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Abstract: The present paper is to be understood as arevision and continuation of
arecent series of publications on recursively defined B-splines, due to C. deBoor and
K. Höllig [4] and G. Ciascola [6, 7].
We define B-splines as solutions of a certain difference equation of evolution type,
which is equivalent to the well-known B-spline recurrence relation. It turns out that
this approach leads to very elementary and direct proofs, in particular without using
the Marsden identity,.of many important properties of the B-splines.
Special emphasis is also laid on the probability theoretic aspects of these functions.
Among other results, we prove explicit formulas for the kill moments, the variance
and the distribution function of a B-spline.
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1. Introduction and Preliminaries

3

In arecent series of papers, C. de Boor & K. Höllig [4] and G. Ciascola [6, 7]

developed quite nicely parts of the B-spline-theory, starting with the famous recurrence

relation for B-splines (3.1) as definition of these functions. The present paper is to be

understood as arevision and continuation of the above ones in that sense that we develop

more results on B-splines - some are well-known from different approaches, but others

are new - also using only the ~ecurrence relation (3.1) as definition. In addition, we

shall prove, in a more elementary way than in [6]' the fact that the recursively defined

functions possess the B-spline-properties (cf. Theorems 2.1 and 3.2). In particular, we

don't use the Marsden identity, and we simplify the proof of the differential recursion

formula significantly, compared with [7].

Even more, we first study, for arbitrary real functions, a certaindifference equation.

of evolution type, which is equivalent to the B-spline recurrence relation, and ask for those

initial values, for which the solutions of this difference equation are spline functions. As

the main result of section 2 it turns out that theonly possible choice of initial values is

given by the first order B-splines.

In section 3, we prove, in a very elementary way, that our recursively defined

functions not only belong to the spline space SIII(K), but also possess the minimal-

support property, i.e. they coincide with the classical B-spline functions Q v,m' In the

rest of the section, further properties of the Q v,m are derived; among others, we shall

prove an optimal upper bound for their norm and the representation of Qv,rn (x) as linear

combination of truncated power functions.

Bection 4 is devoted to some connections of B-spline functions with certain linear

functionals and, in particular, with divided differences. We shall derive representations

of Q v,rn (x) as a quotient of two determinants and, of course, as the divided difference

of atruncated power function.

Finally, in section 5 we present some results concerning integrals over B-splines.

Since a B-spline can be interpreted as a probability density function, it is natural to ask

for the corresponding distribution function as well as for the kilt moments and for the

variance. These questions will be answered in Theorems 5.2 and 5.3.
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Some of the assertions are connected with the corresponding results on complex

B-splines, for which we refer the interested reader to [14].

We simplify the matter by restricting to the case of simple knots, mainly to avoid

formulas which look complicated only because ofthe many multiple sub- and superscripts.

In most cases our results can be carried over to multiple knots in an obvious way.

Let us assume that we are given real numbers X/I' J.L E ~ , the knots, satisfying

X" < X,,+l for all J.L E ~

and having no point of accumulation in IR. The set of these knots is denoted by

Furthermore we introduce the subintervals

and for 11 E ~ and mEIN the polynomials

where z is a complex variable. Since, for m ~ 2 ,

Wu.m (z) (z - xu+m)Wu.m-l

we obtain for the derivatives of these functions the equations

and

W~.m-l (xl') =
X/I - Xu+m

for J.L = 11,11+ 1, ... ,11 + m - 1

for J.L = 11 + 1, 11+ 2, ... , 11+ m .

(1.1)

(1.2)

Now let mEIN. Areal function s is called a spline function resp. a spline of

order mwith respect to the set J( if it possesses the properties
1. The restrietion of s to each intervall 1" belongs to the space IIm~ 1 of polynomials

of degree at most m - 1, and, if m > 1 ,

2. we have s E C111
-
2 (IR) .
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The real vector space of all these splines is denoted by Sm(K). Due to H. B. Curry

and 1.J. Schoenberg [9] there isa comfortable basis of this infinite dimensional vector

space, consisting of the so-called B-splines QlI.m(x), V E ~ , each of which has finite

support. In this paper we will define these special splines as solutions of a certain initial

value problem for a difference equation of evolution type, and derive many of their well-

known and also some new properties. The difference equation is equivalent to the famous

recurrence relation for B-splines, due to C. deBoor [1,2] and M. G. Cox [8].

2. The Initial Value Problem

Let

be a two-dimensional array, consisting of real functions q".", on IR. The set öf all these
arrays will be denoted by A. We are interested in such q E A which satisfy for m 2:: 2
and all x E IR the difference equation

qv.m(X) = (_X_-_X_lI_) qv.m-L(X) + (_X_lI+_"_'-_X_) qV+l,m-l(X)
xlI+/II - XLI xv+m - Xv

and have initial values

with the normalization

(2.1 )

(2.2)

+'x ..I q".L (x) dx 1 for all v E ~ . (2.3)

It is obvious that any solution of the initial value problem (2.1), (2.2), restricted to the

interval 1p, belongs to the space II ,11 _I . We will prove more:

Theorem 2.1:

Then

Let q E A be a solution of the initial value problem (2.1)-(2.3).

if and only if

qv,lI,E SII,(K) forall vE~,mEJN (2.4)

for all v E ~ .

for X E 1" ,

for x E IR , x t/. 1v ,

(2.5)
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Proof. We first prove the necessity of the condition (2.5). Since q",1 E SI(K), there

exist real numbers a",p_ such that

aU,I' for x E 11" V, J1 E ~ .

We assume q",'2 E S'2(K) for all v E ~, i.e. III particular we have q",'2 E C(IR).

Equation (2.1) yields

and

() (
x - x" )

q",'2 X = x,,+'2 - x"
a",1' + - (_X_"_+_'2_-_X_) au+ 1,1'- ,

X,,+-l - x,,
(2.6)

(
_X_-_X_"_) a",p-l + (x,,+'2 - x ) a,,+l.ll_-l ,
x,,+'2 - x,, X,,+-l - X"

xE 111-1, (2.7)

Because of the continuity of q",'2(x) at xp, we may put X = xp in (2.7) and let

X ---* xp in (2.6) to get the same value of q",'2(xp)' This leads to t~e equation

(2.8)

where A",p stands for the jump of q",1 at the point xp , i.e.

A",p := a",p - a",I,_-1 for V,J1 E ~.

From (2.8) we conclude for all v, J1, k E ?L the relation

(2.9)

Hence
A",I/ 0 forJ1 =j:. v,v + 1, J1 E ~,

which implies
for X EI",

for x rf. I", x E IR .

The normalization condition
+x-

./ q",[(x)dx 1
- ':'-

now yields 11' = 0 and a"_I' = (x/.;! - x,,)-I . This proves the necessity of (2.5).
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In order to prove the sufficiency we assume q",1 to be given by (2.5). Then it

follows easily by induction that

qv,/II = 0 for all x:S Xv and x > XV+/Il •

Thus the restrietion p~~p(x) E II",-1 of qv,I"(x) to the interval 11-' satifies

III () - 0Pv,v-l X = and '" ()-OPv,"+/II X = .

To show q",111 E e",-2 (IR) for m > 1 we only need to prove the corresponding property

in a neighborhood of the knots XI
"

J.L = v, v + 1, , , . , v + m. Equivalently we claim that

for x E IR the relation

(
/Il /11 ) ( )

Pv,p - Pv,p.-l X
b'" (x - X )/11-1",l' l'

(2.10)

holds true with
b'" .-
1I.p-

(_1)/l! ( _1)1Il
1'+111rr (xI-1-Xj)

j=",.i#I'

(2.11)

for J.L = v, v + 1, ... , v + m.
The relation (2.10) is valid for m = 1, since

1

X,,+l - Xv

Xv+l - Xv ,

and therefore
1

Xv+l - Xv

-1

To apply the induction principle we use (2.1) to obtain

( m m )()PV,II - PV,II-l X =

(
x - x v ) ( 11,-1

P",IIX,,+m - x"
111-1 )() (x,,+m - x ) ( /li-I ,,,-1 )()

-P",II-l X + Pv+l,l'-Pv+l.l,-l x
Xv+m - Xv

(_1)m-l(X _ XII)'1I-2______ . hUI (x)
I' .1' ,

XV+1I1 - xl'



More Results on B-Splines

where, by induction hypothesis,

8

x - XII

W~.",_1 (Xl')
X - Xl' XII+m - X

W:,.1II_1 (xI') + w:,+1.1II-1 (xl')
X,'+nl - X

W:,+l.III-1 (XU+III)

for;..t = v,

for ;..t = v + 1, ... , v + m - 1 ,

for ;..t = 1/ + m

holds.
A little computation, using (1.1) and (1.2), yields

for ;..t = 1/,1/ + 1, ... , 1/ + m ,

which proves the relation (2.10) and hence the suffiency of (2.5). D

3. Basic Properties of Recursively Defined B-Splines

In this section we will study the properties of splines, which are defined as solutions

of the difference equation (2.1) with initial values (2.5); these special functions will be

denoted as B-splines. The following definition conincides with the recursive definition of

B-splines as given, for example, in [4] and [6].

Definition 3.1: Let X be an arbitrary real number and K = {Xl'} a given knot

sequence. Then we define for mEIN, v E ~ , functions Q v.m (x) by

._ {(XOU+l - xu)-l
Qv.l(X)

and, for m ~ 2 ,

for x E 11' ,

for x E IR , x tt 11' ,

(3.1)

According to Theorem 2.1, the functions Q l'.tIL belong to the spline space Sill (K) ;

they will be denoted as B-splines of order m.
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Remark. One could go even further and define B-splines of order zero by setting

_ 1. { (x - x I' ) - I, for x > x I' ,

Qu,o(x) := (x-xu)+ = 0 (3.2)
for x ~ Xl' .

Then (3.1) would prod uce all B-splines of order m for m 2: 1 , bu t we do not think

that the functions defined in (3.2) will be of any interest in practice. Therefore, in

the following we shall always assurne m to be greater than zero.

In the next theorem we give some fundamental properties of the functions Q u.m (x) ,
which follow immediately from Definition 3.1.

Theorem 3.2:
a) The functions Q ,'.m (x) possess the minimal-support property

{
> 0, if x I' < X < X u+m ,

QU,II'(X) = 0, if x ~ x I' or x > x 1'+11'

1f m 2: 2, then also Qu.m(xu+m) = O.
b) The B-splines form a partition of unity, i.e. for alt mEIN and x E IR

(3.3)

+'x'L (xu+m - Xl') Qu.m(x) == 1.
u=-,x,

(3.4)
xu+m -Xl'

max Qu.m(x) <
"'E JJI

c) For alt v E 7.Z , mEIN, the B-spline Q ",11I (x) satisfies
1

The bound (3.4) is optimal.

Proof. The minimal-support property as well as the partition of unity are easily verified

by induction with repect to m, using the recurrence relation (3.1).

Inequality (3.4) now follows immediately from assertion b), since all terms

(xu+m - Xu)Qu,m(x) are nonnegative.

We now prove the optimality of (3.4). For m = 1 this is obvious, so assurne

m 2: 2. If we let the inner knots x u+ I, ... , x "+ 111-1 of the support of Q U.In all converge

to x,'+m , we obtain after a short calculation for the limit function Q:,m:

Q~.In(x) := lim. Qu.m(x)
{'CJ.,' + I •..••. rJ.,' + III -1 }-J.~v+m

~ { (X - Xl' )",-1
(X"+II' - Xu)m

o

for x I' < X ~ X 1'+m

for x ~ x I' or x > x 1'+m .
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Hence
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1

xU+nl - Xl'

which shows that (3.4) is best possible. D

The next theorem provides an explicit representation of the B-splines as linear

combination of the truncated power functions. Note that we have used so far nothing

else but the recurrence relation (3.1)!

Theorem 3.3: For each mEIN and v E 7Z, the function Q U./Il (x) can be written

as
U+HI

o (x) '""' b/ll (x - x )1ll'-1
,1'./11 = ~ 1'.,1 " +

J-/=U

(3.5)

where the coefficients b;::" are defined in (2.11).

Sketch of proof. The proof can be done by induction with respect to m, very much like

the second part of the proof of Theorem 2.1. D

Corollary 3.4 (Derivative recursion formula): For alt m 2: 2 we have the relation

d
dx Q".111 (x) (3.6)

Proof. Differentiation of the representation (3.5) yields

U+JH

(m - 1) '""' blll (x - X )",-2~ 1'.1" JI + '
1'=1'

(3.7)

while on the other hand it is clear that the right hand side of (3.6) is of the form

(m - 1) '""' ," ( )/1,-'2~ cu." X - xl" +

with the coefficients

1 \ b(~::~~I _ .b/ll _I )
_____ • II.~I u+1.p-

X 1'+ II! - J.~I' b'" -I
1:-r-l./'+"1

, if J.L = v ,

, if v + 1~ J.L ~ v + m - 1 ,

, if J.L = v +m . .
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Obviously, cm = b'" forl/. = 11 and 1/.. = 11 +m. But also for I/. 11 + 1 11 +m 1I'.p v,p"-"- ,.- = , ... , -
we obtain

.,)1 1 ( (_1)",-1 (_1)",-1 )
C".I'

-
X"+ill - x" w:"n,_l(xp) W~+1.m-1 (XI')

( _1)111-1 (XI' - x,,+'" XI'-Xv)-
x"+111 - XLI W~,m(Xp) W;"n,(Xp)

(_1)",-1 bill
W~,1II(Xp)

lI.p. ,

due to (1.1) and (1.2). o

Moreover, the explicit representation of the Bcspline Q ",111(X) given in Theo-

rem 3.3 enables us to give a very short proof of the famous contour integral formula for

B-splines, which originally appeared in [10]. One shouldalso compare the complex case

treated in [14].

Theorem 3.5: Let 11 E ~ and mEIN. For X E IR let C(x) denote a simply

closed and rectifiable curve in the complex plane such that all knots x p with X <
XI

I
::; X v+ nl and no others lie inside of C (x). Then the following contour integral

representation for the B-spline Q ".n, (x) is valid:

1 Ir . (z - X )",-1 dz
Q".IIl(x) = -. ----(-)- ,

27ft. C(.I') W",'1l1 Z

where the integration is carried out in the positive sense .

.Proof. We denote the integrand by <p(z). Then the residue of <p in the point x p ,

11 ::; f-L ::; 11 + m , equals

Res (<p, X I')
( X I' - x) 11' -1

W;',II'(Xp)

( 1)111-1 .
- .(x_x.)1l/.-1
1 () I'W",m Xp.

= -bill . (' _ X )/11-1
".1' X p.

Now let k be any fixed integer with LJ ::; k ::; 11 + m - 1 and x Eh. Then the theorem
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1 1~ <p(z) dz =
~7r2 C(:r)
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_bIll (x ~ X ,)111-1,v,,, "
,,="+1

U+1Il

'""' _blil (x _ X )1iI-l
~ V.I' ",,=V

_bill (x - X ,)IiI-l
V,I' I'

12

"'""' bill,'(x _ X )1Il-1~ v.,, "
I'=V

since "","+'" _b'/ll (x - X )",.,...1 =
L-J If-= LI lI.11 I'

0, due to Theorem 3.3. o

4. Some Connections with Linear Functionals and
Divided Differences

Let K = {x,,} again denote some fixed knot sequence. In this section we shall

study linear functionals L = Lu.", on the space C(JR) of the form
11+ln

LU) = L a.;~:,J(X",) ,
p=LI

with certain given coefficients a.;;~,,'

(4.1)

Our first result is the following theorem, which has - in different forms - already

appeared in the literature, see e.g. [5]' [11]' [14]:

Let the linear functional (4.1) satisfy the conditionsTheorem 4.1:

{
0,

L(gd = (_1)/11,
if k = 0, 1, ... ,m - 1,

if k = m,
(4.2)

with g,,(t) := tk for k =0,1, ... ,m. Then the coefficients a.;;~'1 are uniquely deter-

mined and satisfy
for jL = v, ... , v + m

with the numbers b~~" from (2.11).

In particular, we have

(4.3)

where f:j" denotes the usualm - th order divided difference operator.
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Proof. The (m + 1) conditions (4.2) lead to an (m + 1) X (m + 1)- system of linear

equations for the determination of the coefficients o~\,. The matrix A of this system

is a Vandermondian, hence regular, which proves the fact that the system has a unique

solution.
For the determinant of A we have

det (A) II
and therefore the application of Cramer's rule to (4.2) leads tothe solutions

rr
v<J.'<.i<v+m
- k.j#J~

(X.i - XI ..,)

=

det (A)

(-1)1'-1'
rr (x.i - x,,), rr (x,, - xi,;)

p<jSv+n. vSk<p

( -1)1'-1'
rr (X,I - x;). (_1)1'+11/-,/. rr (X,I - Xj)

P<.iSV+1I1 uS.i<p

Finally, equation (4.3) is an immediate consequence of the well-known fact (see e.g. [11])

that the divided difference Ll satisfies the relations

. {O,
Ll(x v, ... , x 1'+ III ; gd =. .

1,

if k = 0,1, ... ,m-1,
if k = m .

(4.4)

o

Originally, B-splines have been introduced as divided differences of a certain trun-

cated power function, and one would expect that from our definition the same representa-

tion can be derived. That this is indeed true shows the following corollary to Theorem 4.1.

Coroilary 4.2: The B-spline Q U.IIl (x) has the representation

here, the divided difference has to be taken with respect to t.
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Proof. Follows directly from Theorems 3.3 and 4.1.
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o

As is well-known (cf. [5]' [13]), a linear functional of the above type can also be

written as a quotient of two determinants. In the case of the B-spline Qu.m(x) this

is asserted in the next lemma, for which we need the following notation: For functions

vo, ... , VIII and numbers Yo, ... , YIl1 , we set

det (vo
Yo (

vO(Yo)

VII/.) := det :
Y1I1 ;

VII! (yo)

Vo(y",) )

"",(y",1
As in Corollary 4.2, we treat x as a parameter and take the determinant with respect

to the variable t.

Lemma 4.3: The B-spline Q v.m (x) has the representation

det (.90
(_1)111. Xv

det (90
Xv

9",-1 (x-t)~.1-1)
xv+m

91 ::: -x::
m
)

Proof. Obvious; see also [5] or [12].

5. Results Concerning In~egrals over B-Splines

o

An important result in the theory of B-splines, originally due to Curry and Scho-

enberg, is the fact that the integral of Q v.m (x) over IR does neither depend on the

location of the knots {x v} nor on the index l/, but only on the order m; this is esta-

blished in the following Lemma 5.1. Of course this could be deduced as a special case

from Theorems 5.2 and 5.3, but we want to give a very simple direct proof, based on the

representation formula (3.5).

Lemma 5.1: Por alt mEIN and l/ E ~ we have
xJ Q,',m(x) dx = ~

-x

(5.1 )



More Results on B-Splines

Proof. We start with the formula (3.5) and obtain

15

'XlJ Qv.m(x) dx =
.1'&/+111J Qv,JIl (x) dx
.f,.,

1 V+II'
, blll ( )11Im . L v.1' X - X I' +
p=u

.1. • ..,+'"

V+'111

1 'bill ( )JIl
m "L 1'.1' XU+1I1 - XI'

p.=JI

From Theorem 4.1 we know that the linear functional
U+OI

LU) = L b;::l'f( x I
'
)

1/=11

(5.2)

(5.3)

has the properties

{
0,

(_l)m,

if k = 0,1,"0 .. , m -'- 1,

if k= m,

with gk(t) = tk for k = 0,1, ... ,m. Therefore (5.2) equals
1 1
- . L(( -1)'" gl/,(t))m m

which complet'es the proof of Lemma 5.1. " o

In combination with Theorem 3.2 a), Lemma 5.1 says that tlie B-spline func-

tion m. Qvo",(x)is a probability density. Therefore it seems natural to ask for the

corresponding distribution function as weH as for the kill moments; these questions will

be answered in the subsequent two theorems, the first of which is essentially due to

C. de Boor, T. Lyche and L. L. Schumaker.

Theorem 5.2 (cf. C. de Boor, T. Lyche and L. L. Schumaker [3]):

mEIN and x E IR ,

For all v E ZZ,

x

m J Qu,m(t) dt
-'X.' o ,

'-
L (xI1+tI'+1 - xll)QI'.m+i(X)
Jf=//

(5.4)

k

L(x1,+,"+1 - xl,)Ql'olll+i(X), ifx E h,k = v, ... ,v+ m, (5.5)
I'=V

1
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Proof. Relation (5.4) can be easily deduced from Lemma 2.1 in [3]' while (5.5) is then

an immediate consequence of the minimal-support property of the fur.ctions Q p;IIl+1

(Theorem 3.2 a) and b)). o

Continuing the study of the B-splines' prob ability theoretic aspects, we now prove

an explicit formula for the so-called kth moments of these functions.

Theorem 5.3: For alt k E INII the foltowing explicit formula for the kill moment

of Qv.m(x) holds:

"=x>.I xl... Q".",(x) dx

-'x'

(m - 1)! k!. A( . m+l..)
(m+ k)! . U x", ... , X v+m, t . (5.6)

Remark. For k = 1, Theorem 5.3 provides a formula for the mean of the probability

density function m Q v.m (x) , i.e.

'x'

PU'I" .- .I x.mQ".II,(x)dx
-'x.

Xl' + xu+t'+ ... + Xu+m
m+1

Proof of Theorem 5.3. We use induction on m, so let m = 1. In this case the assertion

is true, since for all k E INo the application of Definition 3.1 directly yields

'x.

/ xl... Qv.1(X) dx
-'x,

.rv+l

__ 1__ ./ xl.. dx
Xv+l - Xv

.I'&.,

1,+1 1..+1
_1_ . xu+1 - x"
k + 1 x v+1 - x,,

o! k! ( . 1+1..)--- . t:. x"' Xv+1, t .
(1+ k)!

Now let m ~ 2. Our induction hypothesis is that for a1l exponents r E INo and for all

indices J.L E 7Z the relation

'x'I x",.Q/I.m_l(x)dx

-'x'

(m - 2)! r! ( . . m+r-1)-----)-, . t:. x I" ••• , X 11+111-1, t
(m+r-1. .

(5.7)
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holds. To prove (5.6), we use integration by parts and apply the differential reeursion

formula (3.6). Then

c-.::'J xl.: . QII.m(x)dx
-,x.

_ ( )m( - 1 { j'"':' X"+l . Q 1./,/11-1 (x) dx -
k + 1 xl./+m - x,,) -'.x.

Equation (5.7) yields

'x'J x I.: • Q ". 11l ( X ) dx
-'x'

(m - I)! k! {A( . m+l.:)
() )

L.l x", ... ,X,,+m-l,t. -
m + k !" ( X ,,+ '" - XII

A( .t"'+k)l
- L.l x ,,+ 1 , ... , x ,,+"" (

where we have used the well-known reeursion formula for divided differenees, see

e.g. [11]. o

Remark. The divided differenee, applied to a monomial, ean be eomputed reeursively

too. Let us eonsider the funetions

h(t) := tk-l WI./.",(t)

where AI/ = AI/.II,m denotes the elementary symmetrie funetions of the quantities

XII' Xll+l,"', xll+m , e.g. ,,+m
Al 2: xI"

P=1I
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1'+111

A2 L XpXr,
p. ,=1-'
('< r

l/+nl

A:l L xl'xrx", etc.
p, r.f,=L'
p<r<,..,

Then obviously

t:::.(X""",xv+m;fd = 0 for all kEIN.

Due to the linearity of the functional t:::. we get the relation

11I+1

t:::.(xv,"', X"+,,,; t'll+k) = L (_1)P+1.A11 t:::.(x", .... , X"+,,,; t",+k-I')
1,=1

for kEIN. Equation (4.4) now yields

18

A( .tlll+2)
U x v, ... , x 1'+ III ,

and

, A( .tm+1), A( tm)
AlU X", ... ,Xv+"" - A2U Xv, ... ,Xv+",;

Using Theorem 5.3 we get for the 2"d moment of the prob ability density m Q V,m (x)

the value

-x'1 x2. mQv,m(x)dx

Thus for the variance

2 .)
(m + l)(m + 2) . (Ai - A2) .

,)

(]'~,,,,

'x.1 (x-Pv.",)2.mQv.m(x)dx
-"X.'

,)

Kv,fn - P~/.fn

it follows, after a short computation,

mAf - 2(m + 1)A1
(m + l)2(m. + 2)
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