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Harmonie maps eoupled to the Einstein equation

T. Deck* and R. Schimming**

1. Introduction

A map cjY: M ---+ N between (pseudo-) Riemannian manifolds (M, g) and (N, h) is called
harmonie if it obeys the Euler-Lagrange equations to the Lagrangian

which is also called the energy density e of cjY.Here and in the following we use standard
tensor notations; in particular cjY:J.lmeans 8cjYi /8xJ.l and the summation convention for
repeated indices is applied.

In this paper we study the coupling of cjYto Einstein gravitation in (M, g), that means
we investigate the Euler-Lagrange equations to

L[g, cjY]= ~R[g] - e[g, cjY],

where R[g] denotes the scalar curvature to 9 = gJ.l/ldxJ.ldx/l, ~ =1= 0 is some coupling constant
and e is now taken as a funetional of g, too. Variation with respeet to cjYjust gives the
harmonie map equation

r[cjY] := tr(V'dcjY) = 0 ,

where the tension field r in local coordinates reads, with Christoffel symbols r:

Variation with respect to 9 gives the Einstein equation

~(Ric - ~ g) = cjY*h - eg .

(1.1)

(1.2)

Here Ric is the Ricci tensor of 9 and cjY*h denotes the pullback of h with respeet to cjY,
in loeal coordinates (cjY*h)J.l/l = hijcjY:J.lcjY!/I' The righthand side of (1.2) defines the energy
momentum tensor T := cjY*h - eg of the "matter field" cjY. It has been studied in some
papers: T is divergenee-free [BaEe] and it obeys the dominant energy condition of general
relativity if 9 is Lorentzian [ScHi].

Contraeting both sides of (1.2) with 9 gives ~(R - (m/2)R) = 2e - me, m := dim(M).
For m ;::::3 - the case we exclusively consider - it follows ~R = 2e and this yields a
remarkable cancellation in (1.2):

~Ric = cjY*h . (1.3)
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Throughout the paper the source manifold (M,9) and the target manifold (N, h) are
assumed to be smooth (i.e. COO) and connected. (N, h) is always assumed to be properly
Riemannian while (M, 9) can be Lorentzian as weIl. The latter case is physically motivated:
the gravitational field 9 is coupled through the Einstein equation (1.2) - or equivalently
(1.3) - to the harmonie map ifJ, taken as a matter field. The properly Riemannian case,
actually the major case considered by physicists, e.g. (OmPe,Gh]' can be motivated by the
Euclidization procedure of quantum field theory. We take motives from physics, but are
mainly interested in mathematical aspects of the system

KRic(9] = ifJ* h, r(ifJ] = 0 . (1.4)

In our approach the target manifold (N, h) is assumed to be given while 9 and ifJ are two
unknown objects which are coupled by (1.4). Let us present here some selected results of
the paper:

• If (M, 9) is a warped product M x fM then we find in several cases that KRic = ifJ* h
implies f = const. and that ifJ(ß, p) must be constant too, with respect to one of both
variables. Notice that many physically relevant exact solutions in general relativity have
the form of a warped product .

• If KRic = ifJ* hand additionally "VRic = 0 is assumed on a complete, simply connected
manifold (M, 9) then (M, 9) decomposes into (MI x M2, 91 EB 92) and ifJ is constant on MI'
Moreover the Einstein equation reduces to the one on (M2, 92)' This example provides
an extra motive to study (1.4) for properlY Riemannian manifolds, since (M, 9) can be
Lorentzian while (M2, 92) is properly Riemannian .

• If ifJ : M --* N is an arbitrary diffeomorphism then KRic = ifJ* halready implies
the harmonie map equation r(ifJ] = O. This fact has an interesting conc1usion: every local
diffeomorphism ifJ from M into (N, h) can be made to a local harmonie map. Namely, for
such a ifJ the Einstein equation KRic[9] = ifJ* h always admits a solution 9 defined on a
neighborhood U C M, thus ifJ harmonically maps (U, 9) into (N, h) .

The paper is organized as 'follows: In Section 2 we investigate implications from the
Einstein equation KRic = ifJ* h; particular attention is devoted to the case "V Ric = O. In
Section 3 we mainly study decomposable manifolds M = MI X M2 and apply the Bochner
technique. In the last section we compare our approach to the literature on the subject.
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2. Implications from the Einstein equation

Whenever we write K,Ric = cP*h we implicitly assurne the situation cP : (M,g) ----jo (N,h).
Since cP*h(u,v) = h(dcP(u),dcP(v)) we shall sometimes write h(dcP,dcP) instead of cP*h. Let
us discuss some elementary conclusions from (1.3).

Proposition 2.1 Let K,Ric = cP*h. If Ric, taken as abilinear form, vanishes on an inte-
grable distribution of vector fields on M then cPis constant on each leaf of the corresponding
foliation of M.

Proof: Let coordinates xJ.Lon M be adapted to the situation, that means the distribution is
spanned locally by the r first coordinate veetors 81, ... , 8r. By assumption K,Ric( 8J.L,8v) = 0
for fL, 11= 1, ... , rand K,Ric = cP*h implies h( cP,J.L'cP,v) = 0 for these fL, 11. Considering that
h is positive definite we find cP,J.L= 0 for fL = 1, ... , r, so the result follows. •

Another useful observation is the following:

Proposition 2.2 If K,Ric = cP*h then K,Ric is nonnegative. M oreover Ric = 0 if and only
if cP =const., and then R = O. In case (M, g) is properly Riemannian then R = 0 also
implies that cP is constant.

Proof: Only the last claim is not obvious. Notice that 2e = gJ.LVhijcP!vcP:J.Lis positive definite
in the variables 4J:J.L'thus K,R = 2e = 0 implies cP:J.L= 0, so cPis constant. •

For K, > 0 the Proposition 2.2 implies severe restrietions on 4J in the following eases:
1) If (lVI, g) is a compaet properly Riemannian manifold and Riem[h] :s; 0 - that means

(N, h) has nonpositive seetional eurvature - then the map cPis totally geodesie, i.e. \ldcP = 0,
and has eonstant energy density e[cP].
2) If (M,g) is a non-eompaet, eomplete and properly Riemannian manifold and (N, h)

is compaet with Riem[h] :s; 0, then any harmonie map with total energy JM e[cP]dvol < 00

is eonstant. Here we denoted the Riemannian volume form by dvol.
These and further properties of harmonie maps satisfying Ric[g] 2: 0 and Riem[h] :s; 0

are diseussed in [EeLe]' p. 10-13.

Proposition 2.3 If cP is a totally geodesic map such that K,Ric = cP*h then the Ricci tensor
of (M,g) is parallel: \lRic = O.

The proof is obvious by the formula

\l(cP*h) = \l(h(dcP,dcP)) = h(\ldcP,dcP) + h(dcP, \ldcP), (2.1)

whieh follows from the ehain rule. Note that \l on the left hand side means ordinary
eovariant differentiation on (M,g) while the meaning of \ldcP is given in (1.1).
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By a densely submersive map 4> : M -+ N we shall mean a smooth map such that d4>p :
TpM -+ Tcf>(p)N is surjeetive for all p in a dense sub set of M.

Proposition 2.4 Let 4> : M -+ N be a smooth map. If /'i,Ric = 4>* h then T[ 4>](p) E Tcf>(p)N
is orthogonal to d4>(TpM) for every p E M. In partieular, if additionally 4> is densely
submersive then 4> is harmonie.

Proof: In view of (2.1), taking the covariant derivative on both sides of /'i,Ric = 4>* h yields:

where I/-LVP:= hijCV/-L4>:v)4>~p,and we notice the symmetry I/-LVP= IV/-LP'From this we find

(2.2)

Contraetion of (2.2) with g/-LV and application of the Bianchi identity yield the claimed
orthogonali ty

In case that d4>p is surjeetive for p in a dense subset of M this implies T[ 4>] = o. •

Note that Proposition 2.4 holds for any signature of g. Also the same proof applies for
arbitrary (nondegenerate) signature of h.

Example: By Proposition 2.4 it is obvious that the identical map 4> = id from (M, g) to
(i\1,h) solves (1.4) if and only if /'i,Ric = h. This shows that every manifold (M,g) with a
nondegenerate Ricci tensor provides a solution of our problem.

An alternative proof of Proposition 2.4 runs as follows: /'i,Ric = 4>* h is equivalent to (1.2),
and Ric-(Rj2)g is divergence-free. From Theorem 2.9 in [BaEe] then follows the assertion.
However, the proof given above is shorter and more direet than the one in [BaEe] and in
addition formula (2.2) allows to draw another conclusion which is a kind of converse of
Proposition 2.3:

Corollary 2.5 Let 4> be densely submersive and /'i,Ric = 4>* h. Then \7Ric = 0 implies that
ep is totally geodesic.

Example: Assurne that /'i,Ric = 4>* h holds for an Einstein manifold (M, g), that means
Ric = c . g with some constant c. Then either 4> = const. (in case c = 0) or /'i,C • g = 4>* h,
that means 4> is a homothetic map. In the latter case \7Ric = c\7g = 0 and Corollary 2.5
implies that 4> is also a totally geodesic map.
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DeTurck [DeTj proved for the C= and properly Riemannian case the local solvability of
the equation

Ric[gj = K ,

with an arbitrarily prescribed, nondegenerate (as a quadratic form) tensor field K. More
precisely, for such a C=-tensor K and for every point pE M there is a neighborhood U(p)
and a positive definite metric g on U(p) such that Ric[gj = K. Let us eombine this with
Proposition 2.4:

Corollary 2.6 Let 4> be a loeal dijJeomorphism from M into (N, h) and p E M. Then
there is an open neighborhood U of p and a properly Riemannian metrie g on U sueh that
4> harmonieally maps (U,g) into (N,h).

3. Bochner and other techniques

Let us begin with an example that relates the numerieal value of K > 0 to the smallest
eigenvalue Al of Ric[gj (with respeet to g). We apply the following faet given in [EeLeJ,
p. 16: Let (M, g) be a eompaet, properly Riemannian manifold and (N, h) be the standard
sphere sn C JRn+1. Then any harmonie map 4> : M -+ N satisfying 2e ::;Al is eonstant.
Now eonsider a non-eonstant harmonie map 4> : M -+ sn whieh satisfies KRic = 4>* h.

Since Ric 2: 0 by Proposition 2.2, we have Al 2: O.From KR = 2e we find that 2e ::; Al is
equivalent to KR ::; Al' Sinee this eannot hold for non-eonstant 4> we must have

inf{A1(p)lp E M} _. ()
K > sup{R(p)lp E M} -. KO g .

Notiee that Ko(g) > 0 if Al > O.Thus we have the following non-existenee result:

Proposition 3.1 Let (M, g) be a eompaet Riemannian manifold with Al > O. 1f 0 < K ::; KO

there is no harmonie map 4> : M -+ sn whieh solves KRic = 4>* h .

For related results, ef. [Ghi,GhVij. In the following we apply the "Boehner teehnique" far
a closed (i.e. eompact, conneeted, without boundary) manifold M. Its main ingredients
are the arguments

1M f:!..udvol = 0 1M f dvol = 0 and f 2: 0 =* f = 0 .

5



Theorem 3.2 Let (M, g) be properly Riemannian, closed and conformal to a manifold
(M', g') with vanishing scalar curvature. Then KRic = cfy*h implies that cfy isconstant.

Proof: By assumption there exists a smooth function u > 0 on M such that g' is represented
by g' = uP • g, P = 4/(m - 2), and g' has vanishing scalar curvature R', that means

~ , m-1
0= um-2R = uR + 4--~um-2 '

see [Bes], p. 59. Integration over M yields

1M uRdvol = 0 .

From R ~ 0 and u > 0 we conclude that R = 0, so cfy is constant by Proposition 2.2. •

Proposition 2.3 states: if cfy is a totally geodesic map then 'V'Ric = O. For such a map -
in the properly Riemannian case - a factorisation cfy = f 0 I holds, see [ViI], and if M is
closed and simply connected, M decomposes into MI X M2• We shall prove that already
the condition 'V'Ric = 0 is sufficient for M to decompose. For preparation we need the
following resul t.

Proposition 3.3 Let 9 and cfy solve (1.4). 1f 'V'Ric = 0 then for each p E M the subspace . I

ker(dcfyp) C TpM is invariant under the holonomy group at pE M.

Proof: It suffices to show that a vector ep E ker( dcfyp) is mapped to a vector eq E ker( dcfyq)
under parallel transport along an arbitrary smooth curve c : [0,1] ---7 M from p to q. Let
et be the image of ep under parallel transport at the point c(t). Then

d d
dt h(dcfy(et), dcfy(et)) = dt KRic(et, et)

= K('V'c(t)Ric)(et, et) + 2KRic('V'c(t)et, et) = 0 ,

i.e. h(dcfy(et),dcfy(et)) does not depend on t. Since this function vanishes at t = 0 and h is
positive definite it follows dcfy(eI) = dcfy(eq) = O. •

The de Rham deeomposition theorem for eomplete, simply eonnected pseudo-Riemannian
manifolds (M, g) states (see [Wul): Let V be a nondegenerate subspaee of TpM (that means
V =f:. {O}and 9 Iv is regular) whieh is invariant under the holonomy group at p. Then (M, g)
is isometrieally isomorphie (denoted by ~) to (MI X M2, gI E:B g2)' This leads to
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Theorem 3.4 Let (M, g) be eomplete and simply eonneeted. Assume K,Ric = 4>* hand
'VRic = O. 1/ ker( d4>p)C TpM is nondegenerate then (M, g) '" (MI X Mz, gl ffigz). Moreover
there is a splitting 4> = ep 0 1r 0/ 4> into 1r : MI X Mz ~ Mz, the (harmonie) projeetion, and
a harmonie immersion ep : Mz ~ N.

Proof: The decomposition of (M, g) follows from the de Rham theorem and Proposition
3.3. The only thing to observe is that, in our situation, MI corresponds to the leaves of the
foliation defined by the holonomy-invariant distribution, i.e. by ker( d4». Thus 4> is constant
on the set MI x {mz} for any mz E Mz, hence ep(mz) := 4>(ml, mz) is a weIl defined smooth
function on Mz if we fix some ml E MI' Therefore 4> = ep 0 1r. The harmonicity assertions
are easily verified. •

Next we shall study (1.4) under the assumption that (M, g) is a warped produet manifold.
Note that most of the cosmological models are warped products. Also in the mathematical
literature it is wide-spread to study warped products as the next step after the study of
direct Riemannian products. For the basic facts about warped products, and also for their
relevance in physics, we refer to [O'Ne].

A warped product is a manifold M = M x M equipped with a metric 9 = 9 ffif g,
denoted M x f M, where f :M ~ IR is strictly positive. In the tangent space TpM with
base point p = (ß,p) E M x M the metric 9 is defined by

g((u,u),(v,v)) = g(u,v) + fZ(ß)g(u,v))

where (u,u),(v,v) E TpM = TpM EB TpM. Since TpM is a direct sum it is convenient to
define d</> := d</>ITM and d</>:= d</>ITIW' With this notation and with the decomposition of
the Ricci tensor on a warped product, as given e.g. in [O'Ne]' (1.3) splits into three parts:

K,(Ric - mf-l ~df) = h( d</>,d</» ,
0= h(d</>, d</» ,

_ P-ih A. __

K,(Ric - g-_ -ß(fm)) = h(d4>, d</» .
m

(3.1a)
(3.1b)

(3.1c)

Note that ~df has the components ~Jlavf = f,Jlv - f'~vf,p for J.l, v = 1, ... ,m. If M is
an ordinary produet (i.e. f = 1) it seems at first sight that one obtains two independent
Einstein equations, one on M and one on M. But this is not true because (3.1b) means
that the tangent mapping of </> along M must map into the orthogonal space of the tangent
mapping of </> along M. In general it is therefore not possible to extend a solution given on
(M, g) in a non-trivial way to (M, g) x (M, g):
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Proposition 3.5 Let (M, g) = Ci! x M, 9 ffif g). Assume that </>(ß,.) is a submersion for
each ß E M and KRic = </>*h. Then </>e p) is constant for each p E M.

Proof: We evaluate (3.1b) on an arbitrary pair of basis vectors fJp.E TpM and ßv E TpM:
h(fJp.</>,ßv</»= O. Since {ßv</>Iv = m + 1, ... ,m + rh} spans T</>(p)Nand h is regular it
follows that fJp.</>= 0 for all J.l = 1, ... ,m, which means d</>= 0 at each ß E M. •

Let us derive a formula from (3.1a) by contraction with 9 and by multiplication with j:

KjR - rhJif = 2je ,

where e = ~gp.v</>:p.</>!vhij.Analogously it follows from (3.1c):

Kfih-2 R - KAjih = 2jih-2e ,
with e = ~gp.v</>:p.</>!vhij.The total energy density is given by e = e + j2e.

(3.2)

(3.3)

Proposition 3.6 Assume that (M, g) is a closed and properly Riemannian manifold, and
let (M,g) = (M x M,g ffij g). Then KRic = </>*himplies

K 1M fRdvol2: 0 .

This integral vanishes if and only ij j is constant and </> is constant on each leaj M x {P}.

Proof: We integrate (3.2) over M and obtain

K 1M jRdvol = 1M 2ejdvol 2: 0 .

The last integral only vanishes for e = 0, i.e. for d</>= 0, so that </>ep) is constant. But
then eep) is constant, so (3.3) yields that

Ajih _ _
K jih-2 = KR - 2e

is constant on .J"Vf x {P}. Since the lefthand side depends only on ß this means that it is
actually a constant c. Integrating the equality KAjih = cjih-2 over M finally yields c = 0,
hence j is constant. •

Example: The one-dimensional closed manifold M = SI is flat, that means R = O. Thus
a solution of KRic = </>*hon SI Xj M can only exist for j = const., and then </>ep) must
be constant, too.

By the same type of arguments we now derive properties of Ric and R; but here we must
assurne that 9 is definite, because only in this case we can conclude e 2: 0 or e ::; O.
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Theorem 3.7 Let 9 and Eg for E = 1or -1 be properly Riemannian and let At x fM have
a closed first faetor. Then KRic = 4>* h implies

1) KRic ~ O. 1f KRic is indefinite at some point p E M then f is eonstant.
2) KRE ~ O. Moreover, KR = 0 if and only if fand <IJ(p,') are eonstant for all pE M.

Proof: 1) Multiplication of (3.1c) with rh-2 gives

(3.4)

We evaluate this on a fixed vector vp and integrate over At:

(3.5)

From this we read off KRic ~ O.1£there is a point vp E TM such that Ric( vp, vp) = 0 then
(3.5) implies J4>( vp) = O.Evaluation of (3.4) at vp gives Afm = 0, so f is constant.

2) Integration of (3.3) over At yields

(3.6)

which gives ER ~ 0 as weH as R = 0 {::::::}e = O.Hence R = 0 implies J4> = 0, so 4>(p, .) is
constant and (3.3) then implies Afm = 0, i.e. f is constant.

That f = const. and 4>(p,') = const. imply R = 0 is obvious by (3.3). •

Note that KRic ~ 0 holds for any signature of 9 because the condition Eg ~ 0 is not needed
for this part of the proof. Note also that (3.6) provides an interpretation for R similar to
the general equality KR = 2e: The rn-form

defines a normed measure on M and KR is the mean value of 2e with respeet to it:
KR = IM 2ew.

We finaHy give an example for Proposition 3.6 which is similar to the foregoing one.

Example: Let the produet At X M of a closed space manifold M and a time axis M c IR
be equipped with the static metric 9 = g ffif (-dt2). Then R = O. Thus a solution of
KRic = 4>* h can only exist if f is constant, and then 4> does not depend on t.
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4. Discussion

For fixed </> the field equation KRic[g] = </>* h for g is highly nonlinear , while for fixed g
the field equation T[</>] = 0 for </> is semilinear. The eoupling between g and </> is nonlinear
too. More preeisely, g enters tr(\7 d</» = 0 by the so-ealled minimal eoupling, that means
through the Christoffel symbols in the eovariant derivatives, while </> enters KRic = </>* h as
a matter souree, that means through the right hand side </>* h.

The validity of the Einstein equation imposes eonditions on g and eonditions on </>.
For instanee, KRic has to be positive semi-definite (a eondition on g) and h( T, d</» = 0
(a eondition on </». More generally, imposing a eondition on the sour ce manifold (M,g)
implies - by the eoupling - a eondition on </> and viee versa. We have seen that mild
eonditions on (M, g) or </> imply stronger eonditions on these objects if (1.4) is satisfied.

Note that in general relativity theory the problem to find neeessary and/or suffieient
eonditions on (M, g) to satisfy the Einstein equation

K(Ric- ~g) = T

for an unspeeified matter field of some given type is ealled "geometrodynamies" . Apart of
our results ean be interpreted in this way. A eomplete solution for the geometrodynamieal
problem for harmonie maps is not yet available.

A harmonie map eoupled to Einstein gravitation has repeatedly been studied in the
literature; let us eite [AFF,AuSa,Gh,GhCo,GhVi,GMZ1,GMZ2,IV1,IV2,OmPe,SeHi,Vis].
The authors, motivated by physieal eonsiderations, mainly diseuss the fOllowing points:
• The field equations, sometimes extended by a "eosmologieal term", and elementary
properties of that system .

• The size of K as eompared to other quantities, e.g. the eosmologieal eonstant.
• The relation between Killing vector fields of (M, g) and symmetries of </> .

• Solutions </> whieh are submersions and their applieation in the realm of Kaluza-Klein
theory. In partieular, the so-ealled "eompaetifieation indueed by the matter field </>" is
a major subjeet .

• Construction of special solutions. Typieally, the authors take a known dass of gravi-
tational fields (e.g. plane-symmetrie, eosmologieal models, ... ) and try to eomplete a
given g from this dass by some </> to obtain a solution (g, </» of the eoupled equations.

Note that physieists often prefer the name "sigma models" for harmonie maps. But, in a
narrower sense, a sigma model has a homogeneous target spaee, that means N = G/H,
where G is some Lie group, H is some Lie subgroup and h is a left-invariant metrie on N.

Our approach differs from the quoted papers: we study the system from the mathemat-
ieal point of view and without the assumption that (N, h) is a homogeneous spaee. There
are enough open problems, physieal and mathematieal ones, whieh make harmonie maps
eoupled to Einstein gravitation a subject for furt her research.
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