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Abstract Let Ua be the solution of the rtö stochastic parabolic Cauchy problem
Du/&t - Lau = ~. \7u, ult=o = f. We prove that Ua depends continuously on a,
when the coefficients in La converge to those in Lo. This result is used to study the
diffusion limit for the Cauchy problem (in Stratonovich sense): when the coefficients
of La tends to 0 the corresponding solutions Ua converge to a function Uo satisfying
Duo/at = ~0 \7uo, ult=o = f. A criterion is provided for the existence of strong
limits, e.g. Ua ---+ Uo, in the space of Hida distributions (S)*. As an application we
show that weak solutions of the above Cauchy problem are strong solutions.

1. Introduction

Consider an incompressible fluid with velocity field w(t,x) = (Wl(t,X),W2(t,X),W3(t,X))
at time t E JR+ and position x E JR3. The mass density u(t, x) of particles suspended in
this fluid satisfies the equation

Du
at - Lu = -w. \7u, ult=o = f,

where Lu = \7( c\7u) (derivatives with respect to x E JR3), c(t, x) is the diffusion coefficient,
and f(x) the initial density of the particles. In [Ch], P.-L. Chow proposed the stochastic
partial differential equation (1.1) with w(t,x) = r,(t,x), where r,i(t,X) is the formal time
derivative of TJi(t,X) = L:}=1 Jot O'ij(s,x)dBj(s) for i = 1, 2, 3, as a model for transport
of particles in a turbulent medium. For the one-dimensional case he proved existence
and uniqueness of a solution u for this equation. Moreover, he observed that u under
natural conditions is a generalized random field. This motivated [P]' [DP] to consider the
equation using white noise analysis. Applying contraction methods they proved existence
and uniqueness of a weak solution of (1.1) for uniformly elliptic operators L(t, x), x E JRd, of
order two when w(t, x) = r,(t, x) is as above. (1.1) was recently considered again in [PVW].
Applying the Girsanov formula the authors were able to prove existence and uniqueness
of a weak solution of (1.1) when w is d-dimensional space-time white noise.

a Partially supported by the DFG.
b Supported by the DFG.
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In praetice the molecular diffusion c is small, i.e., 0 < c ~ 1. If we assume that c = a
is constant, we are led to consider (1.1) with Let = a.6., where 0 < a ~ 1. What happens
when a tends to O? P.-L. Chow answers this question in [Ch], when w(t,x) = ij(t,x),
x E JR. In this paper we consider the related problem of stability of the solution of (1.1)
with respect to perturbations of the differential operator L for more general types of noise.
In particular, if Let for a E [0, 1] is a family of differential operators such that the coefficients
of Let tend uniformly to the coefficients of Lo as a -t 0, then we provide conditions under
which the corresponding solutions Uet converge to uD. Moreover, we show that if (1.1) is
interpreted in Stratonovich sense and Let tends uniformly to 0, the corresponding solutions
Uet converge to UD, where UD solves the (degenerate) equation obtained in the limit. If (1.1)
is interpreted in Hö sense the same result does not hold; one can actually construct explicit
counterexamples.

The paper is organized as follows: In Section 2 we introduce basic notations. Section 3
contains the stability result. In Section 4 we consider the diffusion limit problem for (1.1)
when the equation is interpreted in the Stratonovich sense. A crucial lemma needed to
prove the stability theorem in Section 3 is given in the appendix. As a corollary to this
lemma we obtain conditions under which a weak solution of (1.1) is a strong solution, in
the sense that the derivatives exist in the strong sense. Since the solutions constructed in
[PVW] satisfy these conditions, it follows that they are strong solutions.

2. Notations and preliminaries

Let S(JRd+l) be the space of rapidly decreasing funetions and (S'(JRd+l),B,/1) be the
white noise prob ability space. It is well-known that there is a chain of Hilbert spaces (S)q
with inner product (., .)q, q E ~, such that

(S)* = U (S)_q :> ... :> (S)-1 :> L2(/1) :> (S)1 :> ... :> n (S)q = (S).
qElN qElN

(S) and (S)* denote the space of Hida test funetions and of Hida distributions, respectively.
We equip (S)* with the strong topology (which coincides with the induetive limit topology),
and denote the dual pairing between (S) and (S)* by (., .). For T > 0 and dEIN we set
DT = {(t, x )It E [0,T], x E JRd}. By a (generalized) random field u E C1,2(DT, S*)
we mean a mapping u: DT -t (S)* which is continuously differentiable in t and twice
continuously differentiable in x, in the strong sense. This means, e.g., that the limit

ßu( ) .-1. u(t + €,x) - u(t,x)~ t,x .- Im-
U~ £--0 €

exists in (S)* and depends continuously on (t,x) E DT. In what follows we denote by
B(t, x), (t, x) E JRd+\ space-time white noise in (S)*. From this we obtain a d-vector
e(t, x) of independent white noise fields for t E [0,T]:

e(t, x) = (B( t, x), B(t + to, x), ... , B(t + (d - 1)to, x)),
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(2.1)

(2.2)

where to > T is some fixed constant.
Consider the following Cauchy"problem for u E C1,2(DT, S*), with Cl! E [0,1] fixed:

8u
8t (t,x) - Lou(t,x) = ~(t,x). Vu(t,x),

u(O,x) = f(x).

Here f belongs to Cl(JRd), the space of twice continuously differentiable funetions with
bounded derivatives up to the second order. Multiplication with ~ is understood in the
sense of Hitsuda-Skorokhod (the natural generalization of !ta's convention).

In [PVW] the authors prove that (2.1) has a unique weak solution u(t, x) in (S)*, when
Lo is uniformly elliptic and has coefficients in Cl(JRd+l). A weak C1,2_function u is a
mapping u : DT -+(S)* satisfying (u(., .),c.p) E C1,2(DT) for every test funetion c.p E (S),
and the mapping

c.p f-+ 8i (U( t, x), c.p )

defines an element in (S)*, the weak xi-derivative of u, which is also denoted by 8iu( t, x)
(similarly for higher order derivatives). Clearly, every strong solution of (2.1) is also a weak
solution, but the converse need not be true in general.

We apply the S-transformation to (2.1) at h E S(JRd+l), i.e., we consider the dual pair-
ing of (2.1) with the (normalized) test funetion c.ph = : exp(., h) : = exp{ -~lhID exp(-, h),
where Ihl2 denotes the norm in L2(JRd+l). This yields

8v
8t (t, x; h) - Lov(t, x; h) = h(t, x). Vv(t, x; h),

v(O, x; h) = f(x),

with.v(t,x;h) := S(u(t,x))(h), and we denote by the same symbol h the d-vector with
components hi(t, x) = h(t + (i -l)to, x). To prove the stability result we will represent the
solution Vo of this (non-stochastic) partial differential equation in terms of a stochastic
process Xr; with generator Lo. We remark that this process is not related to the former
~(t, x); it just serves as a technical device.

Let the elliptic differential operator Lo be defined by

d 82 d 8
1L " u L . uLou(t,x) = - a:1(t,x)8 '8 ,(t,x)+ b~(t,x)-8 ,(t,x),2 Xl xl Xl
i,j=l i=l

(2.3)

where bo(t, x) is a continuous d-vector and ao(t, x) is a positive definite, continuous d x d-
matrix which has a positive square-root ao(t, x). We suppose that bo, ao, and the inverse
matrix 0-;1 (all denoted by the symbol Po) satisfy

(Cl) IPo(t,x)1 ::; K(l + Ix!), IPo(t,x) - Po(t,y)1 ::; Klx - yl,

for all (t,x) E DT, where K is a constant independent of Cl! E [0,1], and also that

(C2) lim{ sup IPo(t,x) - Po(t,x)1 } = 0,
0----0 Ixl~N
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for all N > 0 and 0 ~ t ~ T. As is well-known, condition (Cl) for bo and Uo implies
that the ordinary stochastic differential equation (B s denotes a d-dimensional Brownian
motion on some prob ability space (0" F, P))

dXC: = uo(t - s,XC:)dBs + bo(t - s,XC:)ds, X~ = x,

has a unique solution {X;r}o::;s$t. We remark that t E [0,Tl is a fixed parameter in this
equation and we often suppress the t- and x-dependence in the notation of X;r. As an
easy consequence of (C2) and Gronwall's lemma the following uniform continuity property
holds, cf. [Fri, p. 119]:

lim{ sup JE ((XC:(x) - X2(x)?]} = 0,
0-+0 (s,x)EDt

where JE denotes the expectation with respeet to P.

3. The stability result

We represent the solution Vo of (2:2) in terms of X;r( x) (cf. [Fre]):

(2.4)

where <Po(t,x):= u;;l(t,x)h(t,x) for all (t,x) E DT. Because his rapidly decreasing and
u;;l satisfies (C1,C2) it is easy to verify:

sup{l<Po(t,x)1 : (a,t,x) E [0,1] x DT} =: R < 00, and
lim { sup l<Po(t,x) - <Po(t,x)1 } = 0,
0-+0 xEJRd

(3.1)

for all t E [0,Tl. We are now prepared for the main theorem. Conditions (Cl) and (C2)
will be sufficient to prove stability of uo' Because these conditions are weaker than those
which guarantee existence and uniqueness of Uo we shall assurne existence and uniqueness.

Theorem 3.1 Let Lo) given by (2.3)) be such that (Cl) and (C2) hold. Let f E Cb(JRd)
satisfy If(x)- f(y)1 ::; lolx-Yl for all x,y E JRd with lo ~ O. Assume further that (2.1) has
a unique solution Uo E C1,2(DT, S*) for each a E [0,1]. Then uo(t, x) converges strongly
to uo(t,x) as a _ 0) uniformly in DT.

Proof: In view of Lemma A.1 from the appendix it suffices to prove:

(i) Ivo(t,x;zh)l::; K1eK2IzI2I1hll~, for all (a,t,x), and
(ii) suplvo(t,x;h) - vo(t,x;h)l- 0 as a _ 0, for all hE S(JRd+1).

DT
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Part (i) has already been proved in [PVW], in case there is no parameter a. However, since
.• the constants in (Cl) and (C2) are independent of a one obtains - by the same proof-

the estimate (i) uniformly in a.
To prove (ii) we set Fa := Jot <Pa(t - s, X:;) dBs - ~ Jot <p~(t - s, X:;) ds and estimate:

Iva(t,x; h) - vo(t,x; h)12 = 1.TE[(f(Xf) - f(X~))eFo] + .TE [f(Xf)(eFa - eFo)] 1
2

:S 2.TE[(f(Xf) - f(Xn)2].TE[e2Fo] + 2.TE[f(Xf)(eFa - eFo)]2

:S 2Ml~.TE [(Xta - Xn2] + 21Ifll;,.TE[leFa - eFo iJ 2 (3.2)

The bist estimate follows from Lipschitz continuity of fand from the following remark:
When (fs)SE[O,T] is a continuous, adapted (to Brownian motion) process which is uniformly
bounded for all sand w, we find in [Fri, p. 152j, that

.TE [eJ: f.(w)dB.(w)-t J: f;(w)ds] = 1, for all t E [O,Tj.

From this it easily follows that for all A,I/ E [0,2] there is a constant c, independent of
A,1/, a and t, such that

The first term in (3.2) converges to zero by (2.4), uniformly in DT' The second term in
(3.2) can be estimated as follows:

.TE [leFa _ eFo I]2 = .TE [I t ~eAFa+(l-A)Fo dAiJ 2Jo dA

:S11
.TE[IFa - FoieAFa+(1-A)Fo]2dA

:S 11
.TE [(Fa - Fo)2].TE [e2AFa+2(1-A)Fo] dA

:S M.TE[(Fa - Fo)2j.

Now we use Fa - Fo = Jo\ <Pa- <Po)dBs - ~ Jot ( <P~- <P6)ds, the Ito isometry and (3.1):

.TE[(Fa - Fo)2] :S 2.TE [(lt (<Pa - <Po)dBs)2] + 2.TE [( ~ lt (<p~ - <p~)ds )2]

t tt:S 2.TE[Jo (<Pa - <Po)2ds] + 2.TE[4 Jo (<Pa - <PO)2(<Pa+ <Po)2ds]

:S 2(1 + R2T).TE[ t sup i<Pa(t - s,x) - <Po(t - s,x)12ds].Jo xEJRd

"

'.

In view of (3.1) and the dominated convergence theorem this completes the proof.
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4. The zero diffusion limit

In applications of stochastic differential equations one often considers the noise term in the
sense of Stratonovich. In order to apply our stability result to this case the noise 1](t, x)
- instead of e(t, x) in (2.1) - has to be sufficiently regular with respect to the x-variable.
More precisely, let 1]i(t, x) E (S)*, i = 1, ... ,d, be defined by

..

d

(1]i(t,X),ep) :=1d I:gij(X - u)(ej(t,u),ep)du, ep E (S),
IR j=l

with non-zero funetions gij E S(IRd).

(4.1)

Corollary 4.1 Substitute the noise e in (2.1) by the smoothed noise (4.1) and assume
that the resulting equation satisfies the conditions in Theorem 3.1. Then ua(t, x) converges
strongly to Uo (t, x) as Q --+ 0, uniformly in DT'

Proof: As in the proof of Theorem 3.1 we show that (i) and (ii) hold for the modified
equation. The S-transform of 1]i(t, x) reads:

and we observe: hi(.,.; h) E S(IRd+1
). Instead of equation (2.2) we get

ov -Ot (t,x; h) - Lav(t,x; h) = h(t,x; h). V'v(t,x; h),

v(O,x;h) = f(x),

and instead of (i) we obtain

Now (i) follows from
d

Ilhlloo :s; Ilhlloo' L IIgijll£l(IRd).
i,j=l

Since h(.,.;h) is rapidly decreasing ~~l(t,x) = a;;l(t,x)h(t,x;h) also satisfies (3.1). This
implies that part (ii) of the proof of Theorem 3.1 holds without any changes when cPa is
replaced by ~a. •

Remark: The existence and uniqueness proof for solutions of (2.1) given in [PVW] easily
extends to the case where e is substituted by the (smoothed) noise 1]. The necessary
modifications are similar to those in the above proof.
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Informally, the eovarianee of Tl reads

where JE p. is expeetation with respeet to the white noise measure /1, and

Notiee that Kij := Kij(X,X) are eonstant elements of asymmetrie d x d-matrix K. We
are now prepared to eonsider the Cauehy problem in Stratonovieh sense (denoted by 0):

Bu
Bt -LOtu=Tlo\7u, U(O,X) = f(x).

Rewritten as an Ho equation this gives (cf. [Ku]):

(4.2)

Bu 1 d B2u 1 d

Bt - LOtu - 2 L Kij BxiBxj - 2 L
i,j=l i,j=l

u(O,x) = f(x).

BKij(X, y) I Bu _ r7

B. y=x B . - Tl v u,
XZ xl (4.3)

When the eoeffieients of LOt tend uniformly to zero, the seeond order terms of (4.3) tend
uniformly to ~ L:KijBiBju. The eombination of this with Corollary 4.1 and the above
remark yields:

Corollary 4.2 Let LOt, a E [0,1], be uniformly elliptic operators with coefficients in
Cl(DT) such that (Cl, C2) hold with bo = 0 and 0"0 = O. Assume further that Tl is given by
(4.1) such that K is positive definite, and the inverse of O"Ot+ K satisfies (Cl, C2). Then
(4-2) has a unique solution UOtE C1,2(DT, S*) which converges strongly to Uo as a ---+ 0,
uniformly in DT, and Uo satisfies

Bu
Bt = 17 ° \7u, u(O,x) = f(x).

Appendix

The S-transformation is an important tool in white noise analysis. One of its applieations
is to solve differential equations by solving the eorresponding S-transformed equations.
Abasie question is then how the inverse S-transformation behaves under limits with
respeet to parameters x E JRn, like continuity and/or differentiability with respeet to x.
There are several not ions of differentiability in the literature, like weak differentiability, or
differentiability of coefficients in chaos or Hermite expansions. In this appendix we derive
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a sufficient condition for when the limit limx ......•xo 5-1 F( x) exists with respect to the strong
topology on (S)*. We remark that the resulting not ion of strong differentiability is stronger
than each of the before mentioned notions.

Consider the 5-transform of <P E (S)* evaluated at h E S(IRn):

F(h) := 5<p(h) = (<p,: e(.,h) :).

The space of mappings F: S(IRd) -+ IR obtained in this way is denoted by U. Since 5 is
injective the correspondence between (S)* and U is one-to-one.

Lemma A.l Let X be a first countable topological space, Y be an arbitrary set, and F :
X x Y -+ U be such that, for every h E S(IRn):
(i) The funetion F(., y; h) : X -+ IR, F(x, y; h) := F(x, y)(h) is continuous at Xo, uni-

formly with respect to y, i. e.

sup IF(x,y;h) - F(xo,y;h)l-+ 0, as x -+ Xo.
yEY

(ii) There exists a continuous seminorm 11 . 11 on S(IRn) and J{ > 0, such that

IF(x, y; zh)1 :::;J{eizI211hll2,

for all (x, y) E X x Y and all z E a7.
Then there exists rEIN such that <py(x) := 5-1(F(x, y)) E (S)-r, for all (x, y) E X x Y.
The mapping x f---+ <py(x) is continuous at Xo, uniformly with respect to Y:

sup lI<py(x) - <py(xo)lI-r -+ 0 as x -+ Xo.
yEY

Consequently <Py, considered as a mapping from X into (S)*, is strongly continuous at Xo,
uniformly with respeet to Y.

Proof: We need two facts from [PS], [KLPSWJ: Firstly, (ii) implies there exists C ~ 0 and
q ~ 0 such that <py(x) E (S)_q and lI<py(x)lI-q :::;C for all (x,y) E X x Y. Secondly, the
vector space £ c (S)_q generated by {exp(-, h)lh E S(IRn)} is dense in (S)_q.

Since X is first countable it suffices to consider sequences. Let (xn) be a sequence in X
which converges to Xo. From (i) follows

(A.l)

for every <pE £. Since <py(xn) is bounded in (S)_q we find that (A.l) holds for all <pE
(S)_q.

Let {eI, ez, ... } be a CONS in (S)_q and consider the orthogonal expansion

00

<py(xn) - <py(xo) = I)a1n)(y) - a10)(y))ek'
k=l
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where
lain\y) - aiO\Y)1 = I(<py(xn), ek)-q - (<py(XO)' ek)-q!

:::; II<py(Xn) - <py(xo)lI-q :::; 2C.

Now (A.1) implies that for each kEIN

(A.2)

The identity mapping i :(S)_q 0-..+ (S)-r, r = q+ 1, is a Hilbert-Schmidt operator, so that

00 00 00

L lIekll:r = L lIi(ek)ll:r = LNi =: M < 00.

k=1 k=1 k=1

This implies that for any € > 0 there exists m = m( €) such that (2C? L:~m Nl < €/2.
Using this and (A.2) we estimate as follows:

00

lI<py(xn) - <py(xo)lI:r = L lain)(y) - a~O)(y)12 Nl
k=1
m-l 00:::;L la~n)(y) - a~O\y)12 Nl + (2C)2 L Nl
k=1 k=m
€ €< - + - for all y E Y and all n > no.- 2 2 -

This shows that the mapping <Py from X into (S)-r is continuous, uniformly with respect
to Y. Composition of <Pywith the strongly continuous embedding (S)-r 0-..+ (S)* completes
the proof. •

We can now give a criterion for when a weak solution of (2.1) is a strong solution.

Corollary A.2 Let u be a weak solution 0/ (2.1), v(t, x; h) := S(u(t, x))(h), and suppose
the t-derivative 0/ v and the x-derivatives 0/ v up to the second order satis/y (ii). Then u
is a strong solution 0/ (2.1).

Proo/: We first show that the derivatives in (2.1) exist for each fixed (t,x) E DT in the
strong sense. Let bi E JRd be the unit vector in the i-th coordinate direction and consider

<Pi(€):= u(t,x + €bi) - u(t,x), € =I- O.
€

The S-transform is: (S<Pi(€))( h) =: F( €, i; h) = [v( t, x + €bi; h) - v(t, x; h)JI €. Since v(., .; h)
is differentiable F(€,i;h) converges to F(O,i;h):= oiv(t,x;h) as € -+ O. Thus, F satisfies
(i) in Lemma A.1, with X := JR and Y := {I, ... ,d}. Also (ii) holds:

IF(€ i. zh)1 < ~ r I ov (t x + sb.' zh)lds < ~ r K elzl211hl12 ds = K elzl2l1hll2.
, , - I€I Jo OXi' 1, - I€I Jo
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By Lemma A.1 <pi(e) converges to <Pi(O) := S-lBiv(t,x;.) strongly in (S)* as e -+ 0, which
means by definition that u is strongly differentiable with respeet to Xi. (Of course the same
holds for the strong t-derivative of u.) Moreover it follows that the weak derivatives of u
coincide with the strong derivatives. But then the same method of proof shows that the
strong second order x-derivatives of u exist as weIl.

By assumption (2.1) holds in the weak sense. Since weak and strong derivatives coincide
(2.1) also holds in the strong sense.

Finally u, Biu etc. depend continuously on (t, x) E DT' This follows from Lemma A.1
for the choice X := DT (no y-dependence) and the observation that (i) and (ii) hold for
v(t, x; h) and for the derivatives up to the second order. •
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