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1. Introduction
Let be m € IN, m > 1. Furthermore, for k € IV, k < m, let us be given a set of
knots z, € IR, p =0,1,...,k, satisfying

) < 2 < - < Ty

To each knot z, there is associated a natural number v, , called the multiplicity of z,
such that
vy +wn + -+ ve = m+1.

We call a real function f a (polynomial) B-spline of order m, belongiﬁg to the set of
knots {z,} with multiplicities v,, ¢ = 0,1,...,k,ifit possesses the following properties:

1.1t is
f(z)=0 forallz <z¢ and forallz >z,

2. The restriction of f to the subinterval [z,,Z,41), ¢ = 0,...,k -2, and to
[zx_1,z;] belongs to the space Il of polynomials of degree at most m — 1.
3. Itis ’
fe ot (U(z,)

for a suitable neighborhood U(z,) of the knot z,, ¢ =0,1,...,k,
4. It is
+ 1
| @ =

Of course, if v, = m for some p, property # 3. only means that f need not even-be
continuous in z,; in all other cases we deal with a continuous function which implies

that we could write down the second property for closed subintervals as well.

It is well-known (cf. [3,5,11]) that there exists one and only one such function f. We
will denote this B-spline by B,, or, in greater detail, by

B, (a:‘ To @y | z"') .
Furthermore it is not difficult to prove (cf. [3,5,11]) that
B, (m} Lo Ty ocorr :c:, ) > 0 forze (zg,z4)-

Henée the supremum of B,, on [zg,z] is identical with the value of the Chebyshev

norm -

1Bull = sup{|Bu(2)] | o € R}.
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We now consider, for fixed order m , the set 5, of all B-splines of order m with the
normalization

:E():O and 13/.;:1.

In this paper we are interested in the numbers
Am = sup {||Bull | Bm € B}

and
/.L,” = lnf{ H-BH)H l B/H E b)m} .

We call a B-spline B,, € B,, mazimal, if its norm is equal to Am , and minimal, if it

equals i, . It will turn out that these numbers are really attained.

In section 4 we will compute these numbers explicitly and present all B-splines of 5,
with norm \,, resp. with norm u,, . Likewise, in section 5 we will compute the norm
of the B-spline with equidistant knots and study the behavior of all these norms as m
tends to infinity. The final section 6 is devoted to the question, for which types of knot

distributions the norms of the corresponding B-splines tend to zero at all, as m — oo.

Before that, in the next sections we give some results on B-splines with a small number
of knots, and a contour integral representation for B-splines and their derivatives, which

will be our essential tool in proving the results.

2. B-splines for a small number of knots

" In this section we derive, for all m € IV and k = 1 or 2, explicit representations for

the corresponding B-splines as well as for their norms; these results will later turn out

to be important.

Lemma 1: For m € IN we have, with vy + v, =m+1,

m—1 m—v m—v

Bae] 0 1) = {uo_l)w -eyh fro<a<l

won 0 elsewhere.

Furthermore
_1 m — v ni — i Tﬂ—l/ m—iy . :
|12 )] = (m ) (m = wo)"7om — )" (g )
vy N w — 1 (m _ 1)/:
We always adopt for some special cases the usual definition 0" := 1.
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Proof. The representation formula (2.1) is easily verified by checking its properties with
respect to the definition of B, (one could of course as well prove this formula by use of

the B-spline recursion formula (see [2,3,11]), but this is not necessary here).

It remains to prove the validity of (2.2). For v, = 1, vy = m, the maximum value
of B,, (which in this case just reduces to the monomial z”~' in [0,1]) occurs at the
point 1 and is equal to 1. The analogue is true in the case vy = m, v, = 1. For
vy > 1, v1 > 1, however, the maximum value of - B,, occurs in the open interval (0,1)-

at the point
m — Wy

i

£

yieldig the value of the norm given in (2.2). 4 ]

3

m—1

Lemma 2: Let a, denote the minimal norm of all B-splines from B, with no inner

knots, 1.e.
— i 101 _
a, = mln{ HB,”(‘ v vy ) “ vy + v =m+ 1} .
Then . .
me if m 1s odd,
2m=1 \(m—-1)/2
Ay = 1 (m _ 1) mm/‘_’(m _ 2)(m—'2)/‘_’ ) . (23)
—_ if m is even.
2/::—1 m/2 (m _ l)mv—l
Furthermore, for m > 2 this sequence is strongly decreasing, i.e.
Q, > Qpil fO’I‘ m e Nam > 2. (24)

Proof. Tt follows directly from Lemma 1 that
0 1\ _ o o1y
“B‘(' v Vz)” - HB’< 2 1/3)“ =1

for all possible choice_s 6f v, and v . Hence formulae (2.3) are true for m = 1,2, so

assume from now on m > 3.

Let vy increase from 1 to the largest number less than or equal to (m—1)/2, and

replace v| in (2.2) always by m + 1 — 1. We investigate the question for which values

= 1)
Q(V“) - HB”'< I /'1v+1—l'0)
is minimal. Obviously ®(1) = 1. For 1 < 1 < (m+1)/2 we discuss the validity of the

of 1y the expression

inequality
@(VU + 1) < @(UO) . (25)




On the Chebyshev Norm of Polynomial B-Splines 5.

Using the elementary expression given in (2.2), the inequality

Y vo—1 - g m— vy m—uvg—1 (2 6)
vy — 1 m-—yy—1 o

is equivalent to (2.5). The function

; ¢ t—1
t) (= | — telR,t>2
g(t) (t_1> ,teER, 22,

is strictly increasing with ¢. Hence the inequality (2.6) is valid if and only if
vy < m—vuvy, te. vy < m/2

holds. It follows that the minimal value in question is attained for vy = 11 = (m+1)/2

if m is odd, i.e. by the norm of the B-spline
B/n (a:! I?l.Oi‘ !Lijl—_]_ ) .

If m is even, then the minimal value is attained for vy = m/2, »n = (m+ 2)/2,
respectively, by means of symmetry, for v, = (m+2)/2, vy = m/2, and no other cases,

i.e. by the norms of the B-splines

B, (13 ’_g ’_’l%i) resp. B,, (:I}’ mo‘.’ 'r];) ) .
- 5] :

The formulae (2.3) now follow immediately.
We still have to prove the inequality (2.4). It is
, 1 > = > :
5 = Qy = — o = — .
az 373 1=

For odd m,say m = 2r+ 1 with » > 1, we get from (2.3) at once

1 /27 4r(r +1) >"
Qo = Xt 32 <7.> { (4r(7‘ +1)+1 }

For even m,say m = 2r +2 with 7 > 1, we get

1 fer) fort2/ 4r(rtD) 1
ap — Oyl — 2'.’:‘+'.’ r+ 1 2r + 1 4T(T + 1) + 1 ’

since the inequality

2r+2 ( 4r(r+1) \' 27'+2< B r ) - 8r3 4 14rP +8r+2 o1
2r+ 1 \4r(r+1)+1 2r +1 ar(r+1)+1) — 84121 +6r+1

holds. _ O
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Lemma 3: For m > 2 we have

. ne—1
<-’—) fOTOSI<_(E|,

an

0 =z 1 _ m—1
Bnl ((E' 1 -1 1) - (llT_.llT) . :fO'f' Z) S:ES 1,
0 elsewhere.
Furthermore _
‘ 0 A 1 _ '
II'.B”L < ' ’ 1 m-1 1 )H =1.
Proof. Tt is easy to check all properties of this specific B-spline. 0

3. Contour integral representations of B-splines and
their partial derivatives. ' |

We will give now some results concerning the representation of the B-spline B, and
of its partial derivatives with respect to the knots in terms of a complex contour integral.
These results will also be a major tool for the proof of our Theorem 2. For convenience,

we first repeat the well-known contour integral representation of the B-spline itself:

Lemma 4: Let, for z € R, C, denote a simply closed and rectifiable curve in the
complez plahe, such that all the knots z,, 0 =0,...,k, with ¢ < z, and no others
lie in the interior of that curve. ' '

Then, carrying out the integration in the positive sense, we have the representation

0 = ”.vmk—l 1 B -1_ (Z—:l:)m—] &
Bm ((B vo Vi v Vi—l Vi ) - 27['2 Je LU(Z) “ (3~1)
where
w(z) = 20z —z) (2= zo)* T (2 - ) RGN (3.2)
Proof. This result was given in [8], see also [4]. O

In our subsequent considerations, representation (3.1) will mainly serve as a theoretical
tool. However, it should be emphasized that this formula has also important practical
implications, a fact which seems to have been underestimated until now, although (3.1)

is known since twenty years. Therefore we would like to make a few remarks on this

subject first:
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Corollary: Let be z € [z,,z,~1) for some ¢, and define for all p
we(z) == (z—2,)" " - w(z)

with w from (3.2). Then the following representation holds:

o1
0 =z e T 1 . (—1)'“ d"u"l (x_z)m-d)
B., 1 et - . "
' (:1) vg V1 ot V-l Vi ) /Z) (Vu — 1)! dzve—1 w“(z) o (3 3)
1= Sor=ay,

Proof. According to the residue theorem, we obtain from (3.1)

& \
0 zy -+ Ty 1 _ gz_:ﬁ:.l
B (113 vo VI o V-l Vi ) - Z RES::J-“ < (.U(Z)

Since

Ress=1~,, <(z _w?z);hl> = (v .1_ 0Nt :;:“—_ll <(z ;:E)Zl;_l)

(see any textbook on complex analysis), the result follows. O

I=ay,

If we carry out the differentiation in (3.3) explicitly, we see that our B-spline B, is

~ of the form

. L - .
0 Ty . Th—i 1 ) _ ) _ ni—j
B (= o L) = 2 D Aule ) (3.4)

=0 ;=1

with
B, #0 forall u, (3.5)

which so far is a well-known result, see e.g. [11, Theorem 4.14]. But in contrast to
the usual divided-difference approach, the calculation of the 8] ;s via eqn. (3.3)is - for

concrete cases - not very difficult to do. In addition, we have for all p

m+r, —1
/B;w,, = (m— ].)g':‘l)—“i—_ ’ (36)

v, —1 w,(z,)

which sharpens assertion (3.5).



On the Chebyshev Norm of Poiynomial B-Splines -8

Theorem 1: Let be k € IN, k > 2. The multiplicities v, of the knots z,, ¢ =
1,2,...,k —1 may all satisfy v, <m—1. "~ -
Then the B-spline

Bu (:z: 190 ﬁll f’::ll Vlk)
possesses continuous partial derivatives with respect to z and to all the knots

T1,Z2,...,L5_1 n the Cartesian product (0,1) x D, where
D := {21,2:'3,...,:13/\‘_1 I 0<z <" <211 < 1} .

Furthermore we have the representations

0 . 0 zy -+ zp—1 1 " m -1 (Z—:z:)m_") ‘

3_$Bm (13 v v v Veo1 Vi ) - I v/Ci', w(z) dz , (3,7)
and, for p=1,2,..., k-1,

_ m—1
iBm(ac AR B ”‘-’/ =" 4. (38)
C

oz, vo vioccr Vil Vi 2w o, w(z)(z - z,)

Remark. Formula (3.8) should be compared with Theorem 4.27 in [11].

Proof of Theorem 1. The differentiability with repect to z follows from the assumption

v, <m-—1,p=1,...,k—1. Since C, is rectifiable, formula (3.7) is easily derived.

The right hand side of (3.8) possesses a denominator, in which the multiplicity of
each knot is still less than m . Hence this right hand side is continuous in the Cartesian

product (0,1)x D. It obviously represents the partial derivative of B,, with respect to
the knot z, . 0

As an immediate consequence of Theorem 1, we can now prove that the partial de-

rivative of B,, with respect to an inner knot z, can be written in terms of the usual

derivative of an {m + 1)*" order B-spline:

Corollary: Un(fer the assumptions of Theorem 1, the following relation holds:

.iBm(x 0 2, -+ Th_i 1) _

9z, Ty vyt Vel Vi

9 0 =z T, - Tp—r 1
: Bm+1 T =
3:1) vg vy ttT Vg+l AR 7/ | v

v,
m

Proof. This follows easily from equations (3.7) and (3.8). O
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4. B-splines with largest and smallest Chebyshev norm

In this section we want to compute explicitly the numbers A,, and u,, , defined in
the introduction. Let us first consider the elementary cases m = 1,2,3, where the last

one soon will turn out to be typical also for the general case.

For m =1 and m = 2 it follows immediately from Lemma 1 resp. Lemma 3 that
Al = i = 1

“and
Ay = Hry = 1.

Also the case m = 3 can still be treated in an elementary way. For 0 < z; <z < 1 we

verify
2
for0 <z < 24,
)T
—$2(1+$3~I])+2$$2—11$3
0 1 23 1 . for z, <z < .z,
B:3<93]l xll £1‘ l> = 3 (1 —z)za(z2 — 21)
(1-z)’
for z, <z < 1,
(1 -z )(1-22) T T
\ 0 elsewhere.

The maximum value of this B-spiine‘is located at the point

T A
14+ — ’

énd the norm turans out to be

(15 % D = e

[

Hence
A >1 and puy3<1/2.

The remaining cases of double and triple knots are easily analysed using Lemma 1 and
Lemma 3. Here it is also possible to consider the limits for z; - 0 or z; — 1 or
21 — ¢, etc. It turns out that A3 = 1, where this value of the norm is only attained by

the functions
m(23) . mEld )
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and

0 1 .
B;;(:z:ll :7:2| 1) with 0 <y <1.

Analogously we find that w3 = 1/2, where this value is attained ohly by the B-spline

B:}(-’E{g %> B {2:3(1—:1:) foro0<z<1,

0 elsewhere.

We are now dealing with the case of an arbitrary order m.

Theorem 2: Let m be any natural number. Then the following assertions are true:

1. It is
and

where «,, is given in Lemma 2.

2. The mazimum value X,, of the norm is attained by the B-splines

B (|0 L) Ba(e] 0 1) @)
_ and, if m > 2,
| B.. (m 0 = }) with 0 <z <1, (4.2)

and by no others.

The minimum value u,, bf the norm is attained by the B-spline
B-nl (I. ulpj:l llL?lj:l ) ;v i (43)

if m is odd, and by the two B-splines

B,, (av 2 ml'-z ) and B,,,'(:c‘ ﬁ__)_ L,ll ) , (4.4)
T T2 372 .

if m is even, and by no others.
We remark that the assertion A,, = 1 can also be derived easily by using a special case

of the Marsden identity (cf. [9]).
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Proof of Theorem 2. QObviously, we only have to prove the second assertion, since the

first one then follows easily by means of Lemma 1 and Lemma 3.

We proceed by induction and remark that the cases m = 1,2,3 have already been

proved. Hence assume m > 4. Let be k€ IV, k > 2, and consider any fixed B-spline
Bafe] 0 3 ma 1)

vy Vy oo Vet Vg

We claim that under the assumptions of Theorem 1 the gradient vector

_ {8B,, 9B, 0B
d B — - n o DRI -
grad B,, { oz ' Oz, T 0z }

never vanishes on the Cartesian product (0,1) x D. (Here, if & = 2, we assume in

(4.5)

addition v; < m — 2, and treat the remaining case £k = 2, v; = m — 2 separately.)
This assertion says that all these B-splines are neither maximal nor minimal. In order

to prove it we assume to the contrary that there is a point
p = (T,y1,- - Yx=1) € (0,1)x D

such that simultaneously

% = 0 and %'-) =0 for p=1,2,...,k-1
oz /, oz, /,

hold. According to (3.7) and (3.8), the representations

3B,,, . m—1 : (Z_ 7_)m—l
( 3> el / e Ers

and, for p=1,2,...,k—1,
BB,,, ) ~ v, . (Z R T)uz—l &
dz, , 2wt Jo w(2)(z - y,) -

are valid. Here, of course

w(-z) — zuo(z_yl)l/l ...(Z_yk._l)ﬂk—l(z_ 1)Uk .

Our indirect assumption yields that, if 7 does not coincide with one of the knots

Y1,.-.,Yx—1, the linear functional L;, defined on the space of entire functions h by

1 (z - 1) 2h(2)

= - d
Lik 271 Jo-. w*(2) “
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vanishes for all A € T[,_,. If 7 coincides with one of these inner knots, then the linear
functional L., defined on the space of entire functions A by

1 [ (z=7)""th(z) i

-)h = —_—
L 27 S, w*(z)

vanishes for all h € II,_, . Here we have defined
w*(z) = 2"z~ yl)"i‘H sz - yk_l)l/k—ﬂ-l(z — 1)

In order to save certain differentiability properties we assume in the second case k > 2;

~ the remaining case k = 2, T = y; again will be treated separately.

Let us consider the first case now. We choose the entire function hy(z):=(z—7)""";

then

1 ’ - m4+h-=3
Lih = — =m)""
27 oo, w(z)
(4.6)
-1 8 0 Y1 i Yi—1 1 ’
= -—'m-%—k-—- B (a—zB/rl-i—k—l(m'L,:.i P e | u;-) = =0

Since it is well-known (see [11, Thm. 4.57]) that the first derivative of this B-spline
Byk-1 can have only qné root in (0,1) ; the number 7 is uniquely determined by
equation (4.6).

Next we choose hy(z):= (z —7)¥~*; then

g _ m4h—4
Lih, = 1 / (Z__l____dz
JC

ori w=(z)
= _ 1 i‘)_B +A._[<I 0 Yi Yi—-1 1 )
(m+k—2)(m+k—3)\ 0z’ " I L L A
= 0.
But since the first derivative of our B-spline B, 4,—| already vanishes at z = 7, this

cannot hold also for the second derivative, see again [11]. Therefore our assumption leads

to a contradiction, and the original assertion is proved in the first case.

In the second case, i.e. if T coincides with one of the knots y1,...,yx-1, we choose

hs(z) = (z — T)F (= ha(z)) and hy(z):=(z — )"~} to obtain

Lgh;g =0 and L»_)h_; - 0,

which again, up to non-zero factors, can be interpreted as

0 0°
(5; Bm_H.._])I:T: 0 and <%—2‘ B,”_H\._l)ll:r:: 0
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for the same B-spline as before. We get the same contradiction.

Now let us consider the case k =2, 7 = y; . Here we have

1 " z -~ m—wy =2
2713 '(“—T)’_—‘_ dz = 0,
27!"(. - (V'r ZUO(Z - 1)“2 .

where 1, + v» = m — vy . Hence, having 7=y, in mind again,

- -~ m—vy —1
B »(T 0 un 1 ) = —L —————(.' —7) I dz
m vy vV 2712 Je. ;Uo(z _ 1)1@
—_ [0 1
. = Blli—i,] (T' vy v )
and thus A
le. (14 % 2l = 1B 2
e vy V) e =14 l/() Vs
.2/‘1‘”"““1 = anly > Ay 2 fa,

where we have used inequality (2.4) and the induction hypothesis.

B0 7)) wme ]S 0)

I m=2 2 -2

are neither maximal nor minimal. Due to symmetry reasons, we may restrict to the first
one. It can easily be verified that
m—1

T
for0 <z < zy,

1:1112-—'

1 m-=-2 2

0 =z 1 » m-—2 ni=2 m~1
B,, 1 C= m— 1)1 - -1+ = )(1-2
(= J=3 (m-n-2n -t pEDa-mt

(1 — z]»)l”_.—

0 _ elsewhere.

The maximum value of B,, occurs at the point 7 with

(m—?.)(l—:zn)
m—zy — 1

ki

and it follows

(0 2 D = () o

‘Obviously, this function is neither maximal nor minimal.

So, the B-splines which are either maximal or minimal have to be of the type (2.1) or

O

(4.2); these cases have been discussed earlier.

We are now in the position to characterize the asymptotic behaviour of the minimal

_ We still have to show that the B-splines
norms i, , as m goes to infinity.
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Theorem 3: The sequence {u,, } satisfies the asymptotic relation

f = \/an; (1 + 4—1; + Q(m“z)) for m — 0 . (4.8)

Remark. Relation (4.8) implies in particular that
P = -O(m‘l/g) for m — oo .
This has been conjectured for a long time (see [8]), but could not be proved until now.

Proof of Theorem 3. Assume first that m is odd, say m = 2k + 1 with k > 1; then,

according to Lemma 2,
1 (2 49
‘ /J"ll-'—}il - 2'.’/:‘ k . ( . )
This is nothing else but the famous Wallis product, which is known to possess the asym-

ptotic expansion (see [1, # 6.1.49])

L %) - L 1——1-+O(kf")'> for k © (4.10,
25\k/)  Vrk 8k ) or o0 . 10)

Now we replace & by (m — 1)/2 in equation (4.10). This yields

2'_”1-"<<fﬁm—_1;/2> = vr(mz— 1) <1_ 4<m1—1) +O(m—2)>

LA )

== (1 bt O(m"-’))

T™m 4im

for m — o©.

Now let m be even, m = 2k ; Lemma 2 implies

1 <2k - 1) (2k)*(2k — 2)k-1

Ban = 27k—1 L (2k — 1)2k-1
12k (2k)(2k - 2)F!
2%k \ k (2k — 1)2+-1
_ 1 1 -3 (1 B %)k—l
1 1 ) 1 )
et _ - 14+ — k—_
— <1 o T Ok )) + 5+ O ))
_ ! (1 + L + O(k""’)) for k — o0 ' (4.11)
T Vrk 8k ' '
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Here we have used twice the asymptotic relation

(1- %)“'_l = exp((k— 1)log(1l — %))

I

1 3
exp(—l + % + O(k"))

exp(—1) - <1 + —;—k + O(k"—’)) :

Putting k = m/2 in (4.11) yields the assertion. ' O

" Obviously, more terms of the asymptotic expansion (4.8) can be worked out easily.

The numerical values of the first ten numbers u,, are given in Table I (see Section 5).

5. The equidistant distribution of knots .

In many applications, e.g. in the context of Computer Aided Design by spline-curves
and -surfaces, B-splines with equally spaced knots are of particular interest. It is therefore

natural to ask for the behaviour of their norms; so, let
o o L ... 2=t g
SEFPNELE S5 o
and
B = IBL -
Since B, (z) = B.,(1 - z) for all z, the norm of this function .is attained at =z = 1/2.
Hence - '

[(m—1)/2]

b = 80(2) = e 2 () G

p=0

where we have used (3.4) and (3.6). In Table I, we list the first ten values of 3, and
compare them with the corresponding “optimal” values p,, ; furthermore, we present

the asymptotic limits (cf. Thms. 3 and 4).

For m — oo, we obtain the following asymptotic result:

Theorem 4: The sequence -of norms of the equidistant B-splines satisfies the asymptotic

relation

B = 6 (1 3 + O(m'2)> .for m— oo . (5.2)

T™m 20m
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Ham 1::7 B \/%
1.00000 0.79788 1.00000 1.38197
1.00000 0.56418 1.00000 0.97720
0.50000 0.46065 0.75000 0.79788
0.44444 0.39384 0.66666 0.69093
0.37500 0.35682 0.59895 0.61803
0.34560 0.32573 "~ 0.55000 0.56418
0.31250 0.30157 0.51102 0.52233

©0.29375 0.28209 0.47936 0.48860
0.27343 0.26596 0.45292 0.46065
0.26018 0.25231 0.43041 0.43701

8“3‘00'\_103014:-00!\3»—-3

~Table I

Prbof. We use Schoenberg’s integral representation for cardinal B-splines (cf. {11, Theo-

rem 4.33]), which in our case takes the form

1 77 (sint\"” ;.o
B,p“(x) — = / ( ) ezmt(l.r—l) dt ,
T J_ e i

and so

B = B,‘,,(%) - %/_:(Sut”) dt . (5.3)

This integral is treated in several places in the literature (see [7] or [10, p. 94]), and there

one can also find the asymptotic expansion (5.2). 0

Inter'estingly, the values of 3,, (equ_idista.nt case) and p,, (minimal éase) both tend
to zero with the same order of convergence, and, moreover, the asymptotic constants
only differ by a factor V3. So, the equidistant knot distribution is, from this paper’s

point of view, a rather good choice.

6. For which B-splines does the norm tend to zero at all?

Let us be given, for m € IV, an infinite triangular matrix M of knots 2w =

0,1,...k, , which satisfy

0= e <A << A <A =1
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(i )

where to every knot z, ' a multiplicity V,(,_'” is prescribed.

We construct to each row of M the corresponding B-spline B, (z l M). We want to

analyze the question, for which knot matrices M the séquence of norms

{”Bm(' i M)” } ,:;’_—_'l

tends to zero at all. At first, one could think this is the case for “almost all” of them,
i.e. for all B-splines except for the maximal ones given in section 4. But this is not
_true at all; for example, consider for arbitrary z € (0,1) and m > 3 the B-spline

B, (:r 0 @ ) , whose norm was in (4.7) computed to be

1 m-=2 2
m—2 m—2 1 1 _ 1) ~(ni=2)
m-—zx;—1 B m - 2 ’

hence
3 O 1 €y — :
lim ”Bm(-ll 71 2)” = ef17l > 0.

m—mo m-2

Note that B,, is a C!-function! Another counterexample is given by the C* -function

n (o]0 L 1) 2w

m=3 2

whose norm equals 1/2 for all m.

Having come so far, one hopes that at least all B-splines with simple knots, i.e. k,, =m

for all m € IN converge to zero. But this is wrong too, which can be seen from the

following example.

Ezample. Let m>2 and 0<e<1. We consider the function
= — 0 61 {m—l ,1
Bl,(z) = Bm(“”ll 1. 1 1)

with the inner knots

For z € [0,£,), B, takes according to (3.4), (3.6) the form

(_1)111 1 (2:2:)171—1
B:‘n(m) S -z =

I (=&)(-1) [T (1+e")

p=1 n=1
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Since

S

€ [0,&;), it follows that for all m
- « 1
“B"L“ 2 BI“('—I-‘-) = ,”__l
(4 e)

pu=1

1

> ———— =1-¢ > 0.

N

[T(1+e*)

=1

18

However, we do not like to close this paper with a series of negative examples, and so we

give the following sufficient conditions, under which the B-spline’s norms tend to zero as

m goes to infinity. The first one, stated in Theorem 5, says that the linear convergence

of the knot sequence {z\,"’}, as defined in (6.1), implies zero convergence of the norms.

Theorem 5: Assume that there ezist real constants 0 < K, < Ky, such that for

u=1,...,m the relation

51_ < l.(.'li) _ w("”«) < K2
m N u—1 = m
holds for all m > 3. Then
. Jo e 1Y)
,,}‘EX.HB"'« ‘1 L)) = o

(6.1)

Proof. First assume that m is even and let, for some pu, 0 < p <m-—1, § denote

any point in the interval [zi,m),a:(uli)l] . Then, using (3.4) and (3.6) again, we obtain

"; . 1 | ' myymi—1
8@ - Bulelf) = (6= )
|w, (2 3]
1 (m) () m—1
< oy B
p\dp
< m m 1 _.K:_g m(—l
T \K (2 \m
K:‘;n—l (26)/”

K]m ’ mvn—l
where we have used that for all r € IV

r! > exp(-r)-r"

(6.2)
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holds. Since there are precisely m subintervals of this type, and due to B.,n(:r((,'")) =0,
inequality (6.2) already proves that

lim B, (§) = 0 forall £€ [0,1],

N — "
hence the assertion. If m is odd, the arguments are completely analogous. U
Our final Theorem 6 says that for any fixed m the norm of a B-spline corresponding
to a symmetrical ordering of simple knots decreases, if one moves these knots away from
the center of the interval. Since we already know that the norm of the B-spline with

equidistant knots tends to zero, Theorem 6 implies zero convergence for a rather big

class of B-splines (see the corollary).

So, consider now two sets of simple knots
0<é <<€ <1l and O0<7 < - < M-t <1,

such that for all u
E“ = 1- fni—“ and My = 1- /T (63)

Let us define 7 := [2571], and denote the B-splines belonging to the above-defined knot

sequences by
B,(z|&) resp. Bu(z|m),

where £ = (&,...,&) and n=(m,...,n)- Note that for even m, m = 2k, we have
1 1
€L = — d n. = —.
& 5 and 74 5
Theorem 6: Assume, for m > 3, that there are non-negative real numbers €1,...,&,,

such that the above-defined knots satisfy -
Ny = & —€uy B=1,..57
(and therefore Mo = €m—y + €, for p=1,...,7). Then
1B, Il < 1B ] - S (6849)

In addition, if at least one of the numbers €, 15 positive, then strict inequality holds

in (6.4).
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Proof. For a symmetric distribution of simple knots
O<z <am<...<i<...<l-zm<l-z <1
let us consider the vector Z = (z|,...,z,). For the corresponding B-spline we will write
B, (z | z).

Using the representation (3.1) we get

2z, = 1

. a N g (Z—:B)”;—l
——_—B/H = . z
oz, ( | z) 271 /( wiz)(z-z,)(z-142z,)
for v=1,...,r, where
w(z) = Z(z—z) - (z-14+z)(z-1).
Hence
6 —~ . 213,,—1 62 O aq oy, e l—wy, - leuy l'
3:131,3”1(2:'3:) - m(lm_*_l)'%?B'”'F—)(xi]. R 2 e l) .

(6.5)

In order to prove Theorem 6 we first remark that, due to the symmetry of the knots we

have obviously
IBm(- | €)1 = Bu(4]8) and |Bul[n)ll = Buls |n) -

The mean value theorem yields

Bo(3 | 1) - Bu (3 [e) =- < 0 Bu(:|Z), - Z??a:—,B"l(% | 55)).(51,...,57_)1' (6.6)

dz,

with some vector Z = (1-7)§+ 717, 0 <7 <1.
We claim that the component's of the gradient vector are all positive, i.e.

3 | :
—B,(:]1Z) > 0 f =1,...,7. : 6.7
B (1|2 or v 7 (6.7)
To prove (6.7) we use eqn. (6.5) for = = f—, . Since the B-spline
0wy e wn e dmay ot 1oy 1
'-Bm+'l(‘$|l [ B ) - 1 l)

is invariant under the transform & — 1 — z, its only maximum value is attained at

z = L. The first derivative vanishes. The second derivative does not vanish at =z = %

and is hence negative. Because of
2z, -1 < 0

we therefore get the desired inequality (6.7) from (6.5). Now equations (6.6) and (6.7)
0

yield the assertion of Theorem 6.



On the Chebyshev Norm of Polynomial B-Splines 21

Corollary: Let the (symmetrically ordered) knots of the B-spline B, (z | n) satisfy

Nu < % forvp,zl,...,r.

Then L
Hu S I|Bm(|n)“ S ﬂmy

i.e. there are two positive numbers c,ca, such that
aom™ Y < ||Bml- | | < e m~/?
holds.

Proof. Follows directly from the combination of (4.8), (5.2) and Theorem 6. O

So we have finally seen that there is yet a quite big class of B-splines with zero

convergence of the norms. For example, this 1s true for the well-known Perfect splines.
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