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o. Introduction
In this paper we present a formalism which describes in a global fashion defor-
mations of continua with microstructures. In doing so we.have to be aware of the
fundamental difference between a local and a global approach.

We present our studies in the following realm of classical physics: We are given a
deformable, very thin skin in lR n equipped with a microstructure (called micro-
scopic structure in [MH]). Since we deal with skins we assurne that the underlying
points form a smooth compact manifold, without boundary for simplicity. The
microstructure assigns to each point of this manifold weIl defined microscopic ob-
jects such as little rods, directions or vectorspaces. We thus have a fibre bundle
over the skin with the objects as fibres. Sections are fields with values in these
bundles. Examples in elasticity theory e.g. are various types of Cosserat media.
Each of this types of assignments yields to each point a group of symmetries of
the respective collection of objects, assumed to be a manifold, a.e. we are given a
principal bundle with the symmetry group as structure group. The fibre bundle
mentioned is then associated in a natural way.
We emphasize thus merely on the symmetry of the microstructure and not so much
on the objects themselves ..This picture is the starting point of our treatment of
deformations of this sorts of media.
We equip lR n with a (trivial) principal bundle Pm n of which the structure group
G describes the maximal degree of freedom of the microscopic object at each point
of the lR n. G is assumed to be a Lie group. The microscopic object of the same
type sitting on the skin may have less degrees of freedom. Therefore we equip
the skin with a principal bundle Pskin with a closed subgroup H C G as structure
group. Moreover we assurne that Pskin is a reduction of the bundle Pm n restricted
to the skin.
We now allow the skin to deform. Thus both deform, Pskin and the associated fibre
bundle of objects. We handle the deformation of the fibre bundle of objects via the
deformation of Pskin. This requires to formulate a mathematical machinery which
allows us to describe the deformations of the principal bundle PM' In turn this
formalism yields adeformation mechanism for the associated bundle (and hence
of fields with values in that bundle). This is the content of the first section.

In the second section we recall the description of a medium without microstruc-
ture with the help of a first Piola-Kirchhoff stress tensor (cf.[MH], [Bi2]) (without
volume correction since this correction is implemented by our integration). We pay
special attention to the virtual work caused by a virtual (infinitesimal) deforma-
tion and hence on the part of the stress tensor which is irredundant for this work.
To what degree the virtual work, however, characterizes the medium itself will not
be discussed.
In section three we generalize this apparatus to media with microstructures and
point out in section four the influence of the curvature of Pskin to the physical
quality of the medium in a special situation.

1



Finally we show that some types of Cosserat media (cf. [MH]) are describable
within the frame work presented here, and conneet via a (theoretical) example our
setting with the theory of liquid crystals. Thereby we will be confronted with the
geometry of complex line bundles.

Acknowledgements: We are indebted to Prof. L. Biedenharn for the many dis-
cussions on symmetry in physics which are very influential to uso Moreover, we
are very thankful to Prof. P. Kramer and Prof. S. Abraham at the University of
Tübingen for valuable discussions and hints concerning liquid crystals.

1. Geometrical background
The aim of this seetion is to introduce the geometry underlying our treatment
of a deformable medium with microstrueture sketched in the introduction. The
standard reference for the material presented and the the proofs omitted here is
[A]. All maps, bundles, sections and other objeets will be taken as smooth, i.e. of
dass Coo. From the point of view of homotopy theory this gives essentially the
same result as the continuous maps would yield and we shall blur the distinetion
when dealing with homotopy computations. For short let us recall the - more or
less - classical approach (cf. [MH]) to media without microstrueture: a body M is
considered as a finite-dimensional oriented, smooth and compact manifold, without
boundary for simplicity, moving and deforming in an ambient euclidean space IR n
with a fixed scalar produet ( , ). The configuration space of the theory consists
of all embeddings E(M, IR n) := {j: M ~ IR n }. Furnished with Whitney's Coo_
~topology. this is.a.Fxe.chet"manifold (cf..[BSF}j. In the following let m(j) and /-l(j)
denote respectively the Riemannian metric on M given as the pullback of ( , ) on
IR n by j E E(M, IR n) and the induced volume form on M.
To describe a deformable medium with microstructure we assign - in analogy
to gauge theories of elementary partides - 'internal degrees of freedom' to each
point of the embedded body yielding PM and the ambient space yielding PJRn as
weIl. We assurne thereby that these degrees of freedom do not vary from point
to point: i.e. we are given a Lie group H refleeting the internal properties of
the body (e.g. H = SO(n) cf. sec.5) and a Lie group G for the ambient IR n
reflecting the external degrees of freedom. While PJRn := IR n x G is a trivial
principal bundle over IR n we require PM to be a not necessary trivial H -principal
bundle. We want to generalize this situation slightly: we replace the ambient IR n
by a finite-dimensional Riemannian manifold N and the 'enlarged ambient space'
IR n x G by a G-principal bundle PN over N. Let "frM and "frN denote the respective
projection from PM to M and from PN to N. Therefore we end up with the
following 'dictionary' for a deformable medium:

body
ambient space
configuration

without microstructure

embedded manifold M
Riemannian manifold N
embedding j: At - N

with microstructure

H-principal bundle PM.2!.M
G-principal bundle PN!!.!!...N

principal embedding J: PM -+ PN

To understand this we recall that a principal embedding J: PM ~ PN means a
fibre preserving embedding PM ~ P,V which is a bundle morphism and respects
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the group-actions with respect to a given rnonornorphisrn H ~ G of the Lie groups
(cf. [KN)).

A principal ernbedding J: PM -+ PN induces an ernbedding j: M -+ N between the
corresponding base rnanifolds. On the other hand, given an ernbedding j: M -+ N
of the bases, it isn't obvious at all that there exists a principal embedding J which
induces j. At least in the compact case - a.e. if M is a compact rnanifold without
boundary, and H, Gare compact Lie groups - we get a sufficient criterion: certain
obstructions ai E Hi(M, 'Tri-I(G/H)) have to vanish (cf. [AJ).

In the following let M, N be compact manifolds without boundary such that
dirn N ~ dirn M. For the application below we set N = IR n. The Lie groups
G and H with H c G being closed are assumed to be compact. Fur-
thermore we suppose to have a principal embedding J E Ej (PM, PN) of the
corresponding principal bundles, which induces an embedding j E E( M, N)
on the base manifold M. Obviously it is true that the pullback-bundle
j*PN := { (m, p) E M X PN I j(m) = 'TrN(p)} is again a G-principal bundle. By
definition (cf. [KNJ) a principal embedding of PM into PM over the identity is
called a reduction. We have the following at hand (cf. [AJ):

Lemma 1.1

Let PM and PN be glven principal bundles over M and N, respectively.
R(j* PN, PM) denotes the collection of all reductions of the G-principal bundle
j* PN to the H-principal bundle PM. The map Ij : RU* PN, PM) -+ Ej(PM, PN)
defined by Ij(r) = lj 0 r for a11 r E RU* PN, PM) is a bijection. The map
lj:j* PN -+ PN is the canonical map defined by the pullback.

The advantage of the previous Lemma is evident: the information about the princi-
pal ernbeddings E( PM, PN) is 'encoded' entierly in the reductions RU *PN, PM)
with j E E(M, N)! We shall start to analyse reductions more closely (cf. [KNJ):
To this end let Q~M any G-principal bundle and H ~ G a closed subgroup.
It is a standard fact that there is a bijective correspondence between H -principal
bundles P which are reduetions of the G-prineipal bundle Q and sections of the
assoeiated bundle E:= Q Xa G/H'with homogeneous fibre Ex = G/H. In par-
ticular, Q is redueible to a H-prineipal bundle iff E admits a seetion. The idea
is as folIows: Beeause there is an isomorphism E ~ Q/H the bundle morphism
fl: Q -+ Q/H over idM defines a H-prineipal bundle. Given a seetion u E rOO(E)
the pullbaek-bundle u*Q is a redueed bundle of Q.
Let ~(7' := { T E rOO(E) I T*Q ~ u*Q } c rOO(E) be the set of those seetions of E
whieh induee isomorphie H-prineipal bundles over M.

Remark

Homotopie seetions Tl, T2 E fOO(E) induee isomorphie bundles TtQ ~ T2*Q.Here 'ho-
motopic' is understood as 'fibre-homotopic', i.e. the homotopy h: At x [0, I) -+ E
is a section for every t E [0, 1]. It isn't true that an isomorphism a*Q '" ß*Q yields
a homotopy a ~ ß.

It is not hard to eheek that rOO(E) equipped with the COO-topology is a dif-
ferentiable Freehet-manifold which in general is not connected: the eonnected
eomponent of 'Y E rOO(E) is determined by the homotopy classes of sections
U'"( := { T E rOO(E) I T ~ 'Y }. By definition these are open in rOO(E) and we have
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~.,.= U-y U-y, where I runs through {T E rOO(E) I T*Q ~ a*Q}. Along the lines
the foIlowing is proved in [A]:

Theorem 1.2
The subset ~.,. ofrOO(E) together with the induced topology is a smooth Fnkhet-
manifold.

We have not mentioned yet one further structure which will be important for our
purpose, cf. sec.3: the group of gauge transformations. Given a G-principal bundle
Q we recaIl that the group of gauge transformations 9Q might be equivalently un-
derstood as the group of (principal) bundle automorphisms of Q covering the iden-
tity on the base manifold M or as sections of the associated group-bundle P Xc G,
here G acts on itself by conjugation (cf. e.g [BSFJ). Endowed with Whitney's Coo_
topology this is a (infinit dimensional) smooth Frechet-Lie group with Lie algebra
rOO(p XAd q;) - where q; denotes the Lie algebra of G and Ad: G - Aut(q;) is the
adjoint representation. The group 9Q acts transitively and Frechet-differentiable
from the left on ~.,. (cf. [AJ). This is a consequence of the so called n-lemma (cf. [PJ).
Consequently ~.,. is a homogeneous Frechet-manifold. However this action is not
free. Let I.,. be the isotropy group, a smooth Frechet Lie group. In summarizing
we state

Theorem 1.3
a) The Frechet-Lie group H.,..Q - the group of gauge transformations of a*Q -

is Frechet-diffeomorphicto the isotropy group I.,. and therefore a differentiable
Frechet-Lie subgroup of 9Q'

.b)Xhe quOtienL9Q/1tu.q endowed with -the induced structure isa differentiable
Frechet-manifold which is Frechet-diffeomorphic to ~.,..

c) The quotient map 9Q - 9Q/1t"'.Q deBnes a differentiable 1t.,..Q-Frechet-
principal bundle.

We now return to the study of the manifold of principal embeddings E( PM, PN).
There is a natural map TI: E( PM, PN) - E( M, N) which is in general not
surjective, cf. the above remark, and therefore in general we can't write
E(PM, PN) = UjEE(M, N) Ej(PM, PN)' Let £PM := {j E E(M, N) I j* PN '"
PM X HG} consists of embeddings such that the pullback of PN is isomorphie to
the G-principal bundle PM X HG. It is weIl known that those G-principal bundles
j* PN with j E £PM can be reduced to PM (cf. [KNJ). Reasoning analogously as in
the proof of the above Theorem 1.2 we get:

Theorem 1.4
The subset £PM c E(M, N) together with the induced structure is a differentiable
Frechet-manifold.

Now obviously it is true that E(PM,PN) = UjE£PM Ej(PM,PN) and that the

iIiduced map TI: E(PM,PN) - £PM is surjective. We conclude

Theorem 1.5
The map TI : E( PM, PN) - E PM elennes a differentiable Frechet-Bbre bundle whose
Bbres E j (PM, PN ), depending on t he connected components of EPM' are equal
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The idea of the proof is the following (cf. [AD: The local triviality is an easy
consequence of the local convexity of the Frechet manifold Ep. To show the second
part Ej(PM,PN) = Yj.PM/-U we use Lemma 1.1 and (b) in Theorem 1.3.

nPM

Remark
There is no essential difference working with Hilbert- resp. Banach-manifolds in-
stead of Frechet-manifolds (cf. [AD in the above context.

One important example of this kind of struetures concerns principal embeddings
of orthonormal frame bundles. At least in this case EPM= E(M, N) and TI = TI :
E(PM,PN) -+ E(M,N) defines a differentiable Frechet bundle (cf. [AD.
Another example are principal embeddings of trivial bundle~. Here for every j E
E(M, N) there can be construeted fibre wise a J(j) with the help of the inclusion
i :H '-+ G. Moreover the action of the group of gauge transformations yields all of
Ej(PM,PN), cf. Theorem 1.3. Consequently in this case TI = TI: E(PM,PN)--+
E( M, N) defines a differentiable Frechet bundle, too.

Let us make some remarks concerning induced embeddings of associated vector-
bundles. More precisely, let F be a finite-dimensional for simplicity compaet man-
ifold and E c F a submanifold. Let us assume furthermore that G operates on F
and that the operation of H c G restricts to an operation of H on E CF. Clearly
this assumption is void if H = G. In particular we have specified homomorphisms
'PH : H -+ Diff E and 'Pa : G -+ Diff F. We construct the associated bundks
JE := PM XH E over M and JF := PN Xc F over N. Every principal embedding
J E E(PM, PN) together with the inclusion map i :E '-+ F extends obviously to
an erribedding of the trivial bundles PM X E intü"PN-X F.This extension induces
embeddings J of the associated bundles JE into JF , which are well defined due to
the H -equivariance of J. In summarizing we state:

Lemma 1.6
Under the previous assumptions every J E E(PM,PN) induces an embedding
JE EH(JE, IF) of the associated bundles JE and JF.

Let L(JE, IF) := {F I F : JE -+ JF } denote the bundle morphisms of JE to JF.
As a consequence of the previous lemma we obtain

Corollary 1.7

The map E( PM, PN) ~ L( JE , JF) denned by J 1-+ J is injedive if 'Pa is injec-
tive, more precise1y .J : E( PM, PN) -+ .:J(E( PM, PN)) c L( JE , JF) is a smooth
diffeomorphism if G operates without nxpoints on E. The canonical projection
from .:J(E(PM, PN)) to EpM is surjective.

Remark
Let us replace the symbol.:J (E( PM, PN)) by I nd( JE, JF ). The latter space consists
of all embeddings of JE into JF illduced by the maps in E(PM, PN)'
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2. The characterization of a deformable medium without
microstruct ures
The medium, a skin, deformable in the manifold N with Riemannian metric (, )
is assumed to have the shape of a manifold; in fact this manifold is assumed to be
the image of a smooth embedding j öf ,an abstract manifold M.
We recall that M is supposed to be a smooth, compact, oriented and connected
manifold and for simplicity without boundary. The embedding j is called a config-
uration, the space of all configurations is denoted by E(M, N) and is assumed to
be endowed with the C=-topology. That is to say E(M, N) is a Frechet manifold.
The quality of a medium without microstructure is characterized by a smooth TN-
valued one-form aU), depending on j. This one-form is called the first Piola-
Kirchhoff stress tensor or simply a stress form of the medium. The virtual
work FU)(l) at the configuration j caused by any pointwise performed (infinites-
imal) distortion 1E Cj(M, TN) is described by

FU)(l) = 1M aU) • \ll j1U) vj E E( M, N), Vl ,

with \l denoting the covariant derivative of (,) on N. Here Cj(M,TN) denotes
the collection of all the smooth maps from M into TN for which 1rN 1= j, that is
Cj/M,TN) = TjE(M,N) for any jE E(M,N). For the dot product involved in-
the integrand we refer to the appendix. A reformulation of this virtual work reads
as

FU)(l) = 1M (\l*U) aU), l) j1U)
"<with \7~i) the 1ii~er"ßen"e opecatordetermined by the Levi~Civita conneetion VU)
of the metric mU) (cf. appendix). \l*aU) is called the (internal) force density
<'PU) at j. Solving

<'P(j) = \l*aU) = ~U)~U)

with ~U) being the Laplacian determined by mU) we find a smooth map

(2.1)

~U) E Cj(M, TN)

depending on j (cf. [Bi2]). Therefore the virtual work rewrites as

FU)(l) = 1M \l~U). dl j1U) Vj E E(M,N), Vl E Cj(M,TN) . (2.2)

For each j E E(M, IR n) the covariant derivative \l~U) of ~U), called the pseudo
exact part of aU), is the part irredundantwithrespect to the virtual work F. This
yields for each j a decomposition aU) = \l~U) + ßU) with ßU) := aU) - \l~U),
orthogonal (with respect to the dot metric (cf. appendix)) to \l~U). For all this
we refer to [Bi2] and [Bi3].

In wh at follows we characterize the global properties of the medium only up to its
influence to the virtual work; i.e. we take F as the characteristic ingredient.
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given by

3. A general frame-work for deformable media with or
without microstructure
In this section we develop the formalism with which we treat media with or without
microstructures. To this end let Fand E c F be compact, smooth, oriented and
connected manifolds. E and F are the collections of microscopic objects on IR n and
on M, respectively. To generalize the virtual work introduced in the section above,
we introduce ametrie (, )F on F. The manifold IR n x F carries the product metric,
a.e. ametrie ( , ) on all of IR n x F given as follows: let pr IR n : IR n X F -4 IR n and
prF : IR n X F -4 F denote the projections onto the first and the second factor,
respectively. For any v, W E T(z,f)(IR n x F) we set

(v,w):= (TprIRnv,TprIRnW) + (TprFv,TprFW)r .

Moreover, let G and H c G be the respec~ive isometry groups of Fand E. Their
respective Lie algebras are g and h. If the microscopic objects on M and IR n
would form a vector space, say E' and F', respectively, with E' c F', then E and
F could be unit spheres with respect to a fixed scalar product in F'.
The group G reflects the maximal degree of freedom of the given type of micro-
scopic objects on IR n, while as H on the other hand describes the degree offreedom
of the microscopic object on M. If dimF = 0 then we have no microstructure at
hand and we are back in the realm of sec.2.
If we think of the body to have attached at each point the manifold E of micro-
scopic object we have a fibre bundle over the body. If this body deforms, then the
whole fibre bundle deforms. This deformation of the fibre bundle can be handled
by describing the deformation of a principal bundle with H as structure group

_,and. in turn ~describing-the deformationof the fihre bundle via the ..processof
association. This is the main reason why we put the concept of symmetry into
the foreground that much and why we have developed the geometrie apparatus in
sec.l on such an abstract level.

Fi'rst, we describe the deformation of principal bundles, that is we describe the
space of configurations of symmetry in a simple situation and relate them to em-
beddings of the associated bundle: With the groups Hand G we form the trivial
bundles M x Hand IR n x G. Any smooth map s :M ~ G can be referred to as a
configuration of symmetry. We re1ate this sort of configuration with the geometrie
configuration j E E(M, IR n) via the smooth principal embedding

J(j): M x H ~ IRn x G

J(j)(q,h) = (j(q),s(q)h)

for any q E M and any h E H. Thus J(j) subsurnes both the configuration of
symmetry and the geometrie configuration j. We refer therefore to J(j) as a con-
figuration of symmetry of our medium with microstructures. Vice versa any equiv-
ariailt smooth embedding J(j) : !v! x H -4 IR n x G over some j E E(M, IR n) can
be obtained via a smoothmap s : M ~ H given by s(q) = J(j)-l (j(q), J(j)l)
where 1 E G denotes the unit element and q varies in M. Each J(j) defines

] (j) : .\l x E -4 IRn x F ,
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a smooth embedding of the associated bundles by setting

J(j)(q,e) = (q,s(q)e)

for all q E M and all e E E.
Since in general principal bundles over M are not trivial, we extend our not ion of
a configuration of symmetry of a medium with microstructures as follows: Let PM
be an oriented principal bundle with H as its structure group and 7rM : PM ---+ M
as its projection. By a configuration of symmetry we mean a smooth principal
embedding

J : PM -----. IR n x G .

Clearly j(7rM(p)) = prIRn 0 J(p) for allp E PM defines j E E(M,IRn). This is
eq~ivalent to say that a configuration of symmetry in this general setting is a re-
duction of j*(M x G) (cf. sec.1). As shown in sec.1 the space of all configurations of
symmetry of our deformable medium with microstructures is the Frechet manifold
E(PM, IR n x G).
Let JE and lF be the l)undles associated to PM and IR n x G, respectively. The
typical fibres are respectively E and F. Clearly lF = IR n x F, while as JE needs not
to be trivial. Recall from sec.1 that I nd( JE , lF ) is the collection of all embeddings
of JE into lF induced by the principal embeddings in E(PM, IR n x G). For its
relation to E(M, IR n) we refer to sec.l.

By a stress form on I nd( JE , IR n x F) we mean a map

A : Ind(JE, IR n x F) -----. A1(JE, T(IR n x F)) ,

';-whereA(J(j))cavers J(j) for each J(j) -E ind(JE ,IF). Given a stress form A on
Ind(JE" IF) then any smooth map L : JE -----. T(IR n x F), covering J(j), regarded
as an infinitesimal deformation of J(j) yields the virtual work

F(J(j))(L):= JIE A(J(j)). 'VLJ.l(J(j))

= L ('V(J(j))* A( J(j)), L) J.l(J(j)) .
(3.1)

The force density 'V(J(j))* A(J(j)) depends on the particular configuration J(j)
and hence on the microstructures (if dirn F i= 0) possibly in a non-local way.
We could evaluate

JIE ('V( J(j))* A(J(j)), L) J.l(J(j))

by integrating over the fibres first and then over M. This yields a form on M. We
proceed in this way below in a somewhat other setting (cf. (3.6)).
Solving for any J(j) E Ind(JE , IR n x F) the equation

ß(J(j))* A(J(j)) = ß(J(j))1iF(J(j)) (3.2)

with the smooth solution 'H(J(j)) (covering J(j))) which is L2-perpendicular to
the kernel of ß(J(j)) immediately yields (cf. [Bi3]):
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Theorem 3.1
The stress form A of the deformable medium with microstructures determine the
same force densities as the map

does. In fact we have

F(J(j))(L) = JIE "V'H(J(j)). "VL jj(J(j))

for any J(j) E E(JE, IR n x F) and any L E C](j)(lE, T(IR n x F)).

(3.3)

The following theorem shows that we may have a more resolved description of our
medium if we define the stress form on PM, assumed to be oriented, rat her than
on its associated bundle.
Let JE and lF be the associated fibre bundles to the H - resp. G-principal bundles
PM, PN as in sec.1, X : PN X F -+ lF the defining quotient maps. Furthermore
let y E F a point in F which is the image of z E E under the inclusion map
i: E <.......+ F.

Theorem 3.2
a) Every TPN-valued l-form ß E A1(PM,TPN) on PM induces al-form ß E

Al (JE ,T IF) defined by

ß(X)(e) := TXy(ß(V)(p)) ,

where the map Xz : PM -+ JE is the quotient map X with fixed second argu-
ment,X:= TXz(V) a veetorin TlE and e E JEq an element ofthefibreof JE
above q E M.

b) The correspondence ß t---+ ß is many-to-one, more precisely all ß E
A1(PM,TPN) which can be transferred into the same ßo E A1(PM,TPN)
by pullback under the right action Rg : PM -+ PN induce the same ß E
A1(JE, TIF) with gE G.

Let Ak(PM, IR n x g) be the colleetion of all the H-equivariant smooth one-forms
on PM with values in IR n x g. By a stress form on E(PM, IR n x G) we mean a
map

Ap: E(PM,IRn x G) ~ Ak(PM,IRn x g)

for which Ap( J(j)) is H-equivariant for any J(j) E E(PM, IR n x G). We will touch
the special strueture of the domain of Ap as pointed out in theorem 1.5:

Let Wo be the conneetion from on PM inducing the Levi-Civita connection "V

on IR n x F. Using the horizontal distribution of Wo, any principal embedding
J(j) E E( PM, IR n x G) defines a horizontal distribution H PM on PM which in
turn defines a connection form w( J (j)) on PM. Let us denote the vertical bundle
on PM by VPM. Restrieting Ap(J(j)) to VPM and HPM yields respeetively the
H-equivariant forms Ap(J(j)) and A~(J(j)). We refer' to Ap and A~ as the
vertical resp. horizontal parts of .4.1'. This immediately yields
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Lemma 3.3
Let pr JRn and pr g denote the canonical projection from IR n x g onto IR n and g,
respectively, then A~n := prJRn 0 A~ defines a one-form a(A~(J(j))) : TM -+

IR n as follows
a(J(j))X(7i"(p)) := (p, A~n(J(j))XH(p)]

for all XE rTM and any pE PM.

(3.5)

Unless A~ is 9G-invariant, a(J(j)) depends on J(j) and not only on j. Hence
a(J(j)) reflects the internal H-symmetry. If A~ is 9G-invariant, then a(J(j))
depends on j only and thus neglects the microscopic structures.

To formulate the virtual work of Ap we assurne the existence of a right invariant
metric (, )r on G and if preferred we may require that the metric (, )F on F
restricted to any orbit of G is determined by (, )r. Lifting (, ), the metric on IR n
(with the help of wo) onto IR n x G, yields together with ( , )r a metric ( , ) on
all of IR n x G given as follows: For any v,w E T(z,g)(IR n x G) let

JRn JRn(v, w) := (T7i" v, T7i" w) + (wov, WOw)r .

Pulling back (, ) by J(j) yields the metric m( J(j)) on PM' Let j.l( J (j)) be the
Riemannian volume associated with m( J(j)) and the orientation. Given a stress
form Ap(J(j)) on PM then any H-equivariant smooth map L : PM ----+ IRn x g
being an infinitesimal deformation of J(j) yields the virtual work

Fp(J(j))(L) = iM dAp(J(j)) e dLj.l(J(j))

= ( (V(J(j))* Ap(J(j)),L) j.l(J(j))JPM
(3.4)

where V( J(j)) denotes the Levi-Civita connection on PM determined by m( J(j)).
The following is an immediate consequence from the definition of the virtual work.

Lemma 3.4
For each J(j) E E(PM, IR n x g) and each l E COO(M, IR n) the virtual work caused
by l 0 7i" is

( Ap(J(j))ed(lo7i")j.l(J(j))JPMJ A~(J)ed(lo7i")j.l(j)

11(iM V( J(j))* A~ n (J(j)), l) j.l(j)

(3.6)

where f denotes the fibre integral over PM.

Let us continue with our general studies. Solving the equations

~(J(j))*Ap(.l(j)) = ~(J(j))Hp( J(j))

and
~(j)*n(.J(j)) = ~(j)qp(J(j))

(3.7)

(3.8)

10



--l

for any J(j) E E(PM, M x G) with solutions 'Hp( J(j)) and t,p( J(j)) being £2-
perpendicular to IR n X g resp. IR n immediately yields

Theorem 3.5
The properties of the deformable medium with internal symmetries characterized
by the stress forms Ap and a(AH) determine the same force densities as the H-
equivariant maps

and

do.

4. Influence of the curvature of PM to the virtual work in
a special situation
Let A be a stress form on Ind(JE , IF). Thus for any J(j) E Ind(JE, IF) the
map A( J (j)) : T JE -+ T( IR n x F) is a bundle homomorphism covering J (j). Let
pr IRn : IR n x F be the projection onto the first factor IR n. Then

TprIRn 0 A(J(j)): TJE -t TIRn = IRn x IRn

yields a one-form AIR n(J(j)) with values in IRn: Let pr2 : IRn x IRn -+ IRn be
the projection onto the second factor. The one-form mentioned is defined by

AIR n(J(j)) := pr2 0 Tpr IRn 0 A(J(j)) : T JE -t IR n .

Similarly let pr F : IR n x F -+ F be the projection onto the second factor F. Then

AF( J(j)) := Tpr F 0 A(J(j)) vJ(j) E Ind(JE , IF) .

Thus ifwe write T(IRn x F) = IRn x IRn x TF we find

n(J(j)) := dw(](j))w(J(j)) ,

where dw(](j)) is the covariant exterior differential determined by w(J(j)).

We will study the influence of n(J(j)) as far as it is reflected in a bundle map
pn(J(j)) ofTM caused by Rl.(J(j)), both to be defined below. The map n(J(j))
may naturally be identified with a h-valued two-form on M. Rfi defined by

In this section we show that given any stress form A on I nd( JE , IF) an influence
of the curvature n(J(j)) of w(J(j)) is detectable in the form AIRn and hence in
its exact part d'HIRn(J(j)) : TM -t IRn for any J(j) E E(PM,IRn x F). Here
w(J(j)) is the connection determined in such a way that its horizontal distribution
on IF is mapped to the one determined by wo. Recall that Wo is the connection
form yielding the Levi-Civita connection on F.
To this end weuse G c SO(n) and H c SO(dimM). The curvature n(J(j)) of
w( J (j)) is defined by

(4.1 )

11



for all uq, vq, wq E r(T M) and for all q E M where the skew transformation
f?(J(j)) in (4.1) is supposed to operate for any q E M on TqM as the elements
of so( dirn M) do. Thus it operates analogously as f?(j)Riem does, the two-form
determining the eurvature of the Riemannian metrie on M. The form R-1.(J(j))
yields the lR-valued two-tensor (cf. example (ii) in see.5).

pn( J(j))(Y, Z) := tr x R~(J(j))(X, Y)Z VY, Z E r(TM) . (4.2)

Therefore we find a bundle map rn(J(j)) :TM ~ TM over id sueh that

m(j)(rn(J(j))X, Y) = pn(J(j))(X,Y) X,Y E r(TM) . (4.3)

Following the method presented in the equation (2.2) djrn(J(j)) determines in
turn a smooth ~n(J(j)) :M ~ lR n, the exaet part of djrn(J(j)).

Taking the L2-eomponent with respect to the dot metrie of AIRn(J(j)) along
djPn(J(j)) 0 1rJE = (1rJE)*djPn(J(j)) with 1rJE : JE ~ M the projection, yields a
real number s(J(j)) sueh that

AIR n (J(j)) = s(J(j)) . djPn( J(j)) 0 T1rJE + rest (4.4 )

for all J(j) E Ind(JE , lR n x F). Sinee the virtual work eaused by A splits additively
into the virtual work. eaused by AIR n and AF, we thus have:

Theorem 4.1
The curvature of the connection as far as it is reflected in Pn (J(j)) influences
A( J(j)) and the virtual work F through tbe real s(J(j)) for eacb J(j) E
E(PM,PJRn).

This shows that distorting the geometrie setting of mierostruetures may eause
virtual work (cf. see.5 (ii)).

Remark
If H = SO(dimM) and JE the unit sphere bundle of TM then pn(J(j)) is the
Rieci tensor Ric(j) of the metrie m(j) on M (cf. [Bi2]).

5. Simple Examples
(i) In [MH] we find the deseription of eonfigurations of Cosserat media in lR 3:

The manifold F is either lR 3, the unit sphere S2 or the real projective spaee
lR p3. We set E := {e}, that is a zero dimensional submanifold of F. As a
eonfiguration we eonsider a bundle map

AI x {e} ~ lR3 X F

being an embedding over an ernbedding j E E(M, lR 3). Thus the diagram

J
--t

Mx{e}
pT! 1

.H

~ lRn x F
FT

2

lR3
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commutes. Our sorts of configurations in this context are configurations in
the sense of [MH] as easily seen.

(ii) The next kind of (a rather theoretical) example is inspired by the description
of lipid in water studied in the book [deG]. We idealize the situation in the
following way: Let dirn M = 2. At each point q E M there is a disc attached.
vVemake this picture more precise: Let IR 2 C IR n. We consider F := {x E
IR n I "xii = 1} == sn-l and E := {x E IR 2 I Ilxll == 1} = SI. Thus E C F
is dosed and F is compact. The group G is SO( n) and H is chosen to be
SO(2). If we let PM be the frame bundle of TM, an SO(2)-principal bundle,
then JE is a subbundle of TM, in fact it is the unit sphere bundle of TM. If
we let, however, PM be the orthogonal frame bundle of a plane bundle 1£ (a
complex line bundle) equipped with a bundle metric then dearly this bundle
may differ from TM. The bundle JE is the unit sphere bundle of 1£. Given
J(j) E ind(JE, IR n X sn-I) over j E E(M, IR n) we pull back the product
metric (, ) on IR n X sn-l (each factor carries the metric given by the fixed
scalar product on IR n). This yields m(J(j)).
The free-energy (cf. [deG]) in our situation certainly depends on a configura-
tion J(j) E ind(JE , IR n X sn-I) of the line bundle 1£. We extend J(j) in the
obvious way to a bundle embedding of 1£ into IR n x IR n. This extension is
denoted by J(j), too. The metric on 1£ determined by the embedding J(j)
of 1£ into IR n x IR n is also denoted m(J(j)).
Our first goal is to describe the various types of the bundle 1£. To this end
we need to study the curvature given by the metric m(J(j)), a characteristic
ingredient of 1£ (cf. [K] or [Sn]). The Levi-Civita connection '\l(J(j)) on 1£
of m(J(j)) is determined by a connection form w(J(j)) on PM of which its
curvature n( J(j)) is a horizontal and SO(2)-equivariant two-form on PM
with values in 50(2). n( J(j)) defines a cohomology dass in H2(M, IR) """IR
which can be identified with an integral cohomology dass and vice versa each
integral dass defines a complex line bundle by a theorem of Weil (cf.[Sn] or
[Ko]). (It is the same kind of dass Professor Doebner uses in his description
of quantization.) This dass has to be the same for all J(j) in a connected
component of ind(JE, IF).
Before we are going to specify a stress form (cf. (3.1) to (3.3) we continue with
the surroundings of the real s(J(j)) in (4.1). The curvature Rfi of '\l(J(j))
as introduced in (4.1) is given by

R~(X, Y)Z = n(J(j))(Xhor, yhor)(Z) (5.1)

where X, Y, Z E rT M and where the upper index hor means the horizontal
lift. Clearly Rfi is not the curvature of the metric m(j).
Now let us perform djrn(J(j)) : TM ~ IRn as done in sec.4. To understand
the curvature n( J(j)) in view of (4.4) we regard it as a IR-valued two-form
(via the canonical isomorphisms of 50(2) to IR) and call it n..L(J(j)) if it
operates in the sense of (4.1) and (5.1). Clearly n..L(J(j))= n(J(j)) in case
of 1£ = TM. Next we write

n..L(J(j))= 1jJ(J(j)) . p,(j)

with 1jJ(J(j)) E COO(M, IR). Since (due to di~ M = 2)

nRlem(j) = ,\~~).p,(j)
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(cf.(D]) with A(j) the traee of the Rieci tensor Ric(j) of m(j), we deduee

A(j) . n(J(j))
471"

>'(j) -
471" .lj;( J(j)) . /L(j) .

Sinee
./'(J( ')) n ( ') >'(j) -l - ,'fI } . HRiem} = 471" • n (J(}))

we find due to dirn M = 2 again (cf. (4.2))

lj;(J(j)). Ric(j) = -21.lj;. (J(j))>'(j). m(j) = >'(j) . pn(J(j)) .
471"

Taking traees with respeet to the metrie m(j) on both sides and taking in
aeeount that the sealar eurvature of m(j) varies smoothly with j E E(M, IR n)
yields (cf. (4.3))

lj;(J(j)) = 4~ .trrn(J(j)) and rn(J(j)) = ~.(trrn(J(j))).id (5.2)

(whieh is obvious if >'(j) is a nowhere vanishing funetion). This shows

n-l(J(j)) = ~. tr rn( J(j)) . /L(j) .
471"

(5.3)

Let [ß] denote the eohomology class of the closed form ß. Sinee a. [n] = k. 1 E
~ for some a E IR we eonclude

(5.5)a 1= o.

a. [n-l( J(j))] = 4: . rtr pn(J(j)) . /L(j)] = k . b .. [ ~~~~] (5.4)

with bE IR and V(j) := J /L(j) for any j E E(M, IR n). In turn (5.4) yields

[ tr pn(J(j)) /L(j) = 471" • k . ~1M a

(5.5) shows that tr pn(J(j)) does not vanish in general.
Henee the exact part ~n(J(j)) in (4.4) is the exaet part of !tr pn(j) . dj in
this example. Even though rn(J(j)) is not trivial the real number s(J(j)),
depending on the stress form, still may vanish.
Next we will produee a kind of stress form by starting from the deformation
free-energy density (cf. [LL]' [StSt] and [deG]). The deformation free-energy
density depends on a direetor field, that is on a vertieal field n on lL. This
field restrieted to the unit sphere in the fibre lL q of lL with q E M maps
into lL q' Now we suppose that n(J(j)) := dJ(j)n is a unit normal field
along J(j). Henee m(J(j))(n,n) = 1. The IRn x IRn-valued one-form yields
a Weingarten map W (J (j) ), astrang bundle endomorphism of T lL satisfying

dJ(j)W(J(j))~ = V7e(J(j))n ve E rTlL .

We assurne in our theoretical example that the (smooth) deformation free-
energy density fd depends at ](j) on W(J(j)) only. We expand fd at J(j) up
to seeond order and follow the argument in [deG] to avoid linear terms. For
simplieity we let fd be of the form

14



ftot(J(j)) = K. JIE tr W(J(j)? J.l(J(j))

. = K. JIE V(J(j))n. V(J(j))n J.l(J(j)) .

Here VIE (J(j)) denotes the Riemannian volume of JE with respect to
m( J (j) ). Differentiating in L( lL , IR n x IR n) the map ftot at J (j) with respeet
to L we find

with K a positive constant (a special case of the deformation free-energy
density defined in [StStJ or [deG]) and the deformation free-energy ftot hence
lS

cllftot(J(j))(L) = -2. K . JIE dJ(j) W(J(j))2 • dL J.l(J(j))

+ 2. K. JIE V(J(j))n. V(J(j))n. ~tr m(J(j))cllm(J(j))(L) J.l(J(j))

= K. JIE (-2. dJ(j) W(J(j))2 + 2. (tr W(J(j))2) . dJ(j)) • dL J.l(J(j)).

/ Setting

A(J(j)) := 2. K . dJ(j)(tr W(J(j)2) . id - W(J(j))2)

yields

cllftot(J(j))(L) = JIE A(J(j)).dLJ.l(J(j)) = JIE (V(J(j))*o:(J(j)),L) J.l(J(j))

s(J(j)). JIE (trrn(J(j)))2 J.l(J(j))

= 4. JIE trW(J(j))2. trrn(J(j))J.l(J(j))

- 2 . JIE tr (W(J(j))2) hor . tr rn( J(j)) J.l(J(j))

for any J(j)) E ind(JE, IF). The restrietion of W( J(j)? to the horizontal
distribution is denoted by (lV(J(j)?)hor.

for each J(j) E ind(JE , IR n X sn-I). The exact part of 0:( J(j)), a vector field
along J(j)) with values in IR n x IR n characterizes the medium at hand.
Clearly cllftot is not the virtual work in general. However if L is an isothermal
distortion cllftot( J(j))( L) is a virtual work (cf. [LL]).
Finally the real s(J(j)) in theorem 4.1 is due to (4.4), (5.2) and (5.4) given
by
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Appendix: The dot-product
Here we want to explain the dot-produet, cf. sec.2. Using the notation of sec.! let
M be a smooth compaet oriented manifold of finite dimension and j E E(M, N)
a given embedding of M into N, where dimM::; dimN.
We split an TN~valued I-form I E Al(M, TN) covering j in the following way:

I(X) = (e(r, Tj) 0 Tj + Tj 0 A(r, Tj))(X) , XEr(TM),

where A( I' T j) is a strong bundle morphism of TM and e(I, T j) a bundle mor-
phism of TNnlj(M), which is skew adjoint with respeet to to the euclidean met-
ric and which maps TjTM into its normal bundle and vice versa. So e(r, Tj)
is a infinitesimal version of the weIl known Gauss-map (cf. eq. [Bi3]). Let
AE(M,TN) consists of all i E A1(M,TN) covering embeddings in E(M,N).
Clearly AE(M,TlRn) = E(M,lRn) x A1(M,lRn) in case of N = lRn.
Definition.
For any j E E(A1, N) and any 0:, ß E Al (1vf, T N) eovering j the dot product
• : A1(M, TN) x A1(M, TN) -t COO(M) is denned by

0:. ß := -~tr (e(o:, Tj) 0 e(ß, Tj)) + tr (A(o:, Tj) 0 A*(ß, Tj)) .

Here A* denotes the adjoint oEA with respect to m(j).

q](j)( 0:, ß) :=JM 0: • ß j.L(j)

which has the following property (cf. [Bil] or [Bi3]):

q](j)(o:, 'VI) = JM 0:. 'VI j.L(j) = JM ('V*o:, 1) j.L(j)

Consequently this produet provides us with an inner product on Ak(M, TN) de-
fined by

where 'V denotes the covariant derivative with respect to m(j).

The dot metric q](j) is hence equivalently described by the usual inner produet on
TN -valued forms defined by

1\ denotes the wedge multiplication on TN-valued forms and * is essentially the
Hodge star relative to the Riemannian metric m(j).
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