Optimal trigonometric preconditioners
for nonsymmetric Toeplitz systems

Daniel Potts and Gabriele Steidl

220/96 .

Abstract. This paper is concerned with the solution of systems of linear equations
Tyzy = by, where {T'y} ven denotes a sequence of nonsingular nonsymmetric Toeplitz
matrices arising from a generating function of the Wiener class. We present a technique
for the fast construction of optimal trigonometric preconditioners My = M y(T'yTn)
of the corresponding normal equation. Moreover, we prove that the spectrum of the
preconditioned matrix M 3T Ty is clustered at 1 such that the CG-method applied
to the normal equation converges superlinearly. Numerical tests confirm the theoretical
expectations.
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1 Introduction

Consider the system of linear equations
TNmN = b[\f, (1-1)

where Ty € IRM"Y denotes a nonsingular Toeplitz matrix. Toeplitz systems arise in
a variety of applications in mathematics and engineering (see (7] and the references
therein). While there exist fast direct Toeplitz solvers for Hermitian positive definite
Toeplitz matrices Ty, such techniques are not available in the non-Hermitian case. It-
erative metods like GMRES and CG often provide a fast solution of (1.1) if they are
applied in connection with preconditioning techniques [7]. In particular, these meth-
ods profit from the fact that the vector multiplication with the Toeplitz matrix Ty
in each iteration step can be computed with O(/Vlog V) arithmetical operations by
using the fast Fourier transform (FFT). Clearly, the multiplication with the precon-
ditioned matrix should have the same arithmetic complexity. Two types of precon-
ditioners are mainly exploited for linear Toeplitz systems, namely optimal (Ceséro)
circulant preconditioners My = Cn(Ty) [5] and more simple so-called “Strang” cir-
culant preconditioners My = Sy(Tx) [6]. One reason for the choice of circulant
preconditioners is the fact that circulant matrices can be diagonalized by the Fourier

o AN-1

matrix Fy = (e“2”’3’°/ N ) o where the multiplication of a vector with F'y takes only “
Jk=

O(N log N) arithmetical operations. Moreover, under certain assumptions on the gener-

ating function of Ty (see [8], [22]), it can be proved that the singular values of M ' Ty v

are clustered at 1. For non-Hermitian Ty, this results in a superlinear convergence of
the CG-method applied to the system

(M;,]"TN)*(MXIITN)Q}N = (MI_VlTN)*MJ_Vle . (12)

To our knowledge, up to now, for non-Hermitian Toeplitz systems and Toeplitz least
square problems, only circulant preconditioners with respect to Toeplitz matrices were
constructed and used in some kind of normal equation as in (1.2) [8], [11] or as so-called
displacement preconditioners [12]. When we finished the paper, we became aware of
new results of E.E. Tyrtyschnikov et al. concerning the convergence behaviour of the
preconditioned GMRES-method [23] which avoids the transition of (1.1) to the normal «
equation. However, the preconditioners are again (improved) circulants, which were
| constructed with respect to T'y.

In this paper, we restrict our attention to nonsymmetric real Toeplitz matrices T .
Here, it seems to be natural, to replace the circulant matrices by matrices which are
diagonalizable by some real trigonometric matrices. Of course, the commonly used
trigonometric transforms are closely related to the Fourier transform. Indeed, for sym-
metric Toeplitz matrices Ty with positive continuous 27—periodic generating func-
tions, trigonometric preconditioning significantly accerelates the convergence of the
CG-method.

In this paper, we suggest the solution of (1.1) by applying the CG-method to the pre-
conditioned normal equation

Mj_vlT,NTNmN = M;rlT/NbN y
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where in contrast to (1.2), My = M y(T'yTx) denotes the optimal preconditioner
with respect to T'yTy. We demonstrate that the construction of such optimal precon-
ditioners can be realized with only O(NN log V) arithmetical operations despite the fact
that T Ty is no longer a Toeplitz matrix. We prove that under certain assumptions
on Ty the eigenvalues of M ' T'y Ty are clustered at 1. Although our approach works
in exactly the same way for different trigonometric transforms, we prefer to investi-
gate the DCT-II preconditioner in detail and add only few facts concerning the other
trigonometric preconditioners. We hope that our notation makes the approach for other
trigonometric preconditioners immediately clear. Numerical tests were performed for
the different trigonometric preconditioners. Note that in all examples, our precondition-
ing was superior over the method (1.2) with an optimal trigonometric preconditioner
M N(T N) of T N-

This paper is organized as follows: Section 2 contains the basic matrix notation. In
Section 3, we study the relations between trigonometric transforms and Toeplitz ma-
trices. In particular, we introduce a method for the fast vector multiplication with real
nonsymmetric Toeplitz matrices based on real trigonometric transforms. In Section 4,
we introduce optimal trigonometric preconditioners. Section 5 is concerned with the
proof that the eigenvalues of the preconditioned matrix M N TTy are clustered at 1.
In Section 6, we present the fast construction of the optimal preconditioner. Finally,
Section 7 confirms the theoretical expectations by numerical tests.

2 Notation

For the sake of clarity, we collect the matrix notation in this preliminary section.

Let ay := (ag,...,an—1)"s by := (b, ...,bn-1)" and let Oy be the vector consisting of
N zeros. Here A’ is the transpose of A. By Iy we denote the (N,N)-identity matrix
and by e, € R" the k-th identity vektor. To describe Toeplitz and Hankel matrices,
we use the following notation:

ag ay e AN-—1
bl ao oo AN_2
toeplitz(a’,b') := | = : : : : (with ag = by),
bN_2 bN__3 SR ay
bN_1 bN_2 e ag

stoeplitz a’: symmetric Toeplitz matrix with first row a’,
atoeplitz a’: antisymmetric Toeplitz matrix with first row a’, where ag =0,

ag ... AN—2 AN
a Lo AN-—1 bN_2
hankel(a’, b') := : : : : (with ay—1 = bn-1),
anN—-2 ... bz b1
anN-1 --- b1 bo

shankel a’: persymmetric Hankel matrix with first row a’/,
ahankel a’: antipersymmetric Hankel matrix with first row a', where ay_; = 0.




Further, we introduce the matrices

01 0 1 ... 00
o= o e RV o= r o € RN+
1 . . . ’ , . . . . ’
00 1 0 . 10
and
01 00
R. = | : ) . c RV-LNH
N = : oo .
00 ... 10

Let diag a be the diagonal matrix with diagonal a and let §(A) := diag(axx)rp ,
where ay x is the (k, k)-th entry of A. By

N-1

trA:.= Z Ok k
k=0

we denote the trace of A. Moreover, we need the following matriz norms:
Spectral norm:

||A||2 := (maximum of the absolute values of the singular values of A)!/2,
Frobenius norm:

N-1
IA||F = (T a%)Y?,
k=0 7
1-norm:

N-1
|| Al}; := max{ ZO ajx: k=0,...,N—1}.
]:

If it does not make confusion, we use the same notation for the norm of absolute
summable sequences a = {ax}rez € [1, i.e.

llally = 3_ laxl.

keZ

3 Trigonometric transforms and Toeplitz matrices

We introduce four discrete sine transforms (DST) and four discrete cosine transforms
(DCT) as classified by Wang [24]: .

2 1/2 ]kﬂ' N
DCT-I ch., = (——) NN Jo N+1,N+1
N+1 N (EJ & COSs N - e R ,
1 2 -1
DCT-1I : C¥ .= / ( s 2 (2k + Dl ) € RVY,
7,k=0
DCT-III : Ci¥ .= (C”) e RMV, |
1/2 . N-1 .
DCT_IV . C{Vv = <_2_) cos (2.] + 1)(2k + 1)7[' e RN'N’
N 4N P




b |

and

: 1/2 s N-2
DST-I : Sk, = (3) (Sm (]+1)(/€+1)7r)  RN-LN-1
N N . )
7,k=0
2\ (j+1)(2k + 1)r\ ¥
DST-1I : S .= (__> N NN
N N j+1 s IN ko € IR‘ )
DST-II : SH = (Si) eRM™,
2\'? (27 + 1)(2k + Dz )"
DST-IV : S¥ .= (—) NN
N N cos i o e R™7,

where € :=1/v/2 (k = 0, N) and £} := 1 otherwise. We refer to the corresponding
transforms as trigonometric transforms. It is well-known that the above matrices are
orthogonal and that the vector multiplication with any of these matrices takes only
O(N log N) arithmetical operations. Fortunately, there exist implementations of algo-
rithms for the vector multiplication with the above sine and cosine matrices, for example
a C-implementation based on {3] and [19].

Moreover, we use the slightly modified DCT-I and DST-I matrices

= I k" =1 kr\ "
Cni = <(5Q’)2 cos ]W—) , Sy = (sin 2_)

j k=0 N ] k=1
2k= Jhe=
and the slightly modified DCT-III and DST-III matrices
. N-1 . N-1
~ 11T (2j + L)kn =111 . 27+ D)(k+ D
Cy = <(skN)2 co§ N ). Sy = (ef1)?sin SN e
7.k=0 3,k=0
It holds that
=1  =I N
CniiChn = 9 Inya (3.1)

Theorem 3.1. There exist the following relations between trigonometric transforms

and Toeplitz matrices:
i) DCT-I and DST-I:

1 1
RyCL, . DCy Ry = 5 stoeplitz(ag, ..., an—2) + 3 shankel(as, . ..,ay_2,0,0),
: 1, 1
SL_, Ry DRySL_, = 5 stoeplitz(ao, ..., an-2) = 3 shankel(as, ..., an-2,0,0),
- 1 1
RyC4. D RySy_, = 5 atoeplitz(0,a1, ..., an—2) + 7 ahankel(az, ... an-1,0),
- 1 1
SL,_, Ry D CfVHRN = -3 atoeplitz(0, a;,...,an—2) + 3 ahankel(as,...,an-1,0)
~ with
D = diag(do,...,dn), D := diag(0, dy,...,dn-1,0),
=TI
(do,...,dN),' = CN-H (ao,...,aN_g,O,O)',
~ ~ ~J ;
(dl,---adN—l), = SN—l (al,...,aN_l) .
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ii) DCT-II and DST-II:

: 1 _ 1
(C’fvf) Zy,D Zy,CY = 3 stoeplitz(ao, - .., an—1) + 7 shankel(ay,...,an-1,0),

' 1 1
(5%) Z'v, D Zy,SY = 3 stoeplitz(ag, ..., an—_1) — 5 shankel(ay,...,an_1,0),
- 1 1
(Ci) Z\y, D ZyaSY = 5 atoeplitz(0, a1, .., an-1) + 7 ahankel(ay,...,an-1,0),
~ 1 . 1 |
(S%)I Zy, D Zyno,Cl = -3 atoeplitz(0,a1,...,an—1) + 5 ahankel(as,...,an_1,0)

D := diag(do,...,dy), D :=diag(0,d,,...,dn-1,0),

(do--dn) = Ciuy (a0, ... an-1,0),
(.. dyoy) = Sy (an,...,an_1).

iii) DCT-IV and DST-IV:

cy bpcyy = % stoeplitz(ag, . ..,an_1) + % shankel(a;, ..yan—-1,0),

sty DS = % stoeplitz(ag,...,an—1) — %shankel(al, ..oyan-1,0),

cly DsY = —% atoeplitz(0,ay,...,any_1) + % shankel(as,...,an_1,0),

sty D cy = —12— atoeplitz(0, a1, ...,an—1) + % shankel(ay,...,an_1,0)
with

D = diag(dg,...,dn-1), D :=diag(dy,...,dy_1)
~III

(dOa"'1dN—1)/ = CN (a07 . 7a'N—l),7
~ ~ ' ~IIT ’
(dly---,dN—-l) = SN (al,...,CLN_l,O) .

Note that for fixed diagonal matrices D, D, the above decompositions into a Toeplitz
and a Hankel matrix are not unique.

Proof: We restrict the proof to the DCT-II. To simplify the notation, we drop the
index N and set C := ZNzc S = ZN,lsN and D := diag(dy,...,dy). Then by

1 1
cosa cosff = 5 cos(a — ) + 3 cos(a + ),
the (u,v)-entry of the matrix C'DC is

N-1 _ 1 N-1
(c'De), Z(Ek dkcos(_u_m - Z gk)2dkcosw_ﬂf

2
N N 2 N £ N ’

B | b
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or equivalently, since —(—1)*"Vdy = —(—1)**"*!dy for arbitary dy € IR,

1 N (w—v)kr 1 2 Y (u+v+ 1)k
C'DC), = 2d —— - — eMy? Wy Rt
( 5N g €08 +2Nk§)(k) dy cos ¥ .
Choosing dy € R such that
N
Z )2 dk =0 )

we get by symmetry properties of cosine function that
/ 1 . 1
C'DC = 3 stoeplitz(ag, .. .,an-1) + 3 shankel(a;,...,an-1,0),

where )
I =1 1
(ao,...,aN_l,O)=-ﬁCN+1(d0,...,dN) y

ie by (3.1)
’ =1 !
(do,...,dN) =CN+1(G,0,..‘,(1N_1,0) .

The other decomposition relations follow in a similar way by application of sin sin 8 =

! cos(a— ) — ; cos(a+ ) andsina cosf = lsin(a—-B) + § sin(a+8). g

Theorem 3.1 provides a new method for the fast multiplication of a real vector with
a real nonsymmetric Toeplitz matrix that avoids the complex arithmetic which comes
into the play if we exploit the usual FFT-based method for the fast vector — Toeplitz
matrix multiplication. -

Corollary 3.2. (Fast vector multiplication with nonsymmetric Toeplitz matrices)
Let

T = TN = (tj—k)gk—zl() =. toeplitz((to,t_l, AP 7t—-(N-—1))a (to, tl, ey tN—-l))
be given and let C := Zy,CY, S = Zy,S}. Then
1 1 5 .
T =3 (T+T) + 3 (T-T')=C'DC + §'DS + C'DS - §'DC,

where _ _ 3
D := diag(dy, . ..,dn), D :=diag(0,ds,...,dn-1,0),

=1 t; + i ty—1 + t_(N—
(do - dn) = Cip (to, = Lo 2< D oy
~ ~ ~T t_1—t1 t_(n-1) — EInN_
(dy,...,dvo1) = Syoa( ‘2 L= »”2 Ly,

The vector multiplication with T' requires except of O(IN) additions
- one DCT-I and one DST-I to build D and D in a precomputation step,
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- one DCT-II and one DST-II,

- four multiplications of vectors with diagonal matrices, ) )

- one DCT-III and one DST-III of the vectors DCx + DSz and DSz — DCx,
respectively, and takes therefore only O(NVlog N) arithmetical operations.

Clearly, by Theorem 3.1, we can formulate similar algorithms for the fast multiplication
of vectors with Toeplitz or Hankel matrices with respect to the other trigonometric
transforms. Typewriting this paper, we got a ps-file of a paper of G. Heinig and K.
Rost {14], which contains results in a similar direction as presented in this section.

4 Optimal trigonometric preconditioners
We are concerned with the solution of the system of linear equations
Tnxy =by

with a nonsingular nonsymmetric Toeplitz matrix Ty € R™"Y. We intend to solve the
normal equation

TINTN:EN = TleN (41)

by the CG-method. In Section 7, we will see that with a good preconditioner at hand,

this can be realized in a fast way. There are several requirements on a preconditioner

M y of (4.1) resulting from the construction and the convergence behaviour of the CG- .
method as well as from the fact that the vector multiplication with T 5 requires only

O(Nlog N) arithmetical operations. Therefore, we are looking for a preconditioner

with the following properties:

(P1) My is symmetric and positive definite such that the bilinear form

(ZN, YN My = Ny Myyy

arising in the left preconditioned CG-method is symmetric and positive definite, too.
(P2) The spectrum of M 7T\ Ty is clustered at 1.

(P3) The vector multiplication with My can be computed with O(N log N) arithmeti- .
cal operations. '

(P4) The construction of M y takes only O(N log N) arithmetical operations.

Having property (P3) in mind, a straightforward idea consists in choosing My from
an algebra

Aoy = {0 (diagd) Oy : d € RV} (4.2)

of matrices which are diagonalizable by some orthogonal matrix Oy, where Oy has the
additional property that its vector multiplication requires only O(N log N) arithmetical
operations. As orthogonal matrices, we will use the trigonometric matrices of the
previous section which are closely related to the Fourier matrix Fy, but have the
advantage of purely real entries. Moreover, if we choose My € Ap, as so-called
optimal preconditioner of Ty Ty, then we will see that under certain assumptions on
Ty, the properties (P1), (P2) and (P4) are also fulfilled.

8
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For Ay € R the matrix My(Ay) is called an optimal preconditioner of Ay in
Ao, [5] if

||MN(AN) - ANIIF = m1n{||BN b ANHF . BN € AON}- (43)

If Oy is one of the orthogonal matrices which correspond to the DST-I, DST-II, DCT-
II, DST-IV or DCT-IV, respectively, then M y is said to be an optimal trigonometric
preconditioner of Ay. The choice of the Frobenius norm in definition (4.3) results from
the fact that the Frobenius norm is induced by an inner product of RMY

<AN,BN> = tr A, BN Z a;, kb]k (4.4)
7,k=0

In particular, it holds that

HONANO ||F = tI‘(ONA OINONANOIN) = tI‘(AINAN) = ||AN||§;~ . (45)

The following lemma describes the optimal preconditioner of T'vTy in two different
ways.

Lemma 4.1. Let Ay € R™" and let Ao, be defined by (4.2) with respect to some
orthogonal matrix Oy. Then the optimal preconditioner of Ay is given by

My(Ay) = Oy 6(OxANO'y) Oy . (4.6)

If {Bo, ..., By_1} denotes a basis of Ao, then an alternative description of M ~(ApN)
reads as

N-1
MN(AN) = Z akBk, (47)
k=0
where the coefficient vector a := (ay, ..., an—1) is determined by
Ga=pB,G:=((BwB)) ity B: = ((An, B;))[ -

Proof: 1. By (4.5), it follows for My := O’y (diagd) Oy € Ao, that
IMy — Anllr = ||diagd — Oy AvO'yllr

which implies (4.6) by the definition of the optimal preconditioner.

2. The computation of the optimal preconditioner of Ay in Ao, is equivalent with the
computation of the element of best approximation of Ay in the linear subspace Ao,
of the Hilbert space RM" equipped with the inner product (4.4). This can be done by
the Galerkin approach (4.7). g

Now it is easy to verify that an optimal preconditioner of T', T y satisfies property (P1).
N N




Corollary 4.2. Let Ay € RV be a symmetric positive definite matrix and let Ao,
be defined by (4.2) with respect to some orthogonal matrix Oy. Then the optimal
preconditioner M y = M y(Ay) is also symmetric and positive definite.

Proof: The symmetry of My follows by definition of Ao, .
By (4.6), the eigenvalues of My are given by the diagonal entries (ONANO'V ik (k=
0,...,N —1) of OyAyOy. Since Ay is positive definite, it holds that

! YONANO'
0 < min{m:mNaéON}:min{yN NANTNYN

! ‘YN 76 ON}
TNTN YNYN
< e;c(ONANOIN)eIc = (ONANO/N)k,k (k=0,...,N=1),

and we are done. m

In connection with (4.6) and Corollary 4.2 see also [18].

5 Clusters of eigenvalues

Let Cy, denote the Banach space of 27-periodic complex-valued functions equipped
with the usual norm || - ||c. In this section, we are only interested in functions f =
fr+ifr € Cor with real Fourier coefficients

tei= [ f)e*dz (ke Z),

where we suppose that the real and the imaginary part of f

oo
fr = to+ D (te +t_)coskz,
k=1

fr = D (te —t_x)sinkx
k=1

do not vanish, respectively. Moreover, we assume that {t;}xez € [, such that f belongs
to the Wiener class. Consider the N-th Toeplitz matriz corresponding to the generating
function f .
TN = toeplitz((to, t_1,... ,t_(N_]_)), (to, t1,... ,tN—l)) .

It is well-known that the singular values of Ty are distributed as |f| [20]. Note that
the above result was extended to functions f € L3 O Co, in [22].

The following definition is due to E.E. Tyrtyshnikov [22]. Let {o{}i_, be a sequence
of real numbers and let yy(e) denote the number of those among off (k = 1,...,N)
which are outside the e~ball centered at p. If yx(c) < K (), where K (¢) is independent
of N, then p is called a proper cluster. In this sense, we say that the values o} are
clustered at p.

In the following, we restrict our attention to preconditioners of Aclzvz. By Theorem
3.1, the approach for the preconditioners with respect to the DST-I, the DST-II, the

10



DST-IV and the DCT-IV follows the same lines. Let C = Cy := Zy,C¥ and
S = Sy := Zy,SY. Regarding Theorem 3.1 ii), we associate with the sequence
{Tn}~ven of Toeplitz matrices a sequence {H y}nyen of Hankel matrices

HN = hankel((t_l, c. 7t—(N—1)y 0), (tl, .. ,tN_l, 0)) .
Let M y denote the optimal preconditioner of T'yT y with respect to the DCT-II, i.e.
My = (Cysciir,Ty(CciH)H Ty . (5.1)

In this section, we prove that under certain assumptions on Ty, the eigenvalues of the
preconditioned matrix My Ty Ty are clustered at 1. We follow the lines of R.H. Chan.
First, we show that for all ¢ > 0 and N sufficiently large, the matrix T\ T y — M y splits
into a matrix of low rank independent of N and a matrix with spectral norm smaller
than . Then we apply Cauchy’s interlace theorem to verify that the eigenvalues of

MMNT\Ty — My)= M3 T\Ty— Iy

are clustered at 0. Again, we drop the index N, if the dimension of the matrices follows
from the context.

In preparation of Theorem 5.3, we provide the following two lemmata.

Lemma 5.1. Let a = {a;}{2, € {; and b = {bc}32, € l1. Then, for all € > 0, there
exists m = m(e) such that for all N > 2m the Hankel matrix

H = hankel((ao, ay,...,aN-1 + bN—1)7 (bo, bi,...,an_1+ bN—l))
splits as H = Vg + Wy, where
WH = hankel((ao, ey m—1, ON—m)y (bo, ey bm—ly ON—m))

is a matrix of rank < 2m and where Vg := H — Wy satisfies ||Vigl|, <e¢.

Proof: Since a,b € l;, there exists for all € > 0 an integer m = m(e) such that

Z |ak| < 6/2, Z Ibkl < 6/2.
k=m

k=m

Now the assertion follows from ||[Vglls < [|[Vulli <e/2+¢/2. 1

Lemma 5.2. Let t = {ts}rez € li with ||t||; = 7 be given. Further let T = Ty
and H = Hy be the corresponding N-th Toeplitz matrix and N-th Hankel matrix,
respectively. Then, for all € > 0, there exists m = m(e) such that for all NV > 4m

HT+TH+H*=V+W, (5.2)

11




where ||V||; < € and

W .= (wj'k);.vk_:lo with wj, =0for2m < j+k <2N -2 - 2m. (5.3)

Proof: By construction, it holds that ||T||2 < 7, ||H|}; < 7. Since t € [;, there exists
m = m(e) such that

€
> el < & (5.4)
k|=m+1 T
Then
T=T.+Ts, H=H. + Hp (5.5)
with '
TE = toeplitz((0m+1, t..(m+1), PN t—(N—l))a (0m+1, tm+1a . ,tN—l)) y
TB = toeplitz((to, e ,t_m, ON—m—l)a (to, T ,tm, ON—m—l)) y
Hs = ha'nkel((oma t-—(m+1)a s ,t—(N—2)a 0), (Oma b1y - -5 IN-2, 0)) ’
HB = hankel((t_l, ca ,t__m, ON—m); (tl, cer b, ON—m)) y

where we obtain by (5.4) that ||T.||; < &, |[H:|l2 < &. Substituting (5.5) in (5.2),
we obtain the desired decomposition

HT+TH+H? = (H.+Hp)(T.+Tp)+ (T, +Tp)(H.+ Hp)+ (H, + Hp)*
(HT.+T.H+HTs+TzH. + H.H+ HgH,)
+(T'3Hg + HpTp + HY).

Theorem 5.3. Let t = {tx}rez € I with ||t||; = 7 be given and let T = Ty be the
corresponding N-th Toeplitz matrix. Then, for all € > 0, there exists m = m(g) such
that for all N > 2m

TT=C'DC+V+W,

where D denotes some diagonal matrix,
W = (wj,k)g,;lo with wig=0form<j+k<2N-2—-—m,
and where ||[V]|; < e.
Proof: Let H = H y denote the N-Hankel matrix associated with ¢. Then it follows
by Theorem 3.1 ii) that

TT = (T'+H-H)(T+H - H)
(¢'D,C +S'D,C - H)(C'D,C +C'D,S - H),

12



where

a=anNy1 ‘= (2t0>t—1+tla-"7t—(N~1)+tN—170)I € IR'N+1a
b= bN—l = (tor =t tov-1) —tn-1) € RN

and

D, = diag(do, ..., dn-1,dn) , (do,...,dn) = Cy,a,
D, = diag(0,d,,...,dy-1,0) , (do,...,dn_1) = §5V_1b.

By CH(CY) = Iy, we further obtain that
T'T = C'DC + S'D.S + C'D,D,S + §'D,D,C - H(T + H)— (T' + H)H + H’
and by Theorem 3.1 ii) that

T'T=C'DXC+CD,C~Hp+Hy, —(HT+TH+H’)  (56)

with
Hf)g := shankel(u,...,un),
2 I ~ ~
(UO,...,UN)/ = ’NCN+1(O,d§,...7d?V_1,O),,
fIf),,Da := ahankel(vy,...,vn-1,0),
2 =I ~ ~
(’1)1, Ce ,UN_l), = ]—V— SN_l(dldl, ey dN_ldN_l)l .
Set A _

H:=Hp—-Hpp = hankel((w1, ..., wn), (W-1, ..., W-N)) (5.7)
with wy = w_y = un, Wk = Ug — Vg, Wk = ug + V¢ (K =1,..., N —1). Then we have
for all N € IN that

2 N-1 -
WN = »7 (—l)kdi’
N 3
2, =
unl < 2 115iblE < [16lI3 < 18I < 7. (58)

Moreover, we get by Theorem 3.1 i) for the first row w := (wy,. . ., wyn_1)" of H that
2 ., =1 ) ~ 5 =1

2 ~I . ~T
—N SN—IRI]V dla'g(dOa BRI dN) RNSN—lb

— toeplitz ((—to, —ty, ..y —tnoa), (—to, ~t-1,. .., —t_(v-2))) b
+hankel ((t_2, - ,t_(N_z), bn_1, 0), (tz, o, tn—o, —by_1, 0)) b.
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Thus, it holds for all N € IN that
||w]|, <272,
Similarly, we conclude that
W(w_1, .-y w_v—yy)'|h < 72.

Together with (5.8), we see that H satisfies the assertion of Lemma 5.1. Hence, for
fixed € > 0, there exists m = mm(e) > 0 such that for all N > 2m

H=V+W (5.9)
with |[V]]; < €/2, W = hankel((wy, .. ., Wi, On—m ), (W_1, - ., Werm, On ) -
Furthermore, by Lemma 5.2, there exists m = m(e) > 0 such that for N sufficiently

large 3 3
(HT+TH+H)=V+W (5.10)

with ||V||; < €/2 and with a low rank matrix W of the form (5.3). Applying (5.9) and
(5.10) in (5.6), we obtain the assertion

T'T = C'(D2 + D})C + (V - V) + (W) - W)

with m := max{m, 2m}. g
Lemma 5.4. For m > 0 and N > 2m, let V € R™" with ||V||; < ¢/2 and
W = (wj,k);.\fk_:lo withwjr=0form <j+k <2N -2 —m,

- N-1

be given. Set w:= Y |wj;k|. Then it holds for N > 4w/e that
7,k=0
16(CN (V + W) (CYlz <e.

Note that for fixed m, the value w does not depend on N.

Proof: On the one hand, we obtain that
H6(CH V(CINMlz < IICF V (CHY Il = IV]]2 < /2,

and on the other hand that

2 e n(2j+)r  n2k+Dx
SCYW (CINIl2 < = (eN)? :
[|6(Cy W (Cy))ll2 < n:(I)I,.l.%—llN (e)) jJCZ=0 Wi €08 ——o—— €08 o [
< 2w/N <e/2 (N>4wfe).

Now summation implies the assertion. J
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Theorem 5.5. Let t = {tx}kez € l1 with ||t||; = 7 be given and let Ty be the cor-
responding N-th Toeplitz matrix. Moreover, assume that the singular values of Ty
are larger than v > 0 for all N € IN. Let My = M y(TyTx) denote the optimal
preconditioner of Ty Ty in Acu. Then the eigenvalues of M v Ty Ty are clustered at
1.

Proof: By Corollary 4.2, it holds that ||My'||s < 1/ for all N € IN. Let € > 0 be
fixed. Then we obtain by (5.1), Theorem 5.3 and Lemma 5.4 that for N sufficiently
large, there exists M € IN independent of N such that

TINTN ~My=Vy+Wy-— (C%)Ié(cll\{ (VN + WN) (C{VI)I) cl = Uny+ Wy,
where Wy is of low rank M and where {|U y||2 < 7. Now

= ‘/_N + WNa

where ||V y||2 < € and where the rank of Wy is at most M. Since Vv and Wy are
symmetric matrices, we can apply Cauchy’s interlace theorem [25], which implies that
for N sufficiently large, at most M eigenvalues of V n+W y have absolute value greater
than €. Now the assertion follows since M ,_Vl/ 2 TwTy M ;,1/ ?and M “ T'vT N possess
the same eigenvalues. i

Remark. Under the above assumptions on T’y it was proved that the eigenvalues of
(MMTN)*(My'Ty), where My = Cn(Ty) denotes the optimal circulant precondi-
tioner of Ty, are clustered at 1 8, 22]. In general, the eigenvalues of

(M7FTy) (MRyTy) are not clustered at 1, if My is the optimal trigonometric pre-
conditioner of Tn. If Ty = (tj—k)iido With tp =1 and ty = ~tx (k=1,...,N - 1),
then the optimal trigonometric preconditioners of Ty are My = Iy, i.e. we have no
preconditioning. If, for example, t_; = —t; = 2 and ¢, = 0 (|k| > 1), then the matrices
Tyn+1 (N € IN) satisfy the assumption of Theorem 5.5. However, the eigenvalues of
Thn.1Tan1 are given by 9 — 8 cos(jn/(N +1)) (j =0,...,N).

6 Construction of optimal preconditioners of T'T

In this section, we explain how optimal trigonometric preconditoners of T'vT N can be
constructed with O(INlog N) arithmetical operations. In contrast to the construction
of optimal trigonometric preconditioners of Ty, we are confronted with the fact that
T'vTy is not a Toeplitz matrix. Again, we consider only Ck-preconditioners. The
approach for the DST-I, DST-II, DST-IV and DCT-1V follows the same lines.

For the construction of the optimal preconditioner My = M y(T'yTy) we use the
representation (4.7) of My with the basis (B :k=0,...,N—1} of Acu [2], [13]:

Bj! = (C}) diag(Uk(c))ils" CW »
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where ¢; := cos % and where Uy denotes the k—th Chebyshev polynomial of second kind

Ux(z) = sin((k + 1) arccosz)/sin(arccosz) (z € (=1,1)).
Moreover, we apply that {Bi :k=0,...,N — 1} with

BL = (CYY diag(Ti(c))5' CN
= stoeplitz e, + shankele,_,, (k=1,...,N—1) (6.1)

e_; := On, and with the k-th Chebyshev polynomial of first kind
Ti(z) := cos(karccosz) (z € [-1,1}),
is another basis of Acrr. Both bases are related by

B; = By =1I, B’ =2Bj,
B = Bll, + 2B} (j=2,...,N-1), (6.2)

where the last equation follows by U; = U;_; + 2T;. Now we have by (4.7) that

N-1
= Z (6% Bil
k=0
with

_ G—l ,BII, (<BU BII>) : ﬂII ((TI TN,BII>)

k=0 j=0

Clearly, we are not interested in M y itself, but in the diagonal matrix diagd with
My = (CL) (diagd) C¥. (6.3)

If o is known, then we obtain diagd by

N-1 N-1
diagd = > ax C¥ B (CY) = 3 oy diag (Ue(e))ig"

k=0 k=0
i.e. by definition of Uy by

N-1

d = Z (k+1) Qf dy = .akk,,r (kzl,,N—l), (64)
k=0 sin i
A - 2 _
(ak)szll = Sy, (Ollc—l)fcv=11 . (6.5)

Thus the construction of d from given o requires O(N log N) arithmetical operations.
It remains to find an efficient construction of the coefficient vector cx. Therefore we use
the following lemmata.
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Lemma 6.1. For G := ((B][-[, B,U))/.V_1
I

o it holds that

3 0 -1
0 2 0 -1
-1 0 2 0 -1

-1 0 2 0 -1
-1 0 3 -2

3IN=-2
-1 -2 55

such that the vector multiplication with G™! can be computed with O(V) arithmetical
operations.

Proof: We show that G G = I. By definition, we have for the (k,!)-th entry of G
that '
g = (B, Bl") = «r (B{") BY)

N-1
= E UI(C]‘) Uk(Cj).
7=0
Then we get for [ =2,..., N — 3 that
' N-1
2051 — Gki—z — ka2 = 2 U(cs) (QUi(cs) = Ui—a(cs) — Uira(cy))
3=0
and further since
2Ul($) - Ul_Q(JZ) - U1+2(ZL‘) = 4(1 - 562) U[(LE)
and by definition of U; that

N-1 : .
C(k+Dgm . (I+1)jm
20k — Gri-2 — Gepez = 4 D sin ( N)j sin ( N)] = 2N Ok,
=1

(k=0,...,N—-1;1=2,...,N - 3). Straightforward computation forl = 0,1,N —
2, N — 1 completes the proof. i ‘

Set
g’ = ((TyTw, B)))

Then we obtain by the recurrence relation (6.2) that

N-1
j=0

=05, B =200, B =B+ B (k=2 ,N-1). (6.6)
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Thus we can compute B/ from B’ with O(V) additions. The following construction of
B’ is based on an idea of E.E. Tyrtyshnikov [21]. We split T = Ty = (tj_k);-\,’,c;lo into
a lower and an upper triangular Toeplitz matrix

T=T,+Tpg
with diagonal entries tg/2. Then we obtain that

We consider the summands on the right-hand side. The matrix T, Tr + TRTy is a
symmetric Toeplitz matrix. The matrices T, T and T'RTr have lost their Toeplitz
structure. For A € IRN’]Y , we introduce the vectors s(A) = (si(A)F=, h(A) =
(he(A)iZ and h(A) = (he(A))iSs by

sx(A) := (A,stoeplitz((c))%er)) (k=0,...,N—-1),

hi(A) = (A, hankel(et0)) (k=0,...,N—-2),

h(A) := (A hankel(0,e;)) (k=0,...,N—2).
Set h_; := 0 and h_; := 0. Then it follows by (6.1) that

k-1

(A, BL) = ()24 (A) + hg—y(A) + he_i(A) (£=0,...,N—1).  (6.8)

Lemma 6.2. Let A :=T;Tr+T3RT, and let r := T',(to,t1,...,tny—1)". Then it holds

that
s(A) = 2AN—-k)ry (k=0,...,N—1),
ho(A) = 7o, hl(A)=2’r1,
hk(A) = 27‘k + hk_g(A) (k=2,...,N—2),
he(A) h(A) (k=0,...,N—2).

Proof: Since A = stoeplitzr, the assertion follows by definition of s, h and h. g

N
Lemma 6.3. Let A :=T3Ty and let r := ((aﬁ)%_k)k:;. Then it holds that

s(A) = 2hankel(Nro, (N —1)ry,...,7x-1),(0,...,0,7xy_1)) 7, (6.9)
ho(A) = =z, hi(A) = 7y,

he(A) = heo(A) + 2 (k=2,...,N—2), (6.10)
ilo(A) = /2, ih(A) =,

hi(A) = hea(A) + g (k=2,...,N-2), (6.11)

where

x = Thr,
y := hankel(2(ro,71,...,7n-1), (=72, =T3,..., —TN-1,0,27n_1)) T.
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Proof: Since Ty is an upper triangular Toeplitz matrix, it holds that

Ak = Qj—1 k-1 + T5Tk (j,k=1...,N—1). (6.12)

Consequently, we obtain that

N—k-1 N-1-k
Sk = 2 Z Qj+k,j = Z (N -] k)"”j+k7”j

which yields (6.9). The recursions (6.10) and (6.11) follow by straightforward calcula-
tion from (6.12). g

Lemma 6.4. Let B := T3Tg and let J := shankeley_; denote the N-th counteri-
dentity. Then it holds that

si(B) = si(JBJ) (k=0,...,N-1),
h(B) = h(JBJ) (k=0,...,N—-2),
he(B) = h(JBJ) (k=0,...,N—2),

such that s(B), h(B) and h(B) can be computed by (6.9) - (6.11).

Proof: The relations for s(B), h(B) and h(B) follow by definition of J. By
JT, T, J=(J T, J) (JT.J)

and since
. JTL J =toeplitz((to,...,tN_l),(to,O,...,O))
is an upper triangular Toeplitz matrix, we can calculate s(B), h(B) and h(B) by (6.9)

~ _ _ (1 N2, \N-1
(6.11) with A=J BJ and r = ((ak ) tk)k:o B

Theorem 6.5. Let T := (tj_t) - Then the optimal preconditioner My € Acy
of T'yT'w can be constructed with O(/N log V) arithmetical operations.

Proof: We compute 37 by (6.7), (6.8) and by the Lemmata 6.2 — 6.4. Taking into
account that the multiplication of a vector with a Toeplitz matrix or a Hankel matrix
requires O(IN log N) operations, the whole construction of B! takes O(N log N) arith-
metical operations. jFrom B’ we compute B! by (6.6) with O(NN) additions. Using
Lemma 6.1, we get o 1= G~ !B at the cost of O(N) arithmetical operations. Finally,
the DST-I in (6.4) to obtain d from a needs O(N log N) arithmetical operations and
we are done with an arithmetical complexity of O(Nlog V). &
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Remark. We can use similar ideas for the construction of the optimal trigonometric
preconditioners with respect to the CY/ , 8% _,, 8L/ and S. For the corresponding

bases of Ao,

B = O, diag(Ti(c))iX% ™" Ouim
= stoephtz e, + hankel(uj, v}),
B! = Ol diag(Us(c:))i25 ™" Odim
it holds that
3 0 -1
0 2 0 -1
) -1 0 2 0 -1
Gl==— S ,
K
-1 0 2 0 -1
-1 0 g1 ¢
-1 g2 g3
where
Ogim G dim Uk Vg K g1 | 92 g3
cl cos i N er—1 | er1 2N 3| -2
Cf\,v cosﬁlJ’TJI\,M N €r_1 | —€r_1 2N 1

55\r~1 cosg—*;—vl—ﬁ N—-1|—-erq| —€r_g | 2N+2

[GL I

151
S| cos LiN—E N —ex_1 | —ex_1 2N
SV | cos L)—zl,;} = N

3N-2
N
1
3
3N-2
N
1

ol N O ©

—€r_1 (9] 2N 1

Note that the construction of the optimal preconditioner with respect to the C or
the vav is especially simple.

7 Numerical Results
Finally, we present four examples of nonsymmetric Toeplitz systems
| Tnzy =by, (7.1)
for which the preconditioning of the normal equation
ThnTnzy = Thby (7.2)

by an optimal trigonometric preconditioner My = My (T'yT~) of T'NT ~ significantly
accerelates the convergence of the CG-method. We refer to the CG-method applied
to the normal equation (7.2) as NCG-method. The algorithms were realized for the
optimal preconditioners with respect to the DCT-II, the DST-II, the DCT-IV and
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the DST-1V, resgectively. Clearly, we can also use the DST-I preconditioner. Note
that for symmetri‘c Toeplitz matrices, the DST-I preconditioned CG-method for the
solution of (7.1) spows a similar convergence behaviour as the DST-II preconditioned
CG-method.

The fast computation of the preconditioners in the initial step and the computation
of the preconditioned NCG-method were implemented in Matlab and tested on a Sun
SPARCstation 20.; The fast trigonometric transforms appearing both in the initializa-
tion and in the NCG-steps were taken from the C-implementation based on (3] and
[19] by using the cmex—programm.

As transform lengt.h we choose NV = 2". The right-hand side by of (7.1) is the vector
consisting of IV ones. The preconditioned NCG-method starts with the zero vector and
stops if [|7@])o/||7 Pl < 1077, where 7() denotes the residual vector after j iterations.

Our test matrices a}re the following four Toeplitz matrices Ty = (tj_k)éyk“:lo:

i) (see [15}) ll
1\ log(2 — n) n<l,
th,=1¢ Nlog(2—n)+1\(1+n) n=0,
I\(1 +n) n>1
ii) (see [15])
2 n=20,
tn = —-0.7 tn+1 n S —1 N

0.9 th-1 n> 1.

iii) Here we use the \Toeplitz matrices Ty arising from the generating function

f(z) = 2% .

l
|
iv
)
\ -15 n=-1,
\ . 2 n=0,
™ 0.5 n=1,
\ 0 else.

As expected, also for|large transform lenghts NV, the initialisation and each NCG-step
can be computed very fast which reflects the arithmetic complexity of O(N log N ) for
these computations. The four last columns of the following tables show the number of
iterations required by the NCG-metod for the different trigonometric preconditioners.
The second column contains the number of iteration steps of the NCG—method without
. preconditioning. Thes columns 3 and 4 contain the numbers of iterations required by
the CG-method applied to the equation

(MEITN)'(MX/ITN)“’N = (My'Tn)My'by,

where M y denotes thlle optimal preconditioner of Ty with respect to the DCT-II and
the DST-II, respectively.
l

\
|
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n | Ixy | DCT-11 | DST-II | CX | S¥ | C | S
71 24 11 10 ) 15 14 14
8 | 32 12 11 8 |17 15 15
9 | 43 14 13 8 19 17 16
10 ¢ 57 18 16 9 20 19 16
11 86 20 19 9 20 20 17
121121 25 22 9 22 22 19
13| 176 30 28 9 22 22 19
Table 1: Number of iterations for example i)

n | Iy |DCT-II|DST-II | CY | S {cY | S
7| 34 44 44 9 12 9 12
8 | 43 47 50 8 11 8 11
9 | 53 50 52 7 10 8 11
10| 59 50 53 7 9 7 10
11| 50 50 53 -6 9 7 9

12 | 58 49 53 6 8 7 9

13| 56 48 54 6 8 7 9

Table 2: Number of iterations for example ii)

n{ Iy |DCT-II|DST-1|C¥ |8} | cCy |sSY
5 84 72 68 29 21 47 37
6 | 311 124 176 52 | 26 &4 74
7| 1226 264 412 116 | 33 | 173 | 140
8 | 5220 626 980 256 | 40 | 405 | 302
9| ** 1741 3341 | 664 | 74 | 1031 | 846

Table 3: Number of iterations for example iii)

n| Iy | DCT-I1 | DST-II | X | ¥ | ¢V | 8TV
6| 88 | 2l 37 | 21 | 9 | 25 | 24
71201 31 67 | 27 | 8 | 31 | 30
8435 | 45 125 | 36| 8 | 39 | 38
91929 | 66 294 | 47 | 9 | 72 | 65

Although not all matrices in our examples fulfil the assumptions of Theorem 5.5, the
preconditioning with an optimal trigonometric preconditioner of T, T y accerelates the
convergence of the NCG—-method significantly.

For all examples, the preconditioning with respect to the DCT-IV and the DST-IV

Table 4: Number of iterations for example iv)

leads to similar numbers of iteration steps.
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!

ll
Toeplitz matrices \T ~ the optimal preconditioners M n(T y) with respect to the DCT-
IV and DST-IV coincide.
Except of the secohd example, the number of iterations differs, if we apply the precondi-
tioners with respec‘it to the DCT-II and the DST-II. Heuristically, this can be explained
by the different structures of Ao and Agir and how ,,good” our example matrices fit
into this structure.l A general criterion for the choice of the optimal trigonometric pre-
conditioner would lbe interesting. In this direction, it is remarkable, that the optimal
preconditioner M (T y) € Acy of the auto-covariance matrix Ty := (PN is

“asymptotically equivalent” to T ny if N — o0, p — 1, while the optimal precondltloner
Muy(Ty) € AS]IVI of Tx is “asymptotically equivalent” to Ty if N — oo, p — 0 [16].
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