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Harmonic maps coupled to the Einstein equation

T. Deck* and R. Schimming**

1. Introduction

A map ¢ : M — N between (pseudo-) Riemannian manifolds (M, g) and (IV, k) is called

harmonic if it obeys the Euler-Lagrange equations to the Lagrangian

cl6] = 30" 81,8, his(9)
which is also called the energy density e of ¢. Here and in the following we use standard
tensor notations; in particular ¢fu means 0¢'/0z* and the summation convention for
repeated indices is applied.

In this paper we study the coupling of ¢ to Einstein gravitation in (M, g¢), that means
we investigate the Euler-Lagrange equations to

Llg, ¢] = wR[g] — elg, ¢] ,

where R[g] denotes the scalar curvature to g = g,,dz#dz”, k # 0 is some coupling constant
and e is now taken as a functional of g, too. Variation with respect to ¢ just gives the
harmonic map equation

T[¢] :=tr(Vdé) =0,

where the tension field 7 in local coordinates reads, with Christoffel symbols I':
(8] = 9" Vsl = " (85 — ML, 60 + TG0 - (1.1)

Variation with respect to ¢ gives the Einstein equation
. R .
k(Ric — —2-9) =¢*h—eg. (1.2)

Here Ric is the Ricci tensor of g and ¢*h denotes the pullback of 2 with respect to ¢,
in local coordinates (¢*h)u, = hij$',47,. The righthand side of (1.2) defines the energy
momentum tensor T := ¢*h — eg of the "matter field” ¢. It has been studied in some
papers: T is divergence—free [BaEe] and it obeys the dominant energy condition of general
relativity if g is Lorentzian [ScHi].

Contracting both sides of (1.2) with g gives k(R — (m/2)R) = 2e — me, m := dim(M).
For m > 3 - the case we exclusively consider — it follows xR = 2e and this yields a
remarkable cancellation in (1.2):

kRic = ¢*h . (1.3)
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Throughout the paper the source manifold (M, g) and the target manifold (V, k) are
assumed to be smooth (i.e. C*°) and connected. (N, k) is always assumed to be properly
Riemannian while (M, ¢) can be Lorentzian as well. The latter case is physically motivated:
the gravitational field g is coupled through the Einstein equation (1.2) — or equivalently
(1.3) — to the harmonic map ¢, taken as a matter field. The properly Riemannian case,
actually the major case considered by physicists, e.g. [OmPe,Gh], can be motivated by the
Euclidization procedure of quantum field theory. We take motives from physics, but are
mainly interested in mathematical aspects of the system

kRiclg] = ¢*h, 7[¢]=0. (1.4)

In our approach the target manifold (N, k) is assumed to be given while g and ¢ are two
unknown objects which are coupled by (1.4). Let us present here some selected results of
the paper:

o If (M, g) is a warped product M X f M then we find in several cases that kRic = ¢*h
implies f = const. and that ¢(p,p) must be constant too, with respect to one of both
variables. Notice that many physically relevant exact solutions in general relativity have
the form of a warped product.

e If kRic = ¢*h and additionally VRic = 0 is assumed on a complete, simply connected
manifold (M, g) then (M, g) decomposes into (M; X M2, g1 @ ¢g2) and ¢ is constant on M;.
Moreover the Einstein equation reduces to the one on (Mz,g2). This example provides
an extra motive to study (1.4) for properly Riemannian manifolds, since (M, g) can be
Lorentzian while (M3, g2) is properly Riemannian.

e If  : M — N is an arbitrary diffeomorphism then skRic = ¢*h already implies
the harmonic map equation 7{¢| = 0. This fact has an interesting conclusion: every local
diffeomorphism ¢ from M into (N, h) can be made to a local harmonic map. Namely, for
such a ¢ the Einstein equation kRiclg] = ¢*h always admits a solution g defined on a
neighborhood U C M, thus ¢ harmonically maps (U, ¢g) into (N, h) . '

The paper is organized as follows: In Section 2 we investigate implications from the
Einstein equation kRic = ¢*h; particular attention is devoted to the case VRic = 0. In
Section 3 we mainly study decomposable manifolds M = M; x M3 and apply the Bochner
technique. In the last section we compare our approach to the literature on the subject.




2. Implications from the Einstein equation

Whenever we write kRic = ¢*h we implicitly assume the situation ¢ : (M, g) — (N, h).
Since ¢*h(u,v) = h(dé(u),d¢(v)) we shall sometimes write h(d¢,d¢) instead of ¢*h. Let

us discuss some elementary conclusions from (1.3).

Proposition 2.1 Let kRic = ¢*h. If Ric, taken as a bilinear form, vanishes on an inte-
grable distribution of vector fields on M then ¢ is constant on each leaf of the corresponding

folration of M.

Proof: Let coordinates * on M be adapted to the situation, that means the distribution is
spanned locally by the r first coordinate vectors 4, . . ., 8. By assumption K Ric(9,,0,) = 0
for p,v =1,...,r and kRic = ¢*h implies h(¢ 4, ¢ ,) = 0 for these p,v. Considering that
k is positive definite we find ¢ , =0 for 4 = 1,...,r, so the result follows. [ |

Another useful observation is the following:

Proposition 2.2 If kRic = ¢*h then xRic is nonnegative. Moreover Ric =0 if and only
if ¢ =const., and then R = 0. In case (M,g) is properly Riemannian then R = 0 also
implies that ¢ s constant.

Proof: Only the last claim is not obvious. Notice that 2e = g“”hij¢{y¢fu is positive definite
in the variables d)f#, thus kR = 2e = 0 implies gbf# = 0, so ¢ is constant. [ |

For k > 0 the Proposition 2.2 implies severe restrictions on ¢ in the following cases:

1) If (M, g) is a compact properly Riemannian manifold and Riem[h] < 0 - that means
(N, h) has nonpositive sectional curvature — then the map ¢ is totally geodesic, i.e. Vd¢ = 0,
and has constant energy density e[¢].

2) If (M, g) is a non—compact, complete and properly Riemannian manifold and (N, k)
is compact with Riem[h] < 0, then any harmonic map with total energy Sy el@ldvol < oo
is constant. Here we denoted the Riemannian volume form by dvol.

These and further properties of harmonic maps satisfying Ric[g] > 0 and Riem[h] <0
are discussed in [EeLe|, p. 10-13. :

Proposition 2.3 If ¢ is a totally geodesic map such that kRic = ¢*h then the Ricci tensor
of (M, g) 1s parallel: VRic = 0.

The proof is obvious by the formula
V($*h) = V(h(ds, d8)) = h(Vds,d¢) + h(d$, Vdg) , (2.1)

which follows from the chain rule. Note that V on the left hand side means ordinary
covariant differentiation on (M, g) while the meaning of Vd¢ is given in (1.1).
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By a densely submersive map ¢ : M — N we shall mean a smooth map such that d¢, :
T,M — Ty N is surjective for all p in a dense subset of M.

Proposition 2.4 Let ¢ : M — N be a smooth map. If xRic = ¢*h then 7[¢](p) € Ty(p)V
is orthogonal to d¢(T,M) for every p € M. In particular, if additionally ¢ 13 densely
submersive then ¢ 13 harmonic.

Proof: In view of (2.1), taking the covariant derivative on both sides of kRic = ¢*h yields:

&VuRup = Ypvp + Vppv »

where v,,, := hij(V#qu,,)ﬂp, and we notice the symmetry vy,.,, = 7,.,,“,. From this we find
K(VuRyp+ VuRpy — VoRuv) = 2Vuup = 2hij(vﬂ¢fu)¢{p . (2.2)

Contraction of (2.2) with g#” and application of the Bianchi identity yield the claimed
orthogonality

K(VuRp + VuR,y — R,p) =0=2h(7[¢,¢,) -

In case that d¢, is surjective for p in a dense subset of M this implies T(¢] = 0. [ |

Note that Proposition 2.4 holds for any signature of g. Also the same proof applies for
arbitrary (nondegenerate) signature of h.

Ezample: By Proposition 2.4 it is obvious that the identical map ¢ = id from (M, g) to
(M, h) solves (1.4) if and only if kRic = h. This shows that every manifold (M, g) with a
nondegenerate Ricci tensor provides a solution of our problem.

An alternative proof of Proposition 2.4 runs as follows: kRic = ¢*h is equivalent to (1.2),
and Ric—(R/2)g is divergence—free. From Theorem 2.9 in [BaEe| then follows the assertion.
However, the proof given above is shorter and more direct than the one in [BaEe| and in
addition formula (2.2) allows to draw another conclusion which is a kind of converse of
Proposition 2.3:

Corollary 2.5 Let ¢ be densely submersive and kRic = ¢*h. Then VRic = 0 implies that
¢ s totally geodesic.

Ezample: Assume that kRic = ¢*h holds for an Einstein manifold (M, g), that means
Ric = ¢ - g with some constant c. Then either ¢ = const. (in case ¢ = 0) or kc - g = ¢*h,
that means ¢ is a homothetic map. In the latter case VRic = ¢Vg = 0 and Corollary 2.5
implies that ¢ is also a totally geodesic map.
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DeTurck [DeT] proved for the C* and properly Riemannian case the local solvability of

the equation
Riclg] = K,

with an arbitrarily prescribed, nondegenerate (as a quadratic form) tensor field K. More
precisely, for such a C*-tensor K and for every point p € M there is a neighborhood U(p)
and a positive definite metric g on U(p) such that Ric[g] = K. Let us combine this with
Proposition 2.4:

Corollary 2.6 Let ¢ be a local diffeomorphism from M into (N,h) and p € M. Then
there is an open neighborhood U of p and a properly Riemannian metric g on U such that
é harmonically maps (U, g) into (N, h) .

3. Bochner and other techniques

Let us begin with an example that relates the numerical value of £ > 0 to the smallest
eigenvalue \; of Ric[g] (with respect to g). We apply the following fact given in [EeLe],
p. 16: Let (M, g) be a compact, properly Riemannian manifold and (N, h) be the standard
sphere S™ C R™'. Then any harmonic map ¢ : M — N satisfying 2e < Ay is constant.
Now consider a non—constant harmonic map ¢ : M — S™ which satisfies kRic = ¢*h.
Since Ric > 0 by Proposition 2.2, we have A\; > 0. From xR = 2e we find that 2e < A; is
equivalent to kKR < A;. Since this cannot hold for non—constant ¢ we must have

inf{\(p)lp € M} _

sup{B(p)p ey ")

Notice that o(g) > 0 if A; > 0. Thus we have the following non—existence result:

Proposition 3.1 Let (M, g) be a compact Riemannian manifold with Ay > 0. If 0 < & < ko
there is mo harmonic map ¢ : M — S™ which solves kRic = ¢*h .

For related results, cf. [Ghi,GhVi]. In the following we apply the "Bochner technique” for

a closed (i.e. compact, connected, without boundary) manifold M. Its main ingredients

are the arguments

/Audvol:O , /fdvolea,ndf20:>f=0.
M M




Theorem 3.2 Let (M,g) be properly Riemannian, closed and conformal to a manifold
(M',g') with vanishing scalar curvature. Then xRic = ¢*h implies that ¢ is constant.

Proof: By assumption there exists a smooth function u > 0 on M such that ¢’ is represented
by ¢' =uP - g, p=4/(m —2), and ¢' has vanishing scalar curvature R', that means

m—1
m— 2

0=umR —uR+4 U,

see [Bes|, p. 59. Integration over M yields

/ uRdvol =0 .
M

From R > 0 and u > 0 we conclude that R = 0, so ¢ is constant by Proposition 2.2. R

Proposition 2.3 states: if ¢ is a totally geodesic map then VRic = 0. For such a map -
in the properly Riemannian case — a factorisation ¢ = f o v holds, see [Vil], and if M is
closed and simply connected, M decomposes into M; x M,. We shall prove that already
the condition VRic = 0 is sufficient for M to decompose. For preparation we need the
following result.

Proposition 3.3 Let g and ¢ solve (1.4). If VRic = 0 then for each p € M the subspace
ker(dg,) C Tp M 1s invariant under the holonomy group at p € M.

Proof: It suffices to show that a vector e, € ker(d¢,) is mapped to a vector e4 € ker(dg,)
under parallel transport along an arbitrary smooth curve ¢ : [0,1] — M from p to g. Let
e: be the image of e, under parallel transport at the point ¢(t). Then

d d .
Eh(dgb(@),d(ﬁ(et)) = Zﬁmch(et, et)
= k(Vie) Ric)(es, er) + 26Ric(Vypyer,e0) =0,

i.e. h(dd(e:),d¢(es)) does not depend on t. Since this function vanishes at ¢ = 0 and A is
positive definite it follows d@(e;) = d@(eq) = 0. |

The de Rham decomposition theorem for complete, simply connected pseudo-Riemannian
manifolds (M, g) states (see [Wu]): Let V be a nondegenerate subspace of T, M (that means
V # {0} and g|v is regular) which is invariant under the holonomy group at p. Then (M, g)
is isometrically isomorphic (denoted by =) to (M; x Mz, g1 @ g2). This leads to




Theorem 3.4 Let (M,g) be complete and simply connected. Assume kRic = ¢*h and
VRic = 0. If ker(d¢,) C T, M is nondegenerate then (M, g) = (M) x Mz, g1Dg2). Moreover
there is a splitting ¢ = ® o of ¢ into m : My x My — My, the (harmonic) projection, and
a harmonic tmmersion ® : My — N.

Proof: The decomposition of (M, g) follows from the de Rham theorem and Proposition
3.3. The only thing to observe is that, in our situation, M; corresponds to the leaves of the
foliation defined by the holonomy-invariant distribution, i.e. by ker(d¢). Thus ¢ is constant
on the set My x {m.} for any my € M>, hence ®(m3) := ¢(m1, m3) is a well defined smooth
function on M, if we fix some m; € M;. Therefore ¢ = ® o . The harmonicity assertions
are easily verified. [ ]

Next we shall study (1.4) under the assumption that (M, ¢) is a warped product manifold.
Note that most of the cosmological models are warped products. Also in the mathematical
literature it is wide—spread to study warped products as the next step after the study of
direct Riemannian products. For the basic facts about warped products, and also for their
relevance in physics, we refer to [O’Ne].

A Warped product is a manifold M = M x M equipped with a metric ¢ = § ©f §,
denoted M X f M, where f : M — IR is strictly positive. In the tangent space T, M with

base point p = (p,p) € M x M the metric g is defined by
g((2, %), (9,9)) = §(d,9) + f*(8)3(4, 7))

where (4,%),(0,0) € T,M = T; M & T;M. Since T, M is a direct sum it is convenient to
define d¢ := d¢|,,; and d¢ = d¢| ;- With this notation and with the decomposition of
the Ricci tensor on a warped product, as given e.g. in [O’Ne], (1.3) splits into three parts:

k(Ric — mf ' Vdf) = h(d¢,ds) , (3.1a)
0 = h(ds,ds) , (3.1b)
2—m 3 . .
x(Ric — g A(f™)) = h(do,ds) . (3.1¢)

Note that Vdf has the components @ b, f = fuv — f‘wfp for v =1,...,m. If M is
an ordinary product (i.e. f = 1) it seems at first sight that one obtains two mdependent
Einstein equations, one on M and one on M. But this is not true because (3.1b) means
that the tangent mapping of ¢ along M must map into the orthogonal space of the tangent
mapping of ¢ along M. In general it is therefore not possible to extend a solution given on
(M, §) in a non-trivial way to (M, §) x (M, §):

-




Proposition 3.5 Let (M, g) = (M X M,§ @5 §). Assume that ¢(p,-) 18 a submersion for
each p € M and kRic = ¢*h. Then &(-,p) is constant for each p € M.

Proof: We evaluate (3.1b) on an arbitrary pair of basis vectors 3 €T; M and d, € T; M:
hd,4,0,4) = 0. Since {0,¢| v = m +1,...,m + m} spans Ty; N and h is regular it
follows that 3,@ =0forall p=1,...,m, Wthh means d¢ = 0 at each p € M. [ |

Let us derive a formula from (3.1a) by contraction with § and by multiplication with f:

kfR — mAf =2fé (3.2)
where & = 1§#¥¢',¢7, hij. Analogously it follows from (3.1c):
kfP 2R — kAf™ = 2™ % | (3.3)

with é = %g“"¢f“¢’jyh,~j. The total energy density is given by e = é + f2é.

Proposition 3.6 Assume that (M,ﬁ) i3 a closed and properly Riemannian manifold, and
let (M,9)= (M x M,§®y¢§G). Then kRic = ¢*h implies

n/ fRdvol >0 .
M
This integral vanishes if and only if f is constant and ¢ s constant on each lea,fM x {p}.

Proof: We integrate (3.2) over M and obtain

/fRdvol /2efdvol>0

The last integral only vanishes for é = 0, i.e. for d¢ = 0, so that #(-,p) is constant. But
then é(-,p) is constant, so (3.3) yields that

Afm
w frn—2
is constant on M x {p}. Since the lefthand side depends only on p this means that it is

actually a constant c¢. Integrating the equality K,Afm = ¢f™~2 over M finally yields ¢ = 0,
hence f is constant. n

= kR — 2¢

Ezample: The one-dimensional closed manifold M = S is flat, that means R = 0. Thus
a solution of kRic = ¢*h on S! X s M can only exist for f = const., and then ¢(-, ) must
be constant, too.

By the same type of arguments we now derive properties of Ric and R; but here we must
- assume that § is definite, because only in this case we can conclude é > 0 or € < 0.
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Theorem 3.7 Let § and €§ for e = 1 or —1 be properly Riemannian and let M X f M have
a closed first factor. Then kRic = ¢*h implies

1) xRic > 0. If kRic is zndeﬁmte at some point p € M then f is constant.

2) kRe > 0. Moreover, kR =0 if and only if f and ¢(p,-) are constant for all p € M.

Proof: 1) Multiplication of (3.1c) with f™~? gives

kf™?Ric — —gAf™ = f™"h(d¢,dg) . (3.4)

Sl?i

We evaluate this on a fixed vector 95 and integrate over M:
kRic(5s, 05) / ™ 2dvol = / PP h(de(55), dd(5))dwol . (3.5)
M M

From this we read off kRic > 0. If there is a point 93 € TM such that Ric(95,75) = 0 then
(3.5) implies dé(93) = 0. Evaluation of (3.4) at 05 gives Af™ =0, so f is constant.
2) Integration of (3.3) over M yields

RR/_ ™ =2dyol = / 26 f™ 2 dvol (3.6)
M M

which gives eR > 0 as well as R=0 <= &=0. Hence R = 0 implies d¢ = 0, so ¢(p,") is
constant and (3.3) then implies Af™ =0, ie. f is constant.
That f = const. and ¢(p,-) = const. imply R = 0 is obvious by (3.3). |

Note that K Ric > 0 holds for any signature of § because the condition €§ > 0 is not needed
for this part of the proof. Note also that (3.6) provides an interpretation for R similar to
the general equality xR = 2e: The rm~form

f’h_2c2vol
[y f~2dvol

w =

defines a normed measure on M and xR is the mean value of 2¢é with respect to it:

kR = f 28w.

We finally give an example for Proposition 3.6 which is similar to the foregoing one.

Ezample: Let the product M x M of a closed space manifold M and a time axis M C R
be equipped with the static metric ¢ = § @y (— dt?). Then R = 0. Thus a solution of
xRic = ¢*h can only exist if f is constant, and then ¢ does not depend on ¢.




4. Discussion

For fixed ¢ the field equation kRic[g] = ¢*h for g is highly nonlinear, while for fixed g¢
the field equation 7{#] = 0 for ¢ is semilinear. The coupling between g and ¢ is nonlinear
too. More precisely, g enters tr(Vd$) = 0 by the so—called minimal coupling, that means
through the Christoffel symbols in the covariant derivatives, while ¢ enters k Ric = ¢*h as
a matter source, that means through the right hand side ¢*h.

The validity of the Einstein equation imposes conditions on ¢ and conditions on ¢.
For instance, xRic has to be positive semi-definite (a condition on g¢) and A(7,d¢) = 0
(a condition on ¢). More generally, imposing a condition on the source manifold (M, g)
implies — by the coupling — a condition on ¢ and vice versa. We have seen that mild
conditions on (M, g) or ¢ imply stronger conditions on these objects if (1.4) is satisfied.

Note that in general relativity theory the problem to find necessary and/or sufficient
conditions on (M, g) to satisfy the Einstein equation

k(Ric — —I—z—g) =T

2 .
for an unspecified matter field of some given type is called ”geometrodynamics”. A part of
our results can be interpreted in this way. A complete solution for the geometrodynamical
problem for harmonic maps is not yet available.

A harmonic map coupled to Einstein gravitation has repeatedly been studied in the
literature; let us cite [AFF,AuSa,Gh,GhCo,GhVi,GMZ1,GMZ2,IV1,IV2,0mPe,ScHi,Vis|.
The authors, motivated by physical considerations, mainly discuss the following points:

e The field equations, sometimes extended by a ”cosmological term”, and elementary
properties of that system.

e The size of k as compared to other quantities, e.g. the cosmological constant.

e The relation between Killing vector fields of (M, g) and symmetries of ¢.

e Solutions ¢ which are submersions and their application in the realm of Kaluza-Klein
theory. In particular, the so—called ”compactification induced by the matter field ¢” 1s

a major subject. ‘

e Construction of special solutions. Typically, the authors take a known class of gravi-

tational fields (e.g. plane-symmetric, cosmological models,...) and try to complete a

given g from this class by some ¢ to obtain a solution (g, ¢#) of the coupled equations.

Note that physicists often prefer the name ”sigma models” for harmonic maps. But, in a
narrower sense, a sigma model has a homogeneous target space, that means N = G/H,
where G is some Lie group, H is some Lie subgroup and A is a left-invariant metric on N.

Our approach differs from the quoted papers: we study the system from the mathemat-
ical point of view and without the assumption that (N, k) is a homogeneous space. There
are enough open problems, physical and mathematical ones, which make harmonic maps
coupled to Einstein gravitation a subject for further research.
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