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ABSTRACT. The Gauf} (or Weierstraf}) transform has applications in many fields
of applied mathematics. One of its most important properties within approximation
theory is the fact that it maps weak Chebychev spaces onto Chebychev spaces.
The aim of this paper is twofold. First, after proving some elementary invariance
properties of the Gaufl transform, necessary and sufficient conditions for best ap-
proximation by (Gauf8 transformed) free knot spline spaces are given. Then, in
Section 3, we develop a method for the numerical solution of an initial value prob-
lem for the heat equation. The present paper can be viewed as a continuation of
two recent publications by Meinardus [5,6].
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1. INTRODUCTION AND PRELIMINARIES

This paper investigates some properties of the Gauf transform, defined, for each
bounded function h € C(IR), as the mapping

h — G(h)(z,t) := —\/% /h(T)-e_(TZf)z dr, (1.1)

with real positive parameter ¢. This transform has applications in various fields
of applied analysis, e.g. probability theory, PDEs, and approximation theory. It is
well-known that the image function satisfies the heat equation, i.e.,

9? % |
5.2 Gh)(=z,1) = 2 G(h)(z,1) (1.2)

for all z € R and t > 0, and,

lim G(h)(z,t) = h(z) (13)

forall z € IR.

Recently, Meinardus [5,6] proved some nice results concerning the Gauf} trans-
form and its use within constructive approximation. The aim of the present paper
is to continue these investigations. We concentrate mainly on best approximation
by spline functions with free knots (Section 2), and on the numerical solution of an
inital value problem for the heat equation (Section 3).

We first recall some facts from approximation theory which will be needed
later. A k— dimensional subspace V of Cla,b] is called a Chebychev space, if
every nontrivial function v € V has at most (k — 1) zeros in [a,b]. The best
Chebychev approximation w.r.t. such spaces always exists, is (strongly) unique,
and can be computed by the Remez algorithm.

On the other hand, one of the most prominent approximation spaces is that of
splines, and spline spaces are not Chebychev in general, but ” only” weak Chebychev
spaces. A k— dimensional subspace W of C [a,b] is called a weak Chebychev space,
if every nontrivial function w € W has at most (k—1) sign changes in [a,b] . The
numerical computation of best approximations becomes much more complicated in
weak Chebychev spaces, cf.Niirnberger [9].

Due to Jones & Karlovitz [1], a space W = span{wi,...,wr} is a weak
Chebychev space if and only if there exists a sequence of Chebychev spaces
V, = span{vy n,...,Vkn} such that

lim ||vin — Willo = 0 fori=1,...,k. (1.4a)




One possibility to find the sequences {v;,} is to set
vin(x) 1= G(w)(z,tn) (1.4b)

for each i, where {t,} is a sequence of numbers converging to zero. In partic-
ular, it follows from (1.4) that the Gaufl transform provides an easy method to
construct a sequence of Chebychev spaces, which come arbitarily close to a given
weak Chebychev space.

Although this was known since many years, it seems that Meinardus in 1989
was the first one who succeeded in using this construction numerically, see [5,6].
In particular, it was shown that if one chooses a B-spline basis {B;} of the given
spline space, then the Gauf} transforms {G(B;)} of this basis, which span for all
t > 0 a Chebychev space, can be computed by an easy recursion formula. - This
was used, among other things, to establish an algorithm for best approximation by
fixed knot splines in the following way: Compute, using the Remez algorithm, the
best approximation Y a;G(B;) w.r.t. the Chebychev space span{G(B;)}. Then,
take the spline function S a;B; as (nearly) best spline approximation; see [5,6,11]
for details. A large number of numerical results in [11] illustrate the efficiency of
this algorithm.

A first obvious generalization of this approach would be to consider best approx-
imation by non-polynomial spline spaces. However, we think that the theoretical
insight of such investigations would not be too big, and so we concentrate on the
two other aspects mentioned above.

We close this introductory section with the following theorem, which collects
some invariance properties of the Gauf} transform.

Theorem 1.1: o) If the function h is nonnegative everywhere, then so is G(h) .
b) If {h,} is a set of functions such that

Y h(z) =1 VzeR,

then
> G(h)z,t) =1 VeeRandt>0.

¢) If h is periodic with period p, then G(h), considered as a function of x, is
periodic with period p .
d) If h is odd (resp. even), then G(h) , considered as a function of x, is odd

(resp. even).

e) If h is a polynomial of degree n , then G(h), considered as a function of =, is a
polynomial of degree n , i.e., the Gauﬂ transform maps the space II,, of polynomials
of degree n onto itself.



-}

Proof. Statement a) is obvious from the definition of the Gauf8 transform. To
prove b), we use the fact that

= /oo T dr = /oo iy = 1
= — e z =
V47rt -0 \/;r_ —00 ’

and obtain
1 7 1'—1:)2
1 = h, —Ta d
vVt /; (7)-e T
=Y . /hu(r)-e-(’le’)z dr = > G(h,)(x,1).
> vdmrt »

Statements c) and d) can be verified by straightforward calculations, so we are left to

prove e). Do to linearity, it suffices to do this for a basis of II, , say {1,z,---,z"},

so let h(z):=z7, j€{0,...,n}. Then

1 7 . r—x)2
G(h) = —= /Tf.e—‘TLdr

1 e .

which is a polynomial of degree j in z. This completes the proof of Theorem 1.1.

O

These properties show that the Gaufl transform carries over a lot of nice prop-
erties of the spaces to be transformed and therefore, as mentioned at the beginning,
possesses widespread applications. As a first example, think of curve design prob-
lems, where the convez hull property is needed; statements a) and b) imply that
the GauB transform preserves this property. Another implication is derived from
statement c), namely the fact that the Gau$§ transform maps the space of periodic
splines onto a periodic space.

2. APPROXIMATION BY SPLINES WITH FREE KNOTS

In this section, we investigate best approximation by splines with free knots. These
are non-linear approximation problems, and characterizations of best approxima-
tions cannot be given in general, see e.g. [2,9]. In the following, it will be shown
that the Gaufl transform can be used to derive necessary and sufficient conditions,
which in some cases coincide and thus provide a characterization.

4



We first need a result on the tangent space of the Gauf} transform. Let & denote f
a set of functions, which depend on a parameter vector a = (ai,...,a;) € R'.
Then, for each ¢ € @, the tangent space of ¢ is defined as

T(¢) = span{gho( - a). .. (- a)} (2.1
provided that these derivatives exist.

Theorem 2.1: Let ¢ = p(-,a) € & depend continuously differentiable on the
parameter a. Then

G(T(p)) = T(G(9)) (2.2)

e., the Gauf transform of the tangent space of ¢ 1is identical with the tangent
space of the Gauf} transform of ¢ .

Proof. First, we consider for arbitrary index j € {1,...,1}, one single partial
derivative

%W(',a)-

It follows that

G (—Q_QO( . a)) — 1 _a_so( . a) . e_' (1-;::)2 d»r
da; ’ Jant da; )
i (r— z:) (2'3)
dr

1
8
= = — -’a -e
95 \/4mt vl a)
—00

2 G((,D( ’ 7a)) ’
since z2-¢(-,a) is a continuous function.
da; ’

Let now o be an arbitrary element of the tangent space T(G(y)). Then there
exist coefficients ~i,...,7v , such that

o = Z'YJ Ba; ((,0( ))

l l
- Zij(z,—%cp(-,a)) = G(Zwa—ﬁ;w(wa)>,

where we have used (2.3), and thus o € G(T(¢)) The inclusion ‘G(T(cp)) C
T(G(p)) follows in the same way.




We now investigate a classical approximation problem, introduced by and usu-
ally named after Schoenberg [2], which involves one single B-spline with free knots.
Let B,, denote the set of all B-splines B,, of order m with multiple knots, nor-
malized by

xO

/ Bo(t)dt = 1. (2.4)

Then, given some Polya frequency function f, we look for a B-spline B;, € B,,,
such that

T

max | [ 1©ds - [ Buods| < max| [ r©a - [ Buoyae| 25

-— 00

for all B,, € B,, . If (2.5) holds, we say that B* is a best approximation of f in
the sense of Schoenberg. The following sufficient condition for best approximations
in this sense was given by Kaiser [2]:

Theorem 2.2: If the difference function
o) = [ r©d - [ Br©d @9

possesses at least m + 2 alternating extreme points, then By, is a best approzima-
tion of f in the sense of Schoenbery.

Establishing necessary conditions and therefore characterizations is difficult.
We attack this problem via the GauB transform, since its tangent space will turn
out to be a Chebychev space. It follows from (1.3) that the solution of a best
approximation problem in the transformed space for small values of ¢ yields also a
good approximation in the original, i.e., the spline space (cf. [5,6,11]).

We need some more detailed notation: Let

Tg T1 - Tr ) 9.7
Bm (:C Po pl ...... pk ( )

denote the B-spline from B,, with knots z¢ < 71 < -+ < z of respective mul-
tiplicity po,...,pr, where pg + p1 + -+ + pr = m + 1. Moreover, by o(f), we
denote the Gauf} transform of the function [”_ f(£)d¢, ie.,

oo T

*(N@t) = T [ [1@ae a8

—0 — 00
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and, analogously, for B,, € B,,,

(Bm)(z,1) := ﬁ 7/TBm<£‘m° e 2:)d§-e't‘z_:ﬁd7'. (2.9)

-0 —O0

The approximation problem consists now in finding, for given f, a B-spline B}, €
B,. (i.e., a set of knots and respective multiplicities), such that the image function
®(B;,) is a best approximation of ®(f).

Theorem 2.3:  For given Polya frequency function f we define, for fized t, the
difference function E as

E(z,t) = 8(f)(z,t) — ®(Bm)(z,1).

Then the following statements hold:

(i) If E has at least m + 2 alternating extreme points, then ®(Bn,) is a best ap-
prozimation of ®(f).

(ii) If ®(By,) is a best approzimation of ®(f), then E has at least k + 2 alter-
nating extreme points.

Corollary 2.4:  If all knots of B,, are simple, then ®(B,,) is a best approxi-
mation of ®(f) if and only if E has m + 2 alternating extreme points.

Proof of Theorem 2.3. We first proof (i). Assume that there is a better approx-
imation, say ®(B,,) with knots Z, and error function E. Then there is a sign
o € {—1,1} such that

o (=1) - (B(n;) — E(n;))

B (2.10)
= o (=1)* - (T(n;) = T(n;)) < O
for j=1;...,m+ 2, where {n;} is the set of alternating extreme points of £.
This implies that the function
T — T has at least m + 1 zeros (with sign changes) (2.11)
in the interval (11, Nm+2) .
T — T is the GauB transform of the function
d@) = [ Bu©ds = [ Bal)de. (2.12)

(z—1 2 ’
Since the kernel function e~ s totally positive, it follows that the Gauf}
transformation is variation diminishing (cf. [3]), and so, from (2.11), that d has
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at least m + 1 zeros in (71, Nm+2) . Moreover, due to the finite-support property
of the B-splines, there are two additional zeros of d in o« := min{zg,Z¢} and
B3 := max{zk, Tr}, such that d has a total of m + 3 zeros in the interval [o, 3].

Since d is a (continuous) spline function, Rolle’s theorem for splines implies
that the derivative d'(z) = B, (z) — B(z) has at least m + 2 zeros, which is not
possible (cf. e.g. [2]). This contradiction proves statement (7).

To show (ii), we use the following result (cf. [2]), which can be proved by
straightforward calculations, using the well-known contour-integral representation
of B-splines (cf. e.g. [2,7]): The tangent space of the function

T

/Bm<§ To Ty v - xk)d{ (2.13)

pPo pP1 ot Pk ‘

-0

is the (k + 1)-dimensional spline space
g - T cer Tk .
span{Berl(x‘ oo - pj-f-l Pk) v J —0,...,k} . (2.14)

Since the function ®(B,,) is the GauB transform of the function in (2.13), it follows
from Theorem 2.1 that the tangent space of the functions ®(B,,) is the space

i Tg **° T cee Tp .
¥ o= span{G(Bm+1(xlpo pj-f—l e ok )),]—0,...,,6}.

This is a (k+1) -dimensional Chebychev space, and thus the space of approximation
functions (2.9) satisfies the local Haar condition (cf.[4]). This implies the existence
of (dim ¥ + 1) alternating extreme points of the best approximation, and so the
proof of statement (%z) is complete. O

We can now also derive a necessary condition for the general problem of ap-
proximation by splines with free knots. On a given interval [a,b], we consider the
space '

of splines of order m with fixed inner knots z; < --- < z, and corresponding
multiplicities p1,...pr . The dimension of this space is

™
dimSm = m+ Y p; -
j=1

Moreover, by S, we denote the space of splines of order m with n free knots,
ie. 4

@] < <xp
P14 tprsn




It is well-known [9,10] that the tangent space T'(s) for each s € Sy . is the spline
space with fixed knots

_ "L‘l ------ x'l‘
T(s) —Sm(p1+1 ._'..“ pr+1>
of dimension

dimT(s) = m+r+ZpJ~ .
j=1

This means that we are in a situation very similar to that in the proof of Theorem
2.3, and so the following necessary condition for a best approximation can be proved
by the same arguments as used in the second part of the proof above.

Theorem 2.5: For given f € Cla,b] and arbitrary fized t > 0, we consider
best approzimation w.r.t. the set I' of Gauf transforms of the free knot spline space

Smn s i€,
I = {g€Clab]; g(z) =G(s)(x,t); s € Smpn} -

Then the following necessary condition holds: If g € ' is a best approrimation of
f, then the difference function (g — f)(x) has at least

r
m+r—1+ ij
j=1

alternating extreme points in [a,b] .

3. NUMERICAL SOLUTION OF A HEAT EQUATION PROBLEM

In this section we consider the following initial-boundary value problem for the heat
equation on the region

R := {(z,t) e R*; 0<r<1,0<t<o0}:

Given a univariate function f € C[0,1] with zeros of order one at least in the points
0 and 1, find a function u € C*(R) N C(R), which satisfies

U = Tgg (3.1a)
everywhere in R, and takes the boundary values
u(z,0) = f(z) for 0<z <1, (3.1b)

and
u(0,1) = u(l,t) = 0 for 0< t <oo. (3.1¢)

9



We define the function fe C(IR) as the odd periodic continuation with period 2
of f to the real line, i.e., for each p € Ny,

~ fz —2p), if x € [2p,2p + 1],
f(z) = , (3.2)
—fRu+2-z), fze2p+1,2u+2].

Then, as it is well-known, a solution of the above problem is given by the Gauf§
transform of the function f, i.e.,

w(z,t) = G(Pat) = ﬁ / F(r) - e~ dr (3.3)

satisfies (3.1). However, in practice the problem arises that the integration in (3.3)
may cause numerical problems, and so one would like to approximate the function
f (resp. f) first by another function, such that the integration in (3.3) can be
replaced by an easier process.

This is an approximation problem with constraints: Given f and a suitable
| function class B C C|0,1], determine a bf € B, such that

llbf — flljo,1 is relatively small, (3.4a)
and, in addition,
bs(0) =bs(1) =0. (3.4b)
Here, || - ||jo,;j denotes the maximum norm on [0,1].

‘ In [5], it was suggested to use as approximation class B a space of periodic
‘ splines. Since the approximation of functions by periodic splines is still a difficult
| problem (see e.g. Zeilfelder [12]), we propose another method, to be developed now.
| For n € IV and 0 < v < n, we denote by 3] the vth Bernstein basis polynomial
i of degree n, i.e.,
|

|

g = (0)ea—or. (3.5)

Moreover, it is convenient to define 3} (x) =0, if v <0 or v>n. The following
result on the structure of the linear space

B, = span{f7,...,B,_1} (3.6)
holds.

Lemma 3.1: a) It is
B, = z(1-x)Ih_2. (3.7)

In particular, each b € B,, satisfies (3.4b).
b) The space B, tis a Chebychev space on the open interval (0,1), and a weak
Chebychev space on the closed interval [0,1].

10



Proof. Each element p € B, is a polynomial of degree n, which vanishes at the
points 0 and 1. Hence B, is a subspace of z (1 — z)II,_2. Since the dimension
of B, equals (n — 1), the identity (3.7) is proved.

To prove statement b), we use the fact that IT,,_» is a Chebychev space every-
where in IR . Since the weight function z(1 — z) has no zero in (0,1), B, is also
Chebychev on this interval. This implies b). O

Since B, is no Chebychev space on [0,1], good approximations (i.e., via in-
terpolation), are hard to determine directly. However, the following result implies
methods for this by using the strong connection of B, with the space II,,_3.

We define the function gy by

_ _fl=)
gs(z) = 20-7) (3.8)

for all z € [0,1]. Note that gy is still bounded on [0,1].

Theorem 3.2: Let p € Il,_2 be an approzimation of gy with error o, given in
Bernstein form

pz) = 3 e B ).
v=0

Then the function by € By, , defined as

n—1
be(z) = Y wBi(z) (3.9a)
v=1
with
Y = (Z : f) Oy (39b)

is an approximation of f w.r.t. By, with approrimation error

0
1bs = flloy < 7+ (3.10)

Remark. Since II,,_o is a Chebychev space on [0, 1], many types of good approx-
imations, e.g. the polynomial of best approximation as well as the interpolating
polynomial, are very easy to compute. Thus, Theorem 3.2 opens many possibilities
to compute good approximations w.r.t. B, .

11
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Proof of Theorem 3.2. We first show that
bs(z) = z(1-z)p(z)
by the following equations:

n—2
z(1-2)ple) = D) avz(l-2) 5% (2)

v=0

Then it follows that
lof — fllo,; = max {|bs(z) — f(z)[}

z€[0,1]

= rél[%)i]ﬂa:(l — )| ps(z) — g5 (2)[}

< max (la(1 - 2)1} - max {lps(@) ~ 9s(=)1} <

»M»—‘

and so the proof is complete. O

Given any function b € B, , we define, in analogy to (3.2), the odd periodic
continuation b of b by

-~ b(z — 2p), ifz € [2p,2u+1],
b(z) = (3.11)
-b2u+2~-1z), ifzxe2p+1,2u+2].
For formal reasons, we set in addition
~ b(z), ifxze€(0,1],
b(z) = (=) 0.1 (3.12)
0, elsewhere.

Note that both functions are continuous everywhere on IR. We consider now the
GauB transform of a function b = by € B, , which is supposed to be an approxima-
tion to the initial value function f.

Theorem 3.3: Let.b € B, . Then the Gauf§ transform of the function 3, defined
in (8.11), is an odd periodic function (w.r.t. x ), and possesses the representation

GO)(z,t) = Y (GONe—2u,8) ~ GO)(2u— 1), (3.13)

HeEZ
valid for all (z,t) € R
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Proof. Since b is an odd periodic function, the same is true for its Gauf} transform,
due to Theorem 1.1.

In order to prove (3.13), we use the identity
b(r) = Y (b(r—2p)—-b2u-T1)), (3.14)
HEZ

valid for each 7 € IR. Note that no problem with the convergence of the series on
the right hand side occurs, since for each 7 € IR in fact at most one term in this
series is different from zero.

From (3.14), we obtain the relation

G)(z,t) = ;rt / B(r) - e S gr
1 i _r=a)?
= b(r —2u) - @ dr —
Vit p;z (/_oo ( H)-e (3.15)
- /_mg(Zu—T)-e_gf_Z:ﬁch')
=3 (G( — 2u))(z,t) - G(B(2u — -))(a:,t)),
uEZ

and so, using the fact that the Gauf} transform is shift invariant, i.e.,

GO ~y,t) = GO+ — 9)(=:1)
for all y € IR, the second statement of Theorem 3.3 is proved. ' O

Theorem 3.3 implies that it suffices to investigate the Gauf} transform of the
function b. Moreover, due to linearity, we may even more concentrate on the
Gauf} transforms of the basis functions 87, cf. (3.5). To do this, we introduce the

continuations 87 and E{} of 7, defined in analogy to (3.11) resp. (3.12).
Theorem 3.4: Let, for all v and n under consideration,

Gy = G(B)).
Then for n > 2 the recursion formula

GM(z,t) = (1-x)G2 Yz,t) + =G} Z Nz, t) +
(3.16)
+ 2tn (G2R(z,1) - 26773, 0) + G2 (=)

15 valid.
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Proof. The functions E,’} can be interpreted as B-splines with multiple knots at 0
and 1. Hence, the assertion of Theorem 3.4 can be deduced from the corresponding
result on B-splines, see Meinardus [5] or Weis [11].

Alternatively, a straightforward but lengthy proof can be given, using integra-
tion by parts and the recurrence relations

Br(z) = 1-z)87 Y (z) + 2671 ()

and
d n n— 7~
EI)—L‘IBV(:E) = n(ﬁu—ll(x) —fBu 1(1"))
for Bernstein basis polynomials. O

In order to compute the values of the functions G? by the recursion (3.16), it
is necessary to have approximations for the initial value functions

1 L (roa2
Gg(a:,t) = \/:1_7;5/0 e” 4 dr,

—2)2
Gi(x,t) = \/4_17r_ 1—7‘ " dr, and (3.17)

S_____
Gi(z,t) = \/E dr

available. This can easily be done, e.g., via the well-known error function erf(z),

defined as
2 z 2
erf(z) = —/ e” " dn, 3.18
0= (3.18)

which in turn can be computed using various types of approximations, see [5,8,11].
The connection between the error function and the desired initial value functions is
provided by the following relations.

Lemma 3.5: It is

Azt = 3 (ert("F) + et( ), (3.19)

t I! z2
G%(Ilf,t) = ﬂZGg(CE,t) - ; < %5 At

Il

Gy(z,t) = Gi(z,t) — Gi(z,t). A (3.21)

14




Proof. Relation (3.19) follows directly from the definition GJ and (3.18). To prove
(3.20), we write 7 = z + (7 — z) and obtain

)2
Gl(z,t) = zGY(z,t) + ~5- gr
= zGi(z,t) — 2t- —2) e~ e dr
vdrt

T=1
T~ 2
= 2GY(x,t) — i [e_gT)—]

T 7=0

Finally, relation (3.21) follows immediately from (3.17). O
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