# On the Chebyshev Norm of Polynomial B-Splines

Günter Meinardus and Guido Walz

Nr. 146

Dezember 1992

Professor Dr. Günter Meinardus Priv.-Doz. Dr. Guido Walz Fakultät für Mathematik und Informatik Universität Mannheim W-6800 Mannheim 1 Germany

# On the Chebyshev Norm of Polynomial B-Splines

Günter Meinardus and Guido Walz

Abstract. Polynomial B-splines of given order m and with knots of arbitrary multiplicity are investigated with respect to their Chebyshev norm. We present a complete characterization of those B-splines with maximal and with minimal norm, compute these norms explicitly and study their behavior as m tends to infinity.

Furthermore, the norm of the B-spline corresponding to the equidistant distribution of knots is studied.

Finally, we analyse those types of knot distributions, for which the norms of the corresponding B-splines converge to zero as  $m \to \infty$ .

Proposed Running Head: Chebyshev Norm of B-Splines.

Mailing Adress:
PD Dr. Guido Walz
Fakultät für Mathematik und Informatik
Universität Mannheim
W-6800 Mannheim 1

Germany

#### 1. Introduction

Let be  $m\in \mathbb{N}$ ,  $m\geq 1$ . Furthermore, for  $k\in \mathbb{N}$ ,  $k\leq m$ , let us be given a set of knots  $x_{\varrho}\in \mathbb{R}$ ,  $\varrho=0,1,\ldots,k$ , satisfying

$$x_0 < x_1 < \cdots < x_k.$$

To each knot  $x_{\varrho}$  there is associated a natural number  $\nu_{\varrho}$  , called the *multiplicity* of  $x_{\varrho}$  such that

$$\nu_0 + \nu_1 + \cdots + \nu_k = m+1$$
.

We call a real function f a (polynomial) B-spline of order m, belonging to the set of knots  $\{x_{\varrho}\}$  with multiplicities  $\nu_{\varrho}$ ,  $\varrho=0,1,\ldots,k$ , if it possesses the following properties:

1. It is

$$f(x) = 0$$
 for all  $x < x_0$  and for all  $x > x_k$ ,

- 2. The restriction of f to the subinterval  $[x_{\ell}, x_{\ell+1})$ ,  $\ell = 0, \ldots, k-2$ , and to  $[x_{k-1}, x_k]$  belongs to the space  $\Pi_{m-1}$  of polynomials of degree at most m-1.
- 3. It is

$$f \in C^{m-1-\nu_{\varrho}}(U(x_{\varrho}))$$

for a suitable neighborhood  $\,U(x_{\,\varrho})\,$  of the knot  $\,x_{\,\varrho}\,,\,\, \varrho=0,1,\ldots,k\,,$ 

4. It is

$$\int_{-\infty}^{+\infty} f(x) = \frac{1}{m}.$$

Of course, if  $\nu_{\varrho}=m$  for some  $\varrho$ , property #3. only means that f need not even be continuous in  $x_{\varrho}$ ; in all other cases we deal with a continuous function which implies that we could write down the second property for closed subintervals as well.

It is well-known (cf. [3,5,11]) that there exists one and only one such function f. We will denote this B-spline by  $B_m$  or, in greater detail, by

$$B_m\left(x\,\Big|\, egin{array}{ccccc} x_0 & x_1 & \cdots & \cdots & x_k \\ \nu_0 & \nu_1 & \cdots & \cdots & \nu_k \end{array}
ight) \;.$$

Furthermore it is not difficult to prove (cf. [3,5,11]) that

$$B_m\left(x \left| egin{array}{ccc} x_0 & x_1 & \cdots & x_k \ 
u_0 & 
u_1 & \cdots & 
u_k \end{array} 
ight) > 0 & ext{for } x \in (x_0, x_k) \ .$$

Hence the supremum of  $B_m$  on  $[x_0,x_k]$  is identical with the value of the Chebyshev norm

$$||B_m|| := \sup\{|B_m(x)| \mid x \in I\!\!R\}$$
.

We now consider, for fixed order m, the set  $\mathcal{B}_m$  of all B-splines of order m with the normalization

$$x_0 = 0$$
 and  $x_k = 1$ .

In this paper we are interested in the numbers

$$\lambda_m := \sup \left\{ \|B_m\| \mid B_m \in \mathcal{B}_m \right\}$$

and

$$\mu_m := \inf \left\{ \|B_m\| \mid B_m \in \mathcal{B}_m \right\}.$$

We call a B-spline  $B_m \in \mathcal{B}_m$  maximal, if its norm is equal to  $\lambda_m$ , and minimal, if it equals  $\mu_m$ . It will turn out that these numbers are really attained.

In section 4 we will compute these numbers explicitly and present all B-splines of  $\mathcal{B}_m$  with norm  $\lambda_m$  resp. with norm  $\mu_m$ . Likewise, in section 5 we will compute the norm of the B-spline with equidistant knots and study the behavior of all these norms as m tends to infinity. The final section 6 is devoted to the question, for which types of knot distributions the norms of the corresponding B-splines tend to zero at all, as  $m \to \infty$ .

Before that, in the next sections we give some results on B-splines with a small number of knots, and a contour integral representation for B-splines and their derivatives, which will be our essential tool in proving the results.

## 2. B-splines for a small number of knots

In this section we derive, for all  $m \in \mathbb{N}$  and k = 1 or 2, explicit representations for the corresponding B-splines as well as for their norms; these results will later turn out to be important.

**Lemma 1:** For  $m \in \mathbb{N}$  we have, with  $\nu_0 + \nu_1 = m + 1$ ,

$$B_{m}\left(x \left| \begin{array}{cc} 0 & 1 \\ \nu_{0} & \nu_{1} \end{array} \right) = \begin{cases} \binom{m-1}{\nu_{0}-1} x^{m-\nu_{0}} (1-x)^{m-\nu_{1}} & \text{for } 0 \leq x \leq 1 \\ 0 & \text{elsewhere.} \end{cases}$$
 (2.1)

Furthermore

$$\left\|B_{m}\left(\cdot \begin{vmatrix} 0 & 1 \\ \nu_{0} & \nu_{1} \end{pmatrix}\right)\right\| = \binom{m-1}{\nu_{0}-1} \frac{(m-\nu_{0})^{m-\nu_{0}}(m-\nu_{1})^{m-\nu_{1}}}{(m-1)^{m-1}}.$$
 (2.2)

We always adopt for some special cases the usual definition  $0^0 := 1$ .

**Proof.** The representation formula (2.1) is easily verified by checking its properties with respect to the definition of  $B_m$  (one could of course as well prove this formula by use of the B-spline recursion formula (see [2,3,11]), but this is not necessary here).

It remains to prove the validity of (2.2). For  $\nu_0=1$ ,  $\nu_1=m$ , the maximum value of  $B_m$  (which in this case just reduces to the monomial  $x^{m-1}$  in [0,1]) occurs at the point 1 and is equal to 1. The analogue is true in the case  $\nu_0=m$ ,  $\nu_1=1$ . For  $\nu_0>1$ ,  $\nu_1>1$ , however, the maximum value of  $B_m$  occurs in the open interval (0,1) at the point

$$\xi = \frac{m - \nu_0}{m - 1} ,$$

yieldig the value of the norm given in (2.2).

**Lemma 2:** Let  $\alpha_m$  denote the minimal norm of all B-splines from  $\mathcal{B}_m$  with no inner knots, i.e.

$$lpha_m := \min \left\{ \left\| B_m \left( \cdot \left| egin{array}{cc} 0 & 1 \ 
u_0 & 
u_1 \end{array} 
ight) 
ight\| \left| 
u_0 + 
u_1 = m + 1 
ight\}.$$

Then

$$\alpha_{m} = \begin{cases} \frac{1}{2^{m-1}} {m-1 \choose (m-1)/2} & \text{if } m \text{ is odd,} \\ \frac{1}{2^{m-1}} {m-1 \choose m/2} \frac{m^{m/2} (m-2)^{(m-2)/2}}{(m-1)^{m-1}} & \text{if } m \text{ is even.} \end{cases}$$
 (2.3)

Furthermore, for  $m \geq 2$  this sequence is strongly decreasing, i.e.

$$\alpha_m > \alpha_{m+1} \quad \text{for } m \in \mathbb{N}, m \geq 2.$$
 (2.4)

Proof. It follows directly from Lemma 1 that

$$\left\|B_1\left(\cdot \left| \begin{array}{cc} 0 & 1 \\ \nu_1 & \nu_2 \end{array}\right)\right\| \ = \ \left\|B_2\left(\cdot \left| \begin{array}{cc} 0 & 1 \\ \nu_1 & \nu_2 \end{array}\right)\right\| \ = \ 1$$

for all possible choices of  $\nu_1$  and  $\nu_2$  . Hence formulae (2.3) are true for m=1,2, so assume from now on  $m\geq 3$  .

Let  $\nu_0$  increase from 1 to the largest number less than or equal to (m-1)/2, and replace  $\nu_1$  in (2.2) always by  $m+1-\nu_0$ . We investigate the question for which values of  $\nu_0$  the expression

 $\Phi(
u_0) \;:=\; \left\|B_m\left(\,\cdot\,\left|egin{array}{cc} 0 & 1 \ _{
u_0 & m+1u_0} \end{array}
ight)
ight\|$ 

is minimal. Obviously  $\Phi(1)=1$ . For  $1<\nu_0\leq (m+1)/2$  we discuss the validity of the inequality

$$\Phi(\nu_0 + 1) < \Phi(\nu_0) . \tag{2.5}$$

Using the elementary expression given in (2.2), the inequality

$$\left(\frac{\nu_0}{\nu_0 - 1}\right)^{\nu_0 - 1} < \left(\frac{m - \nu_0}{m - \nu_0 - 1}\right)^{m - \nu_0 - 1} \tag{2.6}$$

is equivalent to (2.5). The function

$$g(t) \ := \ \left(rac{t}{t-1}
ight)^{t-1} \ , \ t \in I\!\! R, t \geq 2 \ ,$$

is strictly increasing with t. Hence the inequality (2.6) is valid if and only if

$$\nu_0 < m - \nu_0$$
, i.e.  $\nu_0 < m/2$ 

holds. It follows that the minimal value in question is attained for  $\nu_0 = \nu_1 = (m+1)/2$  if m is odd, i.e. by the norm of the B-spline

$$B_m\left(x \mid \begin{array}{cc} 0 & 1 \\ \frac{m+1}{2} & \frac{m+1}{2} \end{array}\right)$$
.

If m is even, then the minimal value is attained for  $\nu_0=m/2$ ,  $\nu_1=(m+2)/2$ , respectively, by means of symmetry, for  $\nu_0=(m+2)/2$ ,  $\nu_1=m/2$ , and no other cases, i.e. by the norms of the B-splines

$$B_m \left( x \left| egin{array}{cc} 0 & 1 \ rac{m}{2} & rac{m+2}{2} \end{array} 
ight) \quad ext{resp.} \quad B_m \left( x \left| egin{array}{cc} 0 & 1 \ rac{m+2}{2} & rac{m}{2} \end{array} 
ight) \ .$$

The formulae (2.3) now follow immediately.

We still have to prove the inequality (2.4). It is

$$\alpha_2 = 1 > \alpha_3 = \frac{1}{2} > \alpha_4 = \frac{4}{9}$$

For odd  $\,m$  , say  $\,m=2r+1\,$  with  $\,r\geq 1$  , we get from (2.3) at once

$$\alpha_m - \alpha_{m+1} = \frac{1}{2^{2r}} {2r \choose r} \left\{ 1 - \left( \frac{4r(r+1)}{4r(r+1)+1} \right)^r \right\} > 0.$$

For even m, say m = 2r + 2 with  $r \ge 1$ , we get

$$\alpha_m - \alpha_{m+1} \ = \ \frac{1}{2^{2r+2}} \left( \frac{2r+2}{r+1} \right) \ \left\{ \frac{2r+2}{2r+1} \left( \frac{4r(r+1)}{4r(r+1)+1} \right)^r - 1 \right\} \ > \ 0 \ ,$$

since the inequality

$$\frac{2r+2}{2r+1} \left( \frac{4r(r+1)}{4r(r+1)+1} \right)^r > \frac{2r+2}{2r+1} \left( 1 - \frac{r}{4r(r+1)+1} \right) = \frac{8r^3 + 14r^2 + 8r + 2}{8r^3 + 12r^2 + 6r + 1} > 1$$
 holds.

Lemma 3: For  $m \ge 2$  we have

$$B_m\Big(x\,\Big|\,egin{array}{ccc} 0 & x_1 & 1 \ 1 & m-1 & 1 \end{array}\Big) &=& \left\{egin{array}{ccc} \left(rac{x}{x_1}
ight)^m & for \ 0 \leq x < x_1, \ \left(rac{1-x}{1-x_1}
ight)^{m-1} & for \ x_1 \leq x \leq 1, \ 0 & elsewhere. \end{array}
ight.$$

Furthermore

$$\left\|B_m\left(\cdot \left|\begin{matrix} 0 & x_1 & 1 \\ 1 & m-1 & 1 \end{matrix}\right)\right\| = 1.$$

Proof. It is easy to check all properties of this specific B-spline.

# 3. Contour integral representations of B-splines and their partial derivatives

We will give now some results concerning the representation of the B-spline  $B_m$  and of its partial derivatives with respect to the knots in terms of a complex contour integral. These results will also be a major tool for the proof of our Theorem 2. For convenience, we first repeat the well-known contour integral representation of the B-spline itself:

**Lemma 4:** Let, for  $x \in \mathbb{R}$ ,  $C_x$  denote a simply closed and rectifiable curve in the complex plane, such that all the knots  $x_\varrho$ ,  $\varrho = 0, \ldots, k$ , with  $x < x_\varrho$  and no others lie in the interior of that curve.

Then, carrying out the integration in the positive sense, we have the representation

$$B_m\left(x \middle| \begin{array}{ccc} 0 & x_1 & \cdots & x_{k-1} & 1 \\ \nu_0 & \nu_1 & \cdots & \nu_{k-1} & \nu_k \end{array}\right) = \frac{1}{2\pi i} \int_{C_x} \frac{(z-x)^{m-1}}{\omega(z)} dz , \qquad (3.1)$$

where

$$\omega(z) := z^{\nu_0}(z-x_1)^{\nu_1} \cdots (z-x_{k-1})^{\nu_{k-1}}(z-1)^{\nu_k}. \tag{3.2}$$

*Proof.* This result was given in [8], see also [4].

In our subsequent considerations, representation (3.1) will mainly serve as a theoretical tool. However, it should be emphasized that this formula has also important practical implications, a fact which seems to have been underestimated until now, although (3.1) is known since twenty years. Therefore we would like to make a few remarks on this subject first:

Corollary: Let be  $x \in [x_{\varrho}, x_{\varrho-1})$  for some  $\varrho$  , and define for all  $\mu$ 

$$\omega_{\mu}(z) := (z - x_{\mu})^{-\nu_{\mu}} \cdot \omega(z)$$

with  $\omega$  from (3.2). Then the following representation holds:

$$B_{m}\left(x \middle| \begin{array}{ccc} 0 & x_{1} & \cdots & x_{k-1} & 1 \\ \nu_{0} & \nu_{1} & \cdots & \nu_{k-1} & \nu_{k} \end{array}\right) = \sum_{\mu=0}^{\varrho-1} \frac{(-1)^{m}}{(\nu_{\mu}-1)!} \cdot \frac{d^{\nu_{\mu}-1}}{dz^{\nu_{\mu}-1}} \left(\frac{(x-z)^{m-1}}{\omega_{\mu}(z)}\right)_{z=x_{\mu}}$$
(3.3)

Proof. According to the residue theorem, we obtain from (3.1)

$$B_m\left(x \middle| \begin{array}{ccc} 0 & x_1 & \cdots & x_{k-1} & 1 \\ \nu_0 & \nu_1 & \cdots & \nu_{k-1} & \nu_k \end{array}\right) = \sum_{\mu=\varrho}^k \operatorname{Res}_{z=x_\mu}\left(\frac{(z-x)^{m-1}}{\omega(z)}\right)$$
$$= -\sum_{\mu=0}^{\varrho-1} \operatorname{Res}_{z=x_\mu}\left(\frac{(z-x)^{m-1}}{\omega(z)}\right).$$

Since

$$\operatorname{Res}_{z=x_{\mu}}\left(\frac{(z-x)^{m-1}}{\omega(z)}\right) = \frac{1}{(\nu_{\mu}-1)!} \cdot \frac{d^{\nu_{\mu}-1}}{dz^{\nu_{\mu}-1}} \left(\frac{(z-x)^{m-1}}{\omega_{\mu}(z)}\right)_{z=x_{\mu}}$$

(see any textbook on complex analysis), the result follows.

If we carry out the differentiation in (3.3) explicitly, we see that our B-spline  $B_m$  is of the form

$$B_{m}\left(x \middle| \begin{array}{ccc} 0 & x_{1} & \cdots & x_{k-1} & 1 \\ \nu_{0} & \nu_{1} & \cdots & \nu_{k-1} & \nu_{k} \end{array}\right) = \sum_{\mu=0}^{k} \sum_{j=1}^{\nu_{\mu}} \beta_{\mu j} (x - x_{\mu})_{+}^{m-j}$$
(3.4)

with

$$\beta_{\mu\nu_{\mu}} \neq 0 \text{ for all } \mu$$
, (3.5)

which so far is a well-known result, see e.g. [11, Theorem 4.14]. But in contrast to the usual divided-difference approach, the calculation of the  $\beta'_{\mu,j}s$  via eqn. (3.3) is - for concrete cases - not very difficult to do. In addition, we have for all  $\mu$ 

$$\beta_{\mu\nu_{\mu}} = \binom{m-1}{\nu_{\mu}-1} \frac{(-1)^{m+\nu_{\mu}-1}}{\omega_{\mu}(x_{\mu})} , \qquad (3.6)$$

which sharpens assertion (3.5).

**Theorem 1:** Let be  $k \in \mathbb{N}$ ,  $k \geq 2$ . The multiplicaties  $\nu_{\varrho}$  of the knots  $x_{\varrho}$ ,  $\varrho = 1, 2, \ldots, k-1$  may all satisfy  $\nu_{\varrho} < m-1$ .

Then the B-spline

$$B_m\left(x \middle| egin{array}{cccc} 0 & x_1 & \cdots & x_{k-1} & 1 \\ 
u_0 & 
u_1 & \cdots & 
u_{k-1} & 
u_k \end{array}
ight)$$

possesses continuous partial derivatives with respect to x and to all the knots  $x_1, x_2, \ldots, x_{k-1}$  in the Cartesian product  $(0,1) \times D$ , where

$$D := \{x_1, x_2, \ldots, x_{k-1} \mid 0 < x_1 < \cdots < x_{k-1} < 1\}.$$

Furthermore we have the representations

$$\frac{\partial}{\partial x} B_m \left( x \middle| \begin{array}{ccc} 0 & x_1 & \cdots & x_{k-1} & 1 \\ \nu_0 & \nu_1 & \cdots & \nu_{k-1} & \nu_k \end{array} \right) = -\frac{m-1}{2\pi i} \int_{C_n} \frac{(z-x)^{m-2}}{\omega(z)} dz , \qquad (3.7)$$

and, for  $\varrho = 1, 2, \ldots, k-1$ ,

$$\frac{\partial}{\partial x_{\varrho}} B_{m} \left( x \, \middle| \, \begin{array}{ccc} 0 & x_{1} & \cdots & x_{k-1} & 1 \\ \nu_{0} & \nu_{1} & \cdots & \nu_{k-1} & \nu_{k} \end{array} \right) = \frac{\nu_{\varrho}}{2\pi i} \int_{C_{x}} \frac{(z-x)^{m-1}}{\omega(z)(z-x_{\varrho})} \, dz \, . \tag{3.8}$$

Remark. Formula (3.8) should be compared with Theorem 4.27 in [11].

Proof of Theorem 1. The differentiability with repect to x follows from the assumption  $\nu_r < m-1$ ,  $\varrho = 1, \ldots, k-1$ . Since  $C_x$  is rectifiable, formula (3.7) is easily derived.

The right hand side of (3.8) possesses a denominator, in which the multiplicity of each knot is still less than m. Hence this right hand side is continuous in the Cartesian product  $(0,1)\times D$ . It obviously represents the partial derivative of  $B_m$  with respect to the knot  $x_\varrho$ .

As an immediate consequence of Theorem 1, we can now prove that the partial derivative of  $B_m$  with respect to an inner knot  $x_{\varrho}$  can be written in terms of the usual derivative of an  $(m+1)^{th}$  order B-spline:

Corollary: Under the assumptions of Theorem 1, the following relation holds:

$$\frac{\partial}{\partial x_{\varrho}} B_{m} \left( x \middle| \begin{array}{cccc} 0 & x_{1} & \cdots & x_{k-1} & 1 \\ \overline{\nu}_{0} & \nu_{1} & \cdots & \nu_{k-1} & \nu_{k} \end{array} \right) = \\
= -\frac{\nu_{\varrho}}{m} \cdot \frac{\partial}{\partial x} B_{m+1} \left( x \middle| \begin{array}{cccc} 0 & x_{1} & \cdots & x_{\varrho} & \cdots & x_{k-1} & 1 \\ \nu_{0} & \nu_{1} & \cdots & \nu_{\varrho+1} & \cdots & \nu_{k-1} & \nu_{k} \end{array} \right)$$

*Proof.* This follows easily from equations (3.7) and (3.8).

### 4. B-splines with largest and smallest Chebyshev norm

In this section we want to compute explicitly the numbers  $\lambda_m$  and  $\mu_m$ , defined in the introduction. Let us first consider the elementary cases m=1,2,3, where the last one soon will turn out to be typical also for the general case.

For m=1 and m=2 it follows immediately from Lemma 1 resp. Lemma 3 that

$$\lambda_1 = \mu_1 = 1$$

and

$$\lambda_2 = \mu_2 = 1.$$

Also the case m=3 can still be treated in an elementary way. For  $0 < x_1 < x_2 < 1$  we verify

$$B_3\Big(x\,\Big|\,egin{array}{cccc} 0 & x_1 & x_2 & 1 \ 1 & 1 & 1 & 1 & 1 \end{array}\Big) \ = \ \left\{egin{array}{cccc} rac{x^2}{x_1x_2} & ext{for } 0 \leq x < x_1, \ & rac{-x^2(1+x_2-x_1)+2xx_2-x_1x_2}{(1-x_1)x_2(x_2-x_1)} & ext{for } x_1 \leq x < x_2, \ & rac{(1-x)^2}{(1-x_1)(1-x_2)} & ext{for } x_2 \leq x \leq 1, \ & 0 & ext{elsewhere.} \end{array}
ight.$$

The maximum value of this B-spline is located at the point

$$au := rac{x_2}{1 + x_2 - x_1} \; ;$$

and the norm turns out to be

$$\left\| B_3 \left( \cdot \left| egin{array}{ccc} 0 & x_1 & x_2 & 1 \\ 1 & 1 & 1 & 1 \end{array} \right) 
ight\| \ = \ rac{1}{1 + x_2 - x_1} \ .$$

Hence

$$\lambda_3 \geq 1$$
 and  $\mu_3 \leq 1/2$ .

The remaining cases of double and triple knots are easily analysed using Lemma 1 and Lemma 3. Here it is also possible to consider the limits for  $x_1 \to 0$  or  $x_2 \to 1$  or  $x_2 \to x_1$  etc. It turns out that  $\lambda_3 = 1$ , where this value of the norm is only attained by the functions

$$B_3\left(x\left|egin{array}{cc} 0&1\\1&3\end{array}
ight)\;,\quad B_3\left(x\left|egin{array}{cc} 0&1\\3&1\end{array}
ight)$$

and

$$B_3\Big(x\,\Big|\,egin{smallmatrix} 0 & x_1 & 1 \ 1 & 2 & 1 \ \end{pmatrix}$$
 with  $0 < x_1 < 1$  .

Analogously we find that  $\mu_3=1/2$ , where this value is attained only by the B-spline

$$B_3\Big(x\,\Big|\,egin{array}{cc} 0 & 1 \ 2 & 2 \ \end{array}\Big) \;=\; \left\{egin{array}{cc} 2x(1-x) & ext{for } 0 \leq x \leq 1 \ , \ 0 & ext{elsewhere.} \end{array}
ight.$$

We are now dealing with the case of an arbitrary order  $\,m\,.\,$ 

**Theorem 2:** Let m be any natural number. Then the following assertions are true:

1. It is

$$\lambda_m = 1$$

and

$$\mu_m = \alpha_m$$
,

where  $\alpha_m$  is given in Lemma 2.

2. The maximum value  $\lambda_m$  of the norm is attained by the B-splines

$$B_{m}\left(x \begin{vmatrix} 0 & 1 \\ 1 & m \end{pmatrix}\right), \quad B_{m}\left(x \begin{vmatrix} 0 & 1 \\ m & 1 \end{pmatrix}\right)$$
 (4.1)

and, if  $m \geq 2$ ,

$$B_{m}\left(x \mid \begin{array}{ccc} 0 & x_{1} & 1 \\ 1 & m-1 & 1 \end{array}\right) \quad with \quad 0 < x_{1} < 1 \; , \tag{4.2}$$

and by no others.

The minimum value  $\mu_m$  of the norm is attained by the B-spline

$$B_m\left(x \mid \begin{array}{cc} 0 & 1\\ \frac{m+1}{2} & \frac{m+1}{2} \end{array}\right) , \tag{4.3}$$

if m is odd, and by the two B-splines

$$B_m\left(x \mid \begin{array}{cc} 0 & 1 \\ \frac{m}{2} & \frac{m+2}{2} \end{array}\right) \ \ and \ \ \ B_m\left(x \mid \begin{array}{cc} 0 & 1 \\ \frac{m+2}{2} & \frac{m}{2} \end{array}\right) \ ,$$
 (4.4)

if m is even, and by no others.

We remark that the assertion  $\lambda_m = 1$  can also be derived easily by using a special case of the Marsden identity (cf. [9]).

**Proof** of Theorem 2. Obviously, we only have to prove the second assertion, since the first one then follows easily by means of Lemma 1 and Lemma 3.

We proceed by induction and remark that the cases m=1,2,3 have already been proved. Hence assume  $m\geq 4$ . Let be  $k\in \mathbb{N}$ ,  $k\geq 2$ , and consider any fixed B-spline

$$B_m\left(x \middle| \begin{array}{cccc} 0 & x_1 & \cdots & x_{k-1} & 1 \\ \nu_0 & \nu_1 & \cdots & \nu_{k-1} & \nu_k \end{array}\right).$$

We claim that under the assumptions of Theorem 1 the gradient vector

$$\operatorname{grad} B_{m} = \left\{ \frac{\partial B_{m}}{\partial x}, \frac{\partial B_{m}}{\partial x_{1}}, \dots, \frac{\partial B_{m}}{\partial x_{k-1}} \right\}$$
(4.5)

never vanishes on the Cartesian product  $(0,1)\times D$ . (Here, if k=2, we assume in addition  $\nu_1 < m-2$ , and treat the remaining case k=2,  $\nu_1=m-2$  separately.) This assertion says that all these B-splines are neither maximal nor minimal. In order to prove it we assume to the contrary that there is a point

$$p := (\tau, y_1, \dots, y_{k-1}) \in (0, 1) \times D$$

such that simultaneously

$$\left(rac{\partial B_m}{\partial x}
ight)_p = 0 \quad ext{and} \quad \left(rac{\partial B_m}{\partial x_arrho}
ight)_p = 0 \quad ext{for } arrho = 1, 2, \dots, k-1$$

hold. According to (3.7) and (3.8), the representations

$$\left(\frac{\partial B_m}{\partial x}\right)_n = -\frac{m-1}{2\pi i} \int_{C_n} \frac{(z-\tau)^{m-1}}{\omega(z)(z-\tau)} dz$$

and, for  $\varrho = 1, 2, ..., k - 1$ ,

$$\left(\frac{\partial B_m}{\partial x_p}\right)_{n} = \frac{\nu_p}{2\pi i} \int_{C} \frac{(z-\tau)^{m-1}}{\omega(z)(z-y_p)} dz$$

are valid. Here, of course

$$\omega(z) = z^{\nu_0} (z - y_1)^{\nu_1} \cdots (z - y_{k-1})^{\nu_{k-1}} (z - 1)^{\nu_k} .$$

Our indirect assumption yields that, if  $\tau$  does not coincide with one of the knots  $y_1, \ldots, y_{k-1}$ , the linear functional  $L_1$ , defined on the space of entire functions h by

$$L_1 h := \frac{1}{2\pi i} \int_{C_{\tau}} \frac{(z-\tau)^{m-2} h(z)}{\omega^*(z)} dz$$

vanishes for all  $h \in \Pi_{k-1}$ . If  $\tau$  coincides with one of these inner knots, then the linear functional  $L_2$ , defined on the space of entire functions h by

$$L_2 h := rac{1}{2\pi i} \int_{C_+} rac{(z- au)^{m-1} h(z)}{\omega^*(z)} \, dz$$

vanishes for all  $h \in \Pi_{k-2}$ . Here we have defined

$$\omega^*(z) := z^{\nu_0}(z-y_1)^{\nu_1+1}\cdots(z-y_{k-1})^{\nu_{k-1}+1}(z-1)^{\nu_k}$$
.

In order to save certain differentiability properties we assume in the second case k>2; the remaining case k=2,  $\tau=y_1$  again will be treated separately.

Let us consider the first case now. We choose the entire function  $h_1(z):=(z- au)^{k-1}$ ; then

$$L_{1}h_{1} = \frac{1}{2\pi i} \int_{C_{\tau}} \frac{(z-\tau)^{m+k-3}}{\omega^{*}(z)} dz$$

$$= \frac{-1}{m+k-2} \left( \frac{\partial}{\partial x} B_{m+k-1} \left( x \middle| \begin{array}{ccc} 0 & y_{1} & \cdots & y_{k-1} & 1 \\ \frac{\partial}{\partial y_{1}} & \frac{\partial}{\partial y_{1}} & \cdots & \frac{\partial}{\partial y_{k-1}} & 1 \end{array} \right) \right)_{x=1} = 0.$$
(4.6)

Since it is well-known (see [11, Thm. 4.57]) that the first derivative of this B-spline  $B_{m+k-1}$  can have only one root in (0,1), the number  $\tau$  is uniquely determined by equation (4.6).

Next we choose  $h_2(z) := (z-\tau)^{k-2}$ ; then

$$L_1 h_2 = \frac{1}{2\pi i} \int_{C_{\tau}} \frac{(z-\tau)^{m+k-4}}{\omega^*(z)} dz$$

$$= \frac{1}{(m+k-2)(m+k-3)} \left( \frac{\partial^2}{\partial x^2} B_{m+k-1} \left( x \middle| \begin{array}{ccc} 0 & y_1 & \cdots & y_{k-1} & 1 \\ \nu_0 & \nu_1+1 & \cdots & \nu_{k-1}+1 & \nu_k \end{array} \right) \right)_{x=\tau}$$

$$= 0.$$

But since the first derivative of our B-spline  $B_{m+k-1}$  already vanishes at  $x=\tau$ , this cannot hold also for the second derivative, see again [11]. Therefore our assumption leads to a contradiction, and the original assertion is proved in the first case.

In the second case, i.e. if  $\tau$  coincides with one of the knots  $y_1,\ldots,y_{k-1}$ , we choose  $h_3(z):=(z-\tau)^{k-2}(=h_2(z))$  and  $h_4(z):=(z-\tau)^{k-3}$  to obtain

$$L_2h_3 = 0$$
 and  $L_2h_4 = 0$ ,

which again, up to non-zero factors, can be interpreted as

$$\left(\frac{\partial}{\partial x} B_{m+k-1}\right)_{x=x} = 0$$
 and  $\left(\frac{\partial^2}{\partial x^2} B_{m+k-1}\right)_{x=x} = 0$ 

for the same B-spline as before. We get the same contradiction.

Now let us consider the case k=2,  $\tau=y_1$ . Here we have

$$\frac{1}{2\pi i} \int_{C_z} \frac{(z-\tau)^{m-\nu_1-2}}{z^{\nu_0}(z-1)^{\nu_2}} dz = 0,$$

where  $u_0 + 
u_2 = m - 
u_1$  . Hence, having  $u = y_1$  in mind again,

$$B_{m}\left(\tau \middle| \begin{array}{ccc} 0 & y_{1} & 1 \\ \nu_{0} & \nu_{1} & \nu_{2} \end{array}\right) = \frac{1}{2\pi i} \int_{C_{\tau}} \frac{(z-\tau)^{m-\nu_{1}-1}}{z^{\nu_{0}}(z-1)^{\nu_{2}}} dz$$
$$= B_{m-\nu_{1}}\left(\tau \middle| \begin{array}{ccc} 0 & 1 \\ \nu_{0} & \nu_{2} \end{array}\right)$$

and thus

$$\begin{split} \left\|B_m\left(\cdot \left|\begin{array}{ccc} 0 & y_1 & 1 \\ \nu_0 & \nu_1 & \nu_2 \end{array}\right)\right\| &= \left\|B_{m-\nu_1}\left(\cdot \left|\begin{array}{ccc} 0 & 1 \\ \nu_0 & \nu_2 \end{array}\right)\right\| \\ &\geq \mu_{m-\nu_1} &= \alpha_{m-\nu_1} > \alpha_m \geq \mu_m \;, \end{split}$$

where we have used inequality (2.4) and the induction hypothesis.

We still have to show that the B-splines

$$B_m\Big(x\,\Big|\,egin{smallmatrix} 0 & x_1 & 1 \ 1 & m-2 & 2 \end{smallmatrix}\Big) \quad ext{ and } \quad B_m\Big(x\,\Big|\,egin{smallmatrix} 0 & x_1 & 1 \ 2 & m-2 & 1 \end{smallmatrix}\Big)$$

are neither maximal nor minimal. Due to symmetry reasons, we may restrict to the first one. It can easily be verified that

$$B_m\left(x \middle| \begin{array}{cc} 0 & x_1 & 1 \\ 1 & m-2 & 2 \end{array}\right) = \left\{ \begin{array}{cc} \frac{x^{m-1}}{x_1^{m-2}} & \text{for } 0 \leq x < x_1, \\ \\ \frac{(m-1)(1-x)^{m-2} - (1+\frac{m-2}{1-x_1})(1-x)^{m-1}}{(1-x_1)^{m-2}} & \text{for } x_1 \leq x \leq 1, \\ \\ 0 & \text{elsewhere.} \end{array} \right.$$

The maximum value of  $B_m$  occurs at the point au with

$$1-\tau = \frac{(m-2)(1-x_1)}{m-x_1-1},$$

and it follows

$$\left\|B_{m}\left(\cdot \left|\begin{array}{cc} 0 & x_{1} & 1\\ 1 & m-2 & 2 \end{array}\right)\right\| = \left(\frac{m-2}{m-x_{1}-1}\right)^{m-2}.$$
 (4.7)

Obviously, this function is neither maximal nor minimal.

So, the B-splines which are either maximal or minimal have to be of the type (2.1) or (4.2); these cases have been discussed earlier.

We are now in the position to characterize the asymptotic behaviour of the minimal norms  $\mu_m$  , as m goes to infinity.

**Theorem 3:** The sequence  $\{\mu_m\}$  satisfies the asymptotic relation

$$\mu_m = \sqrt{\frac{2}{\pi m}} \left( 1 + \frac{1}{4m} + O(m^{-2}) \right) \quad \text{for } m \to \infty .$$
 (4.8)

Remark. Relation (4.8) implies in particular that

$$\mu_m = O(m^{-1/2})$$
 for  $m \to \infty$ .

This has been conjectured for a long time (see [8]), but could not be proved until now.

Proof of Theorem 3. Assume first that m is odd, say m = 2k + 1 with  $k \ge 1$ ; then, according to Lemma 2,

$$\mu_{2k+1} = \frac{1}{2^{2k}} \binom{2k}{k} . \tag{4.9}$$

This is nothing else but the famous Wallis product, which is known to possess the asymptotic expansion (see [1, # 6.1.49])

$$\frac{1}{2^{2k}} \binom{2k}{k} = \frac{1}{\sqrt{\pi k}} \left( 1 - \frac{1}{8k} + O(k^{-2}) \right) \quad \text{for } k \to \infty . \tag{4.10}$$

Now we replace k by (m-1)/2 in equation (4.10). This yields

$$\frac{1}{2^{m-1}} {m-1 \choose (m-1)/2} = \sqrt{\frac{2}{\pi (m-1)}} \left( 1 - \frac{1}{4(m-1)} + O(m^{-2}) \right) 
= \sqrt{\frac{2}{\pi m}} \left( 1 - \frac{1}{m} \right)^{-1/2} \left( 1 - \frac{1}{4m} + O(m^{-2}) \right) 
= \sqrt{\frac{2}{\pi m}} \left( 1 + \frac{1}{4m} + O(m^{-2}) \right)$$

for  $m \to \infty$ .

Now let m be even, m = 2k; Lemma 2 implies

$$\mu_{2k} = \frac{1}{2^{2k-1}} \binom{2k-1}{k} \frac{(2k)^k (2k-2)^{k-1}}{(2k-1)^{2k-1}}$$

$$= \frac{1}{2^{2k}} \binom{2k}{k} \frac{(2k)^k (2k-2)^{k-1}}{(2k-1)^{2k-1}}$$

$$= \frac{1}{\sqrt{\pi k}} \left(1 - \frac{1}{8k} + O(k^{-2})\right) \frac{(1 - \frac{1}{k})^{k-1}}{(1 - \frac{1}{2k})^{2k-1}}$$

$$= \frac{1}{\sqrt{\pi k}} \left(1 - \frac{1}{8k} + O(k^{-2})\right) \left(1 + \frac{1}{4k} + O(k^{-2})\right)$$

$$= \frac{1}{\sqrt{\pi k}} \left(1 + \frac{1}{8k} + O(k^{-2})\right) \quad \text{for } k \to \infty . \tag{4.11}$$

Here we have used twice the asymptotic relation

$$(1 - \frac{1}{k})^{k-1} = \exp\left((k-1)\log(1 - \frac{1}{k})\right)$$

$$= \exp\left(-1 + \frac{1}{2k} + O(k^{-2})\right)$$

$$= \exp(-1) \cdot \left(1 + \frac{1}{2k} + O(k^{-2})\right).$$

Putting k = m/2 in (4.11) yields the assertion.

Obviously, more terms of the asymptotic expansion (4.8) can be worked out easily. The numerical values of the first ten numbers  $\mu_m$  are given in Table I (see Section 5).

## 5. The equidistant distribution of knots

In many applications, e.g. in the context of Computer Aided Design by spline-curves and -surfaces, B-splines with equally spaced knots are of particular interest. It is therefore natural to ask for the behaviour of their norms; so, let

$$B_m^r(x) := B_m\left(x \begin{vmatrix} 0 & \frac{1}{m} & \cdots & \frac{m-1}{m} & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}\right)$$

and

$$\beta_m := \|B_m^{\epsilon}\|.$$

Since  $B_m^\epsilon(x)=B_m^\epsilon(1-x)$  for all x, the norm of this function is attained at x=1/2. Hence

$$\beta_m = B_m^{\epsilon} \left(\frac{1}{2}\right) = \frac{1}{(m-1)! \, 2^{m-1}} \sum_{\mu=0}^{[(m-1)/2]} (-1)^{\mu} {m \choose \mu} (m-2\mu)^{m-1} \,, \qquad (5.1)$$

where we have used (3.4) and (3.6). In Table I, we list the first ten values of  $\beta_m$  and compare them with the corresponding "optimal" values  $\mu_m$ ; furthermore, we present the asymptotic limits (cf. Thms. 3 and 4).

For  $m \to \infty$ , we obtain the following asymptotic result:

Theorem 4: The sequence of norms of the equidistant B-splines satisfies the asymptotic relation

$$\beta_m = \sqrt{\frac{6}{\pi m}} \left( 1 - \frac{3}{20m} + O(m^{-2}) \right) \quad \text{for } m \to \infty .$$
 (5.2)

| m  | $\mu_m$ | $\sqrt{\frac{2}{\pi m}}$ | $oldsymbol{eta}_m$ | $\sqrt{\frac{6}{\pi m}}$ |
|----|---------|--------------------------|--------------------|--------------------------|
| 1  | 1.00000 | 0.79788                  | 1.00000            | 1.38197                  |
| 2  | 1.00000 | 0.56418                  | 1.00000            | 0.97720                  |
| 3  | 0.50000 | 0.46065                  | 0.75000            | 0.79788                  |
| 4  | 0.44444 | 0.39384                  | 0.66666            | 0.69098                  |
| 5  | 0.37500 | 0.35682                  | 0.59895            | 0.61803                  |
| 6  | 0.34560 | 0.32573                  | 0.55000            | 0.56418                  |
| 7  | 0.31250 | 0.30157                  | 0.51102            | 0.52233                  |
| 8  | 0.29375 | 0.28209                  | 0.47936            | 0.48860                  |
| 9  | 0.27343 | 0.26596                  | 0.45292            | 0.46065                  |
| 10 | 0.26018 | 0.25231                  | 0.43041            | 0.43701                  |

Table I

*Proof.* We use Schoenberg's integral representation for cardinal B-splines (cf. [11, Theorem 4.33]), which in our case takes the form

$$B_m^c(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left( \frac{\sin t}{t} \right)^m e^{imt(2x-1)} dt ,$$

and so

$$\beta_m = B_m^{\epsilon} \left(\frac{1}{2}\right) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{\sin t}{t}\right)^m dt. \tag{5.3}$$

This integral is treated in several places in the literature (see [7] or [10, p. 94]), and there one can also find the asymptotic expansion (5.2).

Interestingly, the values of  $\beta_m$  (equidistant case) and  $\mu_m$  (minimal case) both tend to zero with the same order of convergence, and, moreover, the asymptotic constants only differ by a factor  $\sqrt{3}$ . So, the equidistant knot distribution is, from this paper's point of view, a rather good choice.

## 6. For which B-splines does the norm tend to zero at all?

Let us be given, for  $m\in I\!\!N$ , an infinite triangular matrix M of knots  $x_{\mu}^{(m)}, \mu=0,1,\ldots k_m$ , which satisfy

$$0 = x_0^{(m)} < x_1^{(m)} < \cdots < x_{k_m-1}^{(m)} < x_{k_m}^{(m)} = 1$$

where to every knot  $x_{\mu}^{(m)}$  a multiplicity  $u_{\mu}^{(m)}$  is prescribed.

We construct to each row of M the corresponding B-spline  $B_m(x\mid M)$ . We want to analyze the question, for which knot matrices M the sequence of norms

$$\{\|B_m(\cdot\mid \mathbf{M})\|\}_{m=1}^{\infty}$$

tends to zero at all. At first, one could think this is the case for "almost all" of them, i.e. for all B-splines except for the maximal ones given in section 4. But this is not true at all; for example, consider for arbitrary  $x \in (0,1)$  and  $m \geq 3$  the B-spline  $B_m\left(x \middle| \begin{array}{cc} 0 & x_1 & 1 \\ 1 & m-2 & 2 \end{array}\right)$ , whose norm was in (4.7) computed to be

$$\left(\frac{m-2}{m-x_1-1}\right)^{m-2} = \left(1-\frac{x_1-1}{m-2}\right)^{-(m-2)},$$

hence

$$\lim_{m\to\infty} \left\| B_m\left( \cdot \left| \begin{array}{cc} 0 & x_1 & 1 \\ 1 & m-2 & 2 \end{array} \right) \right\| = e^{x_1-1} > 0.$$

Note that  $\,B_m\,$  is a  $\,C^1$  -function! Another counterexample is given by the  $\,C^2$  -function

$$B_m\left(x \mid egin{matrix} 0 & rac{1}{2} & 1 \\ 2 & m-3 & 2 \end{matrix}
ight) \quad (m \geq 3),$$

whose norm equals 1/2 for all m.

Having come so far, one hopes that at least all B-splines with simple knots, i.e.  $k_m = m$  for all  $m \in I\!\!N$  converge to zero. But this is wrong too, which can be seen from the following example.

Example. Let  $m \geq 2$  and  $0 < \varepsilon < 1$ . We consider the function

$$B_m^*(x) := B_m(x | \begin{array}{cccc} 0 & \xi_1 & \cdots & \xi_{m-1} & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{array})$$

with the inner knots

$$\xi_{\mu} := \frac{1+\varepsilon^{2^{m-\mu}}}{2}, \quad \mu = 1, \ldots, m-1.$$

For  $x \in [0, \xi_1)$ ,  $B_m^*$  takes according to (3.4), (3.6) the form

$$B_m^*(x) = rac{(-1)^m}{\prod\limits_{\mu=1}^{m-1} (-\xi_\mu)(-1)} \cdot x^{m-1} = rac{(2x)^{m-1}}{\prod\limits_{\mu=1}^{m-1} (1+arepsilon^{2\mu})} \cdot$$

Since  $\frac{1}{2} \in [0, \xi_1)$ , it follows that for all m

$$||B_{m}^{*}|| \geq |B_{m}^{*}(\frac{1}{2})| = \frac{1}{\prod_{\mu=1}^{m-1} (1 + \varepsilon^{2^{\mu}})}$$

$$> \frac{1}{\prod_{\mu=1}^{\infty} (1 + \varepsilon^{2^{\mu}})} = 1 - \varepsilon^{2} > 0.$$

However, we do not like to close this paper with a series of negative examples, and so we give the following sufficient conditions, under which the B-spline's norms tend to zero as m goes to infinity. The first one, stated in Theorem 5, says that the linear convergence of the knot sequence  $\{x_{\mu}^{(m)}\}$ , as defined in (6.1), implies zero convergence of the norms.

**Theorem 5:** Assume that there exist real constants  $0 < K_1 \le K_2$ , such that for  $\mu = 1, ..., m$  the relation

$$\frac{K_1}{m} \leq x_{\mu}^{(m)} - x_{\mu-1}^{(m)} \leq \frac{K_2}{m} \tag{6.1}$$

holds for all  $m \geq 3$ . Then

$$\lim_{m\to\infty} \left\| B_m \left( \cdot \left| \begin{array}{ccc} 0 & x_1^{(m)} & \cdots & x_{m-1}^{(m)} & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{array} \right) \right\| = 0.$$

*Proof.* First assume that m is even and let, for some  $\mu$ ,  $0 \le \mu \le m-1$ ,  $\xi$  denote any point in the interval  $[x_{\mu}^{(m)}, x_{\mu+1}^{(m)}]$ . Then, using (3.4) and (3.6) again, we obtain

$$|B_{m}(\xi) - B_{m}(x_{\mu}^{(m)})| = \frac{1}{|\omega_{\mu}(x_{\mu}^{(m)})|} \cdot (\xi - x_{\mu}^{(m)})^{m-1}$$

$$\leq \frac{1}{|\omega_{\mu}(x_{\mu}^{(m)})|} \cdot (x_{\mu+1}^{(m)} - x_{\mu}^{(m)})^{m-1}$$

$$\leq \left(\frac{m}{K_{1}}\right)^{m} \cdot \frac{1}{((\frac{m}{2})!)^{2}} \cdot \left(\frac{K_{2}}{m}\right)^{m-1}$$

$$= \frac{K_{2}^{m-1}}{K_{1}^{m}} \cdot \frac{(2e)^{m}}{m^{m-1}} = o(m^{-1}) \text{ for } m \to \infty,$$
 (6.2)

where we have used that for all  $r \in IN$ 

$$r! > \exp(-r) \cdot r^r$$

holds. Since there are precisely m subintervals of this type, and due to  $B_m(x_0^{(m)}) = 0$ , inequality (6.2) already proves that

$$\lim_{m \to \infty} B_m(\xi) = 0 \text{ for all } \xi \in [0,1],$$

hence the assertion. If m is odd, the arguments are completely analogous.

Our final Theorem 6 says that for any fixed m the norm of a B-spline corresponding to a *symmetrical ordering* of simple knots decreases, if one moves these knots away from the center of the interval. Since we already know that the norm of the B-spline with equidistant knots tends to zero, Theorem 6 implies zero convergence for a rather big class of B-splines (see the corollary).

So, consider now two sets of simple knots

$$0 < \xi_1 < \dots < \xi_{m-1} < 1$$
 and  $0 < \eta_1 < \dots < \eta_{m-1} < 1$ ,

such that for all  $\mu$ 

$$\xi_{\mu} = 1 - \xi_{m-\mu} \quad \text{and} \quad \eta_{\mu} = 1 - \eta_{m-\mu} .$$
 (6.3)

Let us define  $r:=\left[\frac{m-1}{2}\right]$ , and denote the B-splines belonging to the above-defined knot sequences by

$$B_m(x \mid \xi)$$
 resp.  $B_m(x \mid \eta)$ ,

where  $\xi=(\xi_1,\ldots,\xi_r)$  and  $\eta=(\eta_1,\ldots,\eta_r)$ . Note that for even m, m=2k, we have

$$\xi_k = \frac{1}{2} \text{ and } \eta_k = \frac{1}{2}.$$

**Theorem 6:** Assume, for  $m \geq 3$ , that there are non-negative real numbers  $\varepsilon_1, \ldots, \varepsilon_r$ , such that the above-defined knots satisfy

$$\eta_{\mu} = \xi_{\mu} - \varepsilon_{\mu}, \quad \mu = 1, \ldots, r$$

(and therefore  $\eta_{m-\mu}=\xi_{m-\mu}+arepsilon_{\mu}$  for  $\mu=1,\ldots,r$  ). Then

$$||B_m(\cdot \mid \eta)|| \leq ||B_m(\cdot \mid \xi)||. \tag{6.4}$$

In addition, if at least one of the numbers  $\varepsilon_{\mu}$  is positive, then strict inequality holds in (6.4).

Proof. For a symmetric distribution of simple knots

$$0 < x_1 < x_2 < \ldots < \frac{1}{2} < \ldots < 1 - x_2 < 1 - x_1 < 1$$

let us consider the vector  $\hat{x}=(x_1,\ldots,x_r)$  . For the corresponding B-spline we will write

$$B_m(x \mid \widehat{x})$$
.

Using the representation (3.1) we get

$$\frac{\partial}{\partial x_{\nu}}B_{m}(x\mid \hat{x}) = \frac{2x_{\nu}-1}{2\pi i} \int_{C_{x}} \frac{(z-x)^{m-1}}{\omega(z)(z-x_{\nu})(z-1+x_{\nu})} dz$$

for  $\nu = 1, \ldots, r$ , where

$$\omega(z) = z(z-x_1)\cdots(z-1+x_1)(z-1)$$
.

Hence

$$\frac{\partial}{\partial x_{\nu}}B_{m}(x\mid\widehat{x}) = \frac{2x_{\nu}-1}{m(m+1)} \cdot \frac{\partial^{2}}{\partial x^{2}}B_{m+2}\left(x\mid_{1=1}^{0=x_{1}=\dots 2} \dots \frac{1-x_{\nu}}{2} \dots \frac{1-x_{1}-1}{2}\right). \tag{6.5}$$

In order to prove Theorem 6 we first remark that, due to the symmetry of the knots we have obviously

$$\|B_m(\cdot \mid \xi)\| = B_m(\frac{1}{2} \mid \xi)$$
 and  $\|B_m(\cdot \mid \eta)\| = B_m(\frac{1}{2} \mid \eta)$ .

The mean value theorem yields

$$B_m\left(\frac{1}{2}\mid\eta\right) - B_m\left(\frac{1}{2}\mid\xi\right) = -\left(\frac{\partial}{\partial x_1}B_m\left(\frac{1}{2}\mid\widehat{x}\right), \ldots, \frac{\partial}{\partial x_r}B_m\left(\frac{1}{2}\mid\widehat{x}\right)\right) \cdot (\varepsilon_1, \ldots, \varepsilon_r)^T \tag{6.6}$$

with some vector  $\hat{x} = (1 - \tau)\xi + \tau\eta$ ,  $0 < \tau < 1$ .

We claim that the components of the gradient vector are all positive, i.e.

$$\frac{\partial}{\partial x_{\nu}} B_{m}\left(\frac{1}{2} \mid \widehat{x}\right) > 0 \text{ for } \nu = 1, \dots, r.$$
 (6.7)

To prove (6.7) we use eqn. (6.5) for  $x = \frac{1}{2}$ . Since the B-spline

is invariant under the transform  $x\to 1-x$ , its only maximum value is attained at  $x=\frac12$ . The first derivative vanishes. The second derivative does not vanish at  $x=\frac12$  and is hence negative. Because of

$$2x_{-} - 1 < 0$$

we therefore get the desired inequality (6.7) from (6.5). Now equations (6.6) and (6.7) yield the assertion of Theorem 6.

Corollary: Let the (symmetrically ordered) knots of the B-spline  $B_m(x \mid \eta)$  satisfy

$$\eta_{\mu} \leq \frac{\mu}{m}$$
 for  $\mu = 1, \ldots, r$ .

Then

$$|\mu_m| \leq ||B_m(\cdot | \eta)|| \leq |\beta_m|,$$

i.e. there are two positive numbers  $c_1, c_2$ , such that

$$c_1 m^{-1/2} \le \|B_m(\cdot \mid \eta)\| \le c_2 m^{-1/2}$$

holds.

*Proof.* Follows directly from the combination of (4.8), (5.2) and Theorem 6.

So we have finally seen that there is yet a quite big class of B-splines with zero convergence of the norms. For example, this is true for the well-known Perfect splines.

#### References

- [ 1] M. Abramowitz & I. Stegun: Handbook of Mathematical Functions.

  Dover Publications, New York 1965
- [2] C. de Boor: On Calculating with B-splines. J. Approx. Theory 6 (1972), 50 - 62
- [ 3] C. de Boor: A Practical Guide to Splines. Springer, New York 1978
- [4] C. Brezinski & G. Walz: Sequences of Transformations and Triangular Recursion Schemes, with Applications in Numerical Analysis.
   J. Comp. Appl. Math. 34 (1991), 361 - 383
- [5] H. B. Curry & I. J. Schoenberg: On Polya Frequency Functions IV: The Fundamental Spline Functions and Their Limits. Journ. d'Analyse Math. 17 (1966), 71 - 107
- [6] K. Knopp: Infinite Sequences and Series. Dover Publ., New York 1956
- [7] R. G. Medhurst & J. H. Roberts: Evaluation of the Integral  $I_n(b) = \frac{2}{\pi} \int_0^\infty \left(\frac{\sin x}{x}\right)^n \cos bx \, dx$ .

  Math. Comp. 13 (1965), 113 117
- [8] G. Meinardus: Bemerkungen zur Theorie der B-Splines.
   In: Böhmer, Meinardus, Schempp (eds.): Spline-Funktionen.
   Bibliographisches Institut, Mannheim/Zürich 1974, pp. 165 175
- [9] G. Meinardus & G. Walz: More Results on B-Splines via Recurrence Relations. Math. Manuskripte 144, Universität Mannheim 1992
- [10] F. W. Olver: Asymptotics and Special Functions. Academic Press, New York 1974
- [11] L. L. Schumaker: Spline Functions: Basic Theory. Wiley-Interscience, New York 1981