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Abstract. We develop an extrapolation algorithm fOlrnumerical integration over arbitary
non-standard triangles in JR2, which par allels the weH-known univariate Romberg method.
This is done by a suitable generalization of the trapezoid1l rule over triangles, for which we can
prove the existence of an asymptotic expansion. I

Gur approach relies mainly on two ideas: The use of barycentric coordinates and the inter-
pretation of the trapezoidal rule as the integral over an ibterpolating linear spline function.

I
Since our method works for arbitrary triangles, it yields - via triangulation - a method for

cubature over arbitrary, possibly non-convex, polygon re~ions in JR2. Moreover, also numerical
integration over convex polyhedra in JRd, d > 2 , can b~ accomplished without difficulties.
Numerical examples show the stability and efficiency bf the algorithm.
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Romberg Type Cubature over Aröitrary Triangles

o. Introduction

2

The aim of this paper is to present an extrapolation algorithm for numerical integration
(cubature) over arbitary triangles in JR2, which parall~ls almost completely the well-known
unvariate Romberg method, introduced by W. Romberg ib 1955 [l:6], and since then investigated
by a lot of authors, e.g. [1,2,7,8,9]; see [3,4,5,17] for a hiJtorical survey.

Therefore, we first have to prove the existence of aJ asymptotic expansion for a suitable
generalization of the trapezoidal rule over non-standarh triangles; this rule is developed in

I
Theorem 1.2, its asymptotic expansion is established in Theorem 1.3.

Having established the existence of the desired asym~totic expansion, we know that extra-
polation can be applied in order to improve the convergJnce order of the method considerably
(cf. [6,17]). Our method consists now in the application Jf the same extrapolation process as it
is known from the univariate Romberg method, and there

l

l fore is very efficient and numericallly
stable.

Our approach relies mainly on two ideas: We represent the points in the integration do-
main by their barycentric coordinates (which makes it boordinate-independent and therefore
applicable to any triangle in JR2), and we interpret the ~rapezoidal rule as the integral over a
linear spline function, which interpolates the given function in the spline knots. This approach
appears to be new, and in order to get the reader used rith it we first apply it briefly to the
univariate case. It turns out that the proofs can be sh(i)rtened considerably, in particular no

Euler summation is needed. I

Since our method works for arbitrary triangles, it yields - via triangulation - a method for
cubature over arbitrary, possibly non-convex, polygon reJions in JR2. Moreover, also numerical
integration over convex polyhedra in JRd, d > 2 , can be Jccomplished by our approach, since its

I
main ingredients (barycentric coordinates and interpolating splines) also exist in this situation.

Of course, the problem of integration over triangles b~ extrapolation was considered before;
instead of presenting a list of the existing literat ure in I this field, we refer the reader to the
excellent survey paper by Lyness & Cools [14]' where all information can be found. However,
all known approach es seem to be designed for special stan1dard triangles, and so it is for example
difficult to use them for integration over polygon regionJ. Therefore, the approach to be given
below is a certainly a step forward.

1. Asymptotic Expansion for Trapezoidal Rule over Triangles
I

As pointed out in the introduction, a main idea is to introduce barycentric coordinates and
to interpret the trapezoidal rule as integral over the linJar spline function, which interpolates
the given function f in equispaced points. Since the reaher might be unfamiliar with bivariate
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spline interpolation, we first very briefly illustrate the idea in the univariate case and give, in
particular, a short self-contained proof for the existence rf the asymptotic expansion.

We are interested in the numerical computation of the integral

1[1[(1) ,= 1.' f(x) 1 (1.1)

(the index 1 indieates that we ",e still in the :nivaril situation) for a suflieiently smooth
I

function 1. If we formally describe each point x E [a, b] by its barycentric coordinates (Tl, T2) ,
which are uniquely defined as the solutions of the systerJ .

then the trapezoidal rule (with n subintervals) can be written as

(

n-1 I )
b~ a. I(xo) + 2 ~ l(xv) + f(xn) ,

(1.2)

(1.3)

where, for 11= 0, ... ,n, the point Xv has the barycentrk coordinates

- (~ ~)Xv - ,.n n
(1.4)

Theorem 1.1: 1f the lunction f is sufficiently smoo~h, then the elements 01 the sequence
{Tl11(fn possess an asymptotic expansion of the fork

Here, the number r depends on the smoothness of 1.

for n -+ 00 . (1.5)

We give a short proof of this well-known result, whicH has - in contrast to the classical ones
- the advantage that it can easily be generalized to the bivariate case, see below.

Proof of Theorem 1.1. By s~l, we denote the unique linear spline function with knots xv,
which interpolates f in these knots. Then

(1.6)

and consequently the quadrat ure error can be written as

(1. 7)
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We now claim that, for each x E [a, b] , the interpolation error has an asymptotic expansion of
the form

f(x) - s~l(x) = ~ 'Y:~) + o(nT for n ~ 00 (1.8)

with some integer p, which depends on the smoothness of f, and coefficient functions /P.(x) ,
which do' not depend on n. I

This can either be deduced from the result in [10] and [13]' or seen directly as folIows: Let,
for each v, Pv denote the restriction of s~] to the sJbinterval [xv, xv+d. Since Pv E II1
interpolates f in the knots Xv and xv+! , for each x th~re exists a point ~x E [xv, xv+d such

that I
f(x) - p"(x) = (x - x")(; - Xr) .f(2J(~,) . (1.9)

Since f is sufficiently smooth, we may use Taylor-expansion of f(2) about Xv and write (1.9)

as I

f(x) - p"(x) ~ (x - X")~ - x"+l) . (~ (~'(~~~t./eJ(x") + o((~, - X"V-')) ,

and since xv+! - Xv = (b - a)/n and (~x - xv) :s; (Xv+1 - xv) , this leads to the estimate

If(x) - Pv(x)1 < ~. -f.. 'Yp.(v, :p) + o(n-P) (1.10)- n2 LJ np.-2

with some eoefficient functions 'Yp., which dep:n:
2

on x lnd v, but not on n.

This proves the existenee of the expansion (cf. e.g.[17,1Lemma 1.4 or PLI])

fex) - Pv(x) = -f.. 'Yp.(v,x) + o(n1), for n ---* 00
LJ nP.
p.=2

and putting /P.(x) := 'Yp.(v, x) for x E [xv, xv+!J , (1.8) is proved (note that some of the /1-' 's

might be zero). I

Using now (1.7), (1.8), and the mean value theorem of integration, we obtain that

Pli1[1](f) - T[l](f) = "- 1[1]b (x)) + o(n-P) for n -> 00
n LJnl-' I-'

1-'=2

(1.11)

with ~p. E [a, b]. Since the trapezoidal rule is asymmetrie rule, if we interpret it again as a
spline colloeation method (Le., Tl1] = T~ll), we see thai the terms with odd indices in (1.11)
must be zero, and after setting

r = [p/2] and cI-' = -/2p.(6p.) for JL = 1, ... , r,

Theorem 1.1 is established. 0
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Remark. In contraßt to the standard proofs via Euler stmmation (cf. [17]),with this method
of proof we do not get an explicit representation of the Icoefficients ep' through the Bernoulli
numbers. However, for the application of an extrapolatior method this is not needed, since the
existence of the expansion is information enough. I

The (univariate) Romberg method consists in applying repeated Richardson extrapolation
(cf. (2.2)) to the elements of the sequence {TJ11(j)}, w~ich is justified by Theorem 1.1.

We now transfer this approach to the bivariate case.1 Let there be given a non-degenerate
triangle .6. = .6.(VI, V2, V3) in 1R2 with vertices VI, V2, V3. By 1.6.1, we denote the area of .6..
For each point z in 1R2, there exists a unique tripIe (71,72,73) ofreal numbers, such that

3

L 7iVi = z,
i=l

(1.12)

(1.14)

(1.13)

3

L7i = 1, I

called the barycentric coordinates of z wi;~lrespect to t~e points {VI, V2, V3} ; if z E .6. , then
all barycentric coordinates of z are non-negative. I

If there is no confusion possible, we also drop the Vi'S and identify z with the tripIe
(71, 72, 73)' Also, we will not distinguish between the two representations of a function as a
function of z = (x, y) or z = (71, 72, 73) .

Given a function f E C(.6.), we are now interested in the numerical computation of the
integral

[[2J(j) :=i f(x, y) dx dy

by a proper generalization of the trapezoidal rule (1.3).

To do this, we introduce for nEIN the index set

Nn := {(VI, V2, V3) E INg; VI + V2 + V3 = n}

with (nt2) elements. Then, for each (VI, V2, V3) E Nn, we define the point
setting its barycentric coordinates to

(
VI V2 V3 )

Z(Vl,V2,V3):= -;;: , -;;:' -;;: .

Then the set of points
(1.15){Z(Vl,V2,V3) ; (VI, V2, V3) E Nn}

defines an equispaced triangulation of the initial trianglel .6. into n2 subtriangles

{8j} j=1, ... ,n2 ,

each of which has the same area 1.6.1/n2 •
It is well-known that there exists a uniquely determined piecewise linear spline function over

this triangulation, which interpolates f in the vertices Zkl ,V2 ,V3) (e.g. [15]). Let us denote this
bivariate spline by s~]; then we have the following result.
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(1.16)

Theorem 1.2: Adopting the notations from above, the integral of the spline function s~l over
the triangle .6. is explicitly given by the formula

I[21(s~l) ~ 31~2' { f(l, 0, 0) + f(O,1,0) + f~O,0,1)

+ 3.;(f(~, n:v,O) + f(~,O, n:v) + f(O,~, n:v))

+ 6~, n:t~'f(~, ~, n-v,i-v2)}
Here, as usual, empty sums are set equal to zero.

Proof. Let 8j denote an arbitrary subtriangle of the triangulation under consideration, and
denote the vertices of 8j for the moment by (j,l, (j,2 , ahd (j,3.

There exists a unique linear polynomial Pj, which ihterpolates f in these vertices. The
integral of Pj over 8j is easily verified to be

(1.17)

Thus

(1.18)
2

1.6.1 n
= 3. n2 •L (1((i,1) +Ti") + f((d ) ,

and formula (1.16) follows by re-orderingj:e sums in (1.1
1

8), taking into account that Z(Vl,V2,V3)

is the vertex of exactly six subtriangles 8j, if Z(Vl,V2,V3) lies in the interior of .6., of exactly
three subtriangles, if it lies on the boundary of .6. (but is not a vertex), and of exactly one
subtriangle, if it is a vertex of .6.. I D

The idea is now to imitate the univariate situation anti to take the right hand side of (1.16)
I

as definition for the trapezoidal rule over a tri angle .6.. We set

Tl21(J):= 1.6.1
2
. {f(1,0,0) + f(O,l,O) + f(0,0,1)

3.n

n-l ( v n-v v n-v
+ 3. ~ f(;, -n-' 0) + f(;, 0, -n-) (

V n-v))+fO';'-n-
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Since s~l converges to f, or more precisely,

7

(1.19)

s~l - f = O(n-2) for n -+ 00

(cf. [11]), we get that the sequenee {T,l21(/)) eonvergl to 1[21(/). But we ean prove even

more: I

Theorem 1.3: If the function f is suffieiently smooth, then the elements of the sequenee
{T,Fl (1)} possess an asymptotie expansion of the fo~m

Here, the number r depends on the smoothness of f .

for n -+ 00 . (1.20)

Proof. We proceed in exact analogy to the proof of Theorem 1.1. Let Pj denote the restriction
of the spline s~l to an arbitrary subtriangle Dj. TJus Pj is a linear polynomial, which

interpolates f in the three vertices (j,l, (j,2 , and (j,3 1f Dj .
As a special case of Theorem 1 in [11] it follows that there exist points ~x,l, ~x,2, and ~x,3 ,

such that for each z E Dj the representation

3

f(z) - Pj(Z) = - LD2f(~x,i)((i,j - z)2 .li(Z)/2 (1.21)

holds. Here, for i ~1,2,3, the point ,"~~'lies on the li~e segment eonneeting (;,' and z, in
particular ~x,i E Dj , and li(Z) denotes the Lagrange polynomial w.r.t. the points {(j,d.

Using (bivariate) Taylor-expansion of D2 f , and duelto the fact that the distance between
any two points in Dj is bounded by eonst/n, we again obtain the estimate (cf. (1.10))

1 P - (" I)
If(z) - P .(z)1 < -. ~ ap' J, r + o(n-P). (1.22)

J - n2 L..J np.-2
p.=2

Thus
f(z) - Pj(z) = -f-.. ÖJ1-(j, z) + o(n-P), for n -+ 00

L..J nJ1-
p.=2

and therefore, for all z E 6. , the asymptotic expansion

(1.23)
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with some integer p, depending on the smoothness of f, and coefficient functions a1L(z),
whieh do not depend on n, holds.

The rest of the proof is completely analoguous to that of Theorem 1.1, using the (bivariate)
mean value theorem of integration, and the fact that ~he trapezoidal points z( ) are1/1,1.12,1.13

totally symmetrie (w.r.t. their barycentrie coordinates ). 0

2. The Algorithm and Numerical Results

Having proved the existence of the asymptotie expansiln (1.20), we can now state the follow-
ing extrapolation algorithm for the numerieal integratiod of a function f over the tri angle ß.

Choose natural numbers no and X with X ~ r, Jd compute by the formula (1.19) the
generalized trapezoidal values

where ni := no . 2i for all
approximations

y~o) := TA:1(J) , i = 0,1,2 ... ,

i. Now apply linear extraLlatiOn ,

(2.1)

Le., compute the improved

(2.2)
(k-l) (k-l) ~

(k) (k-l) Yi+l - Yi I k = 1,2, ... ,X,
Yi .- Yi+l + k . - 0 14-1 Z-" ... ,

lt is clear that each o£ the sequenees {ylk)}'E'" then poLsses an asymptotic expansion o£ the
form

(k)
Yi (2.3)

with coefficients d~k) , which are independent of ni. In particular, each of the sequences {y~k)}
converges faster to the limit 1[2J (J) than its predecessor.

Remark. Instead of the basis 2, one could take in (Q.l) any natural number b (i.e., set
ni := no . bi), and then replace the term 4k in the debominator of (2.2) by b2k. However,
in order to imitate the classieal Romberg process as far ~s possible, we consider here only the
"classieal" case above.

The algorithm given by (2.1), (2.2) establishes the desired Romberg type cubature method
for an arbitrary triangle. As generally known for linear Jxtrapolation , it is numerically stable
and fast. The results (and similarly the errors) are usul11y displayed in a triangular array of
the following form, called Romberg tableau.
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Table 1. A Romberg TaBleau
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We illustrate the efficiency of the method by the results of some numerical experiments. The
domain of integration was the triangle ~ with vertices

•

•
VI = G) , V2 = G), and V3

in euclidean coordinates.

As a first test, we applied the method to the bivariate polynomial

f,ex,y) .- 3xy'.

.3500 e(OO)
.3750 e(-I)

.1156 e(OO) .0000 e(l)
.2344 e(-2)

.3066 e(-I) .0000 e(l)
.1465 e(-3)

.7776e(-2) .0000 e(l)
.9155 e(-5)

.1951 e(-2) .0000 e(l)
.5722 e(-6)

.4881 e(-3) .0000 e(l)
.3576 e(-7)

.1221 e(-3)

Table 2. Errors in Approximating [[2J (h)

(2.4)

(2.5)
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(2.6)

The errors of the approximations y~k) of the true va!lue 1[21(Jd = 0.35, computed by our
method with K = 2, no = 1 , and i = 0, ... ,6 , are shoJn in Table 2. As expected, the entries
of the third column are identically zero, since h is a Jolynomial of degree 2, and therefore
the second extrapolation step already gives the exact res~lt. As a second example we compute
the integral of the function

h(x, y) := exp(x + IY)

and again compare our numerical approximations with true value

I
1[2](12) = exp(2) - 2 exp(l) = 1.95249244201.. ..

This time, the errors (in ahsolute value) of the approxJatious computed by our method with
K = 3, no = 4, and i = 0, ... ,6 are shown (Table 3) .

.1026 e(-l)
.2263 e(-4)

.2548 e(-2) .3280 e(-8)
.1417 e(-5) I .1088 e(-12)

.6359 e(-3) .5135 e(-l(i))

• .8863 e(-7) I .4258 e(-15)
.1589 e(-3) .8028 e(-12)

.5540 e(-8) I .1664e(-17)
.3972 e(-4) .1255 e(-13)

.3463 e(-9) I .6501 e(-20)
.9931 e( -5) .1960 e(-15)

.2164 e(-10)
.2483 e(-5)

Table 3. Errors in Approximating 1[2] (12)

In Table 4, finally, we have the quotients of two subsequent values in the columns of Table 3.
As predicted by (2.3), the entries of the kth column (sdrting with k = 0) converge to 4k+1.

4.027
15.965

4.007 63.867
15.991 255.492

4.002 63.967
15.998 255.873

4.000 63.992
15.999 255.968

4.000 63.998
16.000 255.992

4.000 63.999
16.000

4.000

Table 4. Quotients of the Entries of Table 3
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•

•

This is of course only a selection of several numerical tests. All of them showed the asymptotic
behaviour which was predicted by the theory above.

3. Concluding Remarks
We have considered a Romberg type method for cuöature over triangles in IR2, which is

I
completely coordinate-free and therefore independent of the special triangle. Thus, the following
extensions resp. applications of the method are easily ddne:

- Numerical cubature over arbitrary polygon regions in IR2. This is possible by precisely the
same algorithm as above, since each polygon region can be subdivided into a finite number of
triangles. One just has to apply the algorithm to each tFiangle separately, and then sum up.

- Development of (bivariate) Newton-Cotes formulae oter triangles. For the construction of
the trapezoidal rule in (1.16) resp. (1.19), we computed ~he integral of a spline function, which
is piecewise a linear polynomial. Obviously, the same aJproach goes through for a continuous
spline consisting of high er degree polynomial pieces, an6 the approximation order results for
those polynomials given in [11] yield that we obtain Ne~ton-Cotes type cubature formulae of
arbitrarily high order. However, we do not follow this approach, since via extrapolation we
reach the same goal (cubature of arbitrarily high order), and the numerical stability as weIl as
the efficiency of extrapolation is simply unbeatable.

- Numerical integration over a convex polyhedron in IRd, d> 2. Let .6. denote a polyhe-
dron in IRd with exactly d + 1 vertices. Then each pomt in .6. is uniquely determined by a

I

(d + 1)- tuple of barycentric coordinates, and a generalization of our approach is straightfor-
ward.
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