
J

Splines with Free Knots, the Heat Equation,
and the Gauß Transform

Guido Walz

Nr.219/1996



Splines with Free Knots, the Heat Equation,
and the Gauß Transform

Guido Walz
Department of Mathematics, University of Mannheim,

D-68131 Mannheim, Germany
walz@math.uni-mannheim.de

ABSTRACT. The Gauß (or Weierstraß) transform has applications in many fields
of applied mathematics. One of its most important properties within approximation
theory is the fact that it maps weak Chebychev spaces onto Chebychev spaces.
The aim of this paper is twofold. First, after proving some elementary invariance
properties of the Gauß transform, necessary and sufficient conditions for best ap-
proximation by (Gauß transformed) free knot spline spaces are given. Then, in
Section 3, we develop a method for the numerical solution of an initial value prob-
lem for the heat equation. The present paper can be viewed as a continuation of
two recent publications by Meinardus [5,6].
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1. INTRODUCTION AND PRELIMINARIES

This paper investigates some properties of the Gauß transform, defined, for each
bounded function h E C(IR) , as the mapping

00

1 J (.,._",)2
h ~ G(h)(x, t):= ~ h(T)' e--4-t dT,

y 41Tt
-00

(1.1)

with real positive parameter t. This transform has applications in various fields
of applied analysis, e.g. probability theory, PDEs, and approximation theory. It is
well-known that the image function satisfies the heat equation, i.e.,

82
8x2 G(h)(x, t)

for all x E IR and t > 0 , and,

lim G(h)(x, t)
t .•.•O
t>o

for all x E IR .

8
8t G(h)(x, t)

hex)

(1.2)

(1.3)

Recently, Meinardus [5,6]proved some nice results concerning the Gauß trans-
form and its use within constructive approximation. The aim of the present paper
is to continue these investigations. We concentrate mainly on best approximation
by spline functions with free knots (Section 2), and on the numerical solution of an
inital value problem for the heat equation (Section 3).

We first recall some facts from approximation theory which will be needed
later. A k- dimensional subspace V of C[a, b] is called a Chebychev space, if
every nontrivial function v E V has at most (k - 1) zeros in [a, b]. The best
Chebychev approximation w.r.t. such spaces always exists, is (strongly) unique,
and can be computed by the Remez algorithm.

On the other hand, one of the most prominent approximation spaces is that of
splines, and spline spaces are not Chebychev in general, but "only" weak Chebychev
spaces. A k- dimensional subspace W of C[a, b] is called a weak Chebychev space,
if every nontrivial function w E W has at most (k -1) sign changes in [a, b]. The
numerical computation of best approximations becomes much more complicated in
weak Chebychev spaces, cf.Nürnberger [9].

Due to Jones & Karlovitz [1], aspace W = span{Wl,"', Wk} is a weak
Chebychev space if and only if there exists a sequence of Chebychev spaces
Vn = span{Vl,n, ... ,Vk,n} such that
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One possibility to find the sequences {Vi,n} is to set

(l.4b)

for each i, where {tn} is a sequence of numbers converging to zero. In partic-
ular, it follows from (1.4) that the Gauß transform provides an easy method to
construct a sequence of Chebychev spaces, which come arbitarily dose to a given
weak Chebychev space.

Although this was known since many years, it seems that Meinardus in 1989
was the first one who succeeded in using this construction numerically, see [5,6].
In particular, it was shown that if one chooses a B-spline basis {Bi} of the given
spline space, then the Gauß transforms {G(Bi)} of this basis, which span for all
t > 0 a Chebychev space, can be computed by an easy recursion formula.. This
was used, among other things, to establish an algorithm for best approximation by
fixed knot splines in the followingway: Compute, using the Remez algorithm, the
best approximation L aiG(Bi) w.r.t. the Chebychev space span{G(Bi)}. Then,
take the spline function L aiBi as (nearly) best spline approximation; see [5,6,11]
for details. A large number of numerical results in [11] illustrate the efIiciency of
this algorithm.

A first obvious generalization of this approach would be to consider best approx-
imation by non-polynomial spline spaces. However, we think that the theoretical
insight of such investigations would not be too big, and so we concentrate on the
two other aspects mentioned above.

We dose this introductory section with the following theorem, which collects
some invariance properties of the Gauß transform.

Theorem 1.1: a) 1f the function h is nonnegative everywhere, then so is G(h) .
b) 1f {hv} is a set of functions such that

v

then L G(hv)(x,t) = 1 V x E IR andt > o.
v

c) 1f h is periodic with period p, then G(h), considered as a function of x, 2S

periodic with period p.
d) 1f h is odd (resp. even), then G(h), considered as a function of x, is odd
(resp. even).
e) 1f h is a polynomial of degree n, then G(h) , considered as a function of x , is a
polynomial of degree n, i.e., the Gauß transform maps the space TIn ofpolynomials
of degree n onto itself.
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Proof. Statement a) is obvious from the definition of the Gauß transform. To
prove b), we use the fact that

and obtain

1 100
(.,._",)2-- e--4-t- d,

v41rt -00

1 100

_z2 d- e z
~ -00

1,

1

LG(hy)(x, t) .
y

Statements c) and d) can be verifiedby straightforward calculations, sowe are left to
prove e). Do to linearity, it suflicesto do this for a basis of IIn , say {I, x, ... , xn} ,

so let h(x):=xi, jE{O, ... ,n}. Then

1
G(h)

00

J. ~
,1 • e- 4t d,

v41rt
-00

1 100
;; . 2~ (x + 2zvt)1 . e-Z dz,

v41r -00

which is a polynomial of degree j In x. This completes the proof of Theorem 1.1.
o

These properties show that the Gauß transform carries over a lot of nice prop-
erties of the spaces to be transformed and therefore, as mentioned at the beginning,
possesses widespread applications. As a first example, think of curve design prob-
lems, where the convex huli property is needed; statements a) and b) imply that
the Gauß transform preserves this property. Another implication is derived from
statement c), namely the fact that the Gauß transform maps the space of periodic
splines onto a periodic space.

2. APPROXIMATION BY SPLINES WITH FREE KNOTS

In this section, we investigate best approximation by splines with free knots. These
are non-linear approximation problems, and characterizations of best approxima-
tions cannot be given in general, see e.g. [2,9]. In the following, it will be shown
that the Gauß transform can be used to derive necessary and suflicient conditions,
which in some cases coincide and thus provide a characterization.
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We first need a result on the tangent space of the Gauß tfansform. Let ~ denote
a set of functions, which depend on a parameter vector a = (al"", al) E IR1•

Then, for each <pE ~ , the tangent space of <p is defined as

T(<p) := span {a~l <p(-, a), ... , a~l<p(', a)} ,

provided that these derivatives exist.

(2.1)

Theorem 2.1: Let <p= <p(. , a) E ~ depend continuously differentiable on the
parameter a. Then

G(T(<p)) = T(G(<p)), (2.2)

i. e., the Gauß transform of the tangent space of <p is identical with the tangent
space of the Gauß transform of <p.

Proof. First, we consider for arbitrary index J E {1, ... , l}, one single partial
derivative

a~j <p( • , a) .

It follows that

00

a 1 J (.,._",)2
- -- <p(' ,a). e--4-t- dT
aai V41rt

-00

a~j G(<p(' ,a)),

(2.3)

a .since aa' <p( . , a) is a continuous function.
]

Let now 0" be an arbitrary element of the tangent space T(G(<p)). Then there
exist coefficients 1'1, .. " 1'1 , such that

1

0" - ~ 1'j a~j G(<p(-, a))
j=l

1

~ 1'jG (a~i <p( • , a))
j=l

1

= G (?= 1'j a~i <p( . , a)) ,
J=l

where we have used (2.3), and thus 0" E G(T(<p)) The inclusion G(T(<p)) C
T (G(<p )) follows in the same way. 0
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We now investigate a classical approximation problem, introduced by and usu-
ally named after Schoenberg [2],which involves one single B-spline with free knots.
Let Bm denote the set of all B-splines Bm of order m with multiple knots, nor-
malized by

00J Bm(t) dt = 1.
-00

(2.4)

Then, given some Polya frequency function f, we look for a B-spline B:n E Bm ,
such that

x

max J f(~) d~
xEJR

-00 -00

x

< max J f(Od~
xEJR

-00 -00

(2.5)

for all Bm E Bm. If (2.5) holds, we say that B* is a best approximation of f in
the sense of Schoenberg. The followingsufficient condition for best approximations
in this sense was given by Kaiser [2]:

Theorem 2.2: 1f the difference function

x x

e(x) := J f(~) d~ - J B:n(~) d~ (2.6)

-00 -00

possesses at leas,t m + 2 alternating extreme points, then B:n is a best approxima-
tion of f in the sense of Schoenberg.

Establishing necessary conditionsand therefore characterizations is difficult.
We attack this problem via the Gauß transform, since its tangent space will turn
out to be a Chebychev space. It follows from (1.3) that the solution of a best
approximation problem in the transformed space for small values of t yields also a
good approximation in the original, Le., the spline space (cf. [5,6,11]).

We need some more detailed notation: Let

Bm (x I Xo Xl Xk)
Po PI Pk (2.7)

denote the B-spline from Bm with knots Xo < Xl < ... < Xk of respective mul-
tiplicity Po, ... , Pk , where Po + PI + ... + Pk = m + 1. Moreover, by iP(j), we
denote the Gauß transform of the function J~oo f(~)d~ , Le.,

iP(j)(X, t)
00 r

.- _1_ J J f(~)d~. e_(T~;)2 dr
y'41rt

-00 -00
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(2.10)

and, analogously, for Bm E Sm ,
00 T

<P(Bm)(x, t) := v'~7l"t J J Bm (eI;~;~::::::;:)de. e- (,.~;)2 dT. (2.9)
-00 -00

The approximation problem consists now in finding, for given f , a B-spline B:n, E
Sm (i.e., a set of knots and respective multiplicities), such that the image function
<P(B:n,) is a best approximation of <PU) .

Theorem 2.3: For given Polya frequency function f we define, for fixed t, the
difference function E as

E(x, t) := <PU)(x, t) - <P(Bm)(x, t) .

Then the following statements hold:
(i) If E has at least m + 2 alternating extreme points, then <P(Bm) is a best ap-
proximation of <PU) .
(ii) If <P(Bm) is a best approximation of <PU) , then E has at least k + 2 alter-
nating extreme points.

Corollary 2.4: If all knots of Bm are simple, then <P(Bm) is a best approxi-
mation of <PU) if and only if E has m + 2 alternating extreme points.

Proof of Theorerr:.-2.3. We first proof (i). Assume that tEere is a better approx-
imation, say <P(Bm) with knots Xv and error function E. Then there is a sign
(j E {-1, 1} such that

(j' (-1)j. (E(17j) - E(17j))

= (j.(-1)j+1.(T(17j)-T(17j)) < 0

for j = 1; ... ,m + 2 , where {17j} is the set of alternating extreme points of E.

This implies that the function

T - T has at least m + 1 zeros (with sign changes)

in the interval (171, 17m+2) .

T - T is the Gauß transform of the function
x x

d(x) := J Bm(e) de - J Bm(e) de .

(2.11)

(2.12)
-00 -00

Since the kernel function e- (",~;)2 is totally positive, it follows that the Gauß
transformation is variation diminishing (cf. [3]), and so, from (2.11), that d has
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at least m + 1 zeros in ("11, "1m+2). Moreover, due to the finite-support property
of the B-splines, there are two additional zeros of d in a := min{xo, xo} and
ß := max{xk, xd, such that d has a total of m + 3 zeros in the interval [a, ß] .

Since d is a (continuous) spline function, Rolle's theorem for splines implies
that the derivative d'(x) = Bm(x) - Bm(x) has at least m + 2 zeros, which is not
possible (cf. e.g. [2]). This contradiction proves statement (i).

To show (ii), we use the following result (cf. [2]), which can be proved by
straight forward calculations, using the well-known contour-integral representation
of B-splines (cf. e.g. [2,7]): The tangent space of the function

x

J Bm (~IXo Xl Xk) d
Po PI Pk ~ (2.13)

-00

is the (k + 1) -dimensional spline space

{ ( I
Xo ... x. . .. Xk)' }span Bm+l X +J 1 ' J = 0, ... , k .Po .,. Pj . .. Pk (2.14)

Since the function iP(Bm) is the Gauß trans form of the function in (2.13), it follows
from Theorem 2.1 that the tangent space of the functions iP(Bm) is the space

{ ( ( I
Xo ... x. . .. Xk)) . }~ := span G Bm+l x +J 1 ' J = 0, ... , k .Po ... Pj . .. Pk

This is a (k+1) -dimensional Chebychev space, and thus the space of approximation
functions (2.9) satisfies the local Haar condition (cf.[4]). This implies the existence
of (dirn ~ + 1) alternating extreme points of the best approximation, and so the
proof of statement (ii) is complete. 0

Sm (Xl xr)
PI Pr

of splines of order m with fixed inner knots Xl < < Xr and corresponding
multiplicities PI,'" Pr' The dimension of this space is

We can now also derive a necessary condition for the general problem of ap-
proximation by splines with free knots. On a given interval [a, b] , we consider the
space

r

dimSm = m+ LPj .
j=l

...... xr) .

...... PrU Sm (~~
rE{l, ... ,n}
"1 <"'<"r

PI +"'+Pr:::;n

Smn =,

Moreover, by Sm,n we denote the space of splines of order m with n free knots,
l.e.
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It is well-known [9,10]that the tangent space T( s) for each s E Sm,n is the spline
space with fixed knots

~ I

of dimension

T(s)

r

xr )
Pr + 1

dimT(s)= m+r+Lpj.
j=l

This means that we are in a situation very similar to that in the proof of Theorem
2.3, and so the followingnecessary condition for a best approximation can be proved
by the same arguments as used in the second part of the proof above.

Theorem 2.5: For given f E G[a, b] and arbitrary fixed t > 0, we consider
best approximation w. r. t. the set r of Gauß transforms of the free knot spline space
Sm,n, i.e.,

r = {g E G[a, b]; g(x) = G(s)(x, t) ; sE Sm,n} .

Then the following necessary condition holds: 1f gEr is a best approximation of
f , then the difference function (g - j) (x) has at least

r

m+r-1 + LPj
j=l

alternating extrf(me points in [a, b] .

3. NUMERICAL SOLUTION OF A HEAT EQUATION PROBLEM

In this section we consider the followinginitial-boundary value problem for the heat
equation on the region

R := {(x, t) E lR2 ; 0 < x < 1 , 0 < t < 00 } :

Given a univariate function f E G[O, 1] with zeros of order one at least in the points
o and 1, find a function u E G2(R) nG(R) , which satisfies

Ut = xxx

everywhere in R, and takes the boundary values

U(x,O) = f(x) for 0::; x ::; 1 ,

(3.1a)

(3.1b)

•

and
u(O,l) u(l, t) = 0 for 0::; t < 00 .

9
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We define the function JE C(IR) as the odd periodic continuation with period 2
of f to the realline, i.e., for each /1 E !No,

J(x) := { f(x - 2/1), if x E [2/1,2/1 + 1] ,
- f(2/1 + 2 - x), if x E [2/1+ 1,2/1 + 2] .

(3.2)

Then, as it is well-known,~a solution of the above problem is given by the Gauß
transform of the function f, Le.,

u(x, t) := G(J)(x, t)
00

1 J ~ (..._0:)2
f(T)' e- 4t dT

v41l"t
-00

(3.3)

satisfies (3.1). However, in practice the problem arises that the integration in (3.3)
may cause numerical problems, and so one would like to approximate the function
J (resp. f) first by another function, such that the integration in (3.3) can be
replaced by an easier process.

This is an approximation problem with constraints: Given fand a suitable
function dass B c C[O, 1] , determine a bf E B, such that

and, in addition,

Ilbf - fll[0,1] is relatively small, (3.4a)

(3.4b)

Here, 11 . 11[0,1]denotes the maximum norm on [0,1].

In [5], it was suggested to use as approximation dass B aspace of periodic
splines. Since the approximation of functions by periodic splines is still a difficult
problem (see e.g. Zeilfelder [12]), we propose another method, to be developed now.
For n E!N and 0::; lJ ::; n , we denote by ß~ the lJth Bernstein basis polynomial
of degree n, Le.,

(3.5)

Moreover, it is convenient to define ß~(x) :_ 0, if lJ< 0 or lJ > n. The following
result on the structure of the linear space

(3.6)

Lemma 3.1: a) It is

holds.

Bn ~ x(1-x)IIn-2. (3.7)

In particular, each b E Bn satisfies (3.4b).
b) The space Bn is a Chebychev space on the open interval (0,1),' and a weak
Chebychev space on the closed interval [0,1].
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Proof. Each element p E Bn is a polynomial of degree n, which vanishes at the
points 0 and 1. Hence Bn is a subspace of x (1 - x) IIn-2 . Since the dimension
of Bn equals (n - 1) , the identity (3.7) is proved.

To prove statement b), we use the fact that IIn-2 is a Chebychev space every-
where in IR. Since the weight function x(1- x) has no zero in (0,1), Bn is also
Chebychev on this interval. This implies b). 0

Since Bn is no Chebychev space on [0,1], good approximations (i.e., via in-
terpolation), are hard to determine directly. However, the following result implies
methods for this by using the strong connection of Bn with the space IIn-2.

We define the function gf by

f(x)gf(x) := --------
x (1 - x)

for all xE [0,1]. Note that gf is still bounded on [0,1].

(3.8)

Theorem 3.2: Let pE IIn-2 be an approximation of gf with error {}, given in
Bernstein form

n-2

p(x) = L avß~-2(x).
v=O

Then the function bf E Bn , defined as

n-1

bf(x) .- L Ivß~(x)
v=l

(3.ga)

with

Iv (
n -- 2)
v - 1 .av-1 (3.9b)

is an approximation of f w. r. t. Bn, with approximation error

{}
Ilbf - 111[0,1] ~ "4' (3.10)

Remark. Since IIn-2 is a Chebychev space on [0,1], many types of good approx-
imations, e.g. the polynomial of best approximation as weIl as the interpolating
polynomial, are very easy to compute. Thus, Theorem 3.2 opens many possibilities
to compute good approximations w.r.t. Bn.

11
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Proof of Theorem 3.2. We first show that

bf(x) = x(l - x) p(x)

by the following equations:
n-2

x(l-x)p(x) = LQvx(1-x)ß~-2(x)
v=O

Then it follows that

Ilbf - fll[0,1] = max {Ibf(x) - f(x)l}
xE[0,1]

, .
max {lx(l - x)l. Ipf(x) - gf(x)l}
xE[0,1]

1
::; max {Ix (1 - x) I}. max {Ipf (x) - 9f (x) I} ::; -4 . (J,

xE[0,1] xE[0,1]

and so the proof is complete. o

(3.11)

(3.12)

Given an~ {unction b E Bn, we define, in analogy to (3.2), the odd periodic
continuation b of b by

~ { b(x - 2J.L), if x E [2J.L,2J.L+ 1] ,
b(x) :=

-b(2J.L + 2 - x), if x E [2J.L+ 1, 2J.L+ 2] .

For formal reasons, we set in addition

_ {b(X)' if x E [0,1],
b(x) :=

0, elsewhere.

Note that both functions are continuous everywhere on IR. We consider now the
Gauß transform of a function b = bf E Bn , which is supposed to be an approxima-
tion to the initial value function f.

~
Theorem 3.3: Let bE Bn. Then the Gauß transform of the function b, defined
in (3.11), is an odd periodic funetion (w.r.t. x), and possesses the representation

•

C(b)(x, t)

valid for alt (x, t) E R

L (C(b)(x - 2J.L,t) - C(b)(2J.L - x, t)) ,
p.E7£

12
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~
Proof. Since b is an odd periodic function, the same is true for its Gauß transform,
due to Theorem 1.1.

In order to prove (3.13), we use the identity

{)(r) = L (b(r-2j.L)-b(2j.L-r)),
J.LELZ

(3.14)

valid for each r E IR. Note that no problem with the convergence of the series on
the right hand side occurs, since for each r E IR in fact at most one term in this
series is different from zero.

From (3.14), we obtain the relation
00

~ 1 J ~ (T_x)2G(b)(x, t) = -- b(r) . e- 4t dr
V47rt

-00

•

1 ~ (100

- ~-- L.J b(r - 2j.L). e- 4t dr-
V47rt J.LELZ -00

100- ~ )

- -00 b(2j.L- r) . e- 4t dr

= L (G(b(' - 2j.L))(x, t) - G(b(2j.L - . ))(x, t) ) ,
J.LELZ

and so, using th,e fact that the Gauß transform is shift invariant, i.e.,

G(b)(x - y, t) = G(b(. - y)) (x, t)

for all y E IR, the second statement of Theorem 3.3 is proved.

(3.15)

o

•

Theo~m 3.3 implies that it suffices to investigate the Gauß transform of the
function Ob. Moreover, due to linearity, we may even more concentrate on the
Gauß transforms of the basis functions ß":, cf. (3.5). To do this, we introduce the
continuations ß": and 13": of ß":, defined in analogy to (3.11) resp. (3.12).

Theorem 3.4: Let, for alt v and nunder consideration,

G~ := G(ß~).

Then for n ~ 2 the recursion formula

G~(x, t) = (1 - x) G~-l(x, t) + x G~=i(x, t) +
(3.16)

+ 2tn (G~=~(x, t) - 2G~=i(x, t) + G~-2(X, t))

is valid.
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Proof. The functions ß~ can be interpreted as B-splines with multiple knots at 0
and 1. Hence, the assertion of Theorem 3.4 can be deduced from the corresponding
result on B-splines, see Meinardus [5]or Weis [11].

Alternatively, a straightforward but lengthy proof can be given, using integra-
tion by parts and the recurrence relations

ß~(x) = (1 - x) ß~-l(x) + x ß~~t(x)

and

d~ ß~(x)

for Bernstein basis polynomials. D

In order to compute the values of the functions G~ by the recursion (3.16), it
is necessary to have approximations for the initial value functions

Gö(x, t)

1 11
(-r_",)2Gg(x, t) = -- e- 4t dT

V47l"t a '

1 11
(.,._",)2-- (1- T)' e--4t- dT,

V47l"t a

1 t (.,._",)2

Gt(x, t) = V47l"t Ja T' e- 4t dT

and (3.17)

available. This can easily be done, e.g., via the well-known errar function erf(z),
defined as

2 r 2
erf(z) = Vii Ja e-1] dr], (3.18)

which in turn can be computed using various types of approximations, see [5,8,11].
The connection between the error function and the desired initial value functions is
provided by the following relations.

Lemma 3.5: It is

(3.19)

Gt(x, t)

Gö(x, t) Gg(x, t) - Gt(x, t).

14
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Proof. Relation (3:19) follows directly from the definition Gg and (3.18). To prove
(3.20), we write r = x + (r - x) and obtain

G~(x, t)
o 1 11

(,._",)2xGo(x,t) + -- (r-x).e--4t-dr
V47rt 0

o 1 11 (r-x) (,._",)2xGo(x,t) - 2t.-- ----.e--4-t-dr
V47rt 0 2t

If [-(,._",)2 ] r=1
= X Gg(x, t) - -; e 4t

r=O

Finally, relation (3.21) follows immediately from (3.17).
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