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Introduction

Let us assume a given medium moves and deforms in an ambient smooth and oriented
Riemannian manifold N with metric {, ). This medium at hand is supposed to maintain the
shape of a compact smooth orientable and connected manifold M with boundary. Clearly
dim M < dim N. By a configuration j of the medium we mean a smooth embedding of M
into N. The configuration space is E(M, N), the collection of all smooth embeddings of
M into N endowed with the C*°-topology. :

There are several types of ingredients to characterize the physical quality of a medium
(cf. [M,H]) of this type. At first we adopt the characterization via the first Piola-Kirchhoff
stress tensor a, a (1, 1)-tensor. To keep the full generality we assume that a depends on the
actual configuration j, possibly in a non local way. Geometrically speaking a(j) is a bundle
map of TM into TN over j. Since a(j) is not specified with respect to a fixed configuration,
we omit to include the volume correction as usually done. If dimN = dim M then a(y)
together with the pullback metric j*(<, >) yield for each j € E(M, N), a (2, 0)-tensor,
the stress tensor describing the medium as well as a(j) does. If dim M < dim N this is not
true, however (cf sec.6).

Given now a virtual infinitesimal distortion at j, then the virtual work F(j) (cf. [M,H],
[He], [E,S]) caused by it can be computed with the help of a(j). In fact a(j) determines
the force densities ®(j) on M and ¢(j) on OM for each j € E(M,N) by &(j) = V*a(j)
and ¢(j) = Vaa(j), respectively. Here V is the covariant derivative on N and V* the
associate covariant divergence. The vector field n along OM is the positively oriented unit
normal of 8M in M formed with respect to the pull back metric 7* <, >.

The main purpose of this notes is to exhibit (in absence of exterior force densities) the
irredundant part of a(j) that determines the force densities mentioned and the virtual
work caused by any infinitesimal distortion at j. This irredundant part is itself a bundle
map of TM into TN along j; it is of the form VH(j), where H(j) : M — TN is a smooth
T N-valued vector field along j. Here V is the Levi-Civita connection on N. Clearly the
irredundant part VH(j) is a first Piola-Kirchhoff stress tensor, too. However, VH(j) and

“a(j) are not identical in general, even though they cause the same force densities (cf. [Bi

1] to [Bi 4]). In fact if the ambient manifold is Euclidean, VH(j) is the exact part of a(j),
exhibited via Hodge’s theory. This is a special case of the following:



As just pointed out H(j) characterizes the medium as well as a(j) does, in the sense
that a(y) and H(y) both cause the same force densities ®(5) and (7). This map H can
be determined directly by these densities. In fact, given any pair of force densities ®(y)
and ¢(j) (coming from a(j) or not) then H(j) can be established as the solution of the
Neumann problem, consisting of the equations ®(j) = A(j)H(j) on M and ¢(j7) = Vo H(j)
on OM. Here A(j) is the Laplacian determined by V and the pullback metric j* <, >. The
vector field n along OM is the positively oriented unit normal of OM in M. This solution
exists provided that ®(j) and ¢(7) satisfy the integrability conditions.

Thus ®(j) and ¢(7) determine, via the solution H(j) of a Neumann problem, a minimal
type of Piola-Kirchhoff stress tensor, namely VH(j). This is established in sec.5. In sec.6
we relate this point of view with the usual setting of a (2, 0)-stress tensor, the well known
stress tensor. It will be apparent by a result in [Sch] that not only VH but also « itself
has a physical significance. In particular if dimM = dim N the stress-tensor defined by
o might be symmetric, while the stress-tensor caused by VH might miss this property.
The significance of the stress tensor of a in this case is thus the superior visualization of
the medium over the more involved description in terms of VH. However, the irredundant
part is present in this case also as a physical entity. It is hence worthwhile to study it in
its full generality.

The rest of the paper is concerned with showing the specific features of working with
VH(j) for any configuration j € E(M,N). In particular we exhibit the volume and the
area sensitive parts of VH(j) (cf. sec.7) as well as the parts which are sensitive to the Ricci
and scalar curvature of the pull back metric j* <, > on M (cf. sec.8). In particular the
influence of these curvatures to pressure and capillarity is studied.

Since ®(j) = A(j)H(j) we may use in case of M = @ the complete eigen system of the
Laplacian given by A(jo) at a fixed reference configuration jo to obtain a Fourier expansion
of the force density ®(;) pulled back to jo. Given a first Piola Kirchhoff stress tensor o and
assuming that all but v many of these coefficients vanish in some (closed) neighbourhood
W of jo in E(M, N) we exhibit under a regularity assumption and a boundary condition
an exact and non-exact part dif, respectively ¥, of the virtual work F'. This is done by
using Hodge theory on a v-dimensional foliation of W which is caused by the requirement
that only the first v of these Fourier coefficients are taken in account. df represents the
hyperelastic part (cf. [M,H]) of the medium characterized by «. Based on the theory of
integrating factors a temperature like map T : W — R is constructed (from a formal
point of view) in a special case.

Finally we show in sec.11 a dynamics for boundary less manifolds based on a symplectic
structure on TE(M, N), study the influence of symmetry groups in sec.12 and lastly con-
sider motions along a fibre of the Diff M-principal bundle and obtain Euler’s equation of
a perfect fluid as a special case.

The first four sections are devoted to the geometric background in order to treat this sort

of approach of describing deformable media in this generality, in a rigorous fashion. The
term smoothness on Fréchet manifolds refers to the one introduced in [B1,Sn,Fi] or [Fr,Kr].



1. Geometric p.reliminaries and the Fréchet manifold E(M,N)

Let M be a compact, oriented, connected smooth manifold with boundary OM and N
be a connected, smooth and oriented manifold without boundary equipped with a fixed
Riemannian metric < , >. For any j € E(M, N) we define a Riemannian metric m(j) on
M by setting : .
m(I)X,Y):=<T3X,T;Y >, VX, Y e (TM). (1.1)

(More customary is the notation j* < , > instead of m(j).) We use I'(E) to denote the
collection of all smooth sections of any smooth vector bundle E over a manifold @ with
g : E — @ the canonical projection.

The positively oriented unit normal of M in M is called n. Let moreover js := j|OM.
The metric on M induced by m(j) is called m(js). The Weingarten map of n formed
with respect to m(js) is called Wj(j) and its trace Ha(j) referred to as the Weingarten
map and the mean curvature, respectively, of 9M. Let u(j) and p(js) be the Riemannian
volume on M and M respectively defined by the given orientations and the metrics m(j)

and m(j5), respectively. Hence m(ja) = (ja)*m(j) and u(j) = (o) u(j)-

Let V be the Levi-Civitd connection of the Riemannian manifold (N,< , >). In this
situation, the Levi-Civita connection V(j) of (M, m(j)) is obtained as follows:

TN|j(M) splits into T5(T M) and its orthogonal complement (Tj(T'M))* (the Riemannian
normal bundle of j) and hence any Z € I'(TN|j(M)) has an orthogonal decomposition
Z = ZT +ZL, where the tangential component Z7 is of the form ZT = Tj -V for a unique
Vel(TM).

If now Y € I(TM), then TjY : M — TN is smooth and therefore, the above covariant
derivative V(T;Y) is well-defined. We use this to define the vector field V(j)xY on M by

the equation
Ti(V(j)xY) = Vx(TjY) = (Vx(TiX))* . (12)

for all X,Y € I'(TM). In fact V() is the Levi - Civita connection of m(j) which is called
d in case N is Euclidean, i.e if N = R"™ and <, > is a fixed scalar product. Instead of
(VX(TJ-X))L we write S(7)(X,Y) and call S(j) the second fundamental tensor of j. The
Levi-Civita connection of m(js) on M is denoted by V2(j).

It is well-known that the set C°(M, N) of smooth maps from M into N endowed with
Whitney’s C*®-topology is a Fréchet manifold (cf.e.g.[Bi,Sn,Fi] or [Fr,Kr]). For a given

f € C=®(M,N), the tangent space TfC>°(M, N) is the Fréchet space

CP(M,TN) := {l € C*(M,TN)|rny ol = f} = T(f*TN) and the tangent bundle
TC>(M, N) is identified with C>°(M,TN), the topology again being the C'*-topology.

The set E(M,N) of all C*-embeddings from M to N is open in C*°(M,N) and thus
is a Fréchet manifold whose tangent bundle we denote by Cg(M,TN). It is an open
submanifold of C*°(M,TN), fibred over E(M, N) by “composition with m5”. Moreover,
if BM = 0, the Fréchet manifold E(M, N) is a principal Diff M-bundle under the obvious
right Diff M-action and the quotient U(M, N) := E(M,N)/Diff M is the manifold of
“submanifolds of type M” of N (cf. [Bi,Sn,Fi], ch.5, and [Bi,Fi 1]).
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The set M(M) of all Riemannian structures on M is a Fréchet manifold since it is an
open convex cone in the Fréchet space S?(M) of smooth, symmetric bilinear forms on M.
Moreover, the map ‘

m: E(M,N) — M(M)
is smooth (cf.[Bi,Sn,Fi]).

Lastly, by an E-valued one-form a on M, where E is a vector bundle over N, we mean a

smooth map
a:TM — E

for which a|T,M is linear for all p € M. We denote the set of such one-forms by
Al(M,E) and now obtain the following description of its structure: The requirement that
a € AY(M,E) should be linear along the fibres of TM means that there is a (smooth) map
f: M — N such that a|T, M is a linear map into E(,y for p € M, in other words, that a
is a bundle map from TM to E over f: This map f € C®°(M, N) satisfies Tgoa = fomy
(where 7, Tar are the respective bundle projections). The set of such one-forms is naturally
identified with the Fréchet space A!(M, f*E). This shows that

AYM,E) = | J{A (M, f*E)|f € C=(M,N)}.
| - |

It is clear from the construction that there is a natural surjection

II: AY(M,E) — C®(M,N)
whose fibres are the Fréchet spaces AY(M, f*E), in fact A'(M, f*E) is a vector bundle
over C®(M, N) with projection I (cf.[Bi,Fi 2]).

In the following three sections we will introduce three metrics on some special types of
infinite dimensional manifolds and will prepare in this way the geometric background of
the description of smoothly deformable media as well as a dynamics in case oM =0.

2. The metrics § and B on E(M,N)

The Riemannian structure < , > of N induces a “Riemannian structure” G on E(M, N )
as follows: For j € E(M, N), let u(j) and u(js) be the Riemannian volume on M and M
respectively defined by the given orientations and the metric m(j). For any two tangent
vectors Iy, 1z € C7°(M, TN), we set

G(7)(h,12) = /(11,12)y(j) and Q’a(j)(lnlz)=/6M(h,lz>#(ja)' (2.1)

M

It is clear that G(j) is a conﬁinuous, symmetric, positive-definite bilinear form on
Cs°(M,TN) for each j € E(M,N).




The metric G possesses some invariance properties (which will become important in sec. 11):
Let Difft M be the group of orientation-preserving diffeomorphisms of M. As a subgroup
of Diff M, it operates (freely) on the right on E(M, N) by

¢: E(M,N) x Diff*t M — E(M,N) (2.2)
(Jop) — o '

For a fixed ¢, we also write R,j for j o ¢.

Similarly, if J is any group of orientation-preserving isometries of IV, then it operates on
the left on E(M, N) by
J x E(M,N) — E(M,N).
(9:5) —goJ
We need the following rather obvious result (cf.[Bi,Fi 2]) for some basic invariance prop-
erties of one-forms on E(M, N): '

(2.3)

Proposition 2.1 .
G is invariant under both Diff* M and J. *

The dynamics of boundary less deformable media to be introduced later relies on the metric
B on E(M,N). This metric will be based on a density map p. A smooth map

p: E(M,N) — C*(M,R)
is called a density map if the following is satisfied:
p(7)(p) >0 Vi€ E(M,N)and Vpe M. (2.4)

dp(j)(k) = _p—(zﬁtrm(j)dlm(j)(k) Vj € E(M,N) and Vk € C°(M,TN).  (2.5)

trm(;) denotes the trace formed with respect to m(j). The symbol d denotes the differential
of maps of which the domain is a Fréchet manifold and which assume values in a Fréchet
space. If both domain and range are finite dimensional the usual d replaces d. We will
construct a density map next. For any j' € E(M, N) we express m(j') via a smooth strong
bundle endomorphism f2(j') of TM, selfadjoint with respect to m(y), as

m(j")(vp, wp) = m(G)(F ()P, wp)  Vvpwp € TpM andVpe M (26)
and observe that the Riemannian volume forms x(7) and u(5") are linked by
(i) = det f(3")u(s). (2.7)
Fixing a map p(j) € C®(M, R) for some fixed j € E(M, N) satisfying (2.4) then
p:E(M,N) — C*(M,R)




given for any j' € E(M,N) by

| p(s") = det £(3") 7 p(5) (2:8)
satisfies both (2.4) and (2.5).

To construct the metric B we fix a density map p on E(M ,N) once and for all (unless
specified otherwise).

The metri.c B is then defined by

B() (i, bo) = / o(i) < ln, 1o > () (2.9)

M

for each j € E(M, N) and for each pair l1,l; € C°°(M, TN). This metric depends smoothly
on all of its variables. For its covariant derivative and geodesics see appendix A.

3. The fibred space Lz(M,TN) and its dot metric

To prepare the geometric realm for the introduction of the first Piola-Kirchhoff stress
tensor characterizing a medium deforming in the Riemannian manifold N, we need to

~ introduce a space of special TN-valued one-forms. To begin this preparation, we denote

by AL(M,TN) the subset of A!(M,TN) consisting of all TN-valued one-forms covering
smooth embeddings from M to N. This is the inverse image of E(M, N) under the pro-
jection II : AY(M,TN) — C*=(M, N), hence is an open submanifold and, in fact, is itself
a (Fréchet) vector bundle whose fibre at j we denote by A} (M,TN).

By construction of m(3j), the map T'j is fibrewise isometric. This allows us to write

a € A}(M,TN) in the form

o = c(a,Tj) - Tj +Tj - A(a, Tj) (3.1)

for a suitable bundle endomorphism c(a,Tj) of TN|j(M), skew adjoint with respect to
<, > and mapping TjTM into its normal bundle (TjTM )1 and vice versa and where
A(a,Tj) is a strong bundle endomorphism of TM. These endomorphisms are uniquely
determined and are smooth continuous linear functions of « as shown in [Bi 4]. The usual
“trace inner product” for endomorphisms of TN and of TM then yields for any j € E(M,N)
the dot product '

« /3 = —%tr C(CY,Tj) 'C(ﬁ,Tj)-{-tT A(a’T]) A*(ﬁaTJ) )

for any two a, 8 € A}(M ,TN). Here A*, the adjoint of A,. is formed fibrewise with respect
to m(j). We define

o(Tj)(, B) = / o B ulj), (3.2)

M
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g a smooth continuous, symmetric and positive-definite bilinear form on the Fréchet space
A}(M,TN), the dot metric. It is a generalization of the classical Dirichlet integral
(whlch will be apparent by the theorems (3.1) and (4.2) below). For the sake of simplicity
we will write g(j) instead of g(Tj).

We shall also need a subfibration of AL(M,TN) defined by

Le(M,TN):={Vi|le CF(M,TN)} (3.3)
whose fibres we denote by L£;(M,TN)(= Lg(M,TN) N A}(M,TN)); evidently these are
subspaces of the Fréchet spaces A}(M,TN); cf.[Bi,Fi 2.

Next, we introduce the Laplacian A(j) which will depend on j via m(j); (cf.[Ma]):
For ke C J°°(M ,TN), we define the covariant divergence by

V*(j)k =0 (3.4)

as usual, while following [Ma], V*(j)a for a € A}(M,TN) is given pointwise by
V' (§)a==) Ve(a)(Er), (3.5)
r=1 )

(E,) a local orthonormal frame with respect to m(j). In (3.5) we have used V xa to denote
the more informative symbol V(j)xa, defined in the standard manner by

V(i)x(@)(¥) = Vx(a¥) - a(V()xY) VX,V e (TM).
The definition of A(j) does not depend on the moving frames chosen (cf. [Bi,Fi 2]).-

The following theorem (cf. [Bi 4], [Bi,Fi 2] and [L,M] for the last assertion) will be a basic
tool in our studies of one-forms on E(M, N) (cf. [Bi 4] and [Bi,Fi 2]). It relates the metric
G with g (the Dirichlet integral as (3.7) shows):

Theorem 3.1
For any j € E(M,N), any a € AL(M,TN) and any two h,l € C°(M,TN) the following
relations hold

9(j)(a, V1) = GGUV*(H)a, ) + G°(j)(a(n),]) (3.6)
and

a(j)(Vh, V1) = GGYNAG)AD + G2(1)(Vah,1) . (3.7)
Here V denotes the Levi-Civita connection of the metric <, > on N. The dimension of
K;:={le C*(M,TN)|VI=0}for any j € E(M, N) is finite. o

We close this section by stating invariance properties. For the rather straight forward proof
we refer to [Bi,Fi 2].

é



Proposition 3.2

The metric g on Lg(M,TN) is invariant under Diff* M and any group J of orientation-
preserving isometries on V. °

4. The first Piola-Kirchhoff stress tensor and the virtual work

Let us consider a special situation: We assume that the medium moves and deforms in R ",
equipped with a fixed scalar product. The configuration of the medium may vary rapidly.
At each configuration j € E(M,N) we characterize the quality of the medium by the
smooth first Piola-Kirchhoff stress tensor (cf. [M,H], p.135)

a(j): TM — TR" = R"xR",

a two point tensor. Clearly a(j) is a smooth IR "-valued one-form if the values will be
projected onto the second factor.

Remark:
If we fix a reference configuration jo € E(M, N) then

/ o(j) - dip(5) = / (a(j) det £(7)) - dlu(ia)

for all j € E(M,N) and all f € C°(M,TN). In fact a(j)det f(j) is usually called the
first Piola-Kirchhoff stress tensor. However since we work without reference configurations
in general we call a the second Piola-Kirchhoff stress tensor.

Let us assume from now on that
a:EM,R") — AI(M,R")

is smooth (the range carries the C®-topology). The medium characterized by « is thus
called a smoothly deformable medium. The virtual work determined by a and an
(infinitesimal virtual) distortion [ will be nothing else but a generalization of the classical
Dirichlet integral, as shown as follows: By (3.1), we can represent a(j) as

a(j) = ca(j) & + & - Aag) (4.1)
in a unique way. Any infinitesimal distortion I € C*°(M, R") yields the one-form
dl:TM — R"
and admits the representation

dl = cq-dj + dj - Aar . (4.2)




The virtual work F(dj )(dl) is then given by the Dirichlet integral (cf. sec.3)
F@)d) = [ aG)- dta(i) = adi)(ai), (43)
where
a(]) -dl = —%tr Ca(j) Cdl + tr Aa(j) . A;, (4.4)
with * denoting the fibre wise adjoint of Ag;: TM — TM formed with respect to m(j).

The virtual work

F:E(M,R™)x C®(M,R") — R
given by v
FGo 0= [aG)-auG) (45)

1s a smooth one-form on E(M,N). This work F has two special independent properties:
These are for j € E(M, N) and any [ € C°(M,TN)

D FG+2)0) = FG)))  Vse R
and : 2) F(j)l+2) = F(G) (1) VzeR™.
Let us investigate them somewhat closer. The first one is certainly the invariance under the
obvious action on E(M, R ") of the translation groups IR™ of the vector space R ™. Factor-
ing out this action on E(M,R") yields again a Fréchet manifold, called E(M, R™) / R™

(the reduced configuration space). It admits a natural representation via the center of
mass as seen as follows (cf. [Bi 4)).

Specifying a density map p (cf. section '2) on E(M,R™) we introduce the center Zm Of
mass by

wnli) = [ p)5u(s)
for any j € E(M, R "). Fixing the center of mass at zero, then

(3 € B R") 20 (5) = 0) —»E([f}]m”/m" (4.6)
Jo—= U

1s a diffeomorphism. Here [7] denotes the equivalence class of j formed with respect to the
action of the translation group R™ on E(M,R™).

Clearly the differential
d:E(M,R") — {dj | j € E(M,R")}
(the second factor carries the C *°-topology) induces a diffeomorphism

d: E(M,R™)/ pn — {dj | j € E(M,R")}
il — 4

(4.7)

9




since [j] = {j+2|z € R"™ } for any [j] € E(M, R")/ p n. Thus we identify E(M,R")/Rn
~with {dj |7 € E(M,R™)}. Obviously the differential
{j € B(M,R") | zm(j) =0} - {dj | j € E(M,R")}

is a (smooth) diffeomorphism too. Therefore, the reduced configuration space of the action
of the translation group R"™ on E(M,R"™) can be described either by

E(M,R")/gn or {j€EM,R")|zm(j)=0} or {d|jeEMR")}.

Thus we may identify all the three and will use either symbol according to the convenience.
The reduced phase space is hence

E(M,Rn)/Rn X COO(M,Rn)/Rn ,

the second factor béing the usual factor space of C*°(M, R™) modulo R™ (identified with
{dl|le C*(M,R")}) endowed with the C**-topology.
Thus our work F, deﬁned on TE(M,R") = E(M,R"™) x C®(M,R") factors to F as

follows

E(M,R™) x C*(M,R"™) . R

dxd»l /F
{djlj € E(M,R")} x {dl|l € C*(M, R")}

These considerations reversed yield immediately

Lemma 4.1
The characterization of a smoothly deformable medium by a smooth assignment
a:EM,R") — AY(M,R")

of a first Piola-Kirchhoff stress tensor is equivalent with specifying a smooth one-form (the
virtual work)

F:EM,R")x C®°(M,R") — R

with the following properties:
1) F is invariant under the action of the translation group R™ on E(M R ™)
2) F()(1+2) = F(j)(I) Vje€ E(M,R"), Ve C®(M,R")andVz€ R"

3) F admits an integral representation
FGO = [ al)-diuts) = adi)e(i).d)
for all variables of F¥ where a : E(M, R™) — A'(M, R™) a smooth density. )

In the sequel we will identify F with F given by (4.5) and (4.3), respectively.
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Remark:

For the sake of shortness we will frequently use the term “stress form” for a(j) rather than
“a first Piola-Kirchhoff stress tensor”. :

Now we generalize the whole setting as follows. (R" , <, >) will be replaced by a Rie-
mannian manifold with (N , <, >) with a fixed Riemannian metric <, >.
The configuration space is now E(M, N), its tangent space C°(M,TN) (cf. sec.1).

Again we will characterize a smoothly deformable medium moving and deforming in NV at
each configuration j € E(M, N) by a two point tensor a(j) (depending smoothly on ;) for
which the diagram

™ Y TN
™ | L™
M i, N

commutes. An infinitesimal deformation [ € T,E(M,N) is a smooth map [ : M — TN
covering the embedding j : M — N. Instead of dl we now have VI : TM — TN (with
V the Levi Civita connection of N) for which the following diagram commutes:

™ 25 TN
7rMi I/v lnN
M J, N

The collection of all VI with [ ¢ C§°>(M, TN) is called Lg(M, N) (cf. sec.3). As E(M, R ™)
maps d into C“(M,R")/Rn, also E(M,N) is mapped naturally into Le(M,N) C
AE(M,TN), as seen as follows:

Given any j € E(M, N) we solve the Neumann problem

dim M
AG) = V'Tj = = Y S(G)(Es, E,)
s=1
with the boundary condition i
Vnj = Tyn
with Ej,..., E4im m being an orthonormal moving frame on M and with S(7) being the

second fundamental tensor of j in N (cf. sec.1). The vector field V*T'j along j is called
the mean curvature field of j (cf. [L]).

Since the integrability condition is satisfied, there is, according to [H), a solution, which
is unique provided, we require that j is in the complement of K; (cf. theorem 3.1).

Let us do so from now on. In fact the map from E(M,N) into Cg*(M,TN) sending any j
into j is smooth. As easily verified, the following equation

9(7)V3, V) = GUNV'T),1) + G°G)(Tin,1) = (T}, Vi)

11



holds for any ! € Cg(M,TN). It implies
T; = V7.

The map from E(M, N) into AL (M, TN) assigning to any j, the T N-valued one-form Vj
on M, is smooth as well. Thus as we have worked with T (E(M, R ")/R n) we work with
TLe(M,N) in the general situation.

The virtual work F(j)(1) at any j € E(M, N) caused by any virtual infinitesimal deforma-
tion I € C§°(M,TN) is defined by

FG)(1) = / a(j)- VIuG) = a(i)e(i), V1) . (4.8)

Again _
F:TE(M,N) — R

is a smooth one form on E(M, N) (which admits a stress form).

Remark:
Given a virtual work F with stress form @, we will assume throughout these notes, that
a(7) in fact depends for any j € E(M, N) only on V; rather than on j itself.

As theorem 5.2 in the next section shows the characterization of the medium deforming in
an ambient Riemannian manifold by « is rather general.

The question arises (also in the case of an Euclidean ambient space) as to whether the
stress form « is unique. In fact it is not, as we will see in the next section.

5. The part of the stress which is irredundant with respect to
the virtual work, the notion of a constitutive law :

To find the part of any specification of a stress form a(j) at any configuration j € E(M, N)
which causes the same force densities and hence is irredundant with respect to the vir-
tual work, we study the problem in a pure mathematical frame work. We begin with the

following definition:

‘Definition 5.1

The one-form F on E(M, N) is said to be g-representable if there exists a smooth section
a: E(M,N) — AL(M,TN) of the bundle (AL(M,TN),II, E(M, N)), such that

FG)D) = [ o) V() = ali)(ali), 71 (51)

M

for j € E(M,N) and | € C$°(M,TN). The section a is called a g-density of F.
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Suppose, for instance, that H is a smooth section of CF(M,TN) over E(M,N), i.e
a smooth vector field on E(M,N); for the existence of such fields cf. [Bi,Fi 2]. Then
a(j) = VH(j) will provide a g-density and the right-hand side of (5.1) will define a g
- representable one-form. In fact, this example can be shown to characterize the repre-
sentability of one-forms: Let us denote by A} (E(M, N), R ) the collection of all smooth g-

representable one-forms on E(M, N). We now show that any g-density o of a smooth one-

form F € AL(E(M,N),R) can be replaced by VH where H : E(M,N) — Cg(M,TN)
is a smooth vector field. This means that for any j € E(M, N) the following formulas

/ a(j) - V1 u(j) = / VHG) VIuG) + [ (VaHG), Diutio) (5.2)
M M

or equivalently,

2()(a(i), V1) = aG)(VH(G), V1) | (5.3)

have to hold for all [ € C°(M,TN). To prove this, we are required to solve the Neumann
problem

A(GYH(7) = V' and  VyaH(j) = a(n) . (5.4)
Here V* denotes the covariant divergence. It depends on V and V().

The existence of a solution H(j) is guaranteed for each j € E(M,N) by the theory of
elliptic problems comprehensively described in {H&] (cf. also [Bi,Fi 2]). Choosing H(j) for
‘any j € E(M,N) in the complement of K, the vector field H : E(M,N) — Cg(M,TN)
is uniquely determined by a and thus is smooth.

Let us formulate this result as follows:

Theorem 5.2
For any a : E(M,N) — A'(M,TN) the map

a(j): TM — TN

at any 7 € E(M, N) uniquely splits into

a(j) = VH(j) + B(j) Vi€ E(M,N) (5.5)
with H(j) € C{°(M,TN) being in the complement of K; and where g(j )(ﬂ(]) V=0
foralll € C°°(M TN). In fact both ‘H and 8 vary smoothly with 7. .

Using the identity (5.3) we may therefore state

Theorem 5.3
Any F € AL (E(M,N), R) admits a smooth vector field H: EIM,N) — C%(M,TN)
for which

FG)) = [ VHG)- V1) (5.6)

M
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and hence

FGD = [ < B0HGM > u6) + /a (VaHG)D ) (57)
M

hold for all variables of F.. The map H : E(M,N) — C%(M,TN) is uniquely determined
by a and is smooth provided H(j) is chosen to be in the complement of K; for any
j € E(M,N). o

The consequence of our studies so far in the realm of characterizing smoothly deformable
media is the following

Theorem 5.4

Let be given any smoothly deformable medium characterized by a smooth stress form
assignment «. This medium is characterized as well by a smooth vector field

H: E(M,N) — Cg(M,TN)
uniquely determined by & and enjoys the property
a(j)(a(4), V1) = a(3)(VH(), V1) = GGNAG) H(5), N+G° (VaH(i),1) = F()(D) (58)
Vj € E(M,N) and VI € C$(M,TN) where
A(YH(F) = V*a(j) and  o(j)(n) = VaH(j) Vi€ E(M,N). (5.9)

The maps V*a(j) : M — TN and a(n) : M — TN are called the force densities
associated with a(j) on M and OM, respectively. Given vice versa smooth fields @ :
E(M,N) — Cg(M,TN) and ¢ : E(M,N) — C%(0M,TN) of force densities, then
there is a unique smooth constitutive field X : E(M,N) — Cg(M,TN) such that H(j)
satisfles

3(j) = AUYH(G) and  »(G) = VaH(j) Vj € E(M,N) (5.10)
and is in the complement of K;, provided that ®(j) and ¢(j) satisfy the integrability
conditions. VH is a stress form characterizing the medium. .
Remark:

The (finite dimensional) cokernel of the Neumann problem at each j € E(M,N) consists
of all ® € C°(M,TN) and ¢ € C7°(OM,TN) such that A(j)H = @ and Vo' H = ¢ has
no solution. The integrability conditions make sure that ® and ¢ are in the complement
of the cokernel. We will assume from now on that H(j) for each j € E(M,N) is in the
complement of K; and hence is uniquely determined. We make thus no use of of the gauche

freedom of adding to H maps H' for which VH' = 0.
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Definition 5.5

By a constitutive law we mean either some F € Aj, (E(M,N),R) or a g-density a of
F. The vector field H given by (5.9) is called a constitutive field.

To construct examples of a constitutive field associated with well known sorts of virtual
work let us consider the maps

V:EM,N)— R and A:EM,N) — R ,

the volume of j(M) and the area of j(OM), respectively. They are given by
Vo) = [u) wad  AG) = ) Vi€ EQLN)
respectively. According to [Bi,Sn,Fi]

du(G)(1) = 3t mdm(G)(7) u()

and hence

DO =} [ wnpdnG)OuG) = [ T3-910) (511)
holds for any j € E(M,N) and any l € C°(M,TN). Similarly
aAG)D) = [ TGa) Vlehutio) = [ (A(i)jo). T(lo)) i)
oM oM
with A(js) the Laplacian of the Riemannian manifold (OM, m(js)) with m(js) the
Riemannian metric on OM, induced by js := j|OM. Moreover ly := [|OM for each

le CFE(M,N). ‘
Solving the elliptical boundary value problem (Visik problem)

A(GHA(G) =0 VnHa(j) = A(5s)ja (5.12)
admitting a solution H4 (cf. [HS]) smooth in j, then we have shown the following:

Lemma 5.6

W) = [ Ti-ViuG) = | vi-viui)

= [(8GFuG) + [ (9050 e)
| M oM

and similarly

G = [ THAG) TIuG) = [ (TaHO) D uGGa)

- / (AG)Ga) 1) (o)
oM
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hold for any of the variables of V and A. Again H.4(j) is assumed to be in the complement
of K, for any j € E(M, N). In particular

dInV(5)(yj) = dimM and dlnA()(j) = (dimM —1).

Thus dV and dA are constitutive laws with constitutive fields Hy given by Hy(j) = j for
all j € E(M,N) and H 4, respectively. o

6. The relation between constitutive fields with (2,0)-stress ten-
sors on M

Here we exhibit te relation of the stress tensor a (2,0)-tensor on M to o and VH in
particular if codimension dim M = dim N. Moreover, we show that working with a stress
tensor in the latter case can be more informative. The example however is in case of
a bounded medium deforming in an Euclidean space. Let F' be a constitutive law on
E(M,N) with constitutive field H. As we have seen in (5.5) there are numerous stress
forms a representing F, not only VH. They all differ from V’H by some

B:EM,N) — AL(M,TN)

for which g(j)(8(j),Vl) =0 Vie C°(M,TN) and all j € E(M,N). We say that B has
vanishing pseudo exact part. Nevertheless any a representing F is nothing else but the
first Piola-Kirchhoff stress tensor (cf. [M,H]) and vice versa any such tensor o determines
some F' by taking it as a g-density; the constitutive field H is then given by solving (5.4).
This amounts to split off the pseudo ezact part V'H of a. Clearly a(j) depends on j
possibly in a non local way.

The tensor T(«) defined by
T(a)()(X,Y) = (a(j)X, Vv]),

for any stress form a of F is called the stress temnsor on M. T(a) characterizes the
medium as well as F or a if dimM = dim N, (otherwise not, as shown below!) This is
easily verified by considering the bundle map

AG,Tj): TM — TM Vj € E(M,N),

(cf. (3.1)) for which

T(a)(§)(X,Y) = m()(AG, THX, Y)
holds for all X,Y € I'TM, and by observing that for any j € E(M, N ) the force densities
derived from T(«)(j) are in case of dim M = dim N

V*T(a)(j) = V*A(j,T5) ZV(J)E, (AG.T)E,s = V*a(i) = AGHU)
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and on OM

T(a(n,X) = (a(n),X)
for any moving orthonormal frame Ey, ..., Egim m on M.

2
Conversely if the smooth map T(a) : E(M,N) — '@ T*M is given, then in case of
dmM =dim N

A(YH() = VA, Tj)  and  VaH(j) = a(n) Vi € E(M,N)

defines a smooth vector field H on E(M, N) of which VH is a stress form representing a
well defined constitutive law on E(M, N). Thus we may state:

Proposition 6.1

If dimM = dim N then each constitutive field H determines a stress tensor T and vice
versa such that

V*T(5) = AGYH() Vj € E(M,N).

and

T(a)(n’X) = (VnH(])vn>

To see that T(«) does not determine V*a in general let OM = and let us consider dV.
Then Vj is the stress form at j of dV(j). Hence the stress tensor at J is m(j). Obviously
V*m(j) = 0 while as V*(Vj) = A(j)j # 0 for any j € E(M,N).

Let F be a constitutive law with stress form o where dim M < dim N. Since T(a)(j) splits
uniquely into a symmetric and skew symmetric part for any j € E(M,N), we may split
A(a,Ty) uniquely into

Ae,Tj) = B(a,Tj) + C(a,T5) Vj € E(M,N)

where the right hand side consists of the self-adjoint B(a,Tj) and the skew-adjoint part
C(a,Tj) of A(a,Tj), respectively, both formed with respect to m(j). This amounts to
split T(a) into the sum of its symmetric respectively skew symmetric parts. The following
is rather obvious: V

Proposition 6.2
Let dim M < dim N. Given a constitutive field H € I'(TE(M, N)) then

(diB(a, TH)X, dY) = Ldm()(HG)(X,Y) VX,Y € ITM

A much deeper result, however, is the following one: Suppose that we have
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e

' (N, <, >) = (R", <, >R~), M a manifold with boundary satisfying dimM = n and
that F with the stress field H is invariant under the Euklidean group. An additional (nat-
ural) assumption determines a stress form 8 : E(M,N) — AL(M,R") with vanishing
exact part such that

=VH + 0

yields a symmetric tensor T (cf. [Sch]) This shows that the forms $(j) indeed can have
a physical significance even though they do not contribute to the force density which is
entirely determined by the stress form VH.

7. The area- and volume-sensitive parts of a constitutive law

In this section and the following two sections we present some of the conveniences and
advantages of the constitutive field H. They are all in the context of a global description of
the medium. In particular we will exhibit here the part of the virtual work which is caused
by deforming the total volume and area at each configuration.

Let F be any constitutive law with constitutive field H. First of all we split off AV from F,
based on lemma 5.6: We take the component of VH(j) along Vj with respect to g. Th1s

yields for each j _
H() = p(d) -7 +Ha(d) (7.1)

for a well defined p(j) € R and some H;(j) € C5*(M, N) for which V’H,(j) is orthogonal
“to V7 with respect to g. Hence F(j) decomposes into

FGY) = p(i) - V()1 + / VHi(j) - Viu() Vi€ CP(M,TN).  (12)
R A

p - dV is called the volume sénsitive part of F. Due to (4.8) we have in particular
F(GHG) = aG)(VHG), V) = p() - IVilg = p()-dimM - V().  (7.3)

Since both ||[V(;);]| and j vary smoothly in j, the map a: E(M N) — R is smooth as
well. The vector field Hp : E(M,N) — C&(M,TN) assigning to each j the map a(j)- j
is called the volume sensztzve part of H In fact it only depends on F and not on the
particular constitutive field H. We proceed accordingly to construct the area sensttive
part. By looking at (5.12), (7.1) and (7.3) we obtain the following splitting of constitutive

fields.

Theorem 7.1
For each constitutive law F', any constitutive field H determines uniquely _the smooth maps
p,a: E(M,N) — IR given for each j € E(M,N) by

p(i) = FG)G)/IVII = FG)E)/ V() dim M _
a(j) 1= F(G)(Ha()/IVHAG)IE = FO)HAG)/AG)(dim M ~ 1)
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with

IVill3 = V() dimM  and  [Ha()lg = AG)(dimM —1) (7.5)
and splits uniquely into
H(j) =p() -7 +a(i) Ha(j) + Ha(j) Vi€ E(M,N) (7.6)

where VH,(j) is g-orthogonal to the span of Vj and H(j). The volume and area sensitive
parts of H and H.4 respectively as well as H; vary smoothly in j € E(M, N).
Hence any constitutive law F with constitutive field H splits uniquely into

F=p-dV + a-dA + F;, (7.7)

with Fy the one-form with VH; as its g-density. °

Remark 7.2

(i) p(j) and a(j) are called the pressure in j(M) and the capillarity on j(OM), re-
spectively, of the medium at the configuration j (cf. (8.22) for justification).

(i) I OM = 0 and n = 1 + dim M then due to (7.11) and (7.9) A(j) -7 = H()N(j)
implying via (7.10)

F(j)(H@G)-NG)) = p()- 18G)IIZ  Vie E(M,N)

where N(j) is the positively oriented unit normal vector field and H(j) denotes the
trace of its Weingarten map (the non-normalized mean curvature of j). Moreover
1AGINIG = [ < A7, AG)T > p()- |

(iii) Concerning the generality of a(j) - dj as an exact one-form on M the following may
be pointed out: Given j € E(M,R") and g € C®(M,R), then g - dj is an exact
one-form on M iff ¢ = const. This is seen immediately by computing the exterior
differential of ¢ - dj which yields dg(v) - dj(w) = dg(w) - dj(v) for any v,w € T,M
and any p € M. Hence if v = (grad g)(p) and m(j)(v,w) = 0 then w # 0 implies
dg(v) = 0. Thus dg = 0. -

8. The Ricci-sensitive part of a constitutive law

Next let us study the influence of the Ricci curvature of m(j) and m(js) to the constitutive
field H(j) for each j € E(M, N). This is in particular of interest in dim M = 3, since in this
case the Ricci tensor determines the Riemann curvature tensor. The metric m(j) defines
for each j € E(M, N) the Levi-Civita connection V(7). In turn V(j) yields the curvature

R(H)(X,Y)Z = V(j)xV()yZ - V(G)yV()xZ - V(ix,xZ (8.1)
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for all X,Y,Z € I'(TM). Taking the trace with respect to X yields the Ricci-tensor
Ric(j) applied to Y, Z, i.e. Ric(j)(Y,Z). There is a unique smooth bundle map R(j) of
TM such that

Ric(j Y, Z) = m(j)(R(3)Y,Z) VY, ZeI'TM . (8.2)

Hence TjR(j) : TM — TN can be regarded as a stress form at the configuration j €
E(M, N). Its pseudo exact part Vr(j) is given as the solution of the Neumann problem

V*TjR(j) = A(G)r(j) and  TjR(j)(n) = Var(j) Vje E(M,N). (83)

A routine computation shows for each j € E(M,N) an expression for the divergence of
TjR, reading as

VTIR() = - Tjgrad M) — L tr SGIRG)---,---) (8.4)

where A(j) := trR(j) is the scalar curvature and S(j)(R(j)...,...) is given for each

X,Y e I(TM) by
SGYRG)X,Y) = (V(TFRG)Y))™

and where tr means the contradiction.

Let us pause to look at the boundary condition a little closer. Based on the equation of
Godazzi-Meinardi a straight forward calculation yields the following expression of R(j)(n):

R(7)(n) = grad »;,) H(ja) — div jom W(js) (8.5)

with W (j5) the Weingarten map of M in M and H(js) its trace.

Hence
TjR(j) = Vr(j) + B:(5) Vj € E(M,N) (8.6)

for some well defined 3.(j) € A'(M,TN).

As we computed the volume sensitive part of H(j), we may split off from H(j) the com-
ponent along A(j)r(j) to obtain

H(j) = pr(j) () + Ha(s) Vj € E(M,N) (8.7)

with p.(j) € R, a physical entity. Clearly we may exhibit the volume sensitive and area
sensitive parts of 7(j) and get

r(7) = s(j) 7 + o) Hals) +710) Vj € E(M,N) (88)

with s(j) € IR and where Vr(j) is g-orthogonal both to V7 and VH(j). The pressure
p(j) decomposes accordingly into

p(7) = p1(j) + () - pr(4) Vj € E(M,N) . - (89
In analogy to p(j) we compute s(j) to
s() = AVG)rG)/IVlE  or  s(G) = dlnV(5)(r(j))/ dim M . (8.10)
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s(7) is a geometrical constant, in fact it is a topological invariant if 3M § and dim M = 2
(cf. example below), in contrast to p,(j).

The following lemma shows how these various constitutive fields are related.

Lemma 8.1
In general r(j) and B,(j) in (8.6) are both different from zero and r(j) # X -j with

A a constant. The g-densities Vj, VH4(j) and Vr (j) are in general pair wise linearly
independent for j € E(M, N), in fact Vri(j) is g-orthogonal to both Vj and VH4(j).
Proof :

The linear independence of Vj and VH 4(j) is evident from (5.12) and (7.4). Turning to
Vry, let dimM = 2 and OM = 0. Moreover, let N = IR™ be equipped with a scalar
product (, ). Then dj R(j) = %/\(]) - dj with A(j) := tr R(j) the scalar curvature. Due to
7.2.(iii), the one-form S,(3) = 0 only if A(j) = const. On an ellipsoid with three different
axis (j =inclusion), A is not a constant. On the ellipsoid mentioned, both r(j) and s(5)
are different from zero. Back to full generality, the rest of the lemma follows from the
construction. a

What we have done with Ric(j) we can repeat for Ric(js), the Ricci tensor of m(js), the
metric on M pulled back by js := j|0M. The map r® : 9M — TN can be extended on
all of M in an analogous fashion as (j5) was extended to H(j) in equation (5.12) (the
integrability conditions for this Visik problem are satisfied). Let us call this extension by

H,5(7). Due to the equation of Gauss, H,s(j) and 7(j) are linearly independent in general.

Replacing r(7) in (8.9) by H,s(j) yields accordingly the real numbers s°(5) and 67(j), the
components of H,» along H 4 and j, respectively. In fact we adopt the notion

9(5) = 7- s u(y) = 9)r?.7 18) - .
B(5) = /MvJ VHys u(j) /a (8o, 7) o) (8.11)

Replacing r(j) in (8.8) by H,2(7) the real p.(j) turns into p,.(]) The field r?(5) has a
covariant derivative Vr9(j) which is g(j)-orthogonal to both V7 and VH4(j) again.
Combining all this we have the following:

Theorem 8.2
A given constitutive field H uniquely sphts into
H(5) = P(7)-T+a()Ha(7)+p(5)-m1(5)+ar(5) 77 (5)+Ha() Vi€ E(M,N) (8.12)

where VHy(5) is g(j)-orthogonal to the span of V3, VH4(j), Vri(j) and V "y
Moreover pressure and capillarity are influenced, for each j € E(M, N), by the Ric( ]) and
Ric(js) and the respective scalar curvatures in the following fashion:

p(J) = Po(j)+8(j)-Pr(j)+ba(J')'ar(j) and  a(j) = ao(j)+86(i)'ar(j)+b(j)'(289r1(é§
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s(j) = dlnV(G)(r(5))/ dim M = / (G ()
b(j) = dInA(j)(r(s))/(dimM - 1),
s°(j) = dln AG)(r°(j))/(dimM - 1) = / Aa(1) p(sa)
oM
and »°(j) = dlnV(j)(H,e(5))/ dim M .

If M and &M are Ricci-flat (e.g. if j(M) C R"™ is flat torus), then p(j) = po(j) and
a(j) = ag(j) for any j € E(M, N). Denoting the virtual works of which the constitutive
fields are 1,79 and Hy by Frl,Fr? and Fj, respectively, (8.13) yields

(8.14)

F=p-dV+a-dAd+p.Fr + arFr? + F, (8.15)
with |
p, a, pr, ar: E(M,N) — R
as smooth maps, all physical constituents. o

A refinement of the above theorem is derived by splitting T'j R(j) for each j € E(M ,N )

into ’ ‘ s() /\0(.) .
TjR(j) = T M Tj + 3= -Tj + Ty R°(3) ,

where s(j) := [ A(j)u(j) and A°(j) := A(j) — s(j) combined with the condition

: A(y R .
a(j) (dirfl])\lT] , T RO(J)) =0.
Clearly tr R%(j) = 0. Then the pseudo exact part Vr(j) of TjR(j) splits accordingly into
r(5) = s(3)7 +ra(d) + o))

where Vra(j) + s()Tj and Vro(j) are the pseudo exact parts of g7—57TJ and Tj R°(5),
respectively. Proceeding accordingly for T}, Rs(js) and solving the respectlve Visik problem
yields

Lemma 8.3
For any j € E(M, N) the following splittings hold for any j € E(M, N):

() = s(G) 7+ 7a() + 1) |
and r2(j) = $°(3) - Ha(G) +r30G) + o) -
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Remark 8.4

Equation (8.14) shows the part s(j) - pr(j) + 6°(j)ar(j) of the pressure p(j) that is used
up to bend (Ricci-sensitively) the medium at the conﬁguratlon j. For the capillarity the

analogous statement holds as well.

Let us make an example to illustrate the above procedures: We assume dim M = 2 and
N = R? equipped with a fixed scalar product. Recalling j|0M = js, then R(j) = 0 while
R5(j) # 0. A a routine computation yields .

disR(ja) = '\(ga)dja Vj € E(M,N) (8.16)

with A(js) the scalar curvature of m(j5). As one sees immediately from (8.4) the exact
part is not the g-orthogonal projection of A—(—%L) -~djs onto IR - djs. By the theorem of
Gauss-Bonnet s%(j) is obtained as

20) = Ldln AG)0()) = / A(io) u(is) = 4mxom (8.17)
oM

with ya the Euler characteristic of M. Hence p(j) and a(j) decompose for any J €
E(M,N) into

p(j) = po(j) and  a(j) = ao(j) — 4mxam - ar(7) (8.18)

B(j) = / G Aliolra) i) = - /M<trs<j),ma(j>> u(5)

(8.19)
+ / (Ti(n),ra) (o) =
oM

Corollary 8.5

Let R" = N and (, ) a scalaf product, dim M = 3. For any constitutive law"F’, pressure
and capillarity given by the constitutive field H of F" are

P = Po and a=a— 2rxamar(y) . (8.20)
In case j(OM) is a flat torus a = ao. _ .

Let us illustrate (8.13) somewhat in order to justify the terminology of p being the pressure
and a being the capillarity: Suppose that for some j' € E(M ,R™)

YH' = 0 = p(j')- VF +a(") - VHAG") +pr(G) - V(") + p2() - 77 (5" + VHa(") -
This implies the equations

p(j")- V7 +a(i") - VHA(G") =0, pr(§) - V(i) +p2() - Vri(;") =0 and VH(") =0.
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In particular we find

PG 7 +a(") - HaG)=a and  p(3) r()+P2GN TGN =g  (8:21)

with ¢; and ¢, are covariantly constant vector fields along j'. To understand these equa-
tions, let N = IR® with (, ) a scalar product and let dim M = 3. Since A(j' )] =0 and
since A(j')(j'|OM) = H(5'|OM) - N(5), with N'(j) := Tjn we conclude ¢; = 7 - N(j) with
r € C®(M,R). Hence dr(X)N(j') = —Td]’W(J X) holding for all X € I'(TOM), imply-
ing q; = 0. Therefore H(j'|0M) = const. Since j'|0M : OM — IR? is an embedding with
constant mean curvature it has to be a sphere (cf. [B,G]). Hence g2 = 0. Thus we may
state:

Lemma 8.6 .
If (N, <, >) is an Euklidean space and dim M = 3, equation (8.21) implies that j'(OM) C
IR3 is a round sphere. The relation between capillarity and pressure reads as

p(j') + a(j')- H(js) = 0 (8.22)

Remark 8.7

Formula (8.22) for the pressure, compared with those for a bubble with a thin boundary
medium, shows that a is twice the capillarity of the boundary medium. The reason is that
this boundary medium is in fact three dimensional and has two boundary surfaces, an
inner and an outer one.

Finally let us express po and ap by F. The equations (8.14) and (8.15) immediately yield

Propoéition 8.8
For each j € E(M,N) the following formulas provide expressions for po(j) and ao(j) in
terms of special values of F(j)..

po(j) = FG)G)/dimM — s() - FG)(r(G))/IrE = 82(G) - F(G) (Hes (3))/I1Hra ()5
a0(j) = F(G)(Ha(7))/ dimM — sP(GHFG)(r2(G) /PGP = 8(G) - FG)(r(5))/lIr()lIG
both holding for all j € E(M, N). _ o
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9. The Fourier expansion of the force densities in case of 0M =0
and an Euklidean ambient space

Let OM = @ and let N = IR" equipped with a fixed scalar product <, >. One consequence
- of the characterization of a smoothly deformable medium in terms of a constitutive field H
is that the force density resisting a virtual deformation is A(j)H(7) at each configuration .
j € E(IM,R™). (In case 8M = { we would have to restrict us to those H for which
VaH = 0 on all of E(M,R"™).) This allows us to make use of the Fourier expansion of H.
This expansion will yield (under additional assumptions) a decomposition of the work into
an exact part and a non exact part on a neighbourhood W of a fixed reference configuration
jo€ E(M,R"™).

As it is well known A(jy) admits a complete system ey, ez,... of smooth orthonormed
eigenmaps with respective eigenvalues A; < A3 < .... Since we use A at a fixed reference
configuration jo we need to pull back H to jo. Th]S pull back H is defined by the solution
of the following equation

det fG)AGYH() = AGo)H(j) Vi€ E(M,R™) (9.1)

where u(j) = det f(5)u(jo) and m(G)X,Y) = m(jo)(f*(j)X,Y) holding for each pair
X,Y e (TM).
We may represent H(j) for any j € E(M, R™) as a uniformly convergent series (cf. [G,H,L])

HG) = Y €Ge- (9.2)

The reals £'(;) are the Fourter coefficients of ’f{( 7). As functions of j they are smooth.
These coefficients and the eigenvalues of A(jy) allow us to determine the work caused
by a virtual distortion I. € C°(M,R™) in terms of the Fourier coefficients. The desired
expression is derived as follows:

FOW = [@GHG. D ut) = [ et FHAGIH)D o)
= [ 86 M) = 3EG) [ fen 00 ulio)
= Zé"(j)h /(% ) 1(Jo) Z/\é(J

with ¢*,¢?,... the Fourier coefficients of ! formed with respect to e1, ez, .. . The Fourier
expansion of A(]o)’}i(]) = det f(7)A(jYH(7) and the force density A(])’H(]) hence turn

into

AGo)HG) = S N€EG)es - | (9.3)
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and

AGYH() = Y€ det f(7) e - (9.4)

The eigenvalues A; are monotonically growing to infinity, the Fourier coeflicients have to
fall off accordingly. This shows a characterization of a deformable medium (M = §!) in
the Euclidean case which supplements the one given in theorem 5.4.

Proposition 9.1

Let OM = 0. Given a fixed configuration jo € E(M,RR"). Any deformable medium
without boundary can be characterized by a sequence {{1,&2,...} of smooth maps
(& E(M,R") — IR such that the series

D ONE () det f(7) e

converges uniformly on M and on E(M,R™) with respect to the C*°-topology (.which is
metrizable). The map H is given by 9.4 is then a constitutive map. o

Since measurements of the force densities are possible only up to a certain degree (depend-
ing on various physical grounds), say up to ¢, we may find some positive integer v/( 7) such
that

> N&G) < €.
. i=v(J)
Thus only finitely many of the Fourier coefficients, namely é'(5),£%(j),. .. ,€¥((5), are
relevant for the A(j)H(7). Hence the assumption
W)
H(i)=) &Gl Vi€ E(M,R") (9.5)
=1

is reasonable. Clearly v(j) may vary with j. We call H finitely determined in a neigh-
bourhood W of j if almost all of its Fourier coefficients vanish on W.

We call H v-determined in W iff
HG) = D &G ViEW (9.6)
i=1

with v a fixed positive integer. We will show next that under some additional assumptions
on F|W x C$°(M, R) a well determined exact part (depending on a boundary condition)
can be split off, even though W is an infinite dimensional manifold.
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Suppose now that H is v-determined in some closed neighbourhood W of some jo €
E(M,N) with smooth boundary 0W. We may therefore regard H as a map

f:W — R* CC=(M,R"),
IR" :=span(e1,...,€) .

To get in the technical realm of finite dimensional Hodge theory, we now require that the

following splitting holds:
W=QxQ"

with Q being an orientable v-dimensional smooth manifold with boundary for which
U a@x{i}) = aw.
J‘reQL

H|{j} x Q* is supposed to be constant (the value depends on j € Q). Q is moreover
required to be an orientable manifold with (orientable) boundary Q. Clearly, dim@ < v.
The metric G (cf. sec.2) on W yields for each j' € Q' a Riemannian volume on @ x {;j'}
and a positively oriented unit normal q;. Given some j' € Q+ we will split off from

FI@x{iN:@x{iHxT@x{i'}) — R,

called F}, its smooth exact part dif; (via Hodge decomposition with Neumann boundary

condition) to obtain

Fj/ = dlu]'/ + \Ilj; (9.7)

with ¥, a smooth one-form on @ with vanishing exact part. Doing so for all j e @t

yields the desired decomposition on W
FW =du+v, ‘ (9.8)

since U;» and ¥ will depend smoothly on j' € Q+. The map U« : W — IR will be smooth,
too. This decomposition is obtained by splitting

AGo)H: W — C®(M,R™)

into a gradient (of the map U) with respect to G and a divergence free vector field or-
thogonal to q on OW where q is defined by q|@ x {j'} = q;. In detail we proceed as
follows: 3

G and the orientation of Q x {j'} define a Laplacian Ag. Let H; := H|Q X {j'}. We may

take the divergence divgA( jo)ﬁjr on @ and solve the Neumann problem

divg (AGo)Hj(j)) = Aglp(j)  and  dUy(j)(ay) = F(5)(ai(5)) (9.9)

for all j € Q x {j'}. Doing so for each ;' € @+ the map A(jo)’ﬁ(j) admits the splitting

AGo)H(5) = (Grad g U)(5) + ¥ (5) VieWw (9.10)




with Gradg the Gradient formed with respect to G and G(j)(¥(5),q(y)) = 0 for all
J € OW. Defining

YOO = [ FODuG)  Gew (9.11)

provides us with the above splitting (9.9). Since the integration on M and the one on
Q x {j'} interchange for each j' € @+ we moreover have

(GradgU)(j) = Ao)Hu(j) and  ¥(j) = A(jo)He(s) (9.12)

for well determined (smooth) maps Hy,Hy : Q — C(M,RR™). Solving on M the

equations R
det f(7) AGjo)Hu(s) = AGHu())
and
det f(j) 7' A(jo)Hu(j) = AG)He(j)  VieW

and combining it with the theorem 7.3 we have shown the following splitting theorem:

Theorem 9.2
Let OM = 0 and let F be v-determined (v a positive integer) in an closed neighbourhood
W of jo in E(M,R") satisfying the assumptions
1) Wisa smooth oriented manifold with boundary 6W.
2) It splits into
W=QxQt
with F|TQ+ not depending on j' € Q' and Q being a v-dimensional oriented mani-
fold with boundary,
and
3) Q@ x {j'} is a v-dimensional orientable manifold with boundary such that

ow= J a(@x{i")-

| i EQ
Then there is a unique splitting on W
' F=du+v (9.13)
with |
U:w—R

a smooth map and

TV WxC®MR") — R
a smooth one-form such that

FG)q) = dU()(a) and  ¥()(@) = 0. (9.14)
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Here q is the positively oriented G-unit normal vector field along OW. The constitutive
field H splits accordingly uniquely into

H = Hu+Hy, (9.15)
where all H(j), Hu(j) and Hy(j) are for any j € W G-orthogonal to the constant maps in
C>®(M,R"). o

If ¥ in (9.13) satisfies ¥ A d¥ along Q x {;'} for any j' € QL then there is an integrating
factor (cf. [B,St]) T : W — R such that for some G : W — IR the one-form on E(M, N)
writes as U = TdG. This condition, however, is not satisfied in general.

A one-form w on a finite dimensional manifold admits an integrating factor iff w A dw = 0,
i.e. iff w is of constant rank one.

Corollary 9.3

Let 8M = 0. Under the suppositions of theorem 9.2 and the assumption that ¥ is of
constant rank one for each j' € Q+. Then

F=du+7T-dG

with T and G both real valued maps on W. .

Next let us investigate dZf in (9.13) more closely. Associated with each e; is the one-form
F, withi=1,2,... given for all j € E(M,R") and for all | € C®°(M,R") by

F(G)1) = A /<e,~,z> u(s) (9.16)

It is j-independent. Hence .
U;: EIM,R") — R"

defined by U;(7) := /\,-/ (€i(5),7) po for all j € E(M,IR") satisfies
M
Fi(j)(1) = &(G)1) Vi€ B(M,R"),Vle C*(M,R") ; (9.17)
its gradient formed with respect to G(j) is
Grad glf;(j) = det f(j) e Vje E(M,R") .

From this we immediately deduce with the help of theorém 7.1:

Lemma 9.4
Let &M = . Any constitutive law F decomposes at each j € E(M, R"™) uniquely into

F(j) = Y €0)- &), (9.18)
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where the coefficient functions £ : E(M, R"™) — IR " are smooth. Moreover

di(5)(7) = AV()(det f(7)7les) = Ai-ci(j) Vi€ E(M,R")
where c;(j) is the i*! Fourier coefficient of J- .
Combining theorem 9.1 with the above lemma immediately yields the following:

Corollary 9.5

Let OM = (. If F is v-determined in a nelghbourhood W of jo € E(M,R™) and satisfies
in addition the supposition of theorem 9.1, then the exact part of F is

= D ¢(HAU() Vi€ E(M,R"), (9.19)
and the non exact one
= Y 6'(G)dui(j) Vi€ E(M,R")
where the smooth maps
¢:W—R and :W—R" i=1,2,...,v
are such that (*di; is exact and that 8°dl{; is not exact for any ¢. Hence |
LK 1 . i/ - 1 .
¢'(G) = dU()e:)  and  6'(5) = 1 U()(e)
have to hold for each ¢t =1,...,v. : °

We may look at dif; as a constitutive law. The pressure p' involved in dif; is for each
:=1,2,... determined by

p'(j) = d2h(5)/V(j) -dimM = Xei(j)/V(G)-dimM = dInV(5)(det f(j) 7 e;)/ dim M

(9.20)
implying the following expression for the pressure of a constitutive law:
Proposition 9.6
Let M = 0. Given any constitutive law with (smooth) coeflicient functions
e, ... EIM,R") — R, the pressure p determined by F is
1
—_— Ad ; Vje E(M,R") . 9.21
PU) = Sy amit Z i£G) eili)  Vie E( ) (9-21)

The constitutive field at each j € E(M,R") of dif; with ¢ fixed is det f(j)7'e; and

therefore
p'(j) = Nici(7)/A() - dimM = ph(5) + s(5) - PL(7) (9.22)
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holds. Here pi(j) is as in (8.7) and hence is the :** Fourier coefficient of r(j). Hence
py(7) - :\1—' -V(5) - dim M is the i*® Fourier coefficient of j if (M, m(j)) is Ricci-flat. .

10. The dyhamics for boundary less media determined by a
constitutive law

Let M = ). As we have mentioned in the previous section, a constitutive law on E(M, N)
of a smoothly deformable medium is defined to be a smooth one-form F : TE(M,N) — R
admitting a smooth constitutive vector field H € TCg(M,TN).

The dynamaical form

Wr : C®(M,T?N) — R
- the fundamental ingredient of our set up of a dynamics - is given by
We(D(K) = dEen(D(R) - (FEF)OE) (10.1)
for any | € Cg(M,TN) and for any k € CF(M,T?N).
The dynamics determined by F is given by the unique vector field X (if it exists at all)

for which i
wp(XFr,X) = WEg(X) VX e FT2E(M,N) . (10.2)

The following theorem shows the existence of Xr and moreover expresses its simple form:

Theorem 10.1
Given a constitutive law F on E(M, N) with constitutive field H then

1 vert o |
where vert denotes the pointwise formed vertical lift of A(mryol)YH(wnol) on N determined
by V. °

Proof :
If Xr exists, then again it is unique. Using (A.9) and (10.2) we verify (10.3) for any
[ € C®(M, N) by the following calculation:
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ws(Xp(1),X(1) = [ ol o Duo(Xa(0), X(D)u(y o1
M
+

/w((A(n‘N oYH(mn o l))”ert,X(l))y(wN ol)
M
=dEkin(mn o )(X(])) (‘10.4)

- /<A(”N o YH(mn o 1), Trn(X(1)))u(wn o)
+ /(X(l)”"t, Trno(A(ry o lYH(mn © l)”""));;(ﬁN ol).

Since the last summand is zero we find for each | € C*°(M,TN)
wg (XF(I), X(l)) =dlgkin(7rN [o] l)(X(l))

- /(A(rN olYH(mn o 1), Trn o X(I))u(wn o)
M
= dEgin(mn 0 )(X()) = F(rn o ))(Trn 0 X(1)) -,

establishing the claim. O

Definition 10.2
The equation of a motion o : (—=\,\) — E(M, N) subjected to F is given by

a(t) = Xr (o(t)) YVt e (=AA), (10.5)
combined with initial conditions.

We therefore have :

Theorem 10.3

The equation of a motion ¢ : (—A,\) — E(M, N) subjected to a given constitutive law F'
with constitutive field H € F(CE(M TN)) and with the initial data ¢(0) = j € E(M,N)
as well as 6(0) = lo € C7°(M,TN) is given by

5(t) = Xp(6(1)) + (A H(e®)* T Ve (=X (10.6)

1
p(a(t))

or equivalently (with ¥ the covariant derivative of B) by

Yao(t)= o (t))A(U(t)) (a(t)) - (10.7)
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The motion o is free i.e 5 geodesic iff F = 0. °

Equation (10.6) coincides with the equation of a motion subjected to a constitutive law of
[Bi 4]. There the equation was derived by d’Alembert’s principle and not on a geometric
basis as done here. '

The above decomposition theorems and (8.2) yield immediately refinements of the equa-
tions of motions subjected to a constitutive law:

Theorem 10.4

Let F be a constitutive law with constitutive field H. Any motion o : (—A,A) — E(M, N)
(with any initial condition) is subjected to F' iff

p(a(t))

Vao(t) = o) A(o(t))F(t)
pr(a(t)). a(t))rilo
o0 (A(a())ri(a(t)) (10.8)
+ ;(;(t—))' A(o(t))Ha(o(2)) VEeE (=) A) .

with 73(o(t)) as in (9.12). Moreover the following balance law
LdEkin(o(D)(6 (1) = p(o(t) - AVe(o(t)a(t) + alo()AA((1) (6(1)
+ 7 (pe (0(0) Fru(0(2)) + Fa(0(1)5(1))

holds true for all ¢t € (=A,\). Fr and Fy are the constitutive laws associated with r and
H4 as in (8.13). o

(10.9)

Corollary 10.5

If the constitutive map of F' is of the form
H(G)=p()7 Vi€ EM,N) (10.10)
that isif F(j) = p(j)-d.A(j) then the motion o, subjected to F', satisfies for any ¢ € (=X Q)

V16(t) = 78% - A(o()7() (10.11)
as well as the balance law
5d€kin(o(1)(¢ () = Po()) - AA(o(1) (5(1)) (10.12)
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If N is Euclidean we may let j = j for all j € E(M, N) and conclude
(o(t))

5(t) = ;’(0 ) A(o(®))o(t)  WEE (=M . (10.13)
In case M is of codimension one then (10.5) rewrites as
o)y = PO m . N(o _
VHdT (t) - p(a’(t)) H( (t)) N( (t)) A4S ( ’\’/\) (1014)
where N(o(t)) is the positively oriented unit normal of j(M) in N. o

11. Symmetry groups

Let OM = 0. Given any density map p : E(M,N) — C*(M,R"), the metric B on
E(M,N) (cf. appendix) associated with p is invariant under Diff*M, the group of all
diffeomorphisms preserving the orientation of M. This is immediate from the solution of
the continuity equation (2.5) and the transformation formula of the integral. Equation
(A.9) moreover shows immediately the invariance of wg under Difft M.

Let us suppose that we are given a constitutive law F being invariant under Difft M,
meaning that (Ry)*F = F for all ¥ € Difft M, where Ry denotes the right translation
by ¥ on E(M,N) (cf. sec. 2). More explicitly, Diff* M invariance of F' means

F(joy)loy)=F()1) Vje E(M,N)and V€ DifftM (11.1)

The dynamical form Wr is invariant under Diff* M. Differentiating (11.1) with respect
o 1 yields for any j € E(M,N) and any ! € C°(M,TN) the equation

Vrix(FG)(D) + FG)(Vx) =0 VX e TTM. (11.2)

Here T(TM) is identified with T;4DiffTM and Y is the covariant derivative of B (cf.
appendix). The symplectic formalism yields a smooth moment map

3 CP(M,TN) — B*(T(TM)) (11.3)
given for any | € C$°(M,TN) and any j € E(M, N) by the equation
J()(X) = 65())(TIX) = =B(ro l)(I, Trn o TIX) = =B()(, Tj X) . (11.4)

The relation between J-and integrals of a motion is as follows:
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Lemma 11.1

Let F be Difft M invariant. For any X € I'(TM) the map Jx : C(M,TN) — R
defined by
Ix(D):=3()(X) VIieCg(M,TN) (11.5)

is constant on any motion subjected to F' iff
F(j)(TjX)zO Vi€ E(M,N)and VX e TTM .

If F is exact and the potential is Diff T M invariant, then Jx is a first integral of the
motion for each X € 'TM. o

Proof :
Let us compute dJx : For any k € C7°(M, TN) we have

AT x (k) = d(@s(1)(T(my 0 X))(k) = —dB(ry o (1, T(ny 0 X )(k)
— —(B(k**™, T(ny o DX) + B(I, T(ny 0 k*™ X)) = —~B(k**™, T(rn o )X) .

| (11.6)
Because of Xp(1)"*™ = 0 the choice k := XFp(l) yields
dIx () Xr (1) = — B(Xp(1)**™, T(nn o NX) — B(Xs(1)**"™, T(nn o )X) (1L.7)
= F(ay o )(T(mn 0 1)X) .
for all | € C°(M,TN). The validity of the assertion is now immediate. a

Next we consider a more general situation coming up rather frequently. If we have differ-
entiable groups D and I together with the respective smooth representation

a:D— DifftMandb: I — J

“then both a and b yield moment maps. Following the same routine in the proof of Lemma
11.1 we derive the following:

Theorem 11.2

Let F be invariant under both a(D) and b(I). The respective moment maps of a and b
yield first integrals of any motion subjected to F' for each of the elements in the respective

Lie - algebras if for any j € E(M, N)
F(j)(TjaX)=0 VX € [(TM) (11.8)

as well as

F(G)(b(c)-7)=0  Vece Tl (11.9)

hold. Here & and b denote the representation of the respective Lie algebras determined by

"a and b. °
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12. The restriction of a motion subjected to F to a fibre in the
principal bundle E(M,N)

Again OM = 0. Each fibre in the principal bundle E(M, N) is of the form i o Diff M with
fixed © € E(M,N). In this section we impose on the motion ¢ : (=X, \) — E(M,N)
subjected to F' the constraint that

S(t)(M) =i(M)  Vie (=M A)

To find the equation of such a motion ¢ we proceed analogous as in the previous sections:
We let B be the metric on ¢ o Diff M obtained by restricting B to this fibre. This yields
immediately the symplectic structure w® on T(j o Diff M), the pullback of wg by the
tangent map of the inclusion map 0 Diff M < E(M, N). Moreover let F* be the pullback

of F' by the inclusion map mentioned.

Observing that any tangent vector to 1 0 ¢ € i o Diff M with ¢ € Diff M is of the form
T(j3 o)X for some X € I'(TM), the one-form F" is given by

Fiiop)(T6ow)X) = [ <AGowHiow, TG onX >u().  (121)

M

There is a connection on E(M, N) induced by the orthogonal projection of TN to TiTM:
Given any [ € wa(M, TN) with ¢ € Diff M we let the component {7 of [ in
Tiopt o Diff M be given by

IT(p) =T o) XUT,j) e TGop)(TM) VYpeM, (12.2)
for a well defined vector field X(IT,j) € T(TM). Clearly the projection from TE(M,N)
to T(: o Diff M) given by T is Diff M invariant for each i € E(M, N).

Let &}, denote the kinetic energy on T(i o Dif f* M) given by B'. Its Euler field on
Ti o Diff M is the spray X'* of B'. It is of the form v

X (T(io0g)X)=T*i0g)S T(iog) ' T(i0og)X | (12.3)

with S* the spray of m(i) on TM and X € ['(TM). We need one more geometric notion
to formulate our equations: Let ' denote the covariant derivative of Levi - Civita of B*
on i o Diff M. Due to general principles in Riemannian geometry and the fact that j is
normal to TjTM we immediately find for any 7 € E(M, N) the following :

Theorem 12.1

The equation of motion o : (—)\,x\) — E(M,N), subjected on one hand to a given
" constitutive law F on E(M; N) with constitutive field H and on the other to the constraint

o(t) (M) =iM) Vie(=AN) | (12.4)
for a fixed 1 € E(M, R), read as
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Vi o) = ((Ae®)HE) ™) (12.5)
for all t € (=), \), with Sy the spray of m(i) on TM. )

If moreover, we subject the motion to the further constraint, namely that ¢ maps into
i 0 Diff,;yM with Diff,;yM, the group of all u(z) preserving diffeomorphisms of M, then
we arrive at Euler’s equation of a perfect fluid on ¢(M) as in [E,M]), provided H = 0.

Appendix: B, its associated one- and two-forms and its spray
To find the Levi-Civita connection and the one- and two-forms associated with B we need
to differentiate B which we regard as a map

B:CP(M,TN) x CP(M,TN)— R.

E(M,N)

The domain is the fibred product of C(M,TN) with itself over E(M,N). Now let I(t) €
C#(M,TN), varying smoothly in t € R and let 7(t) := wnol(t). Setting j(0) = 7,1(0) =1
and [(0) = k, then we verify:

d. .. L d .
SBGONIO Dm0 = [ pi)5; < 1.1) > lecon)
: M (A.1)
= 2B(j)(V%l(t),l) = 2B(5)(k**™, 1)
where vert denotes the pointwise formed vertical component of k in T?N (with respect to

the connection given by < , >, cf [G,H,V]). It is regarded at each p € M as a tangent
vector to I(p) € Tryoi(p)N and hence as an element of Ty o) V. The covariant derivative

¥ : TC®(M,TN) — T'C®(M,TN)
is hence given by
- : vert
Vil(p) = (T,c(k(p))) Vie E(M,N) and Ype M (A.3)

for any choices of £ and k € TC®(M,TN). It is metric and obviously torsion free. Here T;.L
denotes the tangent map of £ on E(M, N) at | and vert means again the vertical component,
formed in T2N. This type of connection is unique for B, as easily seen by following the
proof of the analogous statement for finite dimensional manifolds. The curvature of B is
thus inherited from the one om N to the contract of the curvature of G. Equation A.3

yields immediately(cf. [Bi 4]):
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Lemma A.l

The covariant derivative ¥ given by (A.3) is the Levi-Civita connection of the metric B.
o

We equip the set
B'(TE(M,N)) := {B()(l,...) | j € E(M,N) and | € T,E(M,N)} (A4)

with the C®-topology and obtain a Fréchet manifold, the geometric dual of TE(M, N).
It is a smooth vector bundle and we use it as a replacement of the cotangent bundle of
E(M, N). The one-form @p associated with B on this bundle is deﬁned in analogy to the
finite dimensional case: It is the pull back by

> . TE(M,N) — B°(TE(M, N))

\

(A.5)
l— B(rnol)(,...)
of the canonical one-form on B*(TE(M, N)), i.e Op is given by
Os(l)(k) = -B(j)(|, Tre(k
s()(k) = ~BG) (1 Tra(k) 45)

= -B(j)(I,Trnok) .

Here 7g : TE(M,N) — E(M,N) and 7y : TN — N are the canomcal projections.
The two - form wg associated with B is defined by

wp = dOg (A7)

where d also denotes the exterior differential for forms on TE(M, N). wg applied for any
JE E(M N), for any [ € C$°(M, N) to any two ki, k2 € C7°(M, T2 N) reads as

ws()(k1, k2) = B(G)(k3*™, Ty o k) — B(G) (kY™ Ty o ks)
_ / o(mn 0 D (ke ko)l o 1)

M

(A.9)

where w"® is the pullback of the canonical two - form on the cotangent bundle T*N of N

by the diffeomorphism
<, > TN —T*N

vl v,. > .

Fundamental in our setup of a dynamics will be the notlon of the spray X'z of B. It will
govern the free motion. It is defined by

w(Xp,Y) = d€xin(Y) VY ETT’E(M,N) (A.10)

with
Erin(l) := %B(l, 1)) Vie C*°(M,TN) . (A.11)
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Due to the continuity equation and the special form of wp the spray of B takes the form
Xg(l) =Snol VYie C*®°(M,TN) . (A.13)

A smooth curve

o:(=M\A) — E(M,N) with ‘e R™
is called a geodesic iff
Xg(o(t)) =Snoda(t) Ve (=\A). | (A.14)

Since V 4 o(t)=Ta 6(t) — XB(o(t)), where T o(t) denotes the tangent map
Té:R x R —> TE(M N) evaluated at (t, 1) equation (A.14) turns into

V%&(t) =0. (A.15)
In summation of the above we state:

Proposition A.2
A smooth curve o : (—A,A) — E(M, N) is a geodesic of B with the initial conditions

0(0) =j and 6(0) = 1L.

iff
op:(=\A) — N
t — o(t)(p)
is a geodesié in N for any p € M, satisfying the initial conditions ¢,(0) = j(p) and
p(0) = Up)- .

The above proposition implies in particular, that the spray X'p admits locally a unique

flow on C(M,TN).
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