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Abstract. Limit theoremsof the type of the law of large numbers and the centrallimit
theorem are established (in the sense of Hida distributions) for the composition of the
Dirac distribution with the stochastic exponential of Brownian motion.

1. Introduction and Background

In [PS 92a, PS 92b] we have provedcertain limit theorems for the composition bxoY(t)
of the Dirac distribution at x E IR with a real-valued process Y(t), t > O. These limit
theorems hold in the sense of Hida distributions and resemble the law of large numbers
and the central limit theorem. Our motivation to study these limits is the attempt to
understand propagation of chaos and the fiuctuation problem for interacting diffusions in
the framework of generalized random variables.

The paper [PS 92a] deals only with one dimensional Gaussian processes Y, while
in [PS 92b] the general case of non-degenerate diffusions Y is treated. The purpose of
the present note is to make the arguments in [PS 92b] more transparent in the simplest
non-trivial example: the stochastic exponential

which is the solution of

Y(t) =: eB(t) := eB(t)-t,

dY(t) = Y(t)dB(t), t > 0,

(1.1)

(1.2)

with Y(O) = 1.
We use the framework of white noise analysis (e.g., [HKP 92, Po 92]) for our discussion.

In particular, we choose (S'(IR), B, J.L) as the under~ying probability space, where S'(IR)
is the Schwartz space of tempered distributions, ~ is the u-algebra generated by the
cylinder sets, and J.L is the centered Gaussian measure whose covariance is determined
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by the inner product (.,.) of L2(lR, dt) (dt denoting Lebesgue measure). vVe denote by
X. : S(lR) - L2(j.L), Xe(w) =< w, ~ >,w E S'(lR), ~ E S(lR), the canonical coordinate
process. It is easy to see that X. has a continuous extension from S'(lR) to L2(lR). In
particular we may form X1[O,t) == B(t), t ~ 0, which is a Brownian motion starting at zero.

It is clear that Donsker's delta function of Brownian motion 8x( B( t)), or more gen-
erally 8x(Z), where Z is a certain random variable, can not be considered as a regular
random variable. However, such expressions make sense as generalized random variables
in various spaces. The two most prominent spaces of generalized random variables are the
Meyer-Watanabe space V* and the space S'(lR) of Hida distributions. (For the construc-
tion, properties and applications of V* we refer to[Me 83, Wa 83]; - for a formulation over
the white noise probability space cf. also [HKP 92]. The space S'(lR) was for example
discussed in [PS 91], and we refer also to [HKP 92].) Here we note that V* C S'(lR). The
LLN that we are aiming at can be discussed in V* and S'(lR), while for the CLT it turns
out that S'(lR) is the suitable space. Therefore we shall consider only S'(lR) here.

It is convenient to study elements ~ in S'(lR) through their S-transform given by

S~(~) := e-tlel~ < ~, e<',e> >, ~E S'(lR),

where -:-denotes complex conjugation, and 1.12 is the norm of L2(IR, dt). Moreover, < .,. >
denotes the canonical dual pairing between S'(lR) and -. The following result has been
shown in [PS 91].

Theorem 1.1. (a) Let ~ E S'(lR) and set F := S~. Then F has a ray entire extension,
i.e., for all "',~ E S(IR), the mapping A f-+ F(", + AO, A E IR, has an entire analytic
extension. Moreover, there exist K1,K2 > O,a,ß E INo, so that for all ~ E S'(IR),z E (1;,

(1.3)

where I . laß is a standard Schwartz space norm. Conversely, if F is a complex-valued
function on S'(IR) which has a ray entire extension, and if there exist K1, K2 > 0,0, ß E
IN 0, so that (1.1) holds for an ~ E S(IR), z E (1;, then there exists a unique ~ E S'(IR) with
S~=F.
(b) . Assume that {Fn, nEIN} is a sequence of functions on S'(JR) which have ray entire
extensions and which are pointwise Cauchy. Suppose furthermore that (1.3) holds for
Fn, nEIN, uniformly in nEIN, and let ~n := S-1 Fn E S'(IR). Then there exists a
unique <P E S(IR), so that ~n - ~ strongly in S'(lR).

('

If we want to apply part (b) of the preceding theorem to control the convergence
of sums of terms like 8x 0 Ym, {Ym, mEIN} being a sequence of independent random
variables, then we need a formula for S(8x 0 Ym). (The fact that 8x 0 Ym E S'(IR) follows
from Watanabe's result in [Wa 89] for non-degenerate Ym E V.) A suitable formula can
be derived by using a standard technique from Malliavin calculus. For the example of this
paper this is carried out in Section 2. In Section 3 we use this formula in order to obtain
the desired LLN and CLT in the sense of Hida distributions.
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2. Computation of an S-Transform

Let I E L2(IR, dt), I=/:- 0, and consider 8x 0 Yf, x > 0, where

It is straightforward to show that Yf belongs to the space D of smooth functions in the
sense of Meyer- Watanabe, and that Yf has a non- degenerate Malliavin covariance matrix.
Thus, by Watanabe's theorem [Wa 83] we have 8x 0 Yf E D* c S'(IR). (A different proof
that 8x 0 Yf E S'(IR) is done by the following computation and Theorem 1.1.a.)
Let 9 E Cl(lR) and denote by Df the Gateaux derivltive in direction f. Then we obtain
from .the chain rule the relation II

I
I

g' 0 Yf = 1112"2yf-
1 Df!J 0 Yf. (2.1)

1£c.p E-, then we obtain the following formula

where we made use of the equation Di = X f - D f for the adjoint Di of D f in £2 (f.L), and
of the product and chain rules for Df. Also, the faft that yf-

1 belongs to V was used.
Now choose c.p =: eXe :, ~ E S(IR). Then I

I

S(g' 0 Yf)(~) = 1112"2 J(g 0 Yf)yf-
1(Xf -+- III~- (j,0): eXe : df.L. (2.2)

Note that in the sense of distributions we have 8x = lx l[x,+oo]. Using this together with
a simple limit argument (cf. [PS 92b] for details) we obtain the following formula:

S(8x 0 Yf)(~) = Ifl2"2 J yf-
1(Xf + Ifl~- (j,~)) : eXe : df.L. (2.3)

Y/~x

Since Yf = exp(X f - t IIID, the last integral is easily feduced to a one-dimensional integral
by projecting ~ onto the subspace in L2(IR, dt) span~ed by I:

Lemma 2.1. Let I E L2(IR, dt), I=/:- 0, x > 0. Then for all ~ E S(IR),

(2.4)
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Remark. Consider the general case where Yf above is replaced by a random variable in
V with non-degenerate Malliavin covariance matrix. Then up to equation (2.3) this case
can be handled in the same way (with a slightly more complicated formula than (2.3)).
However, a reduction to a one-dimensional integrallike in (2.4) seems impossible. On the
other hand, for the LLN and the CLT this is unnecessary, cf. [PS 92bj. Also we note
that from (2.3) - and the corresponding formula for the general case - one obtains an
expression for the S-transform for the composition of a non-degenerate random variable
in V with an arbitrary continuous, polynomially bounded funetion, see [PS 92bj.

3. LLN and CLT

In the classical LLN and CLT one considers sequences of independent random vari-
ables. Although there exist notions of independence for generalized random variables (see,
e.g., [Am 92] and the contribution of S. Amine to these proceedings), we take a more
heuristic standpoint here. Namely, since we work only with the composition of 8x with
a random variable Y, we shall consider for the LLN and CLT compositions of 8x with
independent copies of Y. It is convenient to produce these independent copies of Y on the
same prob ability space. We have shown in [PS 92aJ that for a CLT (in the sense of Hida
distributions) one has to choose appropriate versions of these copies. vVemake the same
choice in the present paper by setting for nE IN, m = 0,1, ... ,n - 1, t E [0,1),

Bn,m(t) := Vii < .,1[!!!. !!!..:I:.!.) >,
n' n

Yn,m(t) := eBn.m(t)-t/2.

It is easy to see that for nEIN, {Bn,m( t), m = 0,1, ... , n-1} and {Yn,m( t), m = 0,1, ... , n-
1} are families of independent copies of B(t), Y(t) respectively.
From Lemma 2.1 we get immediately the following formula.

Lemma 3.1. Let nEIN, m = 0,1, ... ,n - 1, x ~ 0, t E (0,1), and ~ E S(JR). Then
t

t- 2~n (J en.m(S)dS)2

S(8x 0 Yn,m(t))(e) = eIe 0

t

/

00 1 /t -(1- t;J;: J en,m(,,)d,,)u-ft u
2 du.

(u + t - .~ en,m(s)ds)e 0 ~'yn y2~t
In x+!t 0

(3.1)

where en,m(s) = e( mts).
The fact that en,m is uniformly bounded in n and m and the dominated convergence

theorem allow to conclude from (3.1), that S(ux 0 Yn,m(t))(e) converges uniformly in m to
S( 8x 0 Yn,m(t))(O) = JE 8x 0 Yn,m(t) = JE 8x 0 Y(t) as n tends to inflnity. Consequently we
find that as n tends to infinity the S-transform of

(3.2)
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converges to JE bx 0 Y(t). In order to obtain the strongiconvergence of (3.2) to JE(bx 0 Y(t))
we want to apply Theorem 1.1.(b). To this end, we dote that the ray analytic extension
of (3.1) at zero is given by I

t

%- 2:n z2(J €n,rn(S)dS)2
S(bx 0 Yn,m(t))(O = eIe 0

,

J

oo Z Jt -(l-~ J €n,rn(s)ds)u-it u
2 du

(u + t -.;n ~n,m(s)ds)e 0 J2-rrt'
In x+tt 0

where z E <D,~ E S(lR). It is now straightforward to derive the following (rough but
I

sufficient) estimate: !

IS(bx 0 Yn,m(t))(z~)1 ~ (t-1/2 + 1+ jkl~100)ettet;.lzI21€1~.

Clearly this implies that there exist KI(t) > 0 and K2 > 0 so that for all z E <D,~ E S(lR)
and nEIN,

n-l

IS( ~ L bx 0 Yn,m(t))(z~)1 ~ Ki(t)eK2t1z121€1~.
n

m=O :
i

Now we can apply Theorem 1.1.(b) to conclude the following result which resembles the
LLN: :i

!

Theorem 3.1. Let x > O,t > O. Then i
i

1 nL:-I I- 8x 0 Yn m(t}
n "m=O .

converges strongly in S(lR) to JE(8x 0 Y(t)) =< 8x 0 Y(t), 1 > as n tends to infinity.

Using the trivial fact that JE(8x 0 Y(t)) = S(8x 0 Y(t))(O) and Taylor's theorem, we
obtain from (3.1.)

t

S(bx 0 Yn,m(t))(e) -JE(bx 0 Y(t)) = Jnt (J e~,m(s)ds) ~et/2.
o

00

J 1 2 du 1
(u2 + ut - t)e-U-uU -- + O( -),

J2-rrt n
In x+I/2t

(3.3))
_u_..Lu2 due 2t--

J2-rrt'

00

u(t, x) := ~ et/2 J (u2 + ut-
In x+ i,

where the order symbol depends on ~, t, x and m and is uniformly bounded in m. Let us
denote
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Observe that
n-l t

L ~t(J ~n,m(s)ds)
m=o 0

1

is aRiemann approximation to J ~(s)ds, which is the S-transform of B(l) at ~ E S(JR).
o

Therefore, for every ~ E S(JR), x > 0, t > 0, we have that

n-l

S(Jn ~o[8x 0 Yn,m(t) - JE(8x 0 Yn,m(t))])(0 (3.4)

converges to S(O"(t,x)B(l))(~) as n tends to infinity. Similarlyas in the case of the LLN
one finds abound like (1.3) for the ray analytic continuation of (3.4) (we leavethe details to
the interested reader). As a consequence of Theorem 1.1.(b ) we get the following CLT-type
result.

Theorem 3.2. Let x > 0, t > O. Then

converges strongly in S'(JR) to 0"(t,x)B(1), where O"(t,x) is given in (3.3).
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