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Introduction
Let us assurne a given medium moves and deforms in an ambient smooth and oriented
Riemannian manifold N with metric (, ). This medium at hand is supposed to maintain the
shape of a compact smooth orientable and connected manifold M with boundary. Clearly
dirnM ::s: dirn N. By a configuration j of the medium we mean a smooth embedding of M
into N. The configuration space is E(M, N), the collection of all smooth embeddings of
M into N endowed with the COO-topology.
There are several types of ingredients to characterize the physical quality of a medium
(cf. [M,H]) of this type. At first we adopt the characterization via the first Piola-Kirchhoff
stress tensor a, a (1, l)-tensor. To keep the full generality we assurne that a depends on the
actual configuration j, possibly in a non local way. Geometrically speaking a(j) is a bundle
map of TM into TN over j. Since a(j) is not specified with respect to a fixed configuration,
we omit to include the volume correction as usually done. If dimN = dimM then a(j)
together with the pullback metric j*( < , » yield for each j E E(M, N), a (2,O)-tensor,
the stress tensor describing the medium as weIl as a(j) does. If dimM < dimN this is not
true, however (cf sec.6).
Given now a virtual infinitesimal distortion at j, then the virtual work F(j) (cf. [M,H],
[He]' [E,S]) caused by it can be computed with the help of a(j). In fact a(j) determines
the force densities cP(j) on M and 'P(j) on 8M for each j E E(M, N) by cP(j) = V'*a(j)
and 'P(j) = V'na(j), respeetively. Here V' is the covariant derivative on N and V'* the
associate covariant divergence. The vector field n along 8M is the positively oriented unit
normal of 8M in l'vI formed with respect to the pull back metric j* < , >.
The main purpose of this notes is toexhibit (in absence of exterior force densities) the
irredundant part of a(j) that determines the force densities mentioned and the virtual
work caused by any infinitesimal distortion at j. This irredundant part is itself a bundle
map of TM into TN along j; it is ofthe form V'H(j), where H(j) : M ---+ TN is a smooth
TN -valued vector field along j. Here V' is the Levi-Civita conneetion on N. Clearly the
irredundant part V'H(j) is a first Piola-Kirchhoff stress tensor, too. However, V'H(j) and
a(j) are not identical in general, even though they cause the same force densities (cf. [Bi
1] to [Bi 4]). In fact if the ambient manifold is Euclidean, V'H(j) is the exact part of a(j),
exhibited via Hodge's theory. This is a special case of the following:
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As just pointed out HU) characterizes the medium as weIl as aU) does, in the sense
that aU) and HU) both cause the same force densities .pU) and <pU). This map H can
be determined directly by these densities. In fact, given any pair of force densities .pU)
and <pU) (coming from aU) or not) then HU) can be established as the solution of the
Neumann problem, consisting of the equations .pU) = ~U)HU) on M and <pU) = V nHU)
on ßM. Here ~U) is the Laplacian determined by V and the puIlback metric j* <, >. The
vector field n along ßM is the positively oriented unit normal of ßM in M. This solution
exists provided that .pU) and <pU) satisfy the integrability conditions.
Thus .pU) and <pU) determine, via the solution HU) of a Neumann problem, a minimal
type of Piola-Kirchhoff stress tensor, namely VHU). This is established in sec.5. In sec.6
we relate this point of view with the usual setting of a (2, O)-stress tensor, the weIl known
stress tensor. It will be apparent by a result in [Sch) that not only VH but also a itself
has a physical significance. In particular if dirnM = dirn N the stress-tensor defined by
a might be symmetrie, while the stress-tensor caused by VH might miss this property.
The significance of the stress tensor of a in this case is thus the superior visualization of
the medium over the more involved description in terms of VH. However, the irredundant
part is present in this case also as a physical entity. It is hence worthwhile to study it in
its fuIl generality.

The rest of the paper is conce,rned with showing the specific features of working with
VHU) for any configuration j E E(M, N). In particular we exhibit the volume and the
area sensitive parts of VHU) (cf. sec.7) as weIl as the parts which are sensitive to the Ricci
and scalar curvature of the puIl back metric j* < , > on M (cf. sec.8). In particular the
influence of these curvatures to pressure and capillarityis studied.
Since .pU) = ~U)HU) we may use in case of ßM = 0 the complete eigen system of the
Laplacian given by ~Uo) at a fixed reference configuration ja to obtain a Fourier expansion
of the force density .pU) puIled back to ja. Given a first Piola Kirchhoff stress tensor a and
assuming that aIl but v many of these coefficients vanish in some (closed) neighbourhood
W of ja in E(M, N) we exhibit under a regularity assumption and a boundary condition
an exact arid non-exact part dlU, respectively '11, of the virtual work F. This is done by
using Hodge theory on a v-dimensional foliation of W which is caused by the requirement
that only the first v of these Fourier coefficients are takenin account. dlU represents the
hyperelastic part (cf. [M,H]) of the medium characterized by a. Based on the theory of
integrating factors a temperature like map T : W ~ IR is constructed (from a formal
point of view) in a special case.
FinaIly we show in sec.ll a dynamics for. boundary less manifolds based on a symplectic
structure on TE(M, N), study the influence of symmetry groups in sec.12 and lastly con-
sider motions along a fibre of the DiffM-principal bundle and obtain Euler's equation of
a perfect fluid as a special case.
The first four sections are devoted to the geometrie background in order to treat this sort
of approach of describing deformable media in this generality, in a rigorous fashion. The
term smoothness on Frechet manifolds refers to the one introduced in [Bi,Sn,Fi) or [Fr,Kr).
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1. Geometrie preliminaries and the Freehet manifold E(M, N)
" Let M be a compact, oriented, connected smooth manifold with boundary 3M and N

be a connected, smooth and oriented manifold without boundary equipped with a fixed
Riemannian metric < , >. For any j E E(M, N) we define a Riemannian metric m(j) on
M by setting

m(j)(X, Y) :=< TjX, TjY >, 'v'X, Y E r(TM). (1.1)

(More customary is the notation j* < , > instead of m(j).) We use r(E) to denote the
collection of all smooth sections of any smooth vector bundle E over a manifold Q with
7rQ : E ~ Q the canonical projection.
The positively oriented unit normal of 3M in M is called n. Let moreover ja := j13M.
The metric on 3M induced by m(j) is called m(ja). The Weingarten map of n formed
with respect to m(ja) is called Wa(j) and its trace Ha(j) referred to as the Weingarten
map and the mean curvature, respectively, of 3M. Let j.t(j) and j.t(ja) be the Riemannian
volume on M and 3M respectively defined by the given orientations and the metries m(j)
and m(ja), respectively. Hence m(ja) = (ja)*m(j) and j.t(j) = (ja)* j.t(j).

Let V be the Levi-Civita connection of the Riemannian manifold (N, < , ». In this
situation, the Levi-Civita connection V(j) of (M, m(j)) is obtained as folIows:

TNlj(M) splits into Tj(T M) and its orthogonal complement (Tj(T M))l. (the Riemannian
normal bundle of j) and hence any ZE r(TNlj(M)) has an orthogonal decomposition
Z = ZT +Zl., where the tangential component ZT is of the form ZT = Tj. V for a unique
V E r(TM).

(1.2)Tj(V(j)x Y) = V x(TjY) - (V x(TjX))l.

If now Y E r(TM), then TjY : M ~ TN is smoothand therefore, the above covariant
derivative V(TjY) is well-defined. We use this to define the vector field V(j)x Y on M by
the equation

for all X, Y E r(T M). In fact V(j) is the Levi - Civita connection of m(j) which is called
d in case N is Euclidean, i.e if N = IR n and < , > is a fixed scalar product. Instead of
(V x(TjX)) 1- we write S(j)(X, Y) and call S(j) the second fundamental tensor of j. The
Levi-Civita connection of m(ja) on 3M is denoted by V°(j).

It is well-known that the set COO(M,N) of smooth maps from M into N endowed with
Whitney's COO-topology is a Frechet manifold (cf.e.g.[Bi,Sn,Fi] or [Fr,Kr]). For a given
f E COO(M,N), the tangent space TfCOO(M, N) is the Frechet space
Cr(M, TN) := {l E COO(M,TN)ITN 0 1 = f} ~ r(f*TN) and the tangent bundle
TCOO(M, N) is identified with COO(M,T N), the topology again being the COO-topology.

The set E(M, N) of all Coo-embeddings from M to N is open in COO(M,N) and thus
is a Frechet manifold whose tangent bundle we denote by CE(M, TN). It is an open
submanifold of COO(M,T N), fibred over E(M, N) by "composition with 7rN". Moreover,
if 3M = 0, the Frechet manifold E(M, N) is a principal Diff M-bundle under the obvious
right Diff M-action and the quotient U(M, N) := E(M, N)J Diff M is the manifold of
"submanifolds of type M" of N (cf. [Bi,Sn,Fi], ch.5, and [Bi,Fi 1]).
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The set M(M) of all Riemannian structures on M is a Frechet manifold since it is an
open convex cone in the Frechet space S2(M) of smooth, symmetrie bilinear forms on M.
Moreover, the map

m: E(M,N) ~ M(M)

is smooth (cf. [Bi,Sn,Fi]).

Lastly, by an E-valued one-form a on M, where E is a vector bundle over N, we mean a
smooth map

a:TM~E

for which alTpM is linear for all p E M. We denote the set of such one-forms by
A1(M, E) and now obtain the following description of its structure: The requirement that
a E Al (M, E) should be linear along the £ibres of TM means that there is a (smooth) map
f : M ~ N such that alTpM is a linear map into E f(p) for p E M, in other words, that a
is a bundle map from TM to E over f: This map f E COO(M, N) satisfies 7rE 0 a = f 0 7rM
(where 7rE, 7rMare the respective bundle projections). The set of such one-forms is naturally
identified with the Frechet space A1(M, j*E). This shows that

A1(M, E) = U{A1(M, j*E)lf E COO(M, N)}.
f

It is clear from the construction that there is a natural surjection

whose £ibres are the Frechet spaces A1(M, j*E), in fact A1(M, f*E) is a vector bundle
over COO(M, N) with projection II (cf.[Bi,Fi 2]).

In the following three sections we will introduce three metries on some special types of
infinite dimensional manifolds and will prepare in this way the geometrie background of
the description of smoothly deformable media as weIl as a dyn ami es in case DM = O.

2. The metries 9 and B on E(M, N)
The Riemannian structure < , > of N induces a "Riemannian structure" 9 on E(M, N)
as follows: For j E E(M, N), let J-l(j) and J-l(ja) be the Riemannian volume on M and DM
respectively defined by the given orient at ions and the metric m(j). Für any two tangent
vectors 11,12 E Cj(M,TN), we set

(2.1)andg(j)(l1,12):= j(l1,12)J-lU)
M

It is clear that g(j) lS a continuous, symmetrie, positive-definite bilinear form on
Cj(M, T N) for each j E E(M, N).
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(2.2)

(2.3)

The metric 9 possesses some invariance properties (which will become important in sec. 11):
Let Diff+ M be the group of orientation-preserving diffeomorphisms of M. As a subgroup
of Diff M, it operates (freely) on the right on E(M, N) by

<p: E(M,N) X Diff+ M -+ E(M,N)
U, 'P) 1--+ j 0 'P.

For a fixed 'P, we also write Rr.pj for j 0 'P.

Similarly, if J is any group of orientation-preserving isometries of N, then it operates on
the left on E(M, N) by

J x E(M, N) -+ E(M, N).
(g,j) 1--+ go j

We need the following rather obvious result (cf.[Bi,Fi 2]) for some basic invariance prop-
erties of one-forms on E(M, N):

Proposition 2.1
9 is invariant under both Diff+ M and J. •
The dynamics of boundary less deformable media to be introduced later relies on the metric
ß on E(M, N). This metric will be based on a density map p. A smooth map

p: E(M,N) -+ COO(M,IR)

is called a density map if the following is satisfied:

pU)(p) > 0 Vj E E(M, N) and Vp E M. (2.4)

d1.p(j)(k) = -p~)trm(j)d1.m(j)(k) Vj E E(M,N) andVk E Cj(M,TN). (2.5)

trm(j) denotes the trace formed with respect to mU). The symbol dI. denotes the differential
of maps of which the domain is a Frechet manifold and which assurne values in a Frechet
space. If both domain and range are finite dimensional the usual d replaces d1.. We will
construct a density map next. For any j' E E(M, N) we express mU') via a smooth strong
bundle endomorphism P(j') of TM, selfadjoint with respect to m(j), as

(2.6)

and observe that the Riemannian volume forms J-lU) and J-lU') are linked by

J-lU') = det fU')J-lU).

Fixing a map pU) E COO(M, IR) for some fixed j E E(M, N) satisfying (2.4) then

p: E(M, N) -+ COO(M, IR)
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given for any j' E E(M, N) by

p(j') := det f(j')-l p(j) (2.8)

satisfies both (2.4) and (2.5).

To eonstruct the metrie ß we fix a density map p on E( M, N) once and for all (unless
speeified otherwise).

The metrie ß is then defined by

ß(j)(ll, l2):= J p(j) < h, l2 > J.l(j)
M

(2.9)

foreaehj E E(M,N) andforeaehpairl1,l2 E COO(M,TN). Thismetriedependssmoothly
on all of its variables. For its eovariant derivative and geodesies see appendix A.

3. The fibred space £E(M, TN) and its dot metric
To prepare the geometrie realm for the introduetion of the first Piola-Kirehhoff stress
tensor eharacterizing a medium deforming in the Riemannian manifold N, we need to
introduee aspace of special TN-valued one-forms. To begin this preparation, we denote
by Ak(M, TN) the sub set of A1(M, TN) eonsisting of all TN-valued one-forms eovering
smooth embeddings from M to N. This is the inverse image of E(M, N) under the pro-
jeetion TI : A1(M, TN) --+ COO(M,N), henee is an open submanifold and, in fact, is itself
a (Freehet) vector bundle whose fibre at j we denote by A}(M, TN).
By eonstruction of m(j), the map Tj is fibrewise isometrie. This allows us to write
a E A}(M, TN) in the form

a = e(a, Tj). Tj + Tj . A(a, Tj) (3.1)

for a sui table bundle endomorphism e(a, Tj) of TN Ij (M), skew adjoint with respeet to
< , > and mapping TjT M into its normal bundle (TjT M)J... and viee versa and where
A( a, Tj) is a strong bundle endomorphism of TM. These endomorphisms are uniquely
determined and are smooth eontinuous linear functions of a as shown in [Bi 4]. The usual
"traee inner produet" for endomorphisms of TN and of TM then yields for any j E E( M, N)
the dot produet

a. ß := -ktr e(a, Tj). e(ß, Tj) + tr A(a, Tj) . A*(ß, Tj) ,

(3.2)aj(Tj)( a, ß):= Ja. ß J.l(j) ,
M

for any two a, ß E A}(M, TN). Here A*, the adjoint of A, is formed fibrewise with respect
to m(j). We define
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C!) a smooth continuous, symmetrie and positive-definite bilinear form on the Frechet space
A}(M, TN), the dot metric. It is a generalization of the dassical Dirichlet integral
(which will be apparent by the theorems (3.1) and (4.2) below). For the sake of simplicity
we will write C!)(j) instead of C!)(Tj).

We shall also need a subfibration of A1(M, TN) defined by

LdM, TN) := {\7III E CE(M, TN)} (3.3)

whose fibres we denote by Lj(M,TN)(= LE(M,TN) n A}(M,TN)); evidently these are
subspaces of the Frechet spaces A}(M, TN); cf.[Bi,Fi 2].

Next, we introduce the Laplacian ß(j) which will depend on j via m(j); (cf. [Ma]):
For k E Cj(M, TN), we define the covariant divergence by

\7*(j)k := 0

as usual, while following [Mal, \7*(j)a for a E A}(M, TN) is given pointwise by

n

\7*(j)a := - L \7Er( a)(Er) ,

r=l

(3.4)

(3.5)

(Er) a local orthonormal frame with respeet to m(j). In (3.5) we have used \7 xa to denote
the more informative symbol \7(j)xa, defined in the standard manner by

\7(j)x(a)(Y) = \7x(aY) -a(\7(j)xY). VX,Y E f(TM).

The definition of ß(j) does not depend on the moving frames chosen (cf. [Bi,Fi 2])..

The following theorem (cf. [Bi 4]' [Bi,Fi 2] ancl [L,M] for the last assertion) will be abasie
tool in our studies of one-forms on E(M, N) (cf. [Bi 4] and [Bi,Fi 2]). It relates the metric
9 with C!) (the Dirichlet integral as (3.7) shows):

Theorem 3.1
For any j E E(M, N), anya E A1(M, TN) and any two h, I E Cj(M, TN) the following
relations hold

and

C!)(j)(a, \7I) = g(j)(\7*(j)a, I) + g8(j)(a(n),I)

C!)(j)(\7h, \7I) = g(j)(ß(j)h, I) + g8(j)(\7 nh, I) .

(3.6)

(3.7)

Here \7 denotes the Levi-Civita connection of the metric < , > on N. The dimension of
Kj := {I E Cj(M, TN)I\7I = O}for any j E E(M, N) is finite. •

We dose this seetion by stating invariance properties. For the rat her straight forward proof
we refer to [Bi,Fi 2].
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Proposition 3.2
The metric OJ on LE(M, TN) is invariant under Diff+ M and any group .:J of orientation-
preserving isometries on N. •

4. The first Piola-Kirchhoff stress tensor and the virtual W"ork
Let us consider a special situation: We assurne that themedium moves and deforms in IR n,

equipped with a fixed scalar product. The configuration of the medium may vary rapidly.
At each configuration j E E(M, N) we characterize the quality of the medium by the
smooth first Piola- Kirchhoff stress tensor (cf. [M,H], p.135)

a(j): TM --+ TIRn = IRn x IRn ,

a two point tensor. Clearly a(j) is a smooth IR n-valued one-form if the values will be
projected onto the second factor.

Remark:
If we fix a reference configuration ja E E(M, N) then

J a(j) . dlJ-l(j) = J (a(j) det f(j)) . dlJ-l(jo)

for all j E E(M, N) and all f E Cj(M, T N). In fact a(j) det f(j) is usually called the
first Piola-Kirchhoff stress tensor. However since we work without reference configurations
in general we call a the second Piola- Kirchhoff stress tensor.

Let us assurne from now on that

is smooth (the range carries the COO-topology). The medium characterized by a is thus
called a smoothly deformable medium. The virtual :work determined by a and an
(infinitesimal virtual) distortion 1 will be nothing else but a generalization of the classical
Dirichlet integral, as shown as follows: By (3.1), we can represent a(j) as

a(j) = co:(j) . dj + dj . Ao:(j)

in a unique way. Any infinitesimal distortion 1 E COO(M, IR n) yields the one-form

dl : TM --+ IR n

and admits the representation

(4.1)

dl Cdl . dj + dj . Adl .
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The virtual work F( dj)( dl) is then given by the Dirichlet integral (cf. sec.3)

F(dj)(dl):= LaU). dlpU) == q;(dj)(aU),dl)

where
(4.3)

aU) . dl = - ttr Ca(j) Cdl + tr Aa(j) . Ad1 (4.4)
with * denoting the fibre wise adjoint of Ad1 : TM --+ TM formed with respect to mU).
The virtual work

given by

FU , I) = J aU) . dl pU) (4.5)

is a smooth one-form on E( M, N). This work F has two special independent properties:
These are for j E E( M, N) and any 1E Ct( M, TN)

and
1) FU + z)(l) - FU)(l)
2) FU)(l + z) - FU)(l)

Vz E JRn
.Vz E JRn .

Let us investigate them somewhat closer. The first one is certainly the invariance under the
obvious action on E( M, JR n) of the translation groups JR n of the vector space IR n. Factor-
ing out this action on E(M, JRn) yields again a Frechet manifold, called E(M, IR n)/ JR n
(the reduced configuration space). It admits a natural representation via the center of
mass as seen as follows (cf. [Bi 4]).

Specifying a density map p (cf. section 2) on E(M, JR n) we introduce the center Zm 0/
mass by

zmU):= J pU) j pU)

for any j E E( M, JR n). Fixing the center of mass at zero, then

{j E E(M, JR n) I zmU) = O} --+ E(M, JR n)/ JR n

J 1-+ [j] (4.6)

is a diffeomorphism. Here [j] denotes the equivalence class of j formed with respect to the
action of the translation group JR n on E( M, JR n).
Clearly the differential

(the second factor carries the COO-topology) induces a diffeomorphism

d: E(M,JRn)/ JRn --+ {dj /j E E(M,JRn)}
[j] 1-+ dj

9
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since [j] = {j+z Iz E IR n } for any [j] E E(M, IR n)/ IR n. Thus we identify E(M, IR n)/ IR n
with { dj I j E E(M, IR n)}. Obviously the differential

is a (smooth) diffeomorphism too. Therefore, the reduced configuration space of the action
of the translation group IR n on E(M, IR n) can be described either by

Thus we may identify all the three and will use either symbol according to the convenience.
The reduced phase space is hence

E(M, IR n)/ IR n x COO(M, IR n)/ IR n ,

the second factor being the usual factor space of COO(M, IR n) modulo IR n (identified with
{dill E COO(M, IR n) }) endowed with the COO-topology.
Thus ourwork F, defined on TE(M,IRn) = E(M,IRn) x COO(M,IRn) factors to F as
follows

E(M,IRn) x COO(M,IR n) ~ IR
dxd 1 /'F

{djJj E E(M, IR nn x {dill E COO(M, IR nn
These considerations reversed yield immediately

Lemma 4.1
The characterization of a smoothly deformable medium by a smooth assignment

of a first Piola- Kirchhoff stress tensor is equivalent with specifying a smooth one-form (the
virtual work)

with the following properties:
1) F is invariant under the action of the translation group IR n on E( M, IR n)
2) F(j)(l + z) = F(j)(l) Vj E E(M, IR n), Vi E COO(M, IR n) and Vz E IR n
3) F admits an integral representation

F(j)(l) = Ja(j)'dlJ-l(j) = OJ(dj)(a(j),dl)

for all variables of F where a :E(M, IR n) ---+ A1(M, IR n) a smooth density. •

In the sequel we will identify F with F givenby (4.5) and (4.3), respectively.

10



Remark:
For the sake of shortness we will frequently use the term "stress form" for a(j) rather than
"a first Piola- Kirchhoff stress tensor" .

Now we generalize the whole setting as follows. (JR n , <, » will be replaced by a Rie-
mannian manifold with (N , <, » with a fixed Riemannian metric <, >.
The configuration space is now E(M, N), its tangent space GE(M, TN) (cf. sec.I).

Again we will characterize a smoothly deformable medium moving and deforming in N at
each configuration j E E(M,N) by a two point tensor a(j) (depending smoothly on j) for
which the diagram

TM ~ TN
7rM 1
M

17rN

j N
----+

commutes. An infinitesimal deformation l E TjE(M, N) is a smooth map l : M ----+ TN
covering the embedding j :M ----+ N. Instead of dl we now have \7l : TM ----+ TN (with
\7 the Levi Civita connection of N) for which the following diagram commutes:

TM
7rM 1

M

'VI
----+

1/
j

----+

TN

The collection of all \7l with l E GE(M, TN) is called .cE(M, N) (cf. sec.3). As E(M, JRn)
maps d into G=( M, JRn) / JRn, also E( M, N) is mapped naturally into .cE(M, N) c
A1;(M, TN), as seen as follows:

Given any j E E(M, N) we solve the Neumann problem

dimM

~(j)} = \7*Tj = - L S(j)(Es, Es)
s=1

with the boundary condition
\7n] = Tjn

with EI,"" Edim M being an orthonormal moving frame on M and with S(j) being the
second fundamental tensorof j in N (cf. sec.I). The vector field \7*Tj along j is called
the mean curvature field of j (cf. [L]).
Since the integrability condition is satisfied, there is, according to [Hö], a solution, which
is unique provided, we require that ] is in the complement of Kj (cf. theorem 3.1).
Let us do so from now on. In fact the map from E( M, N) into GE(M, T N) sending any j
into ] is smooth. As easily verified, the following equation

q;(j)(\7], \7l) = g(j)(\7*Tj, l) + 98(j)(Tjn, l) = q;(Tj, \7l)
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holds for any I E C'E(M, TN). It implies

Tj V'] .

The map from E(M,N) into Ak(M, TN) assigning to any j, the TN-valued one-form V']
on M, is smooth as weIL Thus as we have worked with T (E(M,JRn)/ JRn) we work with
TLE(M, N) in the general situation.

The virtual work FU)(l) at any j E E(M, N) caused by any virtual infinitesimal deforma-
tion I E Cj(M, T N) is defined by

Again

FU)(l) := J QU)' V'l pU) q;U)(QU), V'l) . (4.8)

(5.1)

F: TE(M,N) -+ JR

is a smooth one form on E(M, N) (which admits a stress form).

Remark:
Given a virtual work F with stress form Q, we will assurne throughout these notes, that
QU) in fact depends for any j E E(M, N) only on V'] rat her than on j itself.

As theorem 5.2 in the next section shows the characterization of the medium deforming in
an ambient Riemannian manifold by Q is rather general.

The question arises (also in the case of an Euclidean ambient space) as to whether the
stress form Q is unique. In fact it is not, as we will see in the next section.

5. The part of the stress which is irredundant with respect to
the virtual work, the not ion of a constitutive law
To find the part of any specification of a stress form QU) at any configuration j E E( M, N)
which causes the same force densities and hence is irredundant with respect to the vir-
tual work, we study the problem in a pure mathematical frame work. We begin with the
following definition:

Definition 5.1
The one-form F on E(M, N) is said to be q;-representable if there exists a smooth section
Q : E(M, N) ~ Ak(M, TN) of the bundle (Ak(M, TN), TI, E(M, N)), such that

,FU)(l) = J QU) . V'lpU) = q;U)(aU), V'l)
M

for j E E(M, N) and I E Cj(M, TN). The section Q is called a q;-density of F.
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Suppose, for instance, that H is a smooth seetion of CE(M, TN) over E(M, N), i.e
a smooth veetor field on E(M, N); for the existence of such fields cf. [Bi,Fi 2]. Then
a(j) = '1H(j) will provide a q;-density and the right-hand side of (5.1) will define a q;
- representable one-form. In fact, this example can be shown to charaeterize the repre-
sentability of one-forms: Let us denote by A~(E(M, N), IR) the colleetion of all smooth q;-
representable one-forms on E(M, N). We now show that any q;-density a of a smooth one-
form F E A~(E(M,N),IR) can be replaced by '1H where H: E(M,N) ---+ CE(M,TN)
is a smooth veetor field. This means that for any j E E(M, N) the following formulas

J a(j). '11 J-l(j) = J '1H(j). '11 J-l(j) + J('1nH(j),I)J-l(ja) (5.2)
M M

or equivalently,
q;(j)( a(j), '11) = q;(j)('1H(j), '11) (5.3)

have to hold for all 1E Cj(M, TN). To prove this, we are required to solve the Neumann
problem

~(j )H(j) = '1*a and '1nH(j) = a(n) . (5.4)

Here '1* denotes the covariant divergence. It depends on V' and '1(j).

The existence of a solution H(j) is guaranteed for each j E E(M, N) by the theory of
elliptic problems comprehensively described in [Hö] (cf. also [Bi,Fi 2]). Choosing H(j) for
any j E E(M, N) in the complement of Kj, the vector field H : E(M, N) ---t CE(M, TN)
is uniquely determined by a and thus is smooth.

Let us formulate this result as follows:

Theorem 5.2
For any a :E(M, N) ---t A1(M, TN) the map

a(j) : TM ---t TN

at any j E E(M, N) uniquely splits into

a(j) = '1H(j) + ß(j) Vj E E(M,N) (5.5)

with H(j) E C?O(M, TN) being in the complement of Kj and where q;(j)(ß(j), '11) = 0
for all 1E Cj(M, TN). In fact both Hand ß vary smoothly with j. •

(5.6)F(j)(I) = J '1H(j) . '11 J-l(j)
M

Using the identity (5.3) we may therefore state

Theorem 5.3
Any F E A~(E(M, N), IR) admits a smooth veetor field H : E(M, N) ---+ CE(M, TN)
for which

13



(5.7)
and hence

FU)( I) = J < ßU)HU), I > /-LU)+ iM (\7 nHU), I) /-LU)
M

hold for all variables of F. The map H : E(M, N) ~ C'E(M, T N) is uniquely determined
by a and is smooth provided HU) is chosen to be in the complement of K j for any
j E E(M,N). •

The consequence of our studies so far in the realm of characterizing smoothly deformable
media is the following

Theorem 5.4
Let be given any smoothly deformable medium characterized by a smooth stress form
assignment a. This medium is characterized as weIl by a smooth vector field

H: E(M,N) ~ C':(M,TN)

uniquely determined by a and enjoys the property

q;U)(aU), \7I) = q;U)(\7HU), \7I) = QU)(ßU)HU),I)-tQ8(\7nH(j),I) = FU)(l) (5.8)

Vj E E(M, N) and VI E C'E(M, TN) where

ßU)HU) = \7*aU) and aU)(n) = \7nHU) Vj E E(M,N) . (5.9)

The maps \7*aU) :M ~ TN and a(n) : 8M ~ TN are called the force densities
associated with aU) on M and 8M, respectively. Given vice versa smooth fields cP :
E(M, N) ~ CE(M, T N) and <p : E(M, N) ~ C'E( 8M, T N) of force densities, then
there is a unique smooth constitutive field H : E( M, N) ~ CE( M, T N) such that HU)
satisfies

cpU) = ßU)HU) and Vj E E(M,N) (5.10)

and is in the complement of K j, provided that cpU) and <pU) satisfy the integrability
conditions. \7H is a stress form characterizing the medium. •

Remark:
The (finite dimensional) cokernel of the Neumann problem at each j E E(M, N) consists
of all cP E Cj(M, T N) and <pE Cj( 8M, T N) such that ßU)H = cP and \7 nH = <phas
no solution. The integrability conditions make sure that cP and <pare in the complement
of the cokernel. We will assurne from now on that HU) for each j E E(M, N) is in the
complement of K j and hence is uniquely determined. We make thus no use of of the gauche
freedom of adding to H maps H' for which \7H' = O.

14



Definition 5.5
By a constitutive law we mean either some F E A~(E(M, N), IR) or a q-density a of
F. The vector field H given by (5.9) is called a constitutive field.

To construct examples of a constitutive field associated with weIl known sortsof virtual
work let us consider the maps

V: E(M,N) ~ IR and A:E(M,N)~IR ,

the volume of j(M) and the area of j(8M), respectively. They are given by

VU) = 1f-lU) and AU) = 1f-lU) Vj E E(M,N)

and hence

respectively. According to [Bi,Sn,Fi]

dVU)(l) = t 1M tr m(j)dlmU)(l) f-lU) = 1M Tj . '\71 f-lU) (5.11)

holds for any jE E(M,N) and any 1E Cj(M,TN). Similarly

dlAU)(l) = r TUa)' '\7(la)f-lUa) = r (ßU)Ua), '\7(la)) jLUa)
1aM 1aM

with ßUa) the Laplacian of the Riemannian manifold (8M, mUa)) with mUa) the
Riemannian metric on 8M, induced by ja := j18M. Moreover 1a .- 118M for each
1E CE(M,N).
Solving the elliptical boundary value problem (Visik problem)

(5.12)

admitting a solution HA (cf. [Hö]) smooth in j, then we have shown the following:

Lemma 5.6

dlVU)(l) = 1M Tj . '\71f-lU) = 1MV). VI f-lU)

= r (ßU)),1)f-lU) + r (Vn],I)ILa(j)1M 1aM
and similarly

dlAU)(l) r '\7HAU)' '\71 f-lU) = r ('\7nHU), 1) f-lUa)1M kM
r (ßU)Ua), 1) f-lUa)
1aM
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hold for any of the variables of V and A. Again HA (j) is assumed to be in the complement
of Kj for any j E E(M, N). In particular

dlln V(j)(j) = dimM and dllnA(j)(j) = (dimM -1) .

Thus dlV and dlA are constitutive laws with constitutive fields Hv given by Hv(j) = ] for
all j E E(M, N) and HA, respectively. •

6. The relation between constitutive flelds with (2,O)-stress ten-
sors on M
Here we exhibit te relation of the stress tensor a (2,O)-tensor on M to a and VH in
particular if codimension dirnM = dirn N. Moreover, we show that working with a stress
tensor in the latter case can be more informative. The example however is in case of
a bounded medium deforming in an Euclidean space. Let F be a constitutive law on
E(M, N) with constitutive field H. As we have seen in (5.5) there are numerous stress
forms a representing F, not only VH. They all differ from VH by some

ß: E(M,N) --t Ak(M,TN)

for which Oj(j) (ß(j), VI) = 0 VI E Gr( M, TN) and all j E E(M, N). We say that ß has
vanishing pseudo ezact part. Nevertheless any a representing F is not hing else but the
first Piola-Kirchhoff stress tensor (cf. [M,H]) and vice versa any such tensor adetermines
some F by taking it as a Oj-density; the constitutive field H is then given by solving (5.4).
This amounts to split off the pseudo ezact part VH of a. Clearly a(j) depends on j
possibly in a non local way.

The tensor T(a) defined by

T(a)(j)(X, Y) .- (a(j)X, Vy]) ,

for any stress form a of F is called the stress tensor on M. T(a) characterizes the
medium as weIl as F or a if dimM = dimN, (otherwise not, as shown below!) This is
easily verified by considering the bundle map

A(j, Tj): TM --t TM Vj E E(M,N) ,

(cf. (3.1)) for which
T(a)(j)(X, Y) = m(j)(A(j, Tj)X , V)

holds for all X, Y E fT M, and by observing that for any j E E(M, N) the force densities
derived from T(a)(j) are in case of dimM = dimN

V*T(a)(j) := V*A(j, Tj) = - LV(j)E. (A(j, Tj)) Es
s
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and on 8M
T(a(n,X) = (a(n),X)

for any moving orthonormal frame EI, ... , Edim M on M.
2

Conversely if the smooth map T( a) : E(M, N) --+ f Q9 T* M is given, then in ease of
dimM = dimN

ß(j)'H(j) = \7*A(j, Tj) and Vj E E(M,N)

de£lnes a smooth veetor £leId 'H on E(M, N) of whieh \7'H is a stress form representing a
weIl de£lned eonstitutive law on E(M, N). Thus we may state:

Proposition 6.1
If dirn M = dirn N then eaeh eonstitutive £leId 'H determines a stress tensor T and viee
versa sueh that

and

\7*T(j) = ~(j)'H(j)

T(a)(n,X)

Vj E E(M,N) .

•
To see that T(a) does not determine \7*a in general let 8M = 0 and let us eonsider dlV.
Then \7) is the stress form at j of dlV(j). Henee the stress tensor at j is m(j). Obviously
\7*m(j) = 0 while as \7*(\7)) = ~(j)) i- 0 for any j E E(M, N).

Let F be a eonstitutive law with stress form a where dimM ::; dimN. Sinee T(a)(j) splits
uniquely into asymmetrie and skew symmetrie part for any j E E(M, N), we may split
A( a, Tj) uniquely into

A(a, Tj) = B(a, Tj) + C(a, Tj) Vj E E(M,N)

where the right hand side eonsists of the self-adjoint B( a, T j) and the skew-adjoint part
C(a, Tj) of A(a, Tj), respeetively, both formed with respeet to m(j). This amounts to
split T( a) into the sum of its symmetrie respeetively skew symmetrie parts. The following
is rather obvious: .

Proposition 6.2
Let dimM::; dimN. Given a eonstitutive £leId 'H E f(TE(M,N)) then

(dj ß( a, Tj)X, djY) = tdlm(j) ('H(j)) (X, Y) VX,YEfTM

•
A mueh deeper result, however, is the following one: Suppose that we have
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(7.1)

(N , < , » = (IR n , < , >IR n ), M a manifold with boundary satisfying dirn M = n and
that F with the stress field 'H is invariant under the Euklidean group. An additional (nat-
ural) assumption determines a stress form ß : E(M, N) ---+ Ak(M, IR n) with vanishing
exact part such that

a = V'H + ß
yields a symmetrie tensor T (cf. [Sch]). This shows that the forms ßU) indeed can have
a physical significance even though they do not contribute to the force density which is
entirely determined by the stress form V'H.

7. The area- and volume-sensitive parts of a constitutive law
In this section and the following two sections we present some of the conveniences and
advantages of the constitutive field 'H. They are all in the context of aglobai description of
the medium. In particular we will exhibit here the part of the virtual work which is caused
by deforming the total volume and area at each configuration.
Let F be any constitutive law with constitutive field 'H. First of all we split off clI.V from F,
based on lemma 5.6: We take the component of V'HU) along "l) with respect to 0). This
yields for each j

for a well defined pU) E IR and some 'H1U) E Cj(M, N) for which V'H1 (j) is orthogonal
. to V) with respect to 0). Hence FU) decomposes into

FU)(l) = pU) . clI.V(j)(l) + J V'H1 U) . VljJ>U)
M

'Vl E Cj(M, TN) . (7.2)

(7.4)

p . clI.V is called the volume sensitive part of F. Due to (4.8) we have in particular

F(j)(J) = O)U)(V'HU), VJ) = pU). IIV)II~ = J?U), dimM . VU) . (7.3)

Since both lI"lU))1I and ) vary smoothly in j, the map a : E(M, N) ---+ IR is smooth as
weIl. The vector field 'Hp : E(M, N) ---+ CE'(M, TN) assigning to each j the map aU) . )
is called the volume sensitive part of 'H. In fact it only depends on Fand not on the
particular constitutive field 'H.We proceed accordingly to construct the area sensitive
part. By looking at (5.12), (7.1) and (7.3) we obtain the following splitting of constitutive
fields.

Theorem 7.1
For each constitutive law F, any constitutive field 'H determines uniquely the smooth maps
p, a: E(M, N) ---+ IR given for each j E E(M, N) by

pU):= FU)(J)/IIV)II~ = FU)(J)/VU)dimM

aU):= FU)('HAU))/IIV'HAU)II~ = FU)('HAU))/AU)(dimM - 1)
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with
IIV)II~ = v(j) dimM

and splits uniquely into

and A(j)(dimM - 1) (7.5)

Vj E E(M,N) (7.6)

where VH2(j) is q]-orthogonal to the span of V) and H(j). The volume and area sensitive
parts of Hand HA respectively as weIl as H2 vary smoothly in j E E(M, N).
Hence any constitutive law F with constitutive field H splits uniquely into

F = p. clV + a. clA + F2

with F2 the one-form with VH2 as its q]-density.

(7.7)

•
Remark 7.2
(i) p(j) and a(j) are called the press ure in j(M) and the capillarity on j(3M), re-

spectively, of the medium at the configuration j (cf. (8.22) for justification).
(ii) If 3M = 0 and n = 1 + dimM then due to (7.11) and (7.9) ~(j) . ) = H(j)N(j)

implying via (7.10)

F(j)(H(j). N(j)) = p(j) '1I~(j))II~ Vj E E(M,N)

where N(j) is the positively oriented unit normal vector field and H(j) denotes the
trace of its Weingarten map (the non-normalized mean curvature of j). Moreover
1I~(j))II~ := J < ~(j)), ~(j)) > jL(j).

(iii) Concerning the generality of a(j) . clj as an exact one-form on M the following may
be pointed out: Given j E E(M, IR n) and 9 E COO(M, IR), then 9 . dj is an exact
one-form on M iff 9 = const. This is seen immediately by computing the exterior
differential of 9 . dj which yields dg(v) . dj (w) = dg(w) . dj (v) for any v, w E TpM
and any p E M. Hence if v = (grad 9 )(p) and m(j)( v, w) = 0 then w =1= 0 implies
dg(v) = O. Thus dg = O.

8. The Ricci-sensitive part of a constitutive law
Next let us study the influence of the Ricci curvature of m(j) and m(ja) to the constitutive
field H(j) for each j E E( M, N). This is in particular of interest in dirn M = 3, since in this
case the Ricci tensor determines the Riemann curvature tensor. The metric' m(j) defines
for each j E E(M, N) the Levi-Civita connection V(j). In turn V(j) yields the curvature

R(j)(X, Y)Z = V(j)xV(j)yZ - V(j)yV(j)xZ - V(j)[X,Y]Z (8.1)
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for all X, Y, Z E f(T M). Taking the trace with respect to X yields the Ricci-tensor
RicU) applied to Y, Z, i.e. RicU)(Y, Z). There is a unique smooth bundle map RU) of
TM such that

RicU)(Y, Z) = mU)(RU)Y, Z) VY,Z E fTM . (8.2)

Hence T j RU) : TM ~ TN can be regarded as a stress form at the configuration j E
E(M, N). Hs pseudo exact part 'Vr(j) is given as the solution of the Neumann problem

'V*Tj RU) = t1U) rU) and TjRU)(n) = 'VnrU) Vj E E(M, N). (8.3)

A 'routine computation shows for each j E E(M, N) an expression for the divergence of
Tj R, reading as

SU)(RU)X, Y) = ('V(TjRU)y))l-

'V*TjRU) = -~ Tj grad JAU) - ~ tr SU)(RU) , ) , (8.4)

where AU) := tr RU) is the scalar curvature and SU)(RU) , ) is given for each
X, Y E f(TM) by

and where tr means the contradiction.
Let us pause to look at the boundary condition a little closer. Based on the equation of
Godazzi-Meinardi a straight forward calculation yields the following expression of RU)(n):

(8.6)

(8.5)

Vj E E(M,N)

RU)(n) = gradm(j8) HUa) - div jlaM WUa)

with WUa) the Weingarten map of 8M in M and HUa) its trace.
Hence

TjRU) = 'VrU) + ßrU)
for some weIl defined ßrU) E A1(M, T N).

As we computed the volume sensitive part of HU), we may split off from HU) the com-
ponent along t1U)rU) to obtain

Vj E E(M,N) (8.7)

with PrU) E .IR, a physical entity. Clearly we may exhibit the volume sensitive and area
sensitive parts of rU) and get

rU) = sU)'] + bU) .HAU) + rlU) Vj E E(M,N) (8.8)

with sU) E .IR and where 'VrlU) is qj-orthogonal both to 'V] and 'VHAU), The pressure
pU) decomposes accordingly into

pU) = PIU) + sU) . PrU) Vj E E(M, N) . (8.9)

In analogy to pU) we compute sU) to

sU) =, dlVU)(rU)) /II'V]II~ or sU) = dlln VU)(rU))/ dimM . (8.10)
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sU) is a geometrical constant, in fact it is a topological invariant if 3M = 0 and dirn lYi = 2
(cf. example below), in contrast to Pr(j).
The following lemma shows how these various constitutive fields are related.

Lemma 8.1
In general rU) and ßrU) in (8.6) are both different from zero and rU) ::/= A . J with
A a constant. The 0-densities V'J, V'HAU) and V'rlU) are in general pair wise linearly
independent for j E E(M, N), in fact V'rl U) is 0-orthogonal to both V'J and V'HAU). •
Proof:
The linear independence of V'J and V'HAU) is evident from (5.12) and (7.4). Turning to
V'rl, let dimM = 2 and 3M = 0. Moreover, let N = lRn be equipped with a scalar
product (, ). Then dj RU) = tAU) . dj with AU) := tr RU) the scalar curvature. Due to
7.2.(iii), the one-form ßrU) = 0 only if AU) = const. On an ellipsoid with three different
axis U =inclusion), A is not a constant. On the ellipsoid mentioned, both rU) and sU)
are different from zero. Back to full generality, the rest of the lemma follows from the
construction. 0

What we have done with RicU) we can repeat for RicUa), the Ricci tensor of mUa), the
metric on 3M pulled back by ja := j13M. The map ra : 3M --t TN can be extended on
all of M in an analogous fashion as (ja) was extended to HAU) in equation (5.12) (the
integrability conditions for this Visik problem are satisfied). Let us call this extension by
Hr8 U). Due to the equation of Gauss, Hr8 U) and rU) are linearly independent in general.

Replacing rU) in (8.9) by Hr8 U) yields accordingly the real numbers saU) and baU), the
components of Hr8 along HA and J, respectively. In fact we adopt the not ion

(8.11)

Replacing rU) in (8.8) by Hr8U) the real PrU) turns into p~U). The field rfU) has a
covariant derivative V'rfU) which is 0U)-orthogonal to both V'J and V'HAU) again.
Combining all this we have the following:

Theorem 8.2
A given constitutive field H uniquely splits into

Vj E E(M, N) (8.12)

where V'H4U) is 0U)-orthogonal to the span of V'J, V'HAU), V'rl U) and V'r8.
. 1

Moreover pressure and capillarity are influenced, for each j E E(M, N), by the RicU) and
RicU a) and the respective scalar curvatures in the following fashion:

and
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with

and

sU) = dlln VU)(rU))/ dirn M = 1M >'U) /-LU) ,

bU) = dlln AU) (rU) ) / (dirn M - 1) ,

saU) = dllnAU)(raU))/(dimM -1) = r >'aU)/-LUa)1aM
baU) = dlln VU)('HraU))/ dimM .

(8.14)

If M and ßM are Ricci-flat (e.g. if j(M) C IRn is flat torus), then pU) = PoU) and
aU) = aoU) for any j E E(M, N). Denoting the virtual works of which the constitutive
fields are rl, rf and 'H4 by Fr1, Fra and F4, respectively, (8.13) yields

1

(8.15)

with
p, a, pr, ar : E(M, N) --+ IR

as smooth maps, all physical constituents. •

TJ' R(J') = sU) T' >.°U) T' T' RO( ')
dirn M' J + dirnM' J + J J,

where sU) := J >'U)/-LU) and >.°U) := >'U) - sU) combined with the condition

q;(j) (d:~~Tj, Tj ROU)) = 0 .

A refinement of the above theorem is derived by splitting Tj RU) for each j E E(M, N)
into

Clearly tr ROU) = O. Then the pseudo exaet part \7rU) of TjRU) splits accordingly into

and

rU) = sU)] + r),U) + roU)

where \7r),U) + sU)Tj and \7roU) are the pseudo exact parts of di~OMTj and Tj ROU),
respectively. Proceeding accordingly for Tja RaUa) and solving the respective Visik problem
yields

Lemma 8.3
For any j E E(M, N) the following splittings hold for any j E E(M, N):

rU). = sU),] + r>.U) + roU)
raU) = saU). 'HAU) + r~U) + rgU) .

•
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Remark 8.4
Equation (8.14) shows the part s(j) . Pr(j) + ba(j)ar(j) of the pressure p(j) that is used
up to bend (Ricci-sensitively) the medium at the configuration j. For the capillarity the
analogous statement holds as weIl.

Let us make an example to illustrate the above procedures: We assurne dirn 8M = 2 and
N = IR 3 equipped with a fixed scalar product. Recalling j IBM = ja, then R(j) = 0 while
Ra(j) =1= o. A a routine computation yields

d'R(') >"(ja)d''Ja Ja = -2- 'Ja Vj E E(M,N) (8.16)

(8.17)

with >"(ja) the scalar curvature of m(ja). As one sees immediately from (8.4) the exact
part is not the 0-orthogonal projection of A(~8) . dja onto IR . dja. By the theorem of
Gauss-Bonnet sa(j) is obtained as

saU) = ~dllnA(j)(ra(j)) = [ >"(ja)J.l(ja) = 47l"xaM
1aM

with XM the Euler characteristic of 8M. Hence p(j) and a(j) decompose for any j E
E(M,N) into

p(j) = Po(j) and (8.18)

smce
ba(j) = [ (j,ß(ja)ra}J.l(ja) = - [(trS(j),'Hr8(j)}J.l(j)

1aM 1M
+ [ (Tj(n),ra}J.l(ja) = 0

1aM

(8.19)

Corollary 8.5
Let IR n = N and (, ) a scalar product, dirn M = 3. For any constitutive law.F, pressure
and capillarity given by the constitutive field 'H of F are

p = po and (8.20)

In case j (8M) is a flat torus a = ao. •
Let us illustrate (8.13) somewhat in order to justify the terminology of p being the pressure
and a being the capillarity: Suppose that for some j' E E(M, IR n)

V'H' = 0 = p(j')' vJ' +a(j'). V'H.A(j') + Pr(j). Vrl(j') + p~(j). rr(j') + V'H4(j') .

This implies the equations

p(j') . vJ' + a(j') . V'H.A(j') = 0 , Pr(j). Vr(j') + p~(j) . Vrf(j') = 0 and V'H4(j') = 0 .
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In particular we find

p(j') .J' + a(j') . HA(j') = ql and Pr(j') . r(j') + p~(j') . r~(j') = q2 (8.21)

with ql and q2 are covariantly constant vector fields along j'. To understand these equa-
tions, let N = IR 3 with (, ) a scalar produet and let dirn M = 3. Since !:l(j')J' = 0 and
since !:l(j')(j'13M) = H(j'13M) .N(j), with N(j):= Tjn we conclude ql = T .N(j) with
T E COO(M, IR). Hence dT(X)N(j') = -Tdj'W(j' X) holding for all X E r(T3M), imply-
ing ql = O.Therefore H(j'13M) = const. Since j'13M : 3M ---+ IR3 is an embedding with
constant mean curvature it has to be a sphere (cf. [B,G]). Hence q2 = O. Thus we may
stat~:

Lemma 8.6
If (N, <, » is an Euklidean space and dimM = 3, equation (8.21) implies that j'(3M) C
IR 3 is a round sphere. The relation between capillarity and pressure reads as

p(j') + a(j'). H(j8) = 0 (8.22)

•
Remark 8.7
Formula (8.22) for the pressure, compared with those for a bubble with a thin boundary
medium, shows that ais twice the capillarity of the boundary medium. The reason is that
this boundary medium is in fact three dimensional and has two boundary surfaces, an
inner and an outer one.

Finally let us express Po and ao by F. The equations (8.14) and (8.15) immediately yield

Proposition 8.8
For each j E E(M, N) the following formulas provide expressions for Po(j) and ao(j) in
terms of special values of F(j) ..

Po(j) F(j)CJ)/ dimM - s(j). F(j)(r(j))/llr(j)II~ - b8(j). F(j)(Hr8(j))/IIHr8(j)II~

ao(j) F(j)(HA(j))/ dimM - s8(j)F(j)(r8(j))/lIr8(j)112 - b(j). F(j)(r(j))/lIr(j)II~

both holding for all j E E(M, N).
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9. The Fourier expansion of the force densities in case of 3M = 0
and an Euklidean ambient space
Let 3M = 0 and let N = IR n equipped with a fixed scalar product <, >. One consequence
of the characterization of a smoothly deformable medium in terms of a constitutive field 1i
is that the force density resisting a virtual deformation is 6.(j)1i(j) at each configuration
j E E(M,IR n). (In case 3M = 0 we would have to restriet us to those 1i for which
\7 n 1i = 0 on all of E( M, IR n).) This allows us to make use of the Fourier expansion of 1i.
This expansion will yield (under additional assumptions) a decomposition ofthe work into
an exact part and a non exact part on a neighbourhood W of a fixed reference configuration
jo E E(M,IR n).

As it is well known 6.(jo) admits a complete system el, e2, ... of smooth orthonormed
eigenmaps with respective eigenvalues Al ~ A2 ~ .... Since we use 6. at a fixed reference
configuration jo we need to pull back 1i to jo. This pull back H is defined by the solution
of the following equation

det j(j)6.(j)1i(j) = 6.(jo)H(j) Vj E E(M,IR n) (9.1)

where p,(j) = det j(j)p,(jo) and m(j)(X, Y) = m(jo)(j2(j)X, Y) holding for each pair
X,Y E f(TM).
We may represent H(j) for any j E E(M,IR n) as a uniformly convergent series (cf. (G,H,L])

00

H(j) = L ~i(j)ei .
i=1

(9.2)

The reals ~i(j) are the Fourier eoeffieients of H(j). As functions of j they are smooth.
These coefficients and the eigenvalues of 6.(jo) allow us to determine the work caused
by a virtual distortion l. E Coo(M,IR n) in terms of the Fourier coefficients. The desired
expression is derived as follows:

.F(j)(l) = J (6.(j)1i(j),l) p,(j) = J (det j(j)6.(j)1i(j), l) p,(jo)

J (H(j), 6.(jo)l) p,(jo) = f e(j) J (ei,6.(jo)l) p,(jo)
1=1

-f ~i(j)Ai J (ei,l) p,(jo) = f Ai~i(j)(i
1=1 1=1

(9.3)
00

6.(jo )H(j) = L Ai~i (j )ei .
i=1

with (1, e, ... the Fourier coefficients of l formed with respect to el, e2, ... The Fourier
expansion of 6.(jo)H(j) = det j(j)6.(j)1i(j) and the force density 6.(j)1i(j) hence turn
into
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and =
t:.(j)'H(j) = L~i(j) det f(j)-l ei

i=l

(9.4)

The eigenvalues Ai are monotonically growing to infinity, the Fourier coefficients have to
fall off accordingly. This shows a charaeterization of a deformable medium (aM = 0!) in
the Euclidean case which supplements the one given in theorem 5.4.

Proposition 9.1
Let aM = 0. Given a fixed configuration jo E E(M, IR n). Any deformable medium
without boundary can be charaeterized by a sequence {6, 6, ... } of smooth maps
~i : E(M, IR n) ----t IR such that the series

converges uniformlyon M and on E(M,IRn) with respect to the C=-topology (which is
metrizable). The map 'H is given by 9.4 is then a constitutive map. •

Since measurements of the force densities are possible only up to a certain degree (depend-
ing on various physical grounds), say up to c, we may find some positive integer v(j) such
that =L Ai~i(j) < c .

i=v(j)

Thus only finitely many of the Fourier coefficients, namely e(j), e(j), ... , ~v(j)(j), are
relevant for the t:.(j )'H(j). Hence the assumption

v(j)

H(j) =L ~i(j)ei
i=l

Vj E E(M, IR n) (9.5)

is reasonable. Clearly v(j) may vary with j. We call 'H finitely determined in a neigh-
bourhood W of jo if almost all of its Fourier coefficients vanish on W.

We call 'H v-determined in W iff
v

H(j) = L ~i(j)ei
i=l

Vj EW (9.6)

with v a fixed positive integer. We will show next that under some additional assumptions
on FIW x CQ'(M, IR) a weIl determined exact part (depending on a boundary condition)
can be split off, even though W is an infinite dimensional manifold.
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Suppose now that 'H is v-determined in some c10sed neighbourhood W of some jo E
E(M, N) with smooth boundary 8W. We may therefore regard H as a map

H: W ~ IRv C COO(M,IR n) ,

W = Q X Q1-

IR v := span (eI, ... , ev) .

To get in the technical realm of finite dimensional Hodge theory, we now require that the
following splitting holds:

with Q being an orientable v-dimensional smooth manifold with boundary for which

U 8(Q x {j'}) = 8W .
j'EQ.l.

'HI{j} x Q1- is supposed to be constant (the value depends on j E Q). Q is moreover
required to be an orientable manifold with (orientable) boundary 8Q. Clearly, dirn Q ~ v.
The metric 9 (cf. sec.2) on W yields for each j' E Q1- a Riemannian volume on Q x {j'}
and a positively oriented unit normal qj'. Given some j' E Q1- we will split off from

FI(Q x {j'}): (Q x {j'}) x T(Q x {j'}) ~ IR ,

(9.7)

E Q1-
Fjl = dUj' + Wj'

with W j' a smooth one-form on Q with vanishing exaet part. Doing so for all j'
yields the desired decomposition on W

called Fj', its smooth exaet part dUjl (via Hodge decomposition with Neumann boundary
condition) to obtain

FIW = dlU+w, (9.8)

since Uj' and W j' will depend smoothly on j' E Q1-. The map U : W ~ IR will be smooth,
too. This decomposition is obtained by splitting

into a gradient (of the map U) with respeet to 9 and a divergence free veetor field or-
thogonal to q on 8W where q is defined by qlQ x {j'} = qj" In detail we proceed as
follows: .1

9 and the orientation of Q x {j'} define a Laplacian a~.Let 'Hj' := 'HIQ X {j/}. We may
take the divergence dlivoßUo)Hj' on Q and solve the Neumann problem

and (9.9)

for all j E Q X {j/}. Doing so for each j' E Q1- the map ßUo)HU) admits the splitting

ßUo)HU) = (GradoU)U) + TU) Vj E W (9.10)
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(9.11)

o for all

Vj EWlJ!(j)(1) :=JM (Y(j), 1) /-L(j)

with Grad 0 the Gradient formed with respeet to Q and Q(j)(Y(j), q(j))
j E aw. Defining

provides us with the above splitting (9.9). Since the integration on M and the one on
Q x {j'} interchange for each j' E Q1. we moreover have

(GradoU)(j) = ~(jo)Hu(j) and (9.12)

det f(j)-l ~(jo)Hu(j) = ~(j)Hu(j)

for well determined (smooth) maps Hu, Hw : Q --+ COO(M, IR n). Solving on M the
equations

and
Vj EW

W = Q X Q1.

with FITQ1. not depending on j' E Q1. and Q being a v-dimensional oriented mani-
fold with boundary,

and combining it with the theorem 7.3 we have shown the following splitting theorem:

Theorem 9.2
Let aM = 0 and let F be v-determined (vapositive integer) in an closed neighbourhood
W of jo in E(M, IR n) satisfying the assumptions
1) W is a smooth oriented manifold with boundary aw.
2) It splits into

and
3) Q x {j'} is a v-dimensional orientable manifold with boundary such that

aw = U a(Q x {j'}) .
j'EQ.l.

Then there is a unique splitting on W

F = cllU + lJ! (9.13)

with
U:W--+IR

a smooth map and

a smooth one-form such that

F(j)( q) = cllU(j)( q) and lJ!(j)( q) O. (9.14)
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Here q is the positively oriented g-unit normal vector field along 3W. The constitutive
field 'H splits accordingly uniquely into

'H = 'Hu +Hw , (9.15)

where all'H(j), 'Hu(j) and 'Hw(j) are for any j E W g-orthogonal to the constant maps in
COO(M, IR n). •

If W in (9.13) satisfies W 1\ d1.w along Q x {j'} for any j' E Q..L then there is an integrating
faetor (cf. [B,StJ) T: W --+ IR such that for some G : W --+ IR the one-form on E(M, N)
writes as W = Tdl.G. This condition, however, is not satisfied in general.

A one-form w on a finite dimensional manifold admits an integrating faetor iff w 1\ dw = 0,
i.e. iff w is of constant rank one.

Corollary 9.3
Let 3M = 0. Under the suppositions of theorem 9.2 and the assumption that Wj' is of
constant rank one for each j' E Q..L. Then

F = dlU +T . d1.G

with T and G both real valued maps on W. •
Next let us investigate dlU in (9.13) more closely. Associated with each ei is the one-form
Fi with i = 1,2, ... given for all j E E(M, IR n) and for all 1 E COO(M, IR n) by

(9.16)

It is j-independent. Hence

(9.17)

its gradient formed with respect to g(j) is

Vj E E(M,IRn) .

From this we immediately deduce with the help of theorem 7.1:

Lemma 9.4
Let 3M = 0. Any constitutive law F decomposes at each j E E(M, IR n) uniquely into

00

F(j) = L ei(j) . dlUi(j) ,
i=l
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..
where the coefficient functions ~i : E(M, IR n) --+ IR n are smooth. Moreover

Vj E E(M, IR n)

•where Ci (j) is the ith Fourier coefficient of j.

Combining theorem 9.1 with the above lemma immediately yields the following:

Corollary 9.5
Let 8M = 0. 1£F is v-determined in a neighbourhood W of jo E E(M, IR n) and satisfies
in addition the supposition of theorem 9.1, then the exact part of F is

cllU(j)

and the non exact one

w(j)

where the smooth maps

vL (i(j)dlUi(j)
i=l

vL (}i(j )cllUi (j )
i=l

Vj E E(M,IRn) ,

Vj E E(M, IR n)

(9.19)

and i=I,2, ... ,v

are such that (icllUi is exact and that (}idlUi is not exact for any i. Hence

and

have to hold for each i = 1, ... , v. •
We may look at cllUi as a constitutive law. The pressure pi involved in cllUi is for each
i = 1,2, ... determined by

Vj E E(M,IRn) • (9.21)

(9.22)

The constitutive field at each j E E(M, IR n) of dlUi with i fixed is det f(j)-lei and
therefore
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WF : COO(M, T2 N) ~IR

- the fundamental ingredient of our set up of a dynamics - is given by

••

.

I

holds. Here p~(j) is as in (8.7) and hence is the ith Fourier coefficient of 1'(j). Hence
pb (j) . 1, . V (j) . dirn M is the ith Fourier coefficient of j if (M, m(j)) is Ricci -flat. •

10. The dynamics for boundary less media determined by a
constitutive law
Let ßM = 0. As we have mentioned in the previous section, a constitutive law on E(M, N)
of a smoothly deformable medium is defined to be a smooth one-form F : TE(M, N) ~ IR
admitting a smooth constitutive vector field 'H E rC'E(M, TN).
The dynamical form

WF(l)(k) := d£kin(l)(k) - (7rEF)(l)(k)

for any 1 E C'E(M, TN) and for any k E C'E(M, T2 N).

(10.1)

The dynamics determined by F is given by the unique vector field XF (if it exists at all)
for which

VX E rT2 E(M, N) . (10.2)

The following theorem shows the existence of XF and moreover expresses its simple form:

Theorem 10.1
Given a constitutive law F on E(M, N) with constitutive field 'H then

VI E COO(M, TN) (10.3)

where ve1't denotes the pointwise formed verticallift of ~(7r NO 1)'H(7rNO 1) on N determined
by V. •
Proof:
If XF exists, then again it is unique. Using (A.9) and (10.2) we verify (10.3) for any
1 E COO(M, N) by the following calculation:
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I

WB(XF(l),X(l)) = J p(1rN 0 l)w(XB(l),X(l))J.L(1rN 0 l)
M

+ J W((~(1rN 0 l)H(1rN 0 l)rert,X(l))J.L(1rN 0 l)
M

=dl£kin(1rN 0 l)(X(l)) (10.4)

- J (~(1rN 0 l)H(1rN 0 l), T1rN(X(l)))J.L(1rN 0 l)
M

+ J (X(l)vert, T1rN 0 (~(1rN 0 l)H(1rN 0 l)vert))J.L(1rN 0 l).
M

Since the last summand is zero we find for each l E COO( M, T N)

wB(XF(l),X(l)) =dl£kin(1rN ol)(X(l))

- J (~(1rN 0 l)H(1rN 0 l), T1rN 0 X(l))J.L(1rN 0 l)
M

= dl£kin(1rN 0 l)(X(l)) - F(1rN 0 l)(T1rN 0 X(l)) . ,

establishing the claim.

Definition 10.2
The equation of a motion u : (-A, A) ~ E(M, N) subjected to Fis given by

o

Ö"(t) = XF (Ö"(t))

combined with initial conditions.

We therefore have :

Vt E (-A, A) , (10.5)

Theorem 10.3
The equation of a motion u : (-A, A) ~ E(M, N) subjeeted to a given constitutive law F
with constitutive field H E f( CE(M, T N)) and with the initial data u(O) = j E E(M, N)
as wen as Ö"(O)= 10 E Cj(M, T N) is given by

Ö"(t) = XB (Ö"(t)) + p(:(t)) . (~(u(t)) H (u(t))r
ert

or equivalently (with '1 the covariant derivative of B) by

'1.s!Ö"(t) = (1( ))~(u(t))H(u(t)) .
dl P u t
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• The motion u is free i.e a geodesie iff F = O. •
Equation (10.6) coincides with the equation of a motion subjected to a constitutive law of
[Bi 4]. There the equation was derived by d'Alembert's principle and not on a geometrie
basis as done here.

The above decomposition theorems and (8.2) yield immediately refinements of the equa-
tions of motions subjeeted to a constitutive law:

Theorem 10.4
Let F be a constitutive law with constitutive field H. Any motion u : (-A, A) ---+ E(M, N)
(with any initial condition) is subjected to F iff

(10.8)

Vt E (-A, A) .

with r2( u(t)) as in (9.12). Moreover the following balance law

tdl£kin(U(t))(ä(t)) = p(u(t)) . dlVF(U(t))ä(t) + a(u(t))dlA(u(t)) (ä(t))

+ 7l'~(Pr(u(t))FrJu(t)) + F4(u(t))ä(t))
(10.9)

holds true for all t E (-A, A). Fr and F4 are the constitutive laws associated with rand
H4 as in (8.13). •

Corollary 10.5
If the constitutive map of F is of the form

HU) = pU) .J Vj E E(M,N) (10.10)

that is if FU) = pU).dlAU) then the motion u, subjeeted to F, satisfies for any t E (-A, A)

as well as the balance law

~dl£kin(U(t))(ä(t)) = p(u(t)). dlA(u(t))(ä(t)) .
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1£N is Euclidean we may let J = j for all j E E(M, N) and conclude

ä(t) = p(O"(t)) . ß(O"(t))O"(t)
p(O"(t))

Vt E (-A,A) . (10.13)

In case M is of codimension one then (10.5) rewrites as

. p(O"(t))
'1-!LO"(t) = (( )) .H(O"(t)) . N(O"(t))

dt p 0" t
Vt E (-A,A) (10.14)

where N(O"(t)) is the positively oriented unit normal of j(M) in N. •

11. SymmetJrY groups
Let 8M = 0. Given any density map p E(M,N) ~ coo(M,Rn), the metric 8 on
E(M, N) (cf. appendix) associated with p is invariant under Diff+ M, the group of all
diffeomorphisms preserving the orientation of M. This is immediate from the solution of
the continuity equation (2.5) and the transformation formula of the integral. Equation
(A.9) moreover shows immediately the invariance of WB under Diff+ M.

Let us suppose that we are given a constitutive law F being invariant under Diff+ M,
meaning that (R'ljJ)* F = F for all 'ljJE Diff+ M, where R'ljJ denotes the right translation
by'ljJ on E(M,N) (cf. sec. 2). More explicitly, Diff+ M invariance of F means

F(j 0 'ljJ)(10 'ljJ)= F(j)(1) Vj E E(M, N) and V'ljJ E Diff+ M (11.1)

The dynamical form WF is invariant under Diff+ M. Differentiating (11.1) with respeet
to 'ljJyields for any j E E( M, N) and any 1E Cr( M, T N) the equation

'1TjX (F(j))(1) + F(j)(\7 xl) = 0 VX E rTM. (11.2)

Here r(T M) is identified with TidDiff+ M and V is the covariant derivative of 8 (cf.
appendix). The symplectic formalism yields a smooth moment map

J :CE'(M, TN) ~ 8P(r(TM))

given for any 1 E Cr(M, TN) and any j E E(M, N) by the equation

J(l)(X) = 8B(l)(T1X) = -8( 7f 01)(1,T7fN 0T1X) = -8(j)(1, TjX) .

The relation between J and integrals of a motion is as follows:
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(11.5)VI E C'E(M, TN)Jx(l) := J(l)(X)

Lemma 11.1
Let F be Dijj+M invariant. For any X E f(TM) the map Jx CE'(M,TN) -+ IR
defined by

is constant on any motion subjected to F iff

F(j)(TjX) = 0 Vj E E(M,N) and "IX E fTM .

If F is exact and the potential is Dijj+ M invariant, then Jx is a first integral of the
motion for each X E fT M. •
Proof:
Let us compute d1.J X : For any k E Cr::'(M, T N) we have

d1.Jx(I)(k) = d1.(Bs(l)(T(7l"N 0 I)X))(k) = -d1.B(7l"N 0 1)(1,T(7l"N ol)X)(k)
= _(ß(kvert, T(7l"N 0 I)X) + B(l, T(7l"N 0 kvertx)) = _B(kvert, T(7l"N 0 I)X) .

(11.6)
Because of Xs(l)vert = 0 the choice k := XF(l) yields

d1.JX(l)(XF(l)) = - B(XF(l)vert, T( 7l"N 0 I)X) - B(Xs(ltert, T( 7l"N ol)X)
= F(7l"N 0 1)(T(7l"N ol)X)

(11. 7)

for all I E C'E(M, TN). The validity of the assertion is now immediate. o

Next we consider a more general situation coming up rather frequently. If we have differ-
entiable groups V and I together with the respective smooth representation

a : V -+ Dijj+ M and b : I -+ .J

then both a and b yield moment maps. Following the same routine in the proof of Lemma
11.1 we derive the following:

Theorem 11.2
Let F be invariant under both a(V) and b(I). The respective moment maps of a and b
yield first integrals of any motion subjected to F for each of the elements in the respective
Lie - algebras if for any j E E(M, N)

F(j)(TjaX) = 0 "IX E f(TM) (11.8)

as weIl as
F(j)(b( c) . J) = 0 (11.9)

hold. Here a and b denote the representation of the respective Lie algebras determined by
a and b. •
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12. The restrietion of a motion subjected to F to a fibre in the
principal bundle E(M, N)
Again 3M = 0. Each fibre in the principal bundle E(M, N) is of the form i 0 Diff M with
fixedi E E(M, N). In this section we impose on the motion (j : (-A, A) ~ E(M, N)
subjected to F the constraint that

(j(t)(M) = i(M) Vt E (-A, A) .

To find the equation of such a motion (j we proceed analogous as in the previous sections:
We let Bi be the metric on i 0 Diff M obtained by restricting B to this fibre. This yields
immediately the symplectic structure wi on TU 0 Diff M), the pullback of WB by the
tangent map of the inclusion map i 0Diff M ~ E(M, N). Moreover let Fi be the pullback
of F by the inclusion map mentioned.

Observing that any tangent vector to i 0 'lj; E i 0 Diff M with 'lj; E Diff M is of the form
TU 0 'lj;)X for some X E f(T M), the one-form Fi is given by

Fi(i 0 'lj;)(T(i 0 'lj;)X) = J < 6.(i 0 'lj;)'H(i 0 'lj;), T(i 0 'lj;)X > p,U) .
M

(12.1)

There is a connection on E(M, N) induced by the orthogonal projection of TN to TiTM:
Given any [ E Cr::t/J(M, TN) with 'lj; E Diff M we let the component [T of [ in
Tiot/Ji 0 Diff M be given by

[T(p) = T(i 0 'lj;)X(lT,j) E T(i 0 'lj;)(TM) VpEM, (12.2)

for a well defined vector field X(lT,j) E f(TM). Clearly the projection from TE(M,N)
to T(i 0 Diff M) given by T is Diff M invariant for each i E E(M, N).

Let £tn denote the kinetic energy on T( i 0 Di f f+ M) given by Bi. Its Euler field on
Ti 0 Diff M is the spray Xi of Bi. It is of the form

(12.3)

with Si the spray of m( i) on TM and X E f(T M). We need one more geometrie notion
to formulate our equations: Let ';;;jidenote the covariant derivative of Levi - Civita of Bi
on i 0 Diff M. Due to general principles in Riemannian geometry and the fact that J is
normal to TjTM we immediately find for any jE E(M,N) the following:

Theorem 12.1
The equation of motion (j : (-A, A) ~ E(M, N), subjected on one hand to a given
constitutive law F on E(M; N) with constitutive field 'H and on the other to the constraint

(j(t)(M) = i(M)

for a fixed i E E( M, .IR), read as
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••
Vi/J"(t) = ((~(O"(t))1{(O"(t))rert) T

for all t E (-A, A), with SM the spray of m(i) on TM.

(12.5)

•
If moreover, we subject the motion to the furt her constraint, namely that 0" maps into
i0 Dijjp.(i)M with Dijjp.(i)M, the group of all f.l( i) preserving diffeomorphisms of M, then
we arrive at Euler's equation of aperfect fluid on i(M) as in [E,M]), provided 1{ = O.

Appendix: B, its associated one- and two-forms and its spray
To find the Levi-Civita connection and the one- and two-forms associated with B we need
to differentiate B which we regard as a map

B: C'E(M,TN) x CE'(M,TN) -+ IR.
E(M,N)

The domain is the fibred product of C'E(M, T N) with itself over E(M, N). Now let l(t) E
C'E(M, T N), varying smoothly in t E IR and let j(t) := 1rN ol(t). Setting j(O) = j, 1(0) = 1
and i(O) = k, then we verify:

~B(j(t))(l(t), l(t))lt=o = J p(j) ~ < l(t), l(t) > It=Of.l(j)
M

= 2B(j)(\J .L1(t),1) = 2B(j)(kvert,1)
dt

(A.l)

where vert denotes the pointwise formed vertical component of k in T2 N (with respect to
the connection given by < , >, cf [G,H,V]). It is regarded at each p E M as a tangent
vector to l(p) E T1rNol(p)N and hence as an element of T1rNol(p)N. The covariant derivative

V: rCOO(M, TN) -+ rCOO(M, TN)

is hence given by

V1 E E(M,N) and Vp E M (A.3)

for any choices of I:-and k E rCOO(M, T N). It is metric and obviously torsion free. Here Tll:-
denotes the tangent map of I:-on E( M, N) at land vert means again the vertical component
formed in T2 N. This type of conneetion is unique for B, as easily seen by following the
proof of the analogous statement for finite dimensional manifolds. The curvature of B is
thus inherited from the one om N to the contraet of the curvature of g. Equation A.3
yields immediately( cf. [Bi 4]):
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Lemma A.l
The eovariant derivative '1 given by (A.3) is the Levi-Civita eonnection of the metrie B .

•
We equip the set

BP(TE(M,N)):= {B(j)(l, ... ) I j E E(M,N)and l E TjE(M,N)} (A.4)

with the COO-topology and obtain a Freehet manifold, the geometrie dual of T E(M, N).
It is a smooth vector bundle and we use it as a replaeement of the eotangent bundle of
E(M, N). The one-form eB assoeiated with B on this bundle is defined in analogy to the
finite dimensional ease: It is the pull baek by

BP: TE(M,N) -+ BP(TE(M,N))
ll-+ B(7rN 0 l)(l, ... )

of the eanonieal one-form on BP(T E(M, N)), i.e eB is given by

eB(l)(k) = -B(j)(l,T7rE(k))
= -B(j)(l, T7rN 0 k) .

(A.5)

(A.6)

Here 7rE : TE(M, N) -+ E(M, N) and 7rN : TN -+ N are the eanonieal projeetions.
The two - form WB assoeiated with B is defined by

WB := dleB (A.7)

< , >P: TN -+ T* N
v 1-+< v,. >

where cD. also denotes the exterior differential for forms on T E(M, N). WB applied for any
j E E(M, N), for any l E Cj(M, N) to any two k1, k2 E Ci(M, T2 N) reads as

wB(l)(k1,k2) = B(j)(k~ert,T7rN 0 k1) - B(j)(kfert,T7rN 0 k2)

= J p(7rN 0 l)wP(k1, k2)J.l(7rN 0 l) (A.9)
M

where wP is the pullbaek of the eanonieal two - form on the eotangent bundle T* N of N
by the diffeomorphism

Fundamental in our setup of a dynamies will be the notion 0rthe spray XB of B. It will
govern the free motion. It is defined by

with
£kin(l) := ~B(l, l)
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Due to the continuity equation and the special form of WB the spray of 8 takes the form
•

VI E COO(M,TN) .

A smooth curve
<7 : (-,\,,\) -+ E(M, N) with ,\ E IR +

is called a geodesie iff

(A.13)

(A.14)

Since V..!!..ä(t) = T..!!..ä(t) - XB(ä(t)), where T..!!..ä(t) denotes the tangent map
dt dt dt

Tä : IR x IR -+ T E(M, N) evaluated at (t, 1), equation (A.14) turns into

V..!!..ä(t) = 0 .
dt

In summation of the above we state:

(A.15)

Proposition A.2
A smooth curve <7 : (-,\,,\) -+ E(M, N) is a geodesic of 8 with the initial conditions

<7(0) = j and ä(O) = 1.
iff

(J'p : (-,\,,\) -+ N
t ~ (J'(t)(p)

is a geodesic in N for any p E M, satisfying the initial conditions <7p(O) - j(p) and
äp ( 0) = 1(p ) . •

The above proposition implies in particular, that the spray XB admits locally a unique
£lowon C'E(M, TN).
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