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ABSTRACT

This paper is concerned with the question to find a differential form v of degree r
solving the exterior differential equation dv = '1] under general inhomogenous boundary
conditions VlaM = xlaM. We give necessary and sufficient conditions for the forms '1] and
X and prove an existence theorem on a bounded Riemannian manifold. The proof is based
on the Hodge-Kodaira decomposition theorem. The dual problem for differential forms
and applications from veetor anä:lysis are i'nvesÜated.



1. Introduction

In a preceding paper [Sch] the author showed how to solve - under appropriate integrability
conditions - the general inhomogeneous boundary value problem

divV = 3 with VlaM = ZlaM (1.1)

for a vector field V E r(TM) on a Riemannian manifold M with boundary 8M. The ana-
lytic basis for doing so was the Hodge-Kodaira theorem for differential forms on bounded
manifolds, which yields a simple decomposition of the prescribed zero form 3 E nOeM).
This paper is concerned with the boundary value problem

dw = X with WlaM = 1/JlaM (1.2)

for a differential forms w E nr(M). We give necessary integrability and show be means of
the Hodge-Kodaira decomposition technique that they also suffice to solve (1.2).
To fix the not ion we rewrite in section 2 some basic structures on n(M), the algebra
of differential forms on a bounded Riemannian manifold M. For the boundary value of
w E nr(M) we introduce the splitting WlaM = )*w + nw into a tangential and normal part,
needed to give an appropriate formulation of Stoke's theorem and Morrey's generalization
of the Hodge-Kodaira decomposition for differential forms on M.
In section 3 we use this decomposition to solve boundary value problems with the exterior
derivative dJ.,;and the tangential component )*w prescribed on M and 8M, respeetively.
Such problems of Dirichlet type are wen established - at least on the Euklidean IR n.

To consider general boundary conditions we furt her need special extension results for a
differential form - here on existence of a differential form with its boundary value WlaM
and the normal part of of its derivative ndJ.,;prescribed.
In section 4 we apply these technical results to a general inhomogeneous problem for
the exterior derivative, i.e. we solve the boundary value problem (1.2) under appropriate
integrability conditions. The existence theorem generalizes the wen established ones on
Neumann- and Dirichlet-problems for differential forms [Kre], where only nw or )*w can
be prescribed. It may have several applications in partial differential equations, by guar an-
teeing the solvability of any problem, which can be transformed into the exterior systems
(1.2). As an immediate consequence we solve the Hodge-dual problem with bwand WlaM
prescribed.
We finish the paper with an application of the decomposition technique to classical prob-
lems for veetor fields. By means of the isomorphism # vector fields and the one forms on a
Riemannian manifold are identified such that the divergence and the curl can be expressed
in terms of the co-differential operator and the exterior derivative, respeetively. We give
explicit integrability conditions for the problem (1.1) as weH as the coresponding dual
problem with curl W prescribed.
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2. Differential forms on Riemannian manifolds with boundaries

The analytic foundation for our investigation on boundary value problems for differential
forms is the Hodge-Kodaira decomposition theorem on manifolds with boundaries, cf.
[Mo62]. To given an appropriate formulation we fix our not ion according to [AMR] :
By an-dimensional manifold M with boundary we mean a paracompaet topological Haus-
dorff space, which is locally homeomorphic to an open subset of m~ = {x E mn IXn 2:: O},
such that boundary points p E 8M are mapped to m~ = {x E mn IXn = O}. The dif-
ferentiable strueture on M is defined with respect to the differentiable structure on m~,
naturally induced from IR n by restrietion. We assurne M to be compact, orientable and
(at least) of differentiability dass C2. Then there exists a Riemannian metric gof dass Cl
on M and a coresponding a Riemanriian volume form PM.
Considering the boundary 8M there is the natural embedding J : 8M -+ M, and for any
vector field Y E r(TM) the push forward )*Y is a field tangential to 8M. On the other
hand one has on 8M a (umte) normal field.N : 8M -+ (TM)laM of cIass Cl (obeying
)*N = 0) which also induces a Riemannian volume element pa := iN'PM on 8M. Here i
denotes the interior product.
As on manifolds without boundaries differential forms w E !"Y(M) are defined as (CI)_
sections in the bundle Ar(M) of all anti-symmetrie, r-linear forms on TM and the /\-
produet /\ : !"Y(M) /\ n8(M) -+ ~Y+8(M) is defined as usual. Furthermore we have -
naturally induced from the metric on M - a produet

(, }n" : !"Y(M) x nr(M) -+ nOeM)

(w,1]}w:= L w(Eit, ... ,Ej,.)'1](Ejll ... ,Ej,.) (2.1)
l~h ...~j,.~n

where the fields Ejle are taken from a local g-orthonormal frame (E}, ... En) on TM. One
easily sees that this product does not depend on the choice of the frame. It is used to define
the Hodge operator * :nr(M) -+ nn-r(M)by demanding for all1],w E nr(M)

1] /\ *w = (1],W}W PM

and furthermore allows to equip nr(M) with a scalar produet

(2.2)

« w, 1] »:= f (w, 1]}n" PM (2.3).. 1M
For the boundary value of some W E nr(M), i.e. the restrietion WlaM, the pull back under
the embedding J yields ar-form )*w E nr( 8M) and hence a natural splitting into a
tangential and anormal component :

WlaM )*w + nw with
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A crucial property of these components of the boundary value wlaM, which easily can be
shown by using a coordinate representation [Mo56,Sch], is the fact that they are adjoint
to each other by means of the Hodge operator in the sense that

]* *w - *nw (2.5).

To.get the notion of an exterior derivative d : !Y(M) -+ !"y+I(M) we observe that the
derivative D of funetions in direction of a veetor field Xk as weHas the Lie bracket [Xi, Xj]
can be given a proper meaning also on a bounded manifold. Hence we define :

""' k ~dw(XO,X1, ... ,Xr) = L.J (-1) D(w(XO, ... ,Xk, ... ,Xr))(Xk)
O~k~r
L (-l)i+jw([Xi,Xj],Xo", . ,Xi, ... ,Xii'" ,Xr)

O~i<j~r

(2.6),

where Xk means that Xk is omitted. Then it is possible to equip !Y(M) with appropriate
Sobolev structures, defined as the respective completions

{w E nr(M) I «w,w» < oo}

{w E nr(M) I «< w,w» + «dw,dw ») < oo}
(2.7).

Furthermore we call WlaM a boundary value of Sobolev dass H1 along 8M iff

f ((w, w)nr + (dw, dw)nr+1) J-la < 001aM (2.8).

On a boundaryless manifold the co-differential operator can be given as the (HO_ )adjoint of
the exterior derivative. For 8M f:. 0 we define 6 : nr+I(M) -+ !"Y(M) via Hodge operator
as 6 := (_l)nr+1 * d* and obtain from Stoke's theorem

«dw,TJ» =« w,6TJ» + f ]*(w 1\*77)1aM
Hence d and 6 are no longer adjoint to each other; the boundary term, however, vanishes
whenever }*w = 0 or n TJ = 0 on 8M.
The central ingredient to face boundary value problems for differential forms is Morrey's
generalization of the Hodge-Kodaira decomposition for bounded manifolds. We set

Vr(M) := {da I a E H1nr-I(M) with )*a = O}

£r(M) := {6ß I a E H1nr+I(M) with nß = O}

1{r(M) := {K E H1nr(M) I with dK = 6K = O}
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for the subspaces of dosed (Vr(M)) and eo-dosed (£r(M)) forms with an appropriate
boundary behavior respectively for the spaee of harmonie fields (1{r(M)). The Hodge-
Kodaira deeomposition theorem, cf. ehapter 7.7 of (Mo62], states that there is an or-
thonormal decomposition with respeet to the sealar produet (2.3)

HOnr(M) = Vr(M) EB £r(M) EB 1{r(M)

such that each w E HOnr(M) uniquely writes as

(2.10)

w = da +fJß + '" (2.11)

with da E Vr(M), fJß E £r(M) and", E 1{r(M). Assuming M to be smooth and w to be
Ck-differentiable, one gets a and ß of dass Ck+I and '" of dass Ck• On this basis all the
results presented below ean also be formulated in the Ck-category, cf. [Seh].

3. Boundary value problems of Dirichlet type and an extension problem

First we apply the deeomposition teehnique to solve boundary value problems of the type

dw = X
lw = lt/J

on M
on 8M

(3.1)

where X E HOnr+I(M) and the r-form t/J of Sobolev dass HI on 8M are preseribed. Sinee
on 8M the tangential component )*w is given, we eall such problems of Dirichlet type. If

I

X where of Sobolev dass HI a neeessary eondition for solving (3.1) would be dX = 0; more
general X E HInr+I(M) has to obey the integrability condition

«x,fJ,»= 0 with n,=O (3.2).

In fact these two eonditions are also

(3.3)V", E 1{r+I (M)

On the other hand we get from Stoke's theorem (2.9) by means of (2.5) the equation

« X, '" »= f lt/J 1\*n '"10M
as a seeond neeessary eondition for solving (3.1).
sufficient to solve the Diriehlet problem :

Lemma 1
Let M be a compaet, orientable Riemannian C2-manifold with boundary. Given a differ-
ential form X E HOnr+I(M) where 0 ~ r ~ N - 1 and ar-form t/J, which is of dass HI
along 8M. H X and t/J obey the integrability conditions (3.2) and (3.3), there exists some
w E HInr(M) which solves the boundary value problem

dw=X
)*w = lt/J

on M
on 8M

(3.4).
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Proof:
Applying the Hodge-Kodaira decompostion (2.11) to X E HOnr+1(M) we get

x = dax + Ößx + "'x with lax = 0 and nßx = 0 (3.5).

Since this decomposition is HO!Y(M)-orthogonal we can conclude from the integrability
condition (3.2) that « ößx, Ößx »= 0 and in consequence Ößx = O. On the other hand
t/J has an extension t/J E H1n,r(M) and we can decompose

dt/J = dat/J + ößt/J + "'t/J with lat/J = 0 and nßt/J = 0 (3.6).

Since dt/J E HOnr+1(M) is an exact form, we argue as above to show that also ößt/J = O.
Defining then

(3.7)onM
on8M

- { d w - X - "'x + "'t/Jw := ax - at/J + t/J where )*w = )*t/J

we get from (2.9) for any 1] E H1n,r+l(M) :

«"'t/J - "'x, 1] » = «w,Ö1]» - «X,7J» + [ l(w A *1]) (3.8).1aM
If 1] E 1f.r+l(M), Le. a harmonic field, the right hand side vanishes by means of the
integrability condition (3.3). Especially we ~ay chose 7J := ("'t/J - "'x) and conclude that
"'t/J - "'x = O. Hence w as constructe,d above solves the problem (3.4). 0

A similar problem, restrieted to the Euklidean space IR n, has been considered by [Kre]. He
obtained - under appropriate (stronger) integrability conditions - an explicit expression
for solutions of (3.4), for which he also could prescribe the value of the co-differential Öw
on 8M. In turn our result - based on a variational method [Mo62] - yields a result on
a general Riemannian manifold but just gives necessary and sufficient conditions for the
existence of solutions.
Furthermore this approach allows also to investigate more general boundary value prob-
lePls, what requires the study a special extension problem for a differential form. In our
case this concerns the question of existence of a differential form w E H1n,r(M) such that
its boundary value WlaM and the normal components of its derivative n( dw) are prescribed.
The coresponding result is due to Morrey :

Lemma 2
Let M be a compact, orientable Riemannian C2 -manifold with boundary and let 1] be
ar-form on M with boundary value 7JlaM of dass H1 along 8M. Then there exists a
(r - l)-form a E H1nr-1(M) with da E H1nr(M) such that

alaM = 0 and n(da) = D1] (3.9).

H M is smooth and 7J is Ck-differentiable a and da can be chosen of dass Ck.
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For a proQf, based on a coordinate representation and aFriederichs mollifier argument.
on IR n, we refer to [Mo56,Sch]. Remarkably any solution u of (3.9) .also has a vanishing
tangential derivative. This is dear by observing that the exterior derivative d commutes
with the pull back such that ~e can condude fromul8M == 0 that

)*du = d(lu) = 0 (3.10).

We note that also lemma 1implicitly is based on a special extension problem, namely to
find a HI1Y(M) extension 'I/Jof the prescribed boundary value 'I/J.A careful analysis, based
in a trace theorem, cf. (Ada], shows that in fact it suffies for lemma 1 to assurne 'I/J to be
of Sobolev dass HI/2 along 8M in order to find w of dass HI. Hence all the proceeding
results also hold under appropriate weaker regularity assumptions along 8M.

4. General boundary value problems and dual problems

Having the results of section 3 at hand, i.e. the solution theorem for the Dirichlet problem
(3.4) and the ,extension result of lemma 2, we can consider a general problem for the
exterior derivative on !Y(M) :

Theorem 3
Let M be a compaet, orientable RieI1lannian C2 -manifold with boundary. Given a differ-
ential Eormx E HOQr+l(M) with O~, r ~ n -1 and cir-Eorm 'I/J oEclass HI on 8M, which
obey the integrability conditions

(4.1),
nl.=OwithV, E HInr+2(M)

V I\, E Jir+I(M)

«X,b,» ='0

«X,I\,» = f )*'I/J /\ *nl\,IBM
there exists a solution v E HInr(M) oEthe boundary value problem

dv

VlaM -
X
'l/J18M

on M
on8M

(4.2).

Proof:
Splitting the' boundary value 'l/J18M into its tangential and its normal part (2.4); we solve
by means of lemma 1 the problem

dw = X

)*w = l'I/J
on M
on 8M

(4.3).

To control the normal component we observe from (3.7) that

nw=n(ax-af/J+'I/J) (4.4)
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where1/l, etx' etf/J E H1fF(M) are determined from X and 1/1.With lemma 2 we can construct
an appropriate Ur..; E H1nr-1(M), obeying also (3.10), such that

and (4.5).

Hence v := w - dar..; solves the problem (4.2). 0

We remark that the elliptic technique to solve boundary value problems [Hör] could not
be applied here, since the exterior derivative "d:' is not an elliptic operator. Theorem 3
may have a wide range ofpossible applications in partial differential equations, since it
guaranties the solvability of any linear first order system, which can be transformed into
an exterior system of the form (4.2).
In direet analogy to the duality between the Dirichlet- and the Neumann-problem for
differential forms [Kre], we consider theHodge-dual version of the general boundary value'
problem, i.e. the problem with the co-differential ÖW together with the boundary value
WlaM prescribed. Using the identity *(*W) = (_l)s(n-'s)w we show:,

Corollary 4 ,
LetM be a compact, orientable Riemannian C2-manifold with boundary. Given adiffer-
ential form e E HOns-1(M) with 1 ~ s ~ n and a s-form </J of dass H1 on DM, which
obey the integrability conditions

«e,d€ »
(_lts+n+1 « e,). »

V € E H1nS
-
2(M).

V)' E HS-1(M)

with

(4.6),

there exists a solution w E H1nS(M) of the boundary value problem

8w = e
Wl8M = </J18M

on M
on DM

(4.7).

Proof: '
Choosing e = (_l)n+s+l * X and </J = *"p (where s = n - r) the integrability conditions
(4.6) turn into '

«X,*d€ »
«X,*). »

o V € E H1nn-r-2(M)
'f )*1/1 A *n(*).) V)' E Hn-r-1(M)IBM

,with n(*€) = 0

(4.8).

This is equivalent to (4.1), such'that theorem 3 can be applied, i.e. (4.2) has a s<;>lutionv.
Then w := *v becomes the desired solution of (4.7), since 8w = (-1)n(s-l)+l * d *w and
the Hodge operator comrrmtes with thy restrietion to the boundary. 0
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5. Two applications motivated from physics
'.

As an illustration of the technique presented above we consider two boundary value prob-
lems for vector fields, which play an important role for physical applications. We observe
that the Riemannian strueture g ort M induces an isomorphism between the vector fields
of Sobolev class Hl and one differentialforms the same differentiability class :

tt : r(TM)~ ~l(M)
X#(Y) := g(X, Y) 'v'Y E r(TM)

(5.1).

One immediatelyshows, cf. (2.1) artd (2.2), two algebraic properties of this operator

g{X, Y) =< X#, y# >nt (5.2)

. and the fact that the co-differential on n1 (M) transforms qytt into the divergence, i.e.

8(X#) = div X 'v'XE r(TM) (5.3).

Furthermore - on a 3-dimensionalmanifold - the cross-product of vector fields computes
as (X x Y)# = *(X# /\ y#) and the exterior derivative of a one form can be expressed in
terms of the curl of the corresponding field by

'v'W E r(TM) (5.4).

Corollary5
Let on a compact, orientable Riemannian C2-maniEold M areal valued Eunction :=: E
nO(M),a vector neId Y E r(T M), both oESobolevdass H1, and a vector neId Z E r(T M)
with ZlaM oEdass H1along 8M be given.
a) The boundary value problem

divV =:=:
VlaM = ZlaM

on M
on 8M

(5.5)

has a solution V E r(T M) oEdass H1 Hf

f :=:jLM+ f g(Zla~,N)J.la=O1M IBM . (5.6).

b) For dimM = 3 th~ boundary value problem

curl W = Y
WI8M = ZI8M

o~ M
on 8M./ (5.7)

has a solution W E r(TM) oEdass H1 iff

divY = 0 and

f g(Y, L) jL = r geN, Z x L) J.la
1M . 1aM

(5.8.)

'v'harmonie veetor fields L E r(TM)



Proof:
a) The exterior system eorresponding to (5.5) beeomes by (5.3)

) ,

8VU = :=: (5.9)

Sinee s = 1 the first eond~tion of (4.6) is empty and 1{s-1 = IR, i.e. the harmonie fields
are tlie eonstant funetions. Furthermore we have iN'Jl, =: Jla and *n(ZU) = g(Z,N) *N#
for all Z E r(T M). Then the remaining integrability eondition for solving (5.9) reads as. .

c f :=:JlM + c f g(ZlaM,N) Jla = 0 Vc E IR1M 1aM
b) The exterior system eoresponding to (5.7) beeomes by (5.4)

(5.10).

dW# = *y# and VUlaM = ZUlaM (5.11).

Sinee *y# is of dass H1 by assumption the first integrabilityeondition of (4.1) turns into
d * y# = 0, what isequivalent to div Y = O. Expressing the right handside of the seeond
condition of (4.1) in terms of the cross-product and using the fact that the harmonie vector
fields on M are in one-to-onecorespondence with the one fo:ms *'" E 1{1(M) we get

(5.12).V harmonie vector fields L E r(TM)f g(Y,L)Jl = f l(*(Z x L)U)1M 1aM
Arguing as for a) we .see that this is equivalent to the second condition of (5.8). 0

For the special case ZlaM = 0 these two problems are studied in [vWaJwhere also the great
interest on such existenee questions for fluid dynamics is indicated. The general problem
with the fuH boundary value ZlaM prescribed - modulo demanding consistency' with the
integrability eondition (5.6) respectively (5.8) - has (to theauthor's knowledge) not been
studied in the literature, but shöuld be of importance for several areas in dassical field
theory.
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