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ABSTRACT

This paper is concerned with the question to find a differential form v of degree r
solving the exterior differential equation dv = 7 under general inhomogenous boundary
conditions v|ap = x|am. We give necessary and sufficient conditions for the forms n and
x and prove an existence theorem on a bounded Riemannian manifold. The proof is based
on the Hodge-Kodaira decomposition theorem. The dual problem for differential forms
and applications from vector analysis are investiated.




1. Introduction

In a preceding paper [Sch] the author showed how to solve — under appropriate integrability
conditions — the general inhomogeneous boundary value problem

divV = = with Viem = Zlom (1.1)

for a vector field V € I'(TM) on a Riemannian manifold M with boundary M. The ana-
lytic basis for doing so was the Hodge-Kodaira theorem for differential forms on bounded
manifolds, which yields a simple decomposition of the prescribed zero form = € Q°(M).
This paper is concerned with the boundary value problem

dw = x with wlomM = Ylom (1.2)

for a differential forms w € Q"(M). We give necessary integrability and show be means of
the Hodge-Kodaira decomposition technique that they also suffice to solve (1.2).

To fix the notion we rewrite in section 2 some basic structures on Q(M), the algebra
of differential forms on a bounded Riemannian manifold M. For the boundary value of
w € Q7 (M) we introduce the splitting w|sym = y*w + nw into a tangential and normal part,
needed to give an appropriate formulation of Stoke’s theorem and Morrey’s generalization
of the Hodge-Kodaira decomposition for differential forms on M.

In section 3 we use this decomposition to solve boundary value problems with the exterior
derivative dw and the tangential component j*w prescribed on M and OM, respectively.
Such problems of Dirichlet type are well established — at least on the Euklidean R™.
To consider general boundary conditions we further need special extension results for a
differential form — here on existence of a differential form with its boundary value w|sp
and the normal part of of its derivative ndw prescribed.

In section 4 we apply these technical results to a general inhomogeneous problem for
the exterior derivative, i.e. we solve the boundary value problem (1.2) under appropriate
integrability conditions. The existence theorem generalizes the well established ones on
Neumann- and Dirichlet-problems for differential forms [Kre], where only nw or j*w can
be prescribed. It may have several applications in partial differential equations, by guaran-
teeing the solvability of any problem, which can be transformed into the exterior systems
(1.2). As an immediate consequence we solve the Hodge-dual problem with §w and w|apm
prescribed.

We finish the paper with an application of the decomposition technique to classical prob-
lems for vector fields. By means of the isomorphism § vector fields and the one forms on a
Riemannian manifold are identified such that the divergence and the curl can be expressed
in terms of the co-differential operator and the exterior derivative, respectively. We give
explicit integrability conditions for the problem (1.1) as well as the coresponding dual

problem with curl W prescribed.



2. Differential forms on Riemannian manifolds with boundaries

The analytic foundation for our investigation on boundary value problems for differential
forms is the Hodge-Kodaira decomposition theorem on manifolds with boundaries, cf.
[Mo062]. To given an appropriate formulation we fix our notion according to [AMR] :

By a n-dimensional manifold M with boundary we mean a paracompact topological Haus-
dorff space, which is locally homeomorphic to an open subset of R} = {xe R™ |z, > 0},
such that boundary points p € M are mapped to Ry = {x € R" |z, = 0}. The dif-
ferentiable structure on M is defined with respect to the differentiable structure on R,
naturally induced from IR™ by restriction. We assume M to be compact, orientable and
(at least) of differentiability class C2. Then there exists a Riemannian metric g of class C 1
on M and a coresponding a Riemannian volume form pps.

Considering the boundary M there is the natural embedding 3 : M — M, and for any
vector field Y € T(TM) the push forward 3.Y is a field tangential to M. On the other
hand one has on M a (unite) normal field N : M — (TM)|am of class C' (obeying
7xN = 0) which also induces a Riemannian volume element yi5 := ixuy on OM. Here i
denotes the interior product.

As on manifolds without boundaries differential forms w € Q7(M) are defined as (C!)-
sections in the bundle A"(M) of all anti-symmetric, r-linear forms on TM and the A-
product A : Q"(M) A Q*(M) — Q (M) is defined as usual. Furthermore we have -
naturally induced from the metric on M - a product

()ar : Q(M) x Q (M) — QM)

(w,n)ar = Z w(Ej,...,Ej.) -n(Ej,...,Ej,) (2.1)
1<j1~<je<n '

where the fields E;, are taken from a local g-orthonormal frame (Ej, ... En) on TM. One
easily sees that this product does not depend on the choice of the frame. It is used to define
the Hodge operator * : Q"(M) — Q" "(M) by demanding for all n,w € Q"(M)

nAxw = (n,w)er um (2.2)
and furthermore allows to equip Q7(M) with a scalar product

<L w,p >>i= / (w,Mar pm (2.3).
. ' M

For the boundary value of some w € Q7(M), i.e. the restriction w|an, the pull back under
the embedding j yields a r-form j*w € Q7(OM) and hence a natural splitting into a
tangential and a normal component :

o : FwMN,...Yr1) =0
wloM = J'w + nw with {nw(]*Yl,...],Yr) ~0 VY € I(TM) (2.4).



A crucial property of these components of the boundary value w|sar, which easily can be
shown by using a coordinate representation [Mo56,Sch], is the fact that they are adjoint
to each other by means of the Hodge operator in the sense that

7w = *nw (2.5).

To get the notion of an exterior derivative d : Q" (M) — Q7+!(M) we observe that the
derivative D of functions in direction of a vector field X as well as the Lie bracket [X;, X;]
can be given a proper meaning also on a bounded manifold. Hence we define :

do(Xo, X1y, Xr) = Y (~1)*D(w(Xo,. ., Xk, o, X)) (Xk)

e .. (26),
E (—1)'+’w([X,-,Xj],X0,...,X;,...,X,-,...,Xr)
0<i<j<r .

where X « means that X} is omitted. Then it is possible to equip Q"(M) with appropriate
Sobolev structures, defined as the respective completions

HQ" (M) = {weQ(M)]| << w,w >> < o}

(2.7).
HQ M) = {we (M) | (<< w,w >> + << dw,dw >>) < oo}
Furthermore we call w|sy a boundary value of Sobolev class H! along M iff
/ ((w,w)ar + (dw,dw)gr+1) pa < 00 (2.8).
oM

On a boundaryless manifold the co-differential operator can be given as the (H°-)adjoint of
the exterior derivative. For OM # 0 we define § : Q"}(M) — Q"(M) via Hodge operator
as § := (—1)""*! % dx and obtain from Stoke’s theorem

<< dw,np >> = << w, bn >> +/ FwA*n)  VYweQ(M)VneQti(M) (29).
oM

Hence d and § are no longer adjoint to each other; the boundary term, however, vanishes

whenever j*w = 0 or ny = 0 on M.
The central ingredient to face boundary value problems for differential forms is Morrey’s
generalization of the Hodge-Kodaira decomposition for bounded manifolds. We set

D'(M) :={da | a€ H'Q™Y (M) with j*a =0}
E"(M) := {68 | a € H'Q™ (M) with nj =0}
H (M) := {x € H'Q"(M) | with ds = éx = 0}



for the subspaces of closed (D"(M)) and co-closed (ET(M)) forms with an appropriate
boundary behavior respectively for the space of harmonic fields (H"(M)). The Hodge-
Kodaira decomposition theorem, cf. chapter 7.7 of [Mo62], states that there is an or-
thonormal decomposition with respect to the scalar product (2.3)

HQ"(M)=D'(M)®E (M) ®H (M) (2.10)
such that each w € H°Q"(M) uniquely writes as

w=da+6B+k (2.11)

with da € D"(M), 68 € £"(M) and k € H"(M). Assuming M to be smooth and w to be
C*-differentiable, one gets a and g of class C¥*! and & of class C*. On this basis all the
results presented below can also be formulated in the C k_category, cf. [Sch].

3. Boundary value problems of Dirichlet type and an extension problem

First we apply the decomposition technique to solve boundary value problems‘of the type

dw=x on M
Fw=7% on OM

where x € H°Q (M) and the r-form % of Sobolev class H ! on OM are prescribed. Since
on OM the tangential component j*w is given, we call such problems of Dirichlet type. If
x where of Sobolev class H! a necessary condition for solving (3.1) would be dx = 0; more
general x € H'Q™1(M) has to obey the integrability condition

(3.1)

<< x,6y>>=0 Vv e H'Q™ (M) with ny=0 (3.2).
On the other hand we get from Stoke’s theorem (2.9) by means of (2.5) the equation

<LK X, kD> = / Y A+nk  VYeeH (M) (3.3)
M

as a second necessary condition for solving (3.1). In fact these two conditions are also
sufficient to solve the Dirichlet problem :

Lemma 1

Let M be a compact, orientable Riemannian C?-manifold with boundary. Given a differ-
ential form x € H'Q (M) where 0 < r < N — 1 and a r-form 1, which is of class H?
along M. If x and v obey the integrability conditions (3.2) and (3.3), there exists some
w € H'Q"(M) which solves the boundary value problem

dw=Yx on M

- (3.4).
Iw=73%Y on OM (34)



Proof :
Applying the Hodge-Kodaira decompostion (2.11) to x € H'Q ™ (M) we get
x = day + 60y + Ky with  j*ay=0 and ng, =0 (3.5).

Since this decomposition is H°Q"(M)-orthogonal we can conclude from the integrability
condition (3.2) that << 88y, 88y >> =0 and in consequence 68y = 0. On the other hand
1) has an extension ¢ € H1Q"(M) and we can decompose

dip = day + 6By + Ky with  j'ay =0 and nfy=0 (3.6).

Since dip € H°Q (M) is an exact form, we argue as above to show that also 684 = 0.
Defining then

. — dw = x—Kky+ky on M
w:i=oay —ay+Y where {J*w = on OM (3.7)
we get from (2.9) for any n € HIQ™H1(M) :
<LK Ky — Ky, ) D> = << w,§n >> — <KL x,n >> +/ ]*(w/\*n) (3.8).
oM

If € H™*1(M), i.e. a harmonic field, the right hand side vanishes by means of the
integrability condition (3.3). Especially we may chose 1 := (ky — kx) and conclude that
Ky — Ky = 0. Hence w as constructed above solves the problem (3.4). m]
A similar problem, restricted to the Euklidean space R ", has been considered by [Kre]. He
obtained — under appropriate (stronger) integrability conditions — an explicit expression
for solutions of (3.4), for which he also could prescribe the value of the co-differential éw
on M. In turn our result — based on a variational method [Mo62] — yields a result on
a general Riemannian manifold but just gives necessary and sufficient conditions for the
existence of solutions.

Furthermore this approach allows also to investigate more general boundary value prob-
lems, what requires the study a special extension problem for a differential form. In our
case this concerns the question of existence of a differential form w € H'Q"(M) such that
its boundary value w|sps and the normal components of its derivative n(dw) are prescribed.
The coresponding result is due to Morrey :

Lemma 2 :
Let M be a compact, orientable Riemannian C?-manifold with boundary and let n be

a r-form on M with boundary value n|ap of class H' along OM. Then there exists a
(r — 1)-form o € H'Q™"Y(M) with do € H'Q"(M) such that
oloy =0 and n(do) =n7y (3.9).

If M is smooth and n is C*-differentiable o and do can be chosen of class C*.



For a proof, based on a coordinate representation and a F‘rlederlchs molhﬁer argument.
on R", we refer to [Mo56, Sch] Remarkably any solution ¢ of (3.9) also has a vanishing
tangential derivative. This is clear by observing that the exterior derivative d- commutes
with the pull back such that we can conclude from’ olam = 0 that

]*da = d(]*a) =0 : (3.10).

We note that also lemma 1 implicitly is based on a special extension problem, namely to
find a H'Q"(M) extension ¥ of the prescribed boundary value 1. A careful analysis, based
in a trace theorem, cf. [Ada), shows that in fact it suffies for lemma 1 to assume 3 to be
of Sobolev class H'/? along M in order to find w of class H'. Hence all the proceeding

results also hold under appropriate weaker regularity assumptions along M.

4. General boundary value problems and dual problems

Having the results of section 3 at hand, i.e. the solution theorem for the Dirichlet problem
(3.4) and the extension result of lemma 2, we can consider a general problem for the
exterior derivative on Q"(M) :

 Theorem 3

Let M be a compact, bnentab]e Riemannian C2—manifold with boundary. vaen a differ-
ential form xy € H'Q (M) with 0 <r < n—1 and a r-form 1 of class H' on M, which

obey the integrability conditions

<< x,87>> =0 - Vye H'Q™*(M)  with ny=0
o 4.1),
<LK X, K >> = / YAk YeeHTH(M) (1)
oM ,
- there exists a solution v € H'Q"(M) of the boundary value problem
- |  dv=x M
X o (4.2).

S vlem = 1,[)|aM on M

Proof :
Splitting the boundary value %|spm into its tangentlal and its normal part (2. 4) we solve

by means of lemma 1 the problem

dw = x on M

4.3).
Fw =% on OM (4.3)

To control the normal component we observe from (3.7) that
nw=n(ay—ay+9P) - . (4.4)



3

where ¥, dx, ay € H! Q'"(M ) are determined from x and . With lemma 2 we can construct
an appropriate o,, € H'Q "1(M), obeying also (3.10), such that

7*(doy,) =0 , . n(do,)=n(ay—ayp+y) -and | owlam =0  (4.5).

Hence v := w — do,, solves the problem (4.2). m]
We remark that the elhptlc technique to solve boundary value problems [Hor] could not
be applied here, since the exterior derivative "d” is not an elliptic operator. Theorem 3
may have a wide range of possible applications in partial differential equations, since it
guaranties the solvability of any linear first order system, which can be tra.nsformed into

an exterior system of the form (4.2).

In direct analogy to the duality between the Dirichlet- and the Neumann-problem for
differential forms [Kre], we consider the Hodgé-dual version of the general boundary value
problem, i.e. the problem with the co-differential éw together with the boundary value -

w|am prescribed. Using the identity *(*w) = (- 1)’(" ’)w we show

Corollary 4

Let M be a compact, orientable R1ema.nn1a,n C?-manifold with bounda.ry Given a differ-
ential form £ € H*Q*~}(M) with 1 < s < n and a s-form ¢ of class H' on OM, which

obey the integrability conditions _
<«<bde>> =10 Vee H'Q"X(M)  with ;%e=0
(—1)metntl < £ A >> = / amdAA Vie H Y M) = (4.6),

there exists a solution w € H'Q*(M) of the boundary value problem

Sw= 6 oon M .
(4.7).
w|aM = dlom ~on aM . .

Proof :
Choosmg ¢ = (—1)mtetlay and ¢ = *1/) (where s=n-— r) the 1ntegrab1hty conditions

(4 6) turn into ‘
<<xyxde>> =0 Vee HIQ"—'-2(M) ‘with  n(xe) =0
<< Xy KA D> = / S A()  YAeH T an) (48).
- This is equlvalent to (4.1), such ‘that theorem 3 can be applied, i.e. (4.2) has a solution v.

Then w := *v becomes the desired solution of (4.7), since §w = (—1)"¢~D+! x d xw and
the Hodge operator commutes with the restriction to the boundary. - O



5. Two applications motivated from physics

As an illustration of the technique presented above we consider two boundary value prob-
_ lems for vector fields, which play an important role for physical applications. We observe
that the Riemannian structure ¢ on M induces an isomorphism between the vector fields
of Sobolev class H! and one differential forms the same differentiability class :

§:T(TM) — QM) -
XNY) = o(X,Y) VY eT(TM) (5-1)
One immediately shows, cf. (2.1) and (2.2), two algebraic properties of this operator
gX,Y) =< X ¥ >q and X' =ixp (5.2)
“and the fact that the co-differential on Q!(M) transforms by { into the divergencé, ie.
§(X*) = div X VX e I(TM) (5.3).

Furthermore - on a 3-dimensional manifol‘d — the cross-product of vector fields computes
as (X x V) = x(X* AY?) and the exterior derivative of a one form can be expressed in
terms of the curl of the corresponding field by

d(Xx*) ——*(curlX)” 3 v’W/e F(TM) \ (5.4).

Corollary 5

Let on a compact, orientable Riemannian Cz-mamfold M a reaJ valued function = €
QO(M) a vector field Y € T(T'M), both of Sobolev class H', and a vector field Z € T'(T M)
with Z|ap of class H' along OM be given. v

-a) The boundary value prob]em .

dlvV-::; " on M

55)
V0em = Z|om on OM (5.5)

has a solution V € T(TM) of class HY iff _
[ 2t [ a(Zlow ) o =0 ().
M oM - |

b) For dimM = 3 the boundary value problem

curl W=Y on- M
B (5.7)
WIBM = Z]aM _ on OM~
has a solutfon W e [(TM) of class H! iff
divy =0 and _ | , (5.8.)

/ g(Y, Lyu= / 9N, Z x Lyps 'V harmonic vector fields L € F(TM)
M. - oM »

-

8,



Proof : ' o
a) The extenor system correspondmg to (5.5) becomes by (5. 3)

sV == . with. Vlew = Z%om (5.9)

v Slnce s = 1 the first condltlon of (4.6) is empty and H*"! = IR, i.e. the. harmonic fields

are the constant functions. Furthermore we have ixu =: ps and *n(Z*) = g(Z,N) x N'*
for all Z € T(TM). Then the remaining integrability condition for solving (5.9) reads as.

c_/ EuM+c/ 9(Zlom, N)pa =0 Vece R (5.10).
M oM o

b) The exterior system coresponding to (5.7) becomes by (5.4)

dWh = xY'  and  V'om = ZMem © o (5.11).

Since *Y'! is of class H! by assumption the first integrability condition of (4.1) turns into
d+Y? =0, what is equivalent to divY = 0. Expressing the right hand side of the second

condition of (4.1) in terms of the cross-product and using the fact that the harmonic vector

fields on M are in one-to-one corespondence with the one forms xx € HY (M) we get

/ g(Y,L)u =/ 7*(*(Z x L)*) V¥ harmonic vector fields L € NTM) (5.12).
M oM . \ -
Arguing as for a) we see that this is equivalent to the second condition of (5.8). o

For the special case Z|sps = 0 these two problems are studied in [vWa] where also the great
interest on such existence questions for fluid dynamics is indicated. The general problem
with the full boundary value Z|sps prescribed — modulo demanding consistency with the

integrability condition (5.6) respectively (5.8) — has (to the author’s knowledge) not been

studied in the hterature but should be of importance for several areas in classical field
theory.
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