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0. Introduét_ion

In this paper we present a formalism which describes in a global fashion defor-
mations of continua with microstructures. In doing so we have to be aware of the
fundamental difference between a local and a global approach.

We present our studies in the following realm of classical physics: We are given a
deformable, very thin skin in JR" equipped with a microstructure (called micro-
scopic structure in [MH]). Since we deal with skins we assume that the underlying
points form a smooth compact manifold, without boundary for simplicity. The
microstructure assigns to each point of this manifold well defined microscopic ob-
jects such as little rods, directions or vectorspaces. We thus have a fibre bundle
over the skin with the objects as fibres. Sections are fields with values in these
bundles. Examples in elasticity theory e.g. are various types of Cosserat media.
Each of this types of assignments yields to each point a group of symmetries of
the respective collection of objects, assumed to be a manifold, a.e. we are given a
principal bundle with the symmetry group as structure group. The fibre bundle
mentioned is then associated in a natural way.

We emphasize thus merely on the symmetry of the microstructure and not so much
on the objects themselves. This picture is the starting point of our treatment of
deformations. of this sorts of media.

We equip JR™ with a (trivial) principal bundle Pr» of which the structure group
G describes the maximal degree of freedom of the microscopic object at each point
of the R™. G is assumed to be a Lie group. The microscopic object of the same
type sitting on the skin may have less degrees of freedom. Therefore we equip
the skin with a principal bundle Py, with a closed subgroup H C G as structure
group. Moreover we assume that Peyin is a reduction of the bundle Pg~ restricted
to the skin.

We now allow the skin to deform. Thus both deform, Py, and the associated fibre
bundle of objects. We handle the deformation of the fibre bundle of objects via the
deformation of Pskin. This requires to formulate a mathematical machinery which
allows us to describe the deformations of the principal bundle Pps. In turn this
formalism yields a deformation mechanism for the associated bundle (and hence
of fields with values in that bundle). This is the content of the first section.

In the second section we recall the description of a medium without microstruc-
ture with the help of a first Piola-Kirchhoff stress tensor (cf.[MH], [Bi2]) (without
volume correction since this correction is implemented by our integration). We pay
special attention to the virtual work caused by a virtual (infinitesimal) deforma-
tion and hence on the part of the stress tensor which is irredundant for this work.
To what degree the virtual work, however, characterizes the medium itself will not
be discussed.

In section three we generalize this apparatus to media with microstructures and

point out in section four the influence of the curvature of P,iin to the physical
quality of the medium in a special situation.




Finally we show that some types of Cosserat media (cf. [MH]) are describable
within the frame work presented here, and connect via a (theoretical) example our
setting with the theory of liquid crystals. Thereby we will be confronted with the
geometry of complex line bundles. '

Acknowledgements: We are indebted to Prof. L. Biedenharn for the many dis-
cussions on symmetry in physics which are very influential to us. Moreover, we
are very thankful to Prof. P. Kramer and Prof. S. Abraham at the University of
Tiibingen for valuable discussions and hints concerning liquid crystals.

1. Geometrical background

The aim of this section is to introduce the geometry underlying our treatment
of a deformable medium with microstructure sketched in the introduction. The
standard reference for the material presented and the the proofs omitted here is
[A]. All maps, bundles, sections and other objects will be taken as smooth, i.e. of
class C®. From the point of view of homotopy theory this gives essentially the
same result as the continuous maps would yield and we shall blur the distinction
when dealing with homotopy computations. For short let us recall the — more or
less — classical approach (cf. [MH]) to media without microstructure: a body M is
considered as a finite-dimensional oriented, smooth and compact manifold, without
boundary for simplicity, moving and deforming in an ambient euclidean space R"
with a fixed scalar product (, ). The configuration space of the theory consists
of all embeddings E(M, R™):={j:M — R"™ }. Furnished with Whitney’s C'*°-

_topology.this is a.Fréchet-manifold (cf. [BSF}). In the following let -m(j) and u(j)
denote respectively the Riemannian metric on M given as the pullback of (, ) on
R™ by j € E(M,R") and the induced volume form on M.

To describe a deformable medium with microstructure we assign — in analogy
to gauge theories of elementary particles — ‘internal degrees of freedom’ to each
point of the embedded body yielding Py and the ambient space yielding Pr~ as
well. We assume thereby that these degrees of freedom do not vary from point
to point: i.e. we are given a Lie group H reflecting the internal properties of
the body (e.g. H = SO(n) cf. sec.5) and a Lie group G for the ambient IR"
reflecting the external degrees of freedom. While Pr» := R" x G is a trivial
principal bundle over IR™ we require Py to be a not necessary trivial H-principal
bundle. We want to generalize this situation slightly: we replace the ambient R "™
by a finite-dimensional Riemannian manifold N and the ‘enlarged ambient space’
IR™ x G by a G-principal bundle Py over N. Let 7M and nV denote the respective
projection from Py to M and from Py to N. Therefore we end up with the
following ‘dictionary’ for a deformable medium:

. | without microstructure ' with microstructure
body embedded manifold M H-principal bundle Py; —%M
ambient space Riemannian manifold N G-principal bundle Py NN

configuration embedding j: AT — N principal embedding J: Py — Py

To understand this we recall that a principal embedding J: Pyy — Py means a
fibre preserving embedding Py; — Py which is a bundle morphism and respects
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the group-actions with respect to a given monomorphism H < G of the Lie groups
(cf.[KN]).

A principal embedding J: Pyy — Py induces an embedding j: M — N between the
corresponding base manifolds. On the other hand, given an embedding j: M — N
of the bases, it isn’t obvious at all that there exists a principal embedding J which
induces j. At least in the compact case — a.e. if M is a compact manifold without
boundary, and H, G are compact Lie groups — we get a sufficient criterion: certain

obstructions o' € Hi(M, Ti—1(G/H)) have to vanish (cf. [A]).

In the following let M » N be compact manifolds without boundary such that
dim N > dim M. For the application below we set N = R™. The Lie groups
G and H with H Cc @ being closed are assumed to be compact. Fur-
thermore we suppose to have a principal embedding J € E;(Pym, Py) of the
corresponding principal bundles, which induces an embedding j € E(M, N )
on the base manifold M. Obviously it is true that the pullback-bundle
J*PNn :={(m, p) € M x Py | 7(m) =7n(p) } is again a G-principal bundle. By
definition (cf. [KN]) a principal embedding of Py into Py over the identity is
called a reduction. We have the following at hand (cf. [A]):

Lemma 1.1

Let Py and Py be given principal bundles over M and N, respectively.
R(j*Pn, Ppy) denotes the collection of all reductions of the G-principal bundle
J*Py to the H-principal bundle Pry. The map I; : R(j*Py, Py) — Ej(Py, Py)
defined by Ij(r) = s 0r for all r € R(3*Pn,Pur) is a bijection. The map
t5:J*Pn — Py is the canonical map defined by the pullback.

The advantage of the previous Lemma is evident: the information about the princi-
pal embeddings E(Py, Py) is ‘encoded’ entierly in the reductions R(;* Py, Pyr)
with j € E(M, N)! We shall start to analyse reductions more closely (cf. [KN]):

To this end let Q- M any G-principal bundle and H < G a closed subgroup.
It is a standard fact that there is a bijective correspondence between H -principal
bundles P which are reductions of the G-principal bundle Q and sections of the
associated bundle F := Q xg G/H ‘with homogeneous fibre E, = G/H. In par-
ticular, @ is reducible to a H -principal bundle iff E admits a section. The idea
is as follows: Because there is an isomorphism E = Q/H the bundle morphism
p:Q — Q/H over idys defines a H-principal bundle. Given a section o € I'*°(E)
the pullback-bundle 6*Q is a reduced bundle of Q.

Let ¥o:= {7 € '°(E) | r*Q ~ 0*Q } CT°(E) be the set of those sections of E

which induce isomorphic H -principal bundles over M.

Remark

Homotopic sections my, 75 € 'Y E) induce isomorphic bundles 7;Q =7;Q. Here ‘ho-
motopic’ is understood as ‘fibre-homotopic’, i.e. the homotopy h: M x [0, l]— E
is a section for every ¢ € [0, 1]. It isn’t true that an isomorphism a*Q = §*Q yields
a homotopy a =~ 8.

It is not hard to check that I'*°(E) equipped with the C>-topology is a dif-
ferentiable Fréchet-manifold which in general is not connected: the connected
component of ¥ € I'°(E) is determined by the homotopy classes of sections
Uy:={7 €T*(E)|r~v}. By definition these are open in I'*°(E) and we have




Lo =, Uy, where v runs through {r eI'*(E)| ™Q = ¢*Q }. Along the lines
the following is proved in [A]: ' '

Theorem 1.2

The subset £, of '°(E) together with the induced topology is a smooth Fréchet-
manifold.

We have not mentioned yet one further structure which will be important for our
purpose, cf. sec.3: the group of gauge transformations. Given a G-principal bundle
Q we recall that the group of gauge transformations Gg might be equivalently un-
derstood as the group of (principal) bundle automorphisms of ) covering the iden-
tity on the base manifold M or as sections of the associated group-bundle P x¢ G,
here G acts on itself by conjugation (cf. e.g [BSF]). Endowed with Whitney’s C*°-
topology this is a (infinit dimensional) smooth Fréchet-Lie group with Lie algebra
(P x 44 g) — where g denotes the Lie algebra of G and Ad: G — Aut(g) is the
adjoint representation. The group Gg acts transitively and Fréchet-differentiable
from the left on &, (cf. [A]). This is a consequence of the so called -lemma (cf.[P]).
Consequently ¥, is a homogeneous Fréchet-manifold. However this action is not
free. Let I, be the isotropy group, a smooth Fréchet Lie group. In summarizing
we state

Theorem 1.3

a) The Fréchet-Lie group Hq+g — the group of gauge transformations of 0*Q —
is Fréchet-diffeomorphic to the isotropy group I, and therefore a differentiable
Fréchet-Lie subgroup of Gq. :

.b). The quotient.Gg/Hq+q endowed with the induced structure is.a differentiable

Fréchet-manifold which is Fréchet-diffeomorphic to ¥,.

c) The quotient map Gq — gQ/’H,’,.Q defines a differentiable Hq-q-Fréchet-
principal bundle.

We now return to the study of the manifold of principal embeddings E(Pp, Pn).
There is a natural map II: E(Py, Py) — E(M, N) which is in general not
surjective, cf. the above remark, and therefore in general we can’t write
E(Py, Pn) = UjEE(M, N) E;(Pum, Py). Let €py, = {j € E(M,N)|3*Py =
Py x g G} consists of embeddings such that the pullback of Px is isomorphic to
the G-principal bundle Py x g G. It is well known that those G-principal bundles
j*Pn with j € Ep,, can be reduced to Py (cf. [KN]). Reasoning analogously as in
the proof of the above Theorem 1.2 we get:

Theorem 1.4
The subset Ep,, C E(M, N) together with the induced structure is a differentiable
Fréchet-manifold. - :

Now obviously it is true that E(Py,Pn) = UjespM E;j(Pum,Pn) and that the
induced map II : E(Ppy, Pn) — Ep,, is surjective. We conclude

Theorem 1.5
The map I : E(Py, Pn) — Ep,, defines a differentiable Fréchet-fibre bundle whose
fibres E;( Py, Pn), depending on the connected components of £p,,, are equal

R(j*P~x.Py) = Gipu [ 1, -



The idea of the proof is the following (cf. [A]): The local triviality is an easy
consequence of the local convexity of the Fréchet manifold £p. To show the second
part E;(Puy,PN) = Gj~py /'HPM we use Lemma 1.1 and (b) in Theorem 1.3.

Remark

There is no essential difference working with Hilbert- resp. Banach-manifolds in-
stead of Fréchet-manifolds (cf. [A]) in the above context.

One important example of this kind of structures concerns principal embeddings
of orthonormal frame bundles. At least in this case £p,, = E(M,N) and I =1I :
E(Py, Py) — E(M, N) defines a differentiable Fréchet bundle (cf. [A]).
Another example are principal embeddings of trivial bundles. Here for every j €
E(M N) there can be constructed fibre wise a J(j) with the help of the inclusion
. H < G. Moreover the action of the group of gauge transformations yields all of
E (P, Pn), cf. Theorem 1.3. Consequently in this case Il = II : E(Ppy, Pn) —
E(M , V) defines a differentiable Fréchet bundle, too.

Let us make some remarks concerning induced embeddings of associated vector-
bundles. More precisely, let F' be a finite-dimensional for simplicity compact man-
ifold and E C F a submanifold. Let us assume furthermore that G operates on F'
and that the operation of H C G restricts to an operation of H on E C F. Clearly
this assumption is void if H = G. In particular we have specified homomorphisms
o : H — DiffE and G : G — Diff F. We construct the associated bundles
IE := Py xg E over M and FF := Py x¢ F over N. Every principal embedding
J € E(Py, Py) together with the inclusion map i : E — F' extends obviously to
an embeddmg of the trivial bundles Py x E into Py %X F. This extension induces
embeddings J of the associated bundles [E into JF', which are well defined due to
the H-equivariance of J. In summarizing we state:

Lemma 1.6

Under the previous assumptions every J € E(Puy,Pn) induces an embedding
J € Eg(E,F) of the associated bundles I[E and IF'.

Let L(E,IF):= {F|F:E — FF } denote the bundle morphisms of E to F'.

As a consequence of the previous lemma we obtain

Corollary 1.7

The map E(Puy, Pn) 7, L(E,FF) defined by J — J is injective if pg is injec-
tive, more precisely J : E(Pp,Pn) — J(E(Pyu,Pn)) C L(E,JF) is a smooth
diffeomorphism if G operates without fixpoints on E. The canonical projection
from J(E(Pu, Pn)) to Ep,, is surjective.

Remark

Let us replace the symbol J (E( Py, Pn)) by Ind(E IF). The latter space consists
of all embeddings of [E into JF induced by the maps in E(Pp, Pn).




2. The characterization of a deformable medium without
microstructures

The medium, a skin, deformable in the manifold N with Riemannian metric (, )
is assumed to have the shape of a manifold; in fact this manifold is assumed to be
the image of a smooth embedding j of an abstract manifold M.

We recall that M is supposed to be a smooth, compact, oriented and connected
manifold and for simplicity without boundary. The embedding j is called a config-
uration, the space of all configurations is denoted by E(M, N) and is assumed to
be endowed with the C>°-topology. That is to say E(M, N) is a Fréchet manifold.
The quality of a medium without microstructure is characterized by a smooth TN-
valued one-form a(j), depending on j. This one-form is called the first Piola-
Kirchhoff stress tensor or simply a stress form of the medium. The virtual
work F(5)(1) at the configuration j caused by any pointwise performed (infinites-
imal) distortion ! € C{°(M,TN) is described by

FO)D) = /M aj) e VinGj) Vi€ EQMLN), VI,

with V denoting the covariant derivative of (, ) on N. Here C$°(M,TN) denotes
the collection of all the smooth maps from M into TN for which mx[ = j, that is
C°/M,TN) =T;E(M,N) for any j € E(M,N). For the dot product involved in-
the integrand we refer to the appendix. A reformulation of this virtual work reads
as

FO)D) = /M<V*<j)a<j>,l>u(j)

... wwith V2(j) the divergence operator determined by the Levi-Civita connection V{(y)
of the metric m(j) (cf. appendix). V*a(j) is called the (internal) force density
®(j) at j. Solving

o(j) = V'a(j) = A@)H(G) (2.1)

with A(j) being the Laplaéian determined by m(j) we find a smooth map
h(j) € C;*(M,TN)

depending on j (cf. [Bi2]). Therefore the virtual work rewrites as
FG)) = [ VHG)ediuG) Vi€ EQLN), VIECFOLTN) . (22)

For each j € E(M,R™) the covariant derivative V§(j) of §(j), called the pseudo
exact part of a(j), is the part irredundant with respect to the virtual work F. This
yields for each j a decomposition a(j) = V() + 8(5) with B8(5) := a(5) — Va(j),
orthogonal (with respect to the dot metric (cf. appendix)) to V4(j). For all this
we refer to [Bi2] and [Bi3].

In what follows we characterize the global properties of the medium only up to its
influence to the virtual work; i.e. we take F as the characteristic ingredient.




3. A general frame-work for deformable media with or
without microstructure ’

In this section we develop the formalism with which we treat media with or without
microstructures. To this end let F' and E C F be compact, smooth, oriented and
connected manifolds. E and F are the collections of microscopic objects on R™ and
on M, respectively. To generalize the virtual work introduced in the section above,
we introduce a metric (, ) g on F. The manifold IR " x F' carries the product metric,
a.e. a metric (, )on all of R" x F given as follows: let prgp~ : R" x F — IR"™ and
prr : R™ x F — F denote the projections onto the first and the second factor,
respectively. For any v,w € T(, 5)(IR" x F) we set

(v,w) := (Tprr~v,Tprr~w) + (T prrv, T prrw), .

Moreover, let G and H C G be the respective isometry groups of F' and E. Their
respective Lie algebras are g and h. If the microscopic objects on M and R™
would form a vector space, say E' and F', respectively, with E' C F', then E and
F could be unit spheres with respect to a fixed scalar product in F".

The group G reflects the maximal degree of freedom of the given type of micro-
scopic objects on IR™, while as H on the other hand describes the degree of freedom
of the microscopic object on M. If dim F' = 0 then we have no microstructure at
hand and we are back in the realm of sec.2.

If we think of the body to have attached at each point the manifold E of micro-
scopic object we have a fibre bundle over the body. If this body deforms, then the
whole fibre bundle deforms. This deformation of the fibre bundle can be handled
by describing the deformation of a principal bundle with H as structure group
_.and in turn by describing the deformation of the fibre bundle via the process of
association. This is the main reason why we put the concept of symmetry into
the foreground that much and why we have developed the geometric apparatus in
sec.1 on such an abstract level. '

First, we describe the deformation of principal bundles, that is we describe the
space of configurations of symmetry in a simple situation and relate them to em-
beddings of the associated bundle: With the groups H and G we form the trivial
bundles M x H and R™ x G. Any smooth map 5 : M — G can be referred to as a
configuration of symmetry. We relate this sort of configuration with the geometric
configuration j € E(M,R™) via the smooth principal embedding

JG):MxH—R"xG

given by
J(5)(g:h) = (3(a)s s(a)h)

for any ¢ € M and any h € H. Thus J(j) subsumes both the configuration of
symmetry and the geometric configuration j. We refer therefore to J(j) as a con-
figuration of symmetry of our medium with microstructures. Vice versa any equiv-
ariant smooth embedding J(j): M x H — R" x G over some j € E(M,IR") can
be obtained via a smooth map s : M — H given by s(q) = J(5)~*(5(q), J(j)1)
where 1 € G denotes the unit element and g varies in M. Each J(j) defines

JG): MxE—-R"xF,




a smooth embedding of the associated bundles by setting

J(j)(a,€) = (g, 5(g)e)
forallge M and all e € E.

Since in general principal bundles over M are not trivial, we extend our notion of
a configuration of symmetry of a medium with microstructures as follows: Let Py
be an oriented principal bundle with H as its structure group and M. Py - M
as its projection. By a configuration of symmetry we mean a smooth principal

embedding
J: Py —R"xG.

Clearly j(mM(p)) = prmrn o J(p) for all p € Py defines j € E(M,R™). This is
equivalent to say that a configuration of symmetry in this general setting is a re-
duction of j*(M x G) (cf. sec.1). As shown in sec.1 the space of all configurations of
symmetry of our deformable medium with microstructures is the Fréchet manifold
E (P M, R™ x G)

Let JE and JF be the bundles associated to Py and R"™ x G, respectively. The
typical fibres are respectively E and F. Clearly I = IR"™ x F, while as JE needs not
to be trivial. Recall from sec.1 that Ind(IE, IF') is the collection of all embeddings
of E into F induced by the principal embeddings in E(Py,R"™ x G). For its
relation to E(M,IR™) we refer to sec.1.

By a stress form on Ind(E,R"™ x F) we mean a map
A:Ind(E,R"x F)— AY(E,T(R" x F)) ,

~where A(J(j)) covers J(j) for each J(j) € ind(IE,TF ). Given a stress form A on
Ind(E. IF) then any smooth map L : [E — T(IR" x F), covering J(j), regarded
as an infinitesimal deformation of J(j) yields the virtual work

FIGHE) = /E AT(G)) o VL u(T())

. (3.1)
- /E (VTG)* ATG)), L) T G)) -

The force density V(J(j))*A(J(;)) depends on the particular configuration J(5)
and hence on the microstructures (if dim F # 0) possibly in a non-local way.

We could evaluate :
[ (VUG AT6).D) uTG)

by iﬁtegrating over the fibres first and then over M. This yields a form on M. We
proceed in this way below in a somewhat other setting (cf. (3.6)).
Solving for any J(j) € Ind(IE,IR™ x F') the equation

ATG) AT T(7)) = ATGNHE(T()) - (32

with the smooth solution H(J(j)) (covering J(j))) which is Lj-perpendicular to
the kernel of A(J(j)) immediately yields (cf. [Bi3]):



Theorem 3.1

The stress form A of the deformable medium with microstructures determine the
same force densities as the map

M :Ind(E,R",F) — C®(Py,T(R" x F))

does. In fact we have
FAGNE) = [ VHTG) o VEUTG) (33)

for any J(j) € E(JE,R" x F) and any L € C%‘(’].)(E,T(IR" x F)).

The following theorem shows that we may have a more resolved description of our
medium if we define the stress form on Pps, assumed to be oriented, rather than
on its associated bundle. '

Let JE and JF be the associated fibre bundles to the H- resp. G-principal bundles
Py, Py asinsec.l, x : Py x F — FF the defining quotient maps. Furthermore
let y € F a point in F which is the image of z € E under the inclusion map
1: E— F.

Theorem 3.2

a) Every TPy-valued 1-form 3 € AY(Py,TPn) on Py induces a 1-form =
AY(IE,TTF ) defined by | '

B(X)(e) := Txy (BV)(P)) »

where the map X: : Py — E is the quotient map x with fixed second argu- .
ment, X := Tx.(V) a vector in TIE and e € IE ; an element of the fibre of I
above g € M. '

b) The correspondence B + B is many-to-one, more precisely all B €
AY(Py,TPy) which can be transferred into the same fo € AY(Pp,TPN)
by pullback under the right action Ry, : Py — Ppn induce the same B €
AYE,TF) withg € G.

Let AL (Py,R" x g) be the collection of all the H-equivariant smooth one-forms
on Pys with values in R™ x g. By a stress form on E(Py, R"™ x G) we mean a

map
Ap . E(PM,R" X G) —_— A},I(PM,Rn X g)

for which Ap(J(7)) is H-equivariant for any J(j) € E(Py, R™ x G). We will touch
the special structure of the domain of Ap as pointed out in theorem 1.5:

Let wy be the connection from on P inducing the Levi-Civita connection v
on R™ x F. Using the horizontal distribution of wo, any principal embedding
J(j) € E(Py, R™ x G) defines a horizontal distribution H Py on Py which in
turn defines a connection form w(J(j)) on Pas. Let us denote the vertical bundle
on Pu; by V Pys. Restricting Ap(J(j)) to VPy and HP), yields respectively the
H-equivariant forms A% (J(j)) and AP(J(j)). We refer to AY and AP as the
vertical resp. horizontal parts of .1p. This immediately yields



Lemma 3.3

Let prrr~ and prg denote the canonical projection from R™ x g onto R™ and g,
respectively, then AR, := prr~ o A¥ defines a one-form a(AB(J(j))) : TM —

IR"™ as follows
| o) X(r(p)) = p, AR (TGN X () (3.5)
for all X € I'TM and any p € Ppy.

Unless AY is Gg-invariant, a(J(j)) depends on J(j) and not only on j. Hence
a(J(j)) reflects the internal H-symmetry. If AY is Gg-invariant, then a(J(j))
depends on j only and thus neglects the microscopic structures.

To formulate the virtual work of Ap we assume the existence of a right invariant
metric (, ), on G and if preferred we may require that the metric (, )r on F
restricted to any orbit of G is determined by (, ). Lifting (, ), the metric on R"
(with the help of wp) onto R™ x G, yields together with (, ), a metric (, ) on
all of R™ x G given as follows: For any v,w € T(; ¢(IR"™ x G) let

(v,w) := (TaR" 0, Te R w) + (wov,wow), .

Pulling back (, ) by J(j) yields the metric m(J(7)) on Ppy. Let p(J(5)) be the
Riemannian volume associated with m(J(j)) and the orientation. Given a stress
form Ap(J(j)) on Py then any H-equivariant smooth map L : Py — R" xg
being an infinitesimal deformation of J(j) yields the virtual work

Fr(IG)L) = / dAp(J(7)) o dL u(J ()

J Pp | (3.4)
- /P (V(IG)* Ap(J (), L) (I (5))

where V(J(j)) denotes the Levi-Civita connection on Py determined by m(J(5))-

The following is an immediate consequence from the definition of the virtual work.

Lemma 3.4
For each J(j) € E(Py, R" xg) and each | € C*°(M, R™) the virtual work caused
by low is

Fo(I(G) o™y = /P Ap(J(j)) e d(lom) u(I(G))
_ / AB(NYedlomul) (3.6)
_ /M< VG ARG )

where f denotes the fibre integral over Py.

Let us continue with our general studies. Solving the equations

AJG) AT = AJTGENHP(IG)) (3-7)‘

and
| A7) a (1)) = AGEp(I () (3.8)
10



for any J(j) € E(Py,M x G) with solutions Hp(J(j)) and 4p(J(7)) being Lo-
perpendicular to IR™ x g resp. R"™ immediately yields
Theorem 3.5 |

The properties of the deformable medium with internal symmetries characterized
by the stress forms Ap and a(AI_'I) determine the same force densities as the H-
equivariant maps

. Hp : E(PM,Rn X G) E— CW(PM,Rn X g)

4p: E(Py,R™ x G) — C®(M,R")

4. Influence of the curvature of Py to the virtual work in
a special situation

Let A be a stress form on Ind([E,IF'). Thus for any J(j) € Ind(E,FF) the
map A(J(j)): TE — T(IR" x F) is a bundle homomorphism covering J(j). Let
PFgrn ¢ R™ x F be the projection onto the first factor R™. Then

Tprr~ o0 A(J(j)): TE — TR"=R" xR"
yields a one-form Ag~(J(j)) with values in R™: Let pro : R™ x R" — R" be
the projection onto the second factor. The one-form mentioned is defined by
AR~ (J(5)) :=pra o TPF g~ 0 A(J(j)) : TE — R™ .
Similarly let 57 : R™ x F' — F be the projection onto the second factor F'. Then
Ar(J(7)) :=Tprpo A(J(j))  VJI(j) € Ind(E,F) .
Thus if we write T(R" x F) = R"™ x R" x TF we find
ATG)) = (,Ar~(J()), Ar(J(7))) -

In this section we show that given any stress form A on Ind([E,IF') an influence
of the curvature Q(J(])) of w(J(j)) is detectable in the form Agr~ and hence in
its exact part dHgn~(J(j)) : TM — R" for any J(j) € E(Py, R"™ x F). Here
w(J( ])) is the connection determined in such a way that its horizontal distribution
on JF' is mapped to the one determined by wq. Recall that wp is the connection
form yielding the Levi-Civita connection on F.
To this end we use G C SO(n) and H C SO(dim M). The curvature QJ(5)) of
w(J(j)) is defined by B _
| AT()) = =T

where d ;) is the covariant exterior differential determined by w(J(7)).

We will study the influence of Q(J (7)) as far as it is reflected in a bundle map
pQ(J(])) of TM caused by R+(J(7)), both to be defined below. The map AT (7))
may naturally be identified with a h-valued two-form on M. R$ defined by

R (J(7))(ugq, vq g := QJ (J))(Uqu)(wq) (4.1)
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for all ug,vq,wy € ['(TM) and for all ¢ € M where the skew transformation
Q(J(7)) in (4.1) is supposed to operate for any ¢ € M on T, M as the elements
of so(dim M) do. Thus it operates analogously as £(j)riem does, the two-form
determining the curvature of the Riemannian metric on M. The form RL(J(j))
yields the IR -valued two-tensor (cf. example (ii) in sec.5).

pa(TGNY, 2) = tr xRE(TG)NX,Y)Z VY, ZeT(TM).  (42)
Therefore we find a bundle map rq(J(j)) : TM — TM over id such that
m(j)(ra(J())X,Y) = pa(JGNX,Y) X, Y € (TM) . (43)

Following the method presented in the equation (2.2) diTa(J(j)) determines in
turn a smooth #(J(j)) : M — R™, the exact part of djTa(J(})).

Taking the Lz-component with respect to the dot metric of Amn(:f_(j )) along
djpg(J(3)) o 7 = (B )*djpa(J(j)) with nF : JE — M the projection, yields a

real number s(J(7)) such that
Ar~(7()) = 5(7(j)) - dipa(T(5)) o Tx™ + rest (44)
for all J(j) € Ind(IE, R"™ x F). Since the virtual work caused by A splits additively

into the virtual work caused by Ag~ and Afp, we thus have:
Theorem 4.1

The curvature of the connection as far as it is reflected in po(J(j)) influences
A(J(j)) and the virtual work F through the real s(J(j)) for each J(j) €
E(Py, Prn).

This shows that distorting the geometric setting of microstructures may cause
virtual work (cf. sec.5 (ii)).

Remark v

If H= SO(dim M) and E the unit sphere bundle of TM then pa(J(5)) is the
Ricci tensor Ric(j) of the metric m(j) on M (cf. [Bi2]).

5. Simple Examples

(i) In [MH] we find the description of configurations of Cosserat media in R®:
The manifold F is either R®, the unit sphere S? or the real projective space
IR P3. We set E := {e}, that is a zero dimensional submanifold of F'. As a

configuration we consider a bundle map
M x {e} 9 RIxF
~ being an embedding over an embedding j € E(M, IR?). Thus the diagram

Mx{e} D R"xF
prll lPT'z

M j R3
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(ii)

commutes. Qur sorts of configurations in this context are configurations in
the sense of [MH] as easily seen.

The next kind of (a rather theoretical) example is inspired by the description
of lipid in water studied in the book [deG]. We idealize the situation in the
following way: Let dim M = 2. At each point ¢ € M there is a disc attached.
We make this picture more precise: Let R? c R™. We consider F := {z €
R"|||lz]=1}=5""'and E:={z € R?||z]| =1} =S ThusECF
is closed and F is compact. The group G is SO(n) and H is chosen to be
SO(2). If we let Pps be the frame bundle of TM, an SO(2)-principal bundle,
then IE is a subbundle of TM, in fact it is the unit sphere bundle of TM. If
we let, however, Py be the orthogonal frame bundle of a plane bundle IL (a
complex line bundle) equipped with a bundle metric then clearly this bundle
may differ from TM. The bundle E is the unit sphere bundle of L. Given
J(j) € ind(IE,R™ x S™~!) over j € E(M,IR"™) we pull back the product
metric {, ) on R™ x S™~! (each factor carries the metric given by the fixed
scalar product on IR™). This yields m(J(j)).

The free-energy (cf. [deG]) in our situation certainly depends on a configura-
tion J(j) € ind(IE, R™ x S™~1) of the line bundle IL . We extend J(j) in the
obvious way to a bundle embedding of IL into IR™ x IR™. This extension is
denoted by J(j), too. The metric on L determined by the embedding J(5)
of L into R™ x IR™ is also denoted m(J(j)).

Our first goal is to describe the various types of the bundle L. To this end
we need to study the curvature given by the metric m(J(7)), a characteristic
ingredient of IL (cf. [K] or [Sn]). The Levi-Civita connection V(J(j)) on L
of m(J(j)) is determined by a connection form w(J(7)) on Pa of which its
curvature Q(J(j)) is a horizontal and SO(2)-equivariant two-form on Py
with values in so(2). (J(5)) defines a cohomology class in H*(M,R) = R
which can be identified with an integral cohomology class and vice versa each
integral class defines a complex line bundle by a theorem of Weil (cf.[Sn] or
[Ko]). (It is the same kind of class Professor Doebner uses in his description
of quantization.) This class has to be the same for all J(j) in a connected
component of ind(E, IF).

Before we are going to specify a stress form (cf. (3.1) to (3.3) we continue with
the surroundings of the real s(J(j)) in (4.1). The curvature Rg of V(J(j))
as introduced in (4.1) is given by

R§(X,Y)Z = QUGHX"T,Y"7)(2) (5.1)

where X,Y,Z € I'TM and where the upper index hor means the horizontal
lift. Clearly Rg is not the curvature of the metric m(j). -

Now let us perform djrq(J(j)): TM — IR" as done in sec.4. To understand
the curvature Q(J(j)) in view of (4.4) we regard it as a IR-valued two-form
(via the canonical isomorphisms of so(2) to IR) and call it QL(J(G)) if it
operates in the sense of (4.1) and (5.1). Clearly QL(T(G)) = QJ(J)) in case
of I = TM. Next we write

QH(J(7) = v(J(5)) - #()
with ¥(J(j)) € C=°(M, R). Since (due to dim M = 2)

QRzem(.j) = 2;—]:("771_—)/1(])
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(cf. [D]) with A(j) the trace of the Ricci tensor Ric(j) of m(j), we deduce

/\(J) (J)

Q) = < p(J(7)) - u(d) -

Since

BT Wiem(s) = 2D @ (T(5)

we find due to dim M = 2 again (cf. (4.2))

W3- Ricti) = & - TG - m(G) = 52 - palT5))

Taking traces with respect to the metric m(j) on both sides and taking in
account that the scalar curvature of m(j) varies smoothly with j € E(M,R™)

yields (cf. (4.3))

(TG) = = -trra@G)  and  ra(T() = 5 (wra(T())-id (52

(which is obvious if A(j) is a nowhere vanishing function). This shows

QTG = 5= teraT) uG) (5.3)

| Let [B] denote the cohomology class of the closed form . Since a-[Q] = k-1 €
Z for some a € IR we conclude

0 (TGN = &= e pa TN - uG) = kb BB (5
with b € R and V(j) := [ p(j) for any j € E(M,R"). In turn (5.4) yields
[ wpa(T)) ut) = 4k > azo. (5.5)

(5.5) shows that tr pa(J( 7)) does not vanish in general.

Hence the exact part fo(J(j)) in (4.4) is the exact part of Jtrpa(j) - dj in
this example. Even though rq(J(j)) is not trivial the real nurqber s(J(5)),
depending on the stress form, still may vanish.

Next we will produce a kind of stress form by starting from the deformation
free-energy density (cf. [LL], [StSt] and [deG]). The deformation free-energy
density depends on a director field, that is on a vertical field n on IL. This
field restricted to the unit sphere in the fibre IL , of IL with ¢ € M maps
into IL ;. Now we suppose that n(7(j)) := dJ(j)n is a unit normal field
along J( ). Hence m(J(]))(n n) = 1. The R™ x IR "-valued one-form yields
a Weingarten map W(J(j)), a strong bundle endomorphism of TIL satisfying

dIGWITGNE = Ve(T())n  VEETTL .

We assume in our theoretical example that the (smooth) deformation free-

energy density f; depends at J(;) on W(J(])) only. We expand f; at J(j) up
to second order and follow the argument in [deG] to avoid linear terms. For

simplicity we let f; be of the form
f47(j)) = K-t W(J(5))
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with K a positive constant (a special case of the deformation free-energy
density defined in [StSt] or [deG]) and the deformation free-energy f;,: hence
is '

for(T(G)) = K- /E e W(ITG))? u(TG))

_ K-/ V(T (G)n e V(I(G))mpu(T(H)) -
E

Here VE (J(j)) denotes the Riemannian volume of [E with respect to
m(J(j)). Differentiating in L(L ,R™ x IR™) the map ft,¢ at J(j) with respect
to L we find

Ao TG)L) = -2 K - /E TG W(TG)) ¢ dL u(T ()

+2- K- /E V(TG e VTGN 5t 5y dmTOND) uTG))

= K- /E (=2-dTG)YW(T(G)) +2- (x W(I(G)?) - dJ(5)) & dL p(J(5))-

 Setting
A(T(j)) =2+ K -dT(5)(tr W(T(5)*) - id = W(J(5))°)

yields

A(TGND) = [ ATOLUTG) = [ (FT6) TG0 TG

FE

for each J(j) € ind(IE, R™ x S™!). The exact part of a(J(5)), a vector field

along J(7)) with values in IR™ x IR" characterizes the medium at hand.

Clearly df;,; is not the virtual work in general. However if L is an isothermal
- distortion df;o(J(5))(L) is a virtual work (cf. [LL}).

Finally the real s(J(j)) in theorem 4.1 is due to (4.4), (5.2) and (5.4) given

by '

TG - /E (trra(T(G))) 1(TG)
~ 4. / b WTG))? - tera(T7G)) 6(TG))
_ FE
_a. / tr (W(TG)) - tera(TG)) w(TG))
E

for any J(j)) € ind(E,F ). The restriction of W(J(5))? to the horizontal
distribution is denoted by (I/V(j(j))z)hor
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Appendix: The dot-product

Here we want to explain the dot-product, cf. sec.2. Using the notation of sec.1 let
M be a smooth compact oriented manifold of finite dimension and j € E(M,N)
a given embedding of M into N, where dim M < dim N.

We split an TN-valued 1-form v € A}(M,TN) covering j in the following way:

v(X) = (e(7,T§)oTj +Tjo A(y, TH))(X), X eT(TM),

where A(v,Tj) is a strong bundle morphism of TM and ¢(v,T;) a bundle mor-
phism of TN™|j(M), which is skew adjoint with respect to to the euclidean met-
ric and which maps TjTM into its normal bundle and vice versa. So c(v,T7)
is a infinitesimal version of the well known Gauss-map (cf. eq. [Bi3]). Let
Ag(M,TN) consists of all v. € A'(M,TN) covering embeddings in E(M, N)
Clearly Ap(M,TR™) = E(M,R") x AY(M,R") in case of N = R". :

Definition

For any j € E(M,N) and any a,8 € A'(M,TN) covering j the dot product
o: AY(M,TN) x AY(M,TN) — C*(M) is defined by

aefi=—1tr(c(a,Tj)o e(B,Tj)) + tr (A(a,Tj) o A*(B,T3)) .

Here A* denotes the adjoint of A with respect to m(j).

Consequently this product provides us with an inner product on AL(M,TN) de-
fined by

3()(a,8) = [ aeBuli)

which has the following property (cf. [Bil] or [Bi3)]):

(i), V1) = /Ma . Viu(G) = /M<V*a,l> u(5)

where V denotes the covariant derivative with respect to m(j).

The dot metric g(7) is hence equivalently described by the usual inner product on
T N-valued forms defined by

9(j) = /va\*n :

A denotes the wedge multiplication on TN-valued forms and * is essentially the
Hodge star relative to the Riemannian metric m(j).
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