [HuMa,TrTu], where the balance laws
are derived from a local energy functional £ (or a Lagrangian), appears as a specialization
of the description of continuum mechanics in terms of a virtual work. In such a case
the virtual work will be given as the (Frechet derivative) D€ = F; with respect to the
configuration J.

Knowing the constitutive function ®!** and the external force densities 1y and ¢ ; explicitly,
the principle of virtual work can be used to determine the equilibrium solutions of the
system. As shown by [AnOs] the usual balance laws in continuum mechanics are equivalent
to this principle under some technical conditions. Also a description of dynamics might be
included into this framework [BSS,BiSc].

Proceeding from this we will study the effect of symmetries on the configuration space
E(B,R™) for the form of the balance laws in continuum mechanics. We are motivated for
doing so by considering classical field theories where symmetries cause the system to subject
conservation law, e.g. of momentum and angular momentum, via Noether’s theorem.

Here the symmetry group in question is the group of rigid changes of frame on R ", also
called the the Euklidean group E(n), which is the semi-direct product R" ®s S O(n), cf.
[Thi). An element g(,r) € E(n) is uniquely represented by a translation T' € R" and a
rotation R € SO(n) and its action on E(B, R") is 1nduced from its natural R "-action by

E(n)x E(B,R") — E(B,R")
(9er,m(J))(p) = R-(J(p)+T) Vpe€B

(2.5).
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The coresponding action of the Lie algebra e(n) is given by

e(n) x E(B,R") — E(B,R")
(90IN)P) = C-(J(P)+2) VpeB

where z € IR™ and C € so(n), is the space of all anti-symmetric n x n matrices, i.e. the
Lie algebra of SO(n). To characterize the behavior of a system in continuum mechanics
under the action of the Euklidean group we now set : '

(2.6)

Definition

The generalized force F; defines a one form F : TE(B,IR") — IR on the configuration
space, called the virtual work form, if the external and boundary force densities 17 and ¢
depend Frechet smooth on J. Splitting this form smoothly into F;(A) = F[J](A)+ F[J](A)
such that '

Fllgeol)=0  VICE(B,R™ Yguo celn)  (27)

the one form F : TE(B,R") — IR defines an e(n)-invariant part of the virtual work.
In considerable abuse of notation we also call F[J] an e(n)-invariant virtual work. If the

property (2.7) holds for the subgroup R™ C e(n) only we speak about an IR "-invariant

virtual work.

We remark that this does not define an infinitesimal E(n)-symmetry of the system, it
might, however, be understood as a constraint, coming from that symmetry [BiSc] by
using the momentum map technique [AbMa]. :

The notion of an e(n)-invariant virtual work F[J] will be fundamental to obtain a simplified
description of the balance laws. From a physical point of view it is obvious that the internal
interactions should not respond on infinitesimal rigid Euklidean motions of the body as
whole. Hence it is natural to postulate the constitutive part

FntJ](A) i= / < @(J),A >pn (2.8)
J |

of any virtual work functional F; to be e(n)-invariant. We remark, however, that beside
this natural splitting with respect to the internal and external interactions of the body
there are other ways to determine an e(n)-invariant part, cf. theorem 4 below. In the
general case an e(n)-invariant virtual work will be expressed in terms of two densities on

B and 0B, respectively, as

FLJ)(A) = / < B(J),A >R~ us + / < o(J),A >rn (2.9),
B oB

and obeys the crucial property to vanishes on all virtual displacement A = g(; ¢)[J], which
are rigid infinitesimal Euklidean motion. A nice feature of that concept is to permit an
explicit appearance of appropriate boundary terms in F[J], what may be of some interest
for applications.

il



Being familiar with the classical approach to continuum mechanics [Nol,Tru], the investi-
gation of e(n)-invariance seems to be closely related to Noll’s axiom of frame indifference
of working : Originally posed in terms of the mechanical power of a motion, this axiom is
in our notion equivalent to the demand

/ < ®(J),9¢:,0)lJ] >R 8 + / < @), 90Tl >rm pa =0 Vg(;c) € e(n) (2.10)
U oU

Yy .

for any configuration J € E(B, R"™) and any subbody U C B. Here ¢(J) describes a force
density on AU which is different from the surface force field ¢(J) on 0B in (2.9).

The crucial difference to the e(n)-invariance (2.7) of the virtual work is that (2.10) demands
an invariance to hold for any subbody U C B. Hence Noll’s frame indifference is of local
nature. For a general theory, describing also a non-local constitutive behavior of the system
this local axiom appears to be artificial and may also fail. To motivate it from physical
considerations requires some more arguments like postulating the cut principle of Euler
and Cauchy [Tru] or demanding only short distance interactions to have an effect [LaLi]..
However, these extra demands are far from being obvious for a real physical system, as
pointed out e.g. by [Krd).

Such problems were our motivation to replace Noll’s axiom by the (global) demand of an
e(n)-invariant virtual work, which is at least for the internal constitutive part F'™'[J] a
natural claim. Then we can prove :

Main Result

Let F[J] be an e(n)-invariant part (2.7) of the virtual work F; = F[J] + F[J] of some
system. Then F[J] can entirely be described in terms of a symmetric stress tensor A(J)
on B and the equations of elastostatics balance the dlvergence of the tensor A(J) and a

(force) densities caused by F[J ]

The crucial point here is that the global rigid condition (2.7) suffies to prove the existence
of a symmetric stress tensor. Under the stronger (local) assumption (2.10) the corespond-
ing result is known as Noll’s theorem [Tru]. Similar theorems have been derived by Green,
Rivelin and Naghdi [GrRi], who replaced the working axiom (2.10) by starting with an
E(n)-invariant energy functlonal E[J] € C=(B; R), what is again a local invariance de-
mand. :

The proof of our result is based on Hodge theory on manifolds with boundaries, which
makes it possible, to prove from the global demand (2.7), the existence of a symmetric
stress tensor as a local result. In this sense the cut principle of Euler and Cauchy, which
fills the gap between Noll’s local axiom and the global invariance demand in the physi-
~ cal argumentation, may be understood as a reflection of Hodge theory. Before doing the
constructions in detail we have to present some fundamental results of that theory for
manifolds with boundaries.



[

3. Vector-valued differential forms and Hodge Theory

Considering E(B, R™) as the configuration space of continuum mechanics, two-point ten-
sors over the body manifold B appear as natural objects [Eri]. Such tensors are the canonical
generalizations of vector fields over maps. Restricting the general definition [HuMa] to the

case of our interest we define a two-point tensor T of type 0 ), shortly denoted as a

r
‘e 01
(r,1)-type two-point tensor, at p € B over an embedding J € E(B,R") as a multilinear
map .
T: (TPB X ... X,TPB) XT:;(p)Rn — R (3.1).

~ 7
- .

r—times

One can think of such a tensor having r+1 legs, one on R™ and r on B. A remarkable
feature of the skew-symmetric (r,1)-type two-point tensors is to fit into the notion of
vector-valued differential forms. Those are defined for any Riemannian manifold M and

any finite dimensional vector space V by : ot e

Definition and Remark [GHV]

A V-valued differential form w € Q"(M; V) of degree r over a m-dimensional manifold M
is a smooth assignment of skew-symmetric r-linear maps to the points of M, where

v wp:STpr...prM2—>V VpeM , (3.2).

o

r—times

The algebra of all V-valued forms on M is denoted by Q(M;V) = @, @ (M; V).
There is a natural identification Q(M;V) = Q(M;R) ® V, such that the algebraic and
analytic structures on the algebra of usual (IR-valued) differential forms, carry over to
Q(M;V). In terms of a fixed scalar product <,>y that isomorphism can be given by
means of the pairing :

<<, >>: VRO (M;V) — Q(M;R) (3.3)
<< v,w >>(X1,..-Xr) = <v,w(Xy,...X;) >v V(X1,...X;)eI'TM e
. Fundamental quantities in continuum mechanics as the deformation gradient or the 1
Piola-Kirchhoff tensor, are described by (1,1)-type two-point tensors on the body manifold
and hence can also be considered as IR "-valued one forms on B. The use of vector-valued
forms instead of the well known tensor language is motivated by the fact that the Hodge
theory on the algebra of differential forms is a useful tools to solve boundary value problems
on Riemannian manifolds, cf. [EbMa]. Thus the idea is to formulate problems in continuum

mechanics in terms of V-valued forms w € Q(M;V) with M = B and V = R" and use

results from Hodge theory instead of solving those directly by tensor calculus.
To do so we introduce, in view of (3.3), the exterior derivative

d: Q" (M; V) — QHY(M; V)

(3.4)
<< v, dw >> = d << v,w>> YVveV

7



where d is the exterior derivative on the algebra Q(M, R) of real-valued forms. Similarly
the Hodge *-operator on (M, IR ) induces an operator

*: QI (M;V) — QT (M; V)

<LV, *w D> 1= x <LK v,w D>> YVveV
and we can define by § := (=1)™"*! x dx the co-differential § : Q"*}(M; V) — Q"(M; V).
Like the co-differential on Q(M, R) this yields a nilpotent operator obeying §2 = 0 on

Q(M; V). With G denoting the Riemannian metric on M each a one form w € QY M;V)
induces tensor w! € TM ® V by

(3.5)

Gu(Y, <o >v) i=<<wvw>>(Y) VY EILTM VoeV (3.6).

Then the co-differential coresponds to the divergence [AMR] by éw = —divw!. In general-
ization of that property, the action of § on Q7(M;V) can be expressed [Mat] by means of
a local Gps-orthonormal frame {E;,... E,} on TM as

m

(6w)(Xi1y... Xr) = = > (VE,w)(Er, X1,... Xr) with Xi,... X, €TTM  (3.7)

k=1

where V is the Levi-Civita connection. Furthermore each space Q7(M; V') is equipped with
a Riemannian structure, induced from the scalar product <, >y and the metric Gum by

<, > Q(M; V) x Q(M; V) — Q°(M; R)

“ 3.8),
< w,n >qr = Z <w(Ejl,...,E'jr),n(Ejl,...,Ej,_)>V . (3.8)

1< <...<Jr

~ where the fields E;, run through a local orthonormal frame on TM. This definition is
frame independent, it yields for r = 0 the scalar product <,>y and generalizes to the
usual inner product w A *n =< w,n >qr pym on Q"(M; R ). With that product the space
Q7(M;V) can be furnished with the structure of the Sobolev space H 1Q7(M; V), given as
the completion of the space of smooth forms w € Q"(M; V) with respect to the norm

lwl? = /(< w,w >gr + < dw,dw >Qr+1)uM (3.9).
M

In the Sobolev space of H'-forms over M the operators § and d are adjoint to each other
up to a boundary term, i.e. for any pair of w € H'Q)(M;V) and n € H'Q°(M; V') we have

/ <w,dn>q1 pm = / < bw,np >q0 pm + / < w(N),n >q0 pa (3.10),
M M oM :

which is a consequence of the Stokes theorem. By taking 7 to be constant this also yields
the GauB theorem in terms of differential forms.

g

ot
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Now we have introduced all structures, necessary to face the question of solving boundéry
value problems by means of Hodge theory. The Sobolev space HQ"(M;V) carries the
same topology as the one, used in the book of Morrey [Mo062], and we get :

Theorem 1

) Lhet‘ M be a compact Riemannian C*-manifold with boundary, and let A denote the
" (outward pointing) unite normal field on M C M. '
a) Fer any function ¥ € H'Q% M;V), there is a decomposition

¥ =6By +cw (3.11)

where By € H'Q'(M; V) is a one form obeying By(N) = 0 and cy € V is a constant.
If ¥ € C*~2(M;V) then By can be chosen of class C*~1.

b) Given a r-form 8 € H'Q"(M;V) with Blam € HQT(OM; V), there exists a (r + 1)-
form € € H'Q™1(M; V) obeying the boundary conditions

Elom =0 (3.12)
(66)lost(X1, -, Xr) = Blos (X1, ..., Xu¥ » ¥ Xy,...X, € TTOM e

If Blan is of class C¥~2 on OM then £ and 6£ can be chosen of class C*=2 on M.

This theorem is a reformulation of two — at least for V = IR — well established results. Part
a) is usually refered to as the Kodeira decomposition of the function ¥ and the solvability
of the problem (3.12) is due to [Mo56]. That result is not quoted literally, but taken from
the proof of the lemma 6.2 there, where the assertion is given and explicitly used. By
means of the identification Q(M;V) = Q(M;R) ® V the generalization to HQ(M;V)is
obvious. As a consequence we obtain on any compact Riemannian C*-manifold M with
boundary : '

Lemma 1 ,
a) Given a pair of vector-valued functions ¢ € H'Q°(M;V) and ¢ € H'QY(OM;V),
which obey the integrability condition

/‘I’uM+/sO#a=0 (3.13),

M oM

then there is a one form a € H 1QVI(M : V') solving the boundary value problem

ba=® on M
a(N)=¢ on OM

If ® € C*~2(M) and ¢ € C*~?(OM) then a can be chosen of class C*!on M.

9

(3.14). |
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b) Given a V-valued function © € H'Q%(M; V), which obeys the integrability condition

/GuM =0 (3.15),
M

R TR

then there is a one form v € H'Q'(M; V) solving the boundary value problem

Sy=0 on M

YoMy =0  on OM (3.16).

If © € C*~3(M) then + can be chosen of class C*~% on M.

Proof :
By the Kodeira decomposition (3.11) some B¢ € H'Q(M;V) is determined from &,
obeying

® =60s + co and Ba(N) =0 (3.17).

On the other hand one can choose for any ¢ € H! QO(aM ;V) some one-form
¢ € H'QY(M; V) such that ¢(N) = ¢ on OM and 8¢ € H'Q(M;V'). Applying Kodeira’s
decomposition to the function é¢ yields

86 =8By, +cyp with  B,(N)=0 (3.18).
Then the boundary value problem (3.14) is solved by the one-form

o=fo+d— By (3.19).

This can be seen by showing that the constants cs and ¢, cancel each other : Using the
integrability condition (3.13) and the Gauf§ theorem, cf. (3.10), we really get

'/(%;cso)uM:/(<I>—5a)uM=/<I>m+/cpua=0 | (3.20).
M M

M oM

To prove b) we start similar as above and decompose © by (3.11). From the integrability
condition (3.15) the constant ce has to vanish and hence

0 = 6Pe with  fe(N) =0 (3.21).
Then there exists by part b) of theorem 1 some £o € H'Q?(M; V') such that
(860)lom(X) = Bolom(X)  and  bolom =0 VX € 'TOM (3.22).
We choose v = o — 6€o and obtain

by = © on M

3.23
7!61\1(){) =0 on OM ( )’

10
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holding for all vector fields X along M. It remains to show that also y|ap(N) = 0. To do-

so we use the collar theorem [Hir], which guaranties that we can find near any p € OM a

local orthonormal frame on TM of the form {X/, E,,..., E’m} with /VIaM = N and E’ilaM
tangential to M. Then (3.7) yields .

(660)lana(N) = =(V zpbo)lom (N, V) — i(vgkﬁe)laM(Ek,N)
- ) k=2 (3.24),
=— Y Vg (Eo(Ex N))lou
k=2 %

o
using (ée)|am = 0 from (3.22). Also due to that fact (£0)|am is covariantly constant under
the action of the vector fields E along OM, what proves (6fe)|sm(N) = 0. Since also

Bo(N) = 0 by (3.21) the V-valued one form v|om = Bo — 6€o vanishes identically on M.
Finally the differentiability results directly read off from theorem 1. O

Both assertions of that lemma are not original. Corresponding problems for vector fields are

solved by transforming (3.14) into an (elliptic) Neumann problem, cf. [Hor), and considering
a boundary value problem for the divergence [vWal, respectively. For a discussion of these
results in terms of our approach and for improved regularity assertions see [Sch].

4. Translational Invariance and the Notion of Stress

Having now the required tools from Hodge theory, we start the proof of our central result
and derive a stress tensor formulation of continuum mechanics on the base of a general
virtual work approach. Due to the product structure of the Euclidean group we can consider
the translational and the rotational invariance separately. So we first use the invariance of
F[J] under global rigid translations as an integrability condition to show that any R"-
invariant virtual work, given in the form (2.9), allows a tensorial description. Starting
from Noll’s axiom (2.10) such tensorial character of the stress is evident [Tru]. Under our
(weaker) global assumption, however, we need Hodge theory to prove this local assertion :

Theorem 2

Let the body B be a Riemannian C k_manifold with boundary and let a virtual work form
on E(B, R™) be determined from a by (®(J),(J)) of densities of Sobolov class H'Q on
B and 9B, respectively, as

F[JI(A) = / < ®(J),A>rn~ s +/ <p(J),A>Rrn po (4.1).
' B ’ aB )

11




If global rigid'translatidns cause no work, i.e.

F[J](z)=/<<I>(J),z >Rn u3+/<‘(,o(J),z >popa=0 VzeR" (4.2),
B o8

there exists a IR "-valued one form a(J) € HQY(B; R™), called the stress form of the
systetn, such that the virtual work becomes '

F[J](A) = / < a(J),dA >qo1 4B (4.3).
B

Here dA € QY(B; R™) is the differential of the virtual displacement AeT;E(B,IR") and
<, >gq1.is the scalar product (3.8). '
Furthermore a(J) is C*¥~2-differentiable if ®(J) and ©(J) were of class C*¥~2.

Proof : .

Given the pair of functions (®(J),¢(J)) we observe that the invariance condition (4.2)
is equivalent to the integrability condition (3.13) since z € IR™ is arbitrary. Hence part
a) of lemma 1 guaranties some o(J) € H 101(B; R™) to exist, such that the virtual work

becomes

FII(A) = / < 6a(J), A >R s + / < a(J)YN),A >rn po (4.4).
B ) OB

Since < .,. >qo=< .,. >rn and A € T;E(B,R") = Q°(B; R") we can apply Stokes’

theorem (3.10) to shift the operator §, acting on a(J), to its adjoint d acting on A. Then
the boundary terms cancel, what proves (4.3). a

This result, which is originally due to [Bin], enables us to link the virtual work description
of continuum mechanics to the usual stress tensor formulation. The principle of virtual
work, set up in section 2, rewrites in terms of the stress form a(J) as :

Corollary N
Let the virtual work of a given system split into Fy = F[J] + F[J], where F[J] is R"-
invariant in the sense of (4.2). Then J € E(B, R") describes an equilibrium configuration,

iff for all A € TSE(B,R™) '

/B < a(J),dA >a1 pg + F[I)(A) = 0 | (4.5)

‘Since by construction Q*(B,R") is equal to the space of all (1,1)-type two-point tensor
on B, the stress form a(J) is to be interpreted as the 1%t Piola-Kirchhoff stress tensor of
the system. To see this we start with the constitutive part of the virtual work F int{J] and
derive a well established version of the equilibrium equation :

12
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~ Let U C B be some open (connected) subset and assume that OU N 9B = 0, for sake of
simplicity. By Ue we denote a family of open subset of B, containing the closure of U, i.e.
UcU. C B, and require the volume of the set U. \U to be bounded by epszlon Then we
choose a family of smooth virtual displacements

A on U
ANp) = { ge(p) on ge\\U (4.6)
on B\U, _

where A € IR™ is constant. Since dA} = 0 on U and on B\U., we obtain for the virtual
work (4.3) by using Stokes’ theorem

Fit[J)(A}) = / < 6™ (J), Xe >a0 w5 + / < @M(DW) A >a0 o (4.7)

where N, denotes the outward pointitig'normal on 9(U. \U). By construction the boundary
splits into (U\U) = 08U, U OU and we have —N.|su = N, what is the outward pointing
unite normal of U. Furthermore A¢(p) vanishes on 0U. and takes the constant value A on
OU. With (2.3) for the (total) virtual work F; we then obtain from (4. 5) for an equilibrium

solution

/ < aint(J)(A?),A >qo0 o = / < I[JJ,X >qo uB + / < (5aim(J) - ;bJ),XE >qo UB
au U U\U

: (4.8).
In the limit ¢ — 0 the term < (6a'®*(J) — sz),'XE >qo remains bounded, hence the
coresponding integral vanishes. Since A € R" is arbitrary, the principle of virtual work
finally yields for any subbody U C B '

J is an equilibrium configuration & — /ai“t(,])(./v) Lo + /¢J =0 (4.9).
aU U

Hence we have obtained a well established formulation for the static integral equation of
continuum mechanics, where the ai®(J) is to be considered as the 1°* Piola-Kirchhoff
stress tensor. '
We remark that the derivation of this equilibrium equation does not depend on the choice
of Fint[J] for the e(n)-invariant part of F,. Any other splitting would yield a similar result
with an appropriate re-interpretation of ¥;.
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5. The Piola Transformation

Classical approaches to continuum mechanics favor a description in terms of usual tensors
on B or J(B) instead of two point tensors. Hence we have to study the Piola transformation
in our framework. Therefore we restrict our consideration to a n-dimensional body B. Then
- any-embedding J € E(B;R") is a regular map, saying that dJ, the principle part of the

tangent map T'J = (J,dJ) is an isomorphism. It makes sense to introduce the adjoint dJ t

of the tangent map, which depends on the Riemannian metric Gg as well as on the scalar
product <,>pg~, by writing o

Ge(W, dJ'w) :=<dJW,w >g» VWeT,B VweR" (5.1).

If A(J) denotes the Jakobian determinant of the map J, the equation

A)- Ao s (v) = a(J)]p(d 1) Vve R" (5.2)

determines a well defined tensor A4(J) : R™ — IR™ over each point J(p) in the image
manifold J(B). It is the inverse of that transformation, sending the tensor A4(J) into the
stress form a(J), which is denoted as the Piola transformation [HuMa,TrTo] in continuum
mechanics. To establish Aq(J) as the Cauchy stress tensor we rewrite the virtual work
(4.3) by pulling back the virtual displacement A : B — R" to the IR "-valued function
L=AoJ 'on J(B) C R". Then the differential becomes

dA|p(E:) = (grad Ll sp) 0 dJ1p)(E:) (5.3)

where grad L is the vector gradient in the usual sense. With (3.8) for the scalar product
<, >qr we get

F[J)(A) = E/ < Au(J) o (dI™HNE:), dA(E:) >r A(T) s
i=1
. | (5.4)
=y / Gs (E dJ Yo A%(J)o(grad L)odJ(E,-)) LR
=1s(B)
where A%(J) denotes the adjoint with respect to <,>Rrn and we notice that the Rieman-
nian volume element transforms with the Jakobian as J*ug = A(J) 'urn~. Observing

finally that {E»,...,En} is a orthonormal base on T,B we use the cyclic property of the
trace to obtain for any IR "-invariant virtual work : '

F[J|(L) = / trace (A’;(J)~grad L),u]Rn (5.5).
J(B)

To make the Hodge theoretic results also available for investigations of the tensor A4(J)
we establish the celebrate Piola identity for differential forms. Therefore we consider some
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real valued one form « € Q!(B,R) and observe that the induced vector fields x* and
(k0 dJ') on B and J(B), respectively, are related by

<v,(k0dI) >rn=k(dJTv) =< v,dJK? >R~ Vve R" (5.6).

We remark, that the j-operator (3.6) is defined with respect to the (different) metrics
<,>Rr~ and Gg on the left and right hand side, respectively, and write the Piola identity
as :

Lemma 2 |

The co-differential operator ég : (B, R™) — Q% B, R") acting on the body manifold B
and the coresponding operator §g» : Q}(J(B),R™) — Q°(J(B),R") on the embedded
manifold J(B) are related to each other via a Piola transformation by

A(T)-6rn(Ax(J)) = 68(a(J)) where A(J) Ag(J) = a(J)odJ" (5.7).

Proof :
Let um~ be the Riemannian volume form on J(B) and v € R"™ be a constant vector. By
using some standard properties of the Hodge *-operator [AMR] we obtain with (3.5) for

the co-differential 6 gn

(< v,6mnAn(]) >R~ )R = d(* < v, Ao(J) >,Rn) - d(i,(wmn) (5.8)

where Ka :=< v, Aq(J) >Rr» is a IR-valued one form on J(B). Replacing A,(J) by its
Piola transformed we set x4 :=< v, a(J) >gr~€ Q(B,R) and get from (5.6)

KL = A() (< v,0() >re 0dTY)! = A(J)- dI(kY) (5.9).
Using A(J) pugm» = J*ug for the pull back of the volume form pg this yields

d(igs pr») = J"d(i1 1s) (5.10).

We finish the proof by respelling (5.8) for % and observing that

(< v, 7*(68 &(7)) >rn)(J*18) = J*d(iyg p5) = (< v,6R" Aa(J) >R") prn O

As mentioned above, cf. (3.7), the co-differential operator and the divergence corespond to
each other. Using that identification the Piola identity (5.7) reads as

é8(a(J)) = A(J) Mdive~AL(J) (5.11).

Then the equilibrium equation (4.9) for the 1°! Piola-Kirchhoff tensor o/**(J) transforms
by using the Gaufl theorem into

/divw(Ag,)i“‘(J)mn+ / ¥(J)ur~=0 VYUCB (5.12)
J(U) J(U) ,
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where W(J) := A(J)~1(¢ps0J~!). This static form of the balance law of linear momentum
for the Cauchy stress, as usually considered in continuum mechanics. For a direct deriva-
tion of that equation from the virtual work (5.5) we refer to [AnOs], where also possible
functional analytic suptilities are studied in detail.

Finally we remark that the stress form a(J), and hence also the stress. tensor A,(J) are not
uniquely determined by the constructions made above : The stress form may be redefined
to any &(J), which coreponds to the same physical data (®(J),(J)) by éa(J) = ®(J)
and a(N) = ¢(J) and similarly one argues for A4(J). This gauge freedom coresponds
to the fact, that only éa(J) or divA¥(J) enter the equilibrium equations (4.9) or (5.12),
respectively.

One can imagine several such modlﬁcatlons From the Tathematical point of view it seems
“natural to have a(J) € 2!(B; R") to be an exact one form, i.e. to be the gradient of some
"stress function” H(J) € Q°(B;R"™). This is possible without further assumptions, as
show in [Bin]. Considering continuum mechanics in its the classical formulation, however,
a description of the Cauchy stress in terms of a symmetric tensor would be prefered.

6. The Symmetry of the Stress Tensor and a Natural Splitting of 7

To investigate the symmetry of the Cauchy stress we start from an e(n)-invariant virtual
work of the form (2.9), which is necessarily also IR "-invariant. Then theorem 2 guaranties
the existence of a stress form o(J) and by performing an inverse Piola transformation and
using (5.7) there is a tensor A4(J), solving the boundary value problem

A()-6rrA(J) = ®(J) on J(B)
A(J) Ax(J)n = o(J) on J(0B)
Here n is the unite normal field along J(0B), defined by dJ'n = N. By means of Hodge

theory we now show the existence of a symmetric stress tensor A(J), using the remaining
so(n)-invariance of F[J](A), see (6.3) below, as an integrability condition.

(6.1).

Theorem 3 _
Let B be a n-dimensional Riemannian C*-manifold with boundary and let the work done
by any virtual displacement L € Q°(J(B), R") be given by (5.5) as

FII)(L) = / trace (A;(J)-grad L) . | (6.2)
J(B)

where the Cauchy stress tensor A,(J) is determined from the forces (®(J),¢(J)) by (6.1).
If F[J] is e(n)-invariant, infinitesimal rigid rotations of the whole body cause no work

/ trace(A;(J) : c) upr =0 YC€soln) (6.3)
J(B)

and there exists of a symmetric tensor A4(J): R™ — IR™ obeying also (6.1).
Furthermore A4 (J) is C*~2 differentiable if ®(J) and ¢(J) were of class C*¥~2.
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Proof : ,

Writing 2Sa(J) := A4(J) — A%(J) for the anti-symmetric part of the tensor Aa(J) we
understand this as a so(n)-valued zero form So(J) € Q°(J(B); so(n)). Since so(n) is the
space of all anti-symmetric n X n-matrices, the invariance condition (6.3) yields

/ Sa(J)pmr~ =0 , (6.4),
7(8)

MU

what we use as integrability condition to apply lemma 1. Thus there exists a one form
oo € QY(J(B); so(n)), solving the boundary value problem

Sa(J) = 6(70, with O'QIJ(aB) =0 (65)

Now let z,y, z be some vector fields over J(B), then

< z,Za(y,2) >R~ "= R (6.6)
< 2,04(y) 2 >R — < T,04(2)y >R» — < 2,04(2)y >R~ '

defines an R "-valued two form £, € Q*(J(B); R"), since o4(z) is an anti-symmetric
tensor. Its co-differential computes according to (3.7) as

< 2,684(2) >R = ——(Z Ve, < 2,2a(€i,2) >Rn — < Ve,z,5a(ei,2) >R
=1
~ < 2,5u(ei, Vei2) >Rn) (6.7)
where {e1,...,en} is a (local) orthonormal frame on J(B). Expanding this by (6.6) yields

< z,684(2) >rn = <2,004 2 >R

+Z(<x,Ve.-(cfa(Z))ee >Re ~ < 2,00(Ve2) € >R (6.8)

=1

+ <2, Ve (0a())es >Rr = < 2,0a(Veiz) i >Rn)

and we obtain a symmetric tensor on J(B) by setting

Ao(J) = Ag(J) — 6%, (6.9).

This is the symmetric part of Aq(J) - by definition of Sa(J) — modified by a symmetric
correction term. Due to the nilpotence of the co-differential on J(B) we furthermore have
6Ao(J) = 6A4(J). Hence it remains to study the behavior of A.(J) on 8B. Therefore
we argue similarly as in section 3, cf. (3.24), by choosing the (local) orthonormal frame as
{1,é2,...,€n} near the surface of the body, with €:|s(ap) tangential and n| (a8 normal
“to J(8B). By construction o, vanishes on J(0B), thus we obtain
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<z 62a(n) >grr =<0, V~(aa(:c))n >R +Z(< z,Vy, (ca(n))€; >mrn
=2

+ < 8, V5 (0a(2)) & >Rn) (6.10).

This expression vanishes on J(9B) since o4(z) is anti-symmetric and - as a consequence
of 04| jepy =0 — it is also covariantly constant under the fields €i| (o), which are vector
fields along the boundary. We remark that in general  # n but §¥,(n)|ss = 0 guaranties

that Aq(J)(R) = Ax(J)(R) for any field fi normal to J(0B). O

Having proven this theorem our central result on the existence of a symmetric stress tensor,
formulated in section 2, is established. Similar to section 4 one may argue that Noll’s (local)
working axiom (2.10) would yield the symmetry of A4(J) directly, but our weaker global
demand (2.7) only gave rise to the integrated symmetry (6.3) for an e(n)-invariant virtual
work. This, however, suffies to solve an appropriate boundary value problem (6.5) and
construct the auxiliary quantity X,y — introduced earlier in the context of relativistic

field theories [Bel — which then yields the symmetric of Ao ()).
Now it is a matter of routine, to obtain the balance laws for the momentum and angular
momentum, i.e. the equilibrium equations for the symmetric Cauchy stress tensor, in their

final form as

/ (di"m"(ma)m(J) + ‘I’(J))umn =0

i (6.11)
/ ( trace (Zx';‘t(J) C)+ < ¥(J),C-q >R")uR“ =0 VC € so(n)
J(U)
where ¢ € J(U) and U C B is an arbitrary subbody. Since by construction div Al(T) =

div A ¥ (J), the first equation is obvious from (5.12) and to prove the angular momentum
balance one may follow literally the construction, made in order to derive (4. 9).

Finally we re-investigate the splitting of a given virtual work functional F into an e(n)-
invariant part a.nd arest :

Theorem 4

Let the virtual work functional F; be given by (2.3). Then there exists a constant vector
field @, € IR™, a constant anti-symmetric tensor DJ € so(n) and a symmetric tensor

Ao(J) on J(B), such that
Fr(LolJ)= I(B) QJ,/(LOJ);;B> . m—(B—))trace (DJ-/gradLMRn)

J(B)

+ / trace (KQ(J)-grad L) prr  (6.12)
J(B)
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Proof:
Given a virtual work functional Fj, the equation F;(z) =< ®5, z >Rn, holding for all
z € R", uniquely defines a vector ®; € IR", which is a constant field on B. Then

1

FI)(A) = Fis(A) - SoI(B)

< QJ,/A/,LB >Rn (6.13)
B

is an IR %-invariant part of F, cf. (4.2), and we can use theorem 2 to express this functional
via (4.3) in terms of a stress form a(J). Performing a Piola transformation we obtain a

representation of F [J](A) in terms of the coresponding stress tensor Aq(J). Then

trace (C’ . / A.(J) ,UJR") = trace (Dy - C) (6.14),
J(B)

holding for all C € so(n), uniquely defines an anti-symmetric matrix D(J) € so(n). Argu-
ing now similarly as above, the functional

FlJ)(A) = FlJ(A) - trace (DJ . / grad Lumn) (6.15)

1
vol(B)
. MYy J(B)

vanishes for all A = C-J with constant C' € so(n). Hence (6.15) defines an e(n)-invariant
part of the given virtual work F; and we apply theorem 3 to construct a coresponding
symmetric tensor A4 (J). O

This theorem yields a construction to encode the "maximal information” about the virtual
work in its e(n)-invariant part given by (6.15), which can be expressed by a symmetric
tensor A4(J) in (6.12). The quantities ®; € R™ and Dy € so(n) then have a natural
interpretation as the total force and total torque, affecting the center of mass and inertia
tensor of the body, respectively. To describe the dynamics of a body all these terms may
vary in time with the configuration J. More details can be found elsewhere [BiSc]. '
This splitting of a general the virtual work, representing all constitutive and external forces,
appears as something unusual in the classical treatment of continuum mechanics. It is not
clear whether this might be useful for practical purposes, but it presents the following
structural insight : To describe the motion of an deformable medium it suffies to know
the total center of mass force ®; and the tensor D of total torque, affecting the material
body, plus the symmetric tensor A 4(J). The later term will gives rise to deformation forces,
affecting B as a deformable body, while the primer ones only yield a rigid body motion in
space.
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