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L Introd uction

2

Let be mEIN, m 2:: 1. Furthermore, for kEIN, k ~ m, let us be given a set of

knots xI] E IR, (! = 0,1, ... , k, satisfying

Xo < XI < ... < XI..

To each knot X I] there is associated a natural number v fj , called the multiplicity of X I]

such that
Vo + v} + ... + Vk = m + 1 .

We call areal function f a (polynomial) B-spline of order m, belonging to the set of
knots {xi!} with multiplicities vo' (! = 0,1, ... , k , if it possesses the following properties:

1: It is
f( x) = 0 far all X < Xo and for all X > x I-; ,

2. The restriction of f to the subinterval [Xo,Xo+l), (! = 0, ... , k - 2, and to
[x 1-;-1,x d belongs to the space IIm -I of polynomials of degree at most m - 1 .

3. It is

fora suitable neighborhood U(x(!) of the knot XI!' (! = 0,1, ... , k,

4. It is

Ofcourse, if vI] = m for some e, property # 3. only means that f need not even be
continuous in xe; in all other cases We deal witha continuous Junction which irnplies
that we could write down the second property for closed subintervals as weIl.

It is well-known (cf. [3,5,11]) that there exists one and only one such function f . We

will denote this B-spline by Bill or, in greater detail, by

( I
Xo X I X k )

Bill X Vo VI Vk

Furthermore it is not difficult to prove (cf. [3,5,11]) that

( I Xo Xl'" ... X k )
Bill X > .0. Vo VI ..• ... Vk

for x E (xo, xd .

Hence the supremum of B", on [xo, Xk] is identical with the value of the Chebyshev

norm
IIB'IlII := sup{IBIII (x)1 I X E IR} .
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We now eonsider, for fixed orderm, the set BOI of all B-splines of order m with the

normalization

Xu = 0 and XI! = 1 .

In this paper we are interested in the numbers

Am := sup { IIB", 1I I B", E Bm}

and

}LOI := inf { IIBoll1 I Bill E B",} .

We eall a B-spline Bm E Bm maximal, if its norm. is equal to Am, and minimal, if it

equals }Lm • It will turn out that these numbers are really attained.

In seetion 4 we will eompute these numbers explieitly and present all B-splines of Bill

with norm Am resp. with norm }Lm . Likewise, in seetion 5 we will compute the norm
of the B-spline with equidistant knots and study the behavior of all these norms as m
tends to infinity. The final section 6 is devoted to the question, for whieh types of knot
distributions the norms of the corresponding B-splines tend to zero at all, as m --+ 00 .

Before that, in the next seetions we give some results on B-splines with a small number
of knots, and a contour integral representation for B-splines and their derivatives, whieh

will be our essential tool in proving the results,

2. B-splines for a small number of knots

In this sectionwe derive, for all mEIN and k = 1 or 2, explieit representations for
the eorresponding B-splines as wen asfor their norms; these results will later turn out

to be important.

Lemma 1: FOT mEIN we have, with Vo + Vl = m + 1,

{
C~::i) x m - va (1 -0 x) m- LI I

Bm (x I 0 1) =
Vu VI

FUTthermOTe

fOT 0 ~ X ~ 1

elsewhere.
(2.1 )

(2.2)

We always adopt fOT some special cases the usual definition 00 := 1 .
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Proof. The representation formula (2.1) is easily verified by checking its properties with

respect to the definition of Bill (one could of course as weIl prove this formula by use of

the B-spline recursion formula (see [2,3,11]), but this is not necessary here).

It remains to prove the validity of (2.2). For Vo = 1, VI = m, the maximum value
of Bill (which in this case just reduces to the monomial x,lJ-1 in [0,1]) occurs at the

point 1 and is equal to 1. The analogue is true in the case Vu = m, VI = 1. For
Vo > 1, VI > 1, however, the maximum value of Bill occurs in the open interval (0,1)

at the point
~ _ m - Vo
- m-l '

yieldig the value of the norm given in (2.2). o

Lemma 2: Let am denote the minimal norm of alt B-splines from Bm with no inner

knots, i.e.

Then
1 ( m-l ) if m is odd,

2",-1 (m - 1)/2

__1_ (m - 1) mnl/2(m - 2)(m-J)/2
----'-----'--- if m is even.

211I-1 m/2 (m - 1)11I-1

(2.3)

Furthermore, for m ~ 2 this sequence is strongly decreasing, i.e.

am > am+l for mEIN, m ~ 2 .

Praof. It foIlows directly from Lemma 1 that

(2.4)

11 ( I
0 1 ) 11cl> Vo := B", .( .) "() 11I+1-1'0

for all possible choices of VI and Vj. Hence formulae (2.3) are true for m = 1,2, so
assurne from now on m ~ 3 .

Let Vo increase from 1 to the largest number less than or equal to (m - 1)/2 , and
replace Vl in (2.2) always by m + 1 - Vo . We investigate the question for which values

of Vo the expression

is minimal. Obviously cl>(I) = 1. For 1 < Vu :::; (m + 1)/2 we discuss the validity of the

inequality
cl>( Vu + 1) < cl>( vo) . (2.5)



On the Chebyshev Norm o{ Polynomial B-Splines

Using the elementary expression giyen in (2.2), the ineq uali ty

5

( )

110-1Vn
Vo - 1

is equivalent to (2.5). The function

< ('_m_-_v_a_) In -110-
1

m - va - 1
(2.6)

( )

t-[

g(t):= _. t_
t - 1

, t E IR, t 2:2 ,

is strictly increasing with t. Hence the inequality (2.6) is valid if and only if

Vn < m - vo, i.e. Vn < m/2

holds. It follows that the minimal value in question is attained for Vn = VI = (m + 1)/2
if m is odd, i.e. by the norm of the B-spline

B'll ( x In't 1 ,nt1 ) .

If m is even, then the minimal valueis attained for Vo = m/2, Vt = (m + 2)/2,
respectively, by means of symmetry, for Vn = (m + 2)/2, VI = m/2 , and no other eases,

i.e. by the norms of the B-splines

1 )m+2
"2

resp. 1)'
"2

The formulae (2.3) now follow immediately.

We still have to prove the inequality (2.4). It is

1 4
O!.} = 1 > 0!3" = - > O!.[ = - .. . 2 9

For odd m, say m = 2r + 1with r 2: 1, we get from (2.3) at onee

For even m, say m = 2r + 2 with r 2: 1 , we get

sinee the inequality

2r + 2 ( 4r(r + 1) )). > 2r + 2 (1 _ r )
2r + 1 4r( r + 1)+ 1 2r + 1 4r( r + 1)+ 1
holds.

8r3 + 14r2 + 8r + 2-------- > 1
8r3 + 12r"2+ 6r + 1

o
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Lemma 3: For m ~ 2 we have

6

Ern (x I ~ XI

",-1 i) !(~.)".'.-I./..\

( )

111-1

1-."
I-XI ..

o

for 0 ~ x < XI,

for XI ~ X ~ I,

elsewhere.

Furthermore
XI

.,,,,-1 i)11 = 1 .

Proof. It is easy to check all properties of this specific B-spline.

3. Contour integral representations of B-splines and
their partial derivatives

o

We will give now some results concerning the representation of the B-spline B", and
of its partial derivatives with respeet to the knots in terms of a complex contour integral.
These results will also be a major tool for the proof of our Theorem 2. For convenience,

we first repeat the well-known contour integral representation of the B-spline itself:

Lemma 4: Let, for X E IR, CI' denote a simply closed and rectifiable curve in the
complex plane, such that all the knots xlJ' {! = 0, ... , k, with X < xe and no others

lie in the interior of that curve.
Then, carrying out the integration in the positive sense, we have the representation

B ( 10 Xl ••• Xk-l 1) _ 1 r (Z_X)/1-1

m X 110 111 ... 11/':-1 111,; - 27ri .Je, w(z) dz,

where

(3.1 )

w(z) (3.2)

Proof. This result was given in [8]' see also [4]. o

In our subsequent considerations, representation (3.1) will mainly serve as a theoretical
tool. However, it should be emphasized that this formula has also important praetical
implications, a fact which seems to have been underestimated until now, although (3.1)
is known since twenty years. Therefore we would like to make a few remarks on this

subject first:
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Corollary: Let be x E [xy, xQ-t} for some e, and define for alt f-L

with w from (3.2). Then the foUowingrepresentation holds:

7

( I
0 Xl

B", .X Vo VI

(I-I (-1)'" dv,,-l ((x _ z)"'-l)
" -- . -- --- (3.3)L (v, - 1)! dzv,,-I w (z) .
1,=1l ' " . ':=~'I'

Proof. According to the residue theorem, we obtain from (3.1)

B ( I 0 Xl ." XI.:_I 1) -
1Jl X -Vn VI ... VI.:_I VI.:

I.:

(
(z - X)"'-I)L Res:=J"" w(z)

I'=(}

(}-1 ( (z _ X )./ll -1 )-L Res,=.i'". w(z) .
1'=0

Since

(
(Z_X)/ll-I) _. 1 . dv,,-I ((z_x)m-l)

Res--J.: ----- - ---- --- ----'---
,- I' w(z) (v - 1)! dzv,. -1 w (z)J.' p. z=~'"

(see any textbook on complex analysis), the result follows. o

1£we carry out the differentiation in (3.3) explicitly, we see that our B-spline Bm is

of the form

with

BII! (x I O. XIVn V]

XI.:_I

VI.:-l

k VII

L L ßllAx - xl')~-.1
1,.=0 j=1

(3.4)

(3.5)

which so far. is a well-known result, see e.g. [11, Theorem 4.14]. But in contrast to
the usual divided-difference approach, the calculation of the ß~,jS via eqn.(3.3) is - for
concrete cases - not very difficult to do. In addition, we have for all f-L

ßpup

which sharpens assertion (3.5).

= (rn-I) (_1)/1/+1',,-1,
VII - 1 wll (x 11)

(3.6)
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Theorem 1: Let be kEIN, k 2:: 2. The
1,2, ... ,k-1 mayallsatisfy v'1<m--1.

Then the B-spline

( I
0 Xl

B", x Vo vI

multiplicities v I] of the knots x 1]' f!

possesses continuous partial derivatives with respect to x and to all the knots

Xl, X2, ... , Xk-l in the Cartesian product (0,1) x D , where

D := {XI,X2, ... ,Xk-l 10< Xl<'" < Xk-l < I}.

Furthermore we have the representations

~B ('x I 0 Xl Xk-l 1) _ m - 1 rax m Vo VI Vk-l Vk ~ 21!"i Je.

and, for f2 = 1,2, ... , k - 1,

(z - x)rn-2
w(z) dz, (3.7)

f:1
0 Bm(xi 0.. Xl

ux 0' V() VI

Xk-l
Vk-l ~, ) V. 1 (z - x)m-lv d

2;i Cr w(z)(z - XI]) z.
(3.8)

Remark. Formula (3.8) should be compared with Theorem 4.27 in [11J.

Praof of Theorem 1. The differentiability with repect to X follows from the assumption
V,. < m - 1, f! = 1, ... , k - 1. Since C~: is rectifiable, formula (3.7) is easily derived.

The right hand side of (3.8) possesses adenominator, in which the multiplicity of
each knot is stilliess than m. Hence this right hand side is continuous in the Cartesian
product (0,1) x D. It obviously represents the partial derivative of Brn with respect to

the knot xI]' 0

As an immediate consequence of Theorem 1, we can now prove that the partial de-
rivative of B'll with respect to an inner knot x'1 can be written in terms of the usual

derivative of an (m + 1)1/1 order B-spline:

Corollary: Under the assumptions of Theorem 1, the following relation holds:

o (I 0 Xl ••. Xk-l 1) -
-Bill X ...ax'1 VI) VI •.. Vk-l Vk

Vo 0 ( lax I- -=- . -B,II+I Xm ax 1/0 1/1

Proof. This follows easily from equations (3.7) and (3.8).

1/,.-1

o
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4. B-splines with largest and smallest Chebyshev norm

9

In this section we want to compute explicitly the numbers >'m and /1m, defined in
the introduction. Let us first consider the elementary cases m = 1,2,3, where the last
one soon will turn out to be typical also for the general case.

For m = 1 and m = 2 it follows immediately from Lemma 1 resp. Lemma 3 that

and

Also the case m = 3 can still be treated in an elementary way. For 0 < Xl < X2 < 1 we
verify

,)x-

-x2(1 + X2 - XI) + 2XX2 - XIX2

(1- xdxAx2 - xd
(l-x)'l

(l-xt)(I-x2)
o

for 0 ::; X < X I ,

for Xl::; x <Xl,

far X2 ::; X ::; 1,

elsewhere.

The maximum value of this B-splineis located at the point

T .-

and the norm turns out to be

Hence
>.:\ 2': 1 and /1:\ ::; 1/2 .

The remaining cases of double and tripie knots are easily analysed using Lemma 1 and
Lemma 3. Here it is also possi ble to consider the lirnits for X I --+ 0 or X2 --+ 1 or
X2 --+ Xl etc. It turns out that >':3 = 1 , where this value of the norm is only attained by

the functions
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B:l ( x I ~ x2' i) wi th 0 < J: I < 1 .

10

Analogously we find that f.t:l = 1/2, where this value is attained only by the B-spline

for 0 ::; x ::; 1 ,

elsewhere.

We are now dealing with the case of an arbitrary order m.

Theorem 2: Let m be any natural number. Then the following assertions are tTUe:

1. It is

.\'" 1

and

where (X/II is given in Lemma 2.

2. The maximum value >'/11 of the norm is attained by the B-splines

(4.1)

and, if m ~ 2,

and by no others.

XI
rn-I i) with 0 < Xl < 1 , (4.2)

The minimum value f.t1l1 of the norm is attained by the B-spline

"I" 0B,"(x ",tl

if m is odd, and by the two B-splines

mt1 ) ,
(4.3)

B," (x I f n.f2) and BtI/( x I "'t2;1 ) ,

if m is even, and by no others.

(4.4)

We remark that the assertion >"1/ = 1 can also be derived easily by using a special case

of the Marsden identity (cf. [9]).
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Proof of Theorem 2. Obviously, we only have to prove the second assertion, since the

first one then follows easily by means of Lemma 1 and Lemma 3.
We proceed by induction and remark that the cases m = 1,2,3 have already been
proved. Hence assurne m 2 4. Let be kEIN, k 2 2 , and consider any fixed B-spline

( I
0 Xl ... Xk-l 1)

B", X Vn VI'" Vk-l Vk .

We claim that under the assumptions of Theorem 1 the gradient vector

{
BB", BB", BB", }

gradB'1i = -B ' -B' , ... , -B-.-.-x XI Xk-l
(4.5)

never vanishes on the Cartesian product., (0, 1) x D. (Here, if k = 2, we assurne in

addition VI < m - 2 , and treat the remaining case k = 2, VI = m - 2 separately.)
Trus assertion says that all these B-splines are neither maximal nor minimal. In order
to prove it we assurne to the contrary that there is a point

P '- (T,Yl, ... ,Yk-d E (O,l)xD

such that simultaneously

( B:~" ) I-' = 0 and ( BBB111 ) = 0 for e = 1, 2, ... , k - 1
xI] I-'

hold. According to (3.7) and (3.8), the representations

(BBm) m - 11 (z - Tyn-l

& I/ = - 27ri ,C w(z)(z - T) dz

and,for e=1,2, ... ,k-I,

(
BB/II)

Bxo - p

are valid. Here, of course

V j' (z - T)",-I---.!L . d '7

27ri C
r

w(z)(z - YI]) -

w(z) = z"O(z - yI}"l ... (z - Yk_d"k-l (z - Ir! .

Our indirect assumption yields that, if T does not coincide with one of the knots
Yl , ... , Yk-l , the linear functional LI, defined on the space of entire functions h by

1 1 (z - T)./It-2h(z)
L1h:= - ------dz

27ri C
r

wx(z)
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vanishes for all h E Ih- I. If T coineides with one of these inner knots, then the linear

funetional L2, defined on the spaee of entire functions h by

1 f' (z - T )1/' -I h( z)
L-,h := - -------dz
- 27ri. Ce w*(z)

vanishes for a.ll hE ll!.:-2 . Here we have defined

w'"'(Z):= z"0(z_Yd"1+1"'(z-Y!.:_t}"k-l+1(z-1)"k

In order to save eertain differentiability properties we assurne in the seeond ease k > 2 ;

the remaining ease k = 2, T = Yl again will be treated separately.

Let us eonsider the first ease now. We ehoose the entire function h1 (z) := (z - T) h'- I ;

then

1 i (z _r)I/'+h'-:}
-' ------dz
27ri. c, w*(z)

m +-:_ 2 (:x B",+!':_I (x 12; Yl
1'1+1

Yh'-I
"k_l+1 !~ ) );=, = O.

(4.6)

Sinee it is well-known (see [11, Thm. 4.57]) that the first derivative of this B-spline
Bm+!.:-1 ean have only one fOot in (0,1), the number T is uniquely determined by

equation (4.6).
Next we choose h2(Z):= (z - r)k-2 ; then

1 ( 8
2

( I 0(m+k-2)(m+k-3) 8x2BIIl+k-l x "0

= O.

Yk-l
"k-1+ I I~ )) .,.= T

But sinee the first derivative of our B-spline Bm+k-I already vanishes at x = r, this
eannot hold also for the second deri vati ve, see again [11]. Therefore our assum ption leads

to a contradietion, and the original assertion is proved in the first ease.

In the seeond ease, i.e. if r eoineides with one of the knots Y], ... , Yk-l , we ehoose
h:3(z):= (z - T)k-2(= h2(z)) and h](z):= (z _T)k-:) to obtain

whieh again, up to non-zero factors, ean be interpreted as

(: B1ll+k-l) = 0 and
x J:= T

( 82 )ox1 B",+/.:-l .I'=T 0
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for the same B-spline as before. We get the same contradiction.

Now let us consider the case k = 2, T = YI ' Here we have

1 j' (Z-T)/I'-"l-'.!
- ----- dz = 0
27ri,C zvo(z-1)"2 '

where LlII + LI'.! = m - Lll . Hence, having T= Yl in mind again,

(
1

0 I' 1! (Z_T)'II,-v1-l
Bill' T Yl ) = - ------dz

LI() LI1 LI'.! 27r i ,(,- Z 1'0 (z - 1)".'

13

and thus

where we have used inequality(2.4) and the induction hypothesis.

We still have to show that the B-splines

BII; (x I 01 X~) :)
I1t •• _

and Xl
IIl-2 ~)

are neither maximal nor minimal. Due to symmetry reasons, we may restrict to the first

one. It can easily be verified that

Xl
nl-2

XJ1I-1

~Xl •

(m - 1)(1- x)IIl-'.! - (1 + ~ )(1- x)m-l
(1- Xl )II'-'.!

o

for 0 ~ X < Xl,

for Xl ~ X ~ 1,

elsewhere.

The maximum value of Bill occurs at the point T with

(m - 2)( 1 - Xl)
1- T = ~------

m - XI - 1

and it follows
Xl (4.7)

Obviously, this function is neither maximal nor minimal.

So, the B-splines which are either maximal or minimal have to be of the type (2.1) or

(4.2); these cases have been discussed earlier. 0

We are now in the position to characterize the asymptotic behaviour of the minimal

norms j.L"" as m goes to infinity.
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Theorem 3: The sequence {IJ-m} satisfies the asymptotic relation

(f2( 1 -')IJ-III = - 1+ - + O(m -)
7rm 4m

fOT m -+ 00 . (4.8)

Remark. Rela.tion (4.8) implies in particular that

lJ-'lI = O(m -1/2 ) for m -+ 00 .

This has been conjectured for a long time (see [8]), but could not be proved until now.

(4.10)

Proof 0/ Theorem 3. Assume first that m is odd, say m = 2k + 1 with k 2': 1 ; then,
according to Lemma 2,

1 (2k)
1J-21.'+1 = 22k k . . (4.9)

This is not hing else but the famous Wallis product, which is known to possess the asym-

ptotic expansion (see [1, # 6.1.49])
1 (2k) 1 ( 1 _, ..)22k k =..;;t:; 1 - 8k + O( k -) for k -+ 00 .

Now we replace k by (m - 1)/2 in equation (4.10). This yields

1 ( m-1 )
2,,,-1 (m - 1)/2 = ~(. 1 ")V ~ 1- 4(m-1) + O(m--)

{f ( 1 ) -1/2 ( I, ')- 1- - 1- - + O( m--)
7rm m 4m

{f (1 ")-- 1+ - + O(m--)
7rm 4m

for m -+ 00.

1J-2k =

Now let m be even, m = 2k ; Lemma 2 implies

_1_ (2k - 1) (2k )k(2k - 2)k-1
22k-1 k (2k - 1)2k-1

_1 (2k) (2k)"(2k - 2)1.-1
221. k (2k - 1)2k-1

(1- *)"-1
(1-.L)2"-12k

1 ( I, )..;;t:;1 - 8k + O(k--)

1 ( 1, ) (1 ., )..;;t:; 1- 8k + O(k--) 1+ 4k + O(k--)

1 ( I, )..;;t:; 1 + 8k + O(k--) for k -+ 00.
(4.11)
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Here we have used twice the asymptotic relation

Putting k = m/2 in (4.11) yields the assertion.

15

o
Obviously, more terms of the asymptotic expansion (4.8) can be worked out easily.

The numerical values of the first ten numbers /-L/Il are given in Table I (see Section5).

5. The equidistant distribution of knots -
In many applications, e.g. in the context of Computer Aided Design by spline-curves

and -surfaces, B-splines with equally spaced knots are of particular interest. It is therefore

natural to ask for the behaviour of their norms; so, let

and

B' (x) .=11/ • (
1

0 l .. ,
Bm _x 1 'f ...

ß", := IIB~/l11 .

l1i-'l

/Il

1 i)

Since B~,(x) = B~n(1 - x) for all x, the norm of this function is attained at x = 1/2.
Hence

1 [(nl-L:-1)/2] (m)
ß B' (1) (1)1' (m 2/l)/Il-1

m = -;/l 2 = (m-l)!2m-1 p-=U - /-L - r- ,
(5.1)

where we have used (3.4) and (3.6). In Table I, we list the first ten values of ßlll and
compare them with thecorresponding "optimal" values /-Ln; ; furthermore, we present

the asymptotic limits (cf. Thms. 3 and 4).

For m ---+ 00 , we obtain the following asymptotic result:

Theorem 4: The sequenceof norms of the equidistant B-splines satisfies the asymptotic

relation f6( 3 - .,)ß", = V~ 1-20m+O(m--) for m -+ 00 . (5.2)
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m J.Lm r;f ß'1l r;frrW ;rm

1 1.00000 0.79788 1.00000 1.38197

2 1.00000 0.56418 1.00000 0.97720

3 0.50000 0.46065 0.75000 0.79788

4 0.44444 0.39384 0.66666 0.69098

5 0.37500 0.35682 0.59895 0.61803

6 0.34560 0.32573 0.55000 0.56418

7 0.31250 0.30157 0.51102 0.52233

8 0.29375 0.28209 0.47936 0.48860

9 0.27343 0.26596 0.45292 0.46065

10 0.26018 0.25231 0.43041 0.43701

Table I
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Proof. We use 5choenberg's integral representation for cardinal B-splines (cf. [11, Theo-

rem 4.33]), which in our case takes the form

B~.(x) = ~ r~ (Sint)I/'eintt(2r-l)dt,
.J-'x' t

and so
F 1 1 ;.,x' (sin t) III

ßIII = Bill (2) = :; -'x' -t- dt . (5.3)

This integral is treated in several places in the literature (see [7J or [10, p. 94]), and there

one can also find the asymptotic expansion (5.2). 0

Interestingly, the values of ßIII (equidistant case) and J.LI/' (minimal case) both tend
to zero with the same order of convergence, and, moreover, the asymptotic constants
only differ by a factor V3. So, the equidistant knot distribution is, from this paper's

point of view, a rather good choice.

6. For which B-splines does the norm tend to zero at all?
M f k (m)

Let us be given, for mEIN, an infinite triangular matrix 0 nots XII , J.L =
0,1, ... km, which satisfy

o = (1/1)Xo < ... < (".)
xk",-l < ' (m)

xk'll 1 ,
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where to every knot X~:") a multiplicity vi,"') is prescribed.

17

We construct to each row of M the corresponding B-spline Bill (x IM). We want to

analyze the question, for which knot matrices M the sequence of narms

{IIB",(.I M)II L,:=I
tends to zero at all. At first, one could think this is the case for "almost all" of them,

i.e. for all B-splines except for the maximal ones given in section 4. But this is not
true at all; for example, consider for arbitrary x E (0,1) and m > 3 the B-spline

Bill (xl ~ "~~"2 ;) '. whose norm was in (4.7) computed to be

hence

(
m - 2 )"'-"2

m - Xl - 1 ( .)

-(11,-"2)
XI - 1

1---
m-2 '

Xl
111.-2

Note that Bill 1S a Cl -function! Another counterexample is given by the C2 -function

whose norm equals 1/2 for all m.

1
2

/Il-:~
;) (m ~ 3),

Having come so far, one hopes that at least all B-splines with simple knots, i.e. km = m
for all mEIN converge to zero. But this is wrong too, which can be seen from the

following example.

Example. Let m 2: 2 and 0 < c; < 1 . We' consider the function

with the inner knots

1+ c;"2'''-~
~I' := 2 ' J1 = 1, ... ,m - 1 .

For X E [O,~d, B;', takes according to (3.4), (3.6) the form

B~t(x)
(_l)/Il

7ll-1

IT( -~II)(-1)
1,=1

/Il-1.x
".•.-1IT (1 + c;"2I')
1,=1
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Since t E [0,~d, it follows that for all m

18

>

1
11i-1

TI (1 + £21')
,,=1

1
'xTI (1+ £2

1
')

,,=1

However, we do not like to elose this paper with aseries of negative examples, and so we
give the following sufficient conditions, under which the B-spline's norms tend to zero as
m goes to infinity. The first one, stated in Theorem 5, says that the linear convergence
of the knot sequence {X~,"')}, as defined in (6.1), implies zero convergence of thenorms.

Theorem 5: Assume that there exist real constants 0 < K, ::; K] 1 such that for

J.t = 1, ... ,m the relation

holds for alt m 2: 3. Then

K,
m

< (:Ii) (rn)
X fl. - X v- I

K2< (6.1 )

(m)
XI

1

(m)
x.m_l

1 i)11
o.

Proof. First assume that m is even and let, for some J.t, 0 ::; J.t ::; m - 1, ~ denote
any point in the interval[x~,tIl), x~,/~i] . Then, using (3.4) and (3.6) again, we obtain

IB (') B ( (1i1»)1 1 (. ('/1»)//1-1
. tn <, - m x" = I .( (m l) I . .~ - x"wfl xfl

< (;JI/I
(

(I.") (1/1)) //1-1. x"+,-x,,.

1 . (Km2.)m-l
((1i,')!)2

where we have used that for all rEIN

o(m-1) for m -+ 00, (6.2)

Tl > exp( -r). TI'
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holds. Since there are precisely m subintervals of this type, and due to Bm (x:/I1)) = 0 ,

inequality (6.2) already proves that

lim Blli(O = 0 for all ~ E [0,1],
}11-'X:,

hence the assertion. If m is odd, the arguments are completely analogous. o

Our final Theorem 6 says that for any fixed m the norm of a B-spline corresponding

to a symmetrical ordering of simple knots decreases, if one moves these knots away from
the center of the interval. Since we already know that the norm of the B-spline with
equidistant knots tends to zero, Theorem 6 implies zero convergence for a rat her big

dass of B-splines (see the corollary).

So, consider now two sets of simple knots

0<~1<"'<~",-1<1 and 0<7][<"'<7]"'-1<1,

such that for all f.L

~,' = 1 - ~fI/-" and TI
"
= 1 - 7]111-11 . (6.3)

Let us define r := [In:! [ ] , and denote the B-splines belonging to the a.bove-defined knot

sequences by
B",(x I~) resp. BI1,(x 17]),

where ~=(6, ... ,~,.) and 'TJ=(7]J, ... ,7],,). Notethatforeven m, m=2k,wehave

1 1
~I, = - and TI" =2 '/ 2

Theorem 6: Assume, for m 23, that there are non-negative real numbers Cl, ... , CI' ,

such that the above-defined knots satisfy

7]" = ~",-cP' f.L=l, ... ,r

(and therefore 7]"'-1
'
= ~m-" + c,, for f.L = 1, ... ,r). Then

(6.4)

In addition, if at least one of the numbers c" is positive, then strict inequality holds

in (6.4).
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Proof. For a symmetrie distribution of simple knots

o < X I < Xl < ... < & < ... < 1- x~ < 1 - X I < 1

20

let us consider the veetor i = (x I, ... ,X r) . For the eorresponding B-spline we will wri te

Bill (x I i) .

Using the representation (3.1) we get

. ~{} BI/l(x I i) = 2x" -1 j' (z - x)"i-l d7
UXv 27l"i. C,. w(z)(z - xv)(z - 1+ xv) -

for v = 1, ... , T , where

w(Z) z(z-xl) ... (z-l+xt}(z-l).

Henee

~{} BI/' (x I i)
UXv

_ 2x,,-1. {}2 B .( 1°.1 ..1 .•• .I'v ••• I-.l'v ••• I-.I'J I).
- m(m+1) {}x2 IIl+2 x 1 I ... 2 •.. 2 ••. 1 I •

(6.5)

In order to prove Theorem 6 we first remark that, due to the symmetry of the knots we

have obviously

IIBm(.I~) 11= B'Il(&!~)

The mean value theorem yields

with some veetor i= (1 - T)~ + TTJ, 0 < T < 1.
We claim that the eomponents of the gradient veetor are all positive, Le.

a (I ~.~ B 1/, ~x) > 0 for v = 1, ... , T .
UXv

(6.7)

To prove (6.7) we use eqn. (6.5) for Sinee the B-spline

B (1° .'.,
m+2x 1 1

.1.'1.' •••

:!.

1-.", .... 1-.1"1

2

is invariant under the transform x ---> 1 - x , its only maximum value is attained at
x = t. The first derivative vanishes. The seeond derivative does not vanish at x = j-
and is henee negative. Beeause of

2x,/ - 1 < 0

we therefore get the desired inequality (6.7) from (6.5). Now equations (6.6) and (6.7)

yield the assertion of Theorem 6. 0
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Corollary: Let the (symmetrically ordered) knots of the B-spline B7lI (x I TI) satisfy

J.L
7]" :S - for J.L = 1, ... , r .

m

Then

z.e. there are two positive numbers cl, Cl, such that

holds.

21

Proof. Follows directly from the combination of( 4.8), (5.2) and Theorem 6. 0

So we have finally seen that there is yet a quite big class of B-splines with zero
convergence of the norms. For example, this is true for the well-known Perfect splines.
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