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Abstract. We develop an extrapolation algorithm fo
non-standard triangles in IR?, which parallels the well
This is done by a suitable generalization of the trapezoid:
prove the existence of an asymptotic expansion.

Our approach relies mainly on two ideas: The use of
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r numerical integration over arbitary
-known univariate Romberg method.
1] rule over triangles, for which we can

barycentric coordinates and the inter-

pretation of the trapezoidal rule as the integral over an i

nterpolating linear spline function.

Since our method works for arbitrary triangles, it yields — via triangulation — a method for
cubature over arbitrary, possibly non-convex, polygon regions in IR?. Moreover, also numerical
integration over convex polyhedra in R%, d>2,can be accomplished without difficulties.

Numerical examples show the stability and efficiency
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Romberg Type Cubature over Arb

0. Introduction

itrary Triangles

The aim of this paper is to present an extrapolation algorithm for numerical integration

(cubature) over arbitary triangles in IR?, which parallels almost completely the well-known

unvariate Romberg method, introduced by W. Romberg in 1955 [16], and since then investigated
by a lot of authors, e.g. [1,2,7,8,9]; see [3,4,5,17] for a historical survey.

Therefore, we first have to prove the existence of an
generalization of the trapezoidal rule over non-standar

asymptotic expansion for a suitable

d triangles; this rule is developed in

Theorem 1.2, its asymptotic expansion is established in Theorem 1.3.

Having established the existence of the desired asymy

totic expansion, we know that extra-

polation can be applied in order to improve the convergelnce order of the method considerably

(cf. [6,17]). Our method consists now in the application
is known from the univariate Romberg method, and ther:
stable.

Our approach relies mainly on two ideas: We repres
main by their barycentric coordinates (which makes it
applicable to any triangle in IR?), and we interpret the
linear spline function, which interpolates the given functi
appears to be new, and in order to get the reader used
univariate case. It turns out that the proofs can be sh
Euler summation is needed.

Since our method works for arbitrary triangles, it yie
cubature over arbitrary, possibly non-convex, polygon reg

f the same extrapolation process as it

efore is very efficient and numericallly

ent the points in the integration do-
coordinate-independent and therefore
trapezoidal rule as the integral over a
on in the spline knots. This approach
with it we first apply it briefly to the
ortened considerably, in particular no

ds — via triangulation — a method for
jons in IR?. Moreover, also numerical

integration over convex polyhedra in IRY, d > 2, can be accomplished by our approach, since its

main ingredients (barycentric coordinates and interpolati

ng splines) also exist in this situation.

Of course, the problem of integration over triangles by extrapolation was considered before;

instead of presenting a list of the existing literature in
excellent survey paper by Lyness & Cools [14], where al
all known approaches seem to be designed for special stan:
difficult to use them for integration over polygon regions
below is a certainly a step forward.

1. Asymptotic Expansion for Trapez

As pointed out in the introduction, a main idea is to
to interpret the trapezoidal rule as integral over the line
the given function f in equispaced points. Since the rea

this field, we refer the reader to the
| information can be found. However,
dard triangles, and so it is for example
. Therefore, the approach to be given

zoidal Rule over Triangles

introduce barycentric coordinates and
ar spline function, which interpolates
der might be unfamiliar with bivariate
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spline interpolation, we first very briefly illustrate the idea in the univariate case and give, in

particular, a short self-contained proof for the existence of the asymptotic expansion.

We are interested in the numerical computation of the integral

(1.1)

8

b
1(f) = / f(z)d

(the index 1 indicates that we are still in the univarialte situation) for a sufficiently smooth

function f. If we formally describe each point z € [a,b] by its barycentric coordinates (1,72),

which are uniquely defined as the solutions of the system

Ta + b = x,

(1.2)
T+ T2 = 1,
then the trapezoidal rule (with n subintervals) can be written as
b—a =
(1] = — . 3
1) = Bt (1) +2 2 )+ 1)), (1.9

where, for v =0,...,n, the point z, has the barycentric coordinates
n—v v

Theorem 1.1: If the function f is sufficiently smooth, then the elements of the sequence
{T,[Ll](f)} possess an asymptotic expansion of the form

T = 18(f) +Z§;‘7 + o(n™?)  for n— . (1.5)
p=1

Here, the number r depends on the smoothness of f|.

We give a short proof of this well-known result, which has - in contrast to the classical ones
— the advantage that it can easily be generalized to the bivariate case, see below.

Proof of Theorem 1.1. By sLl] , we denote the unique [linear spline function with knots z, ,

which interpolates f in these knots. Then
TH(f) = TR, (1.6)
and consequently the quadrature error can be written as

Mgy — i) = (|- s, (1.7)
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We now claim that, for each z € [a,b], the interpolation

Z 7#(53

with some integer p, which depends on the smoothness ¢

the form

f(z) - sz

which do not depend on n.

This can either be deduced from the result in [10] and
for each v, p, denote the restriction of sL] to the su

interpolates f in the knots z, and z,+1, for each z there exists a point &, €

itrary Triangles

nr)

binterval [z,,z,+1].

error has an asymptotic expansion of

for n — o0 (1.8)

f f, and coefficient functions v,(z),

[13], or seen directly as follows: Let,
Since p, € II;
[zy, 2, 41] such

that ( ) )
z—1,)(z—2,
f@) = pula) = e
Since f is sufficiently smooth, we may use Taylor-expans
as
—z Nz -z, & —z, )2
f@) - pule) = EZENE= ) (Z R
p=2

= (b—a)/n and (¢ — z,,) < (zy41

and since z,4+1 — T,
Fulvy
/(@) ~pu(a)| < Z s

with some coefficient functions 7, , which depend on

This proves the existence of the expansion (cf. e.g.[17,

Z ’Y/A(V IC) (

and putting v,(z) := Yu.(v,z) for = € [z, 2,41}, (1.8)
might be zero).

p,,(.'])

f(2)

Using now (1.7), (1.8), and the mean value theorem o
p

> = 1 (a)) +

n=2

1y =M

P

>

p=2

() + ofn

Since the trapezoidal rule is a symme
M= T[1 ), we see tha

n

with &, € [a,b].
spline collocation method (i.e.,
must be zero, and after setting

= [p/2]

Theorem 1.1 is established.

and Cp = _72;L(§2;1.)

. f(#)

gACE))

z

—#)

.f(2)(€x) ]

ion of f(®) about z, and write (1.9)

(1.9)

(z,) + o((é: — xu)p_2)> )
—x,), this leads to the estimate
+ o(n™?) (1.10)

and v, but noton n.

Lemma 1.4 or P1.1])

for n — oo

1)

is proved (note that some of the v, ’s

f integration, we obtain that

for n —

[

(n™")

for n — oo (1.11)

tric rule, if we interpret it again as a

|
t the terms with odd indices in (1.11)

forp=1,...,7
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Remark. In contrast to the standard proofs via Euler summation (cf. [17]), with this method

of proof we do not get an explicit representation of the

coefficients ¢, through the Bernoulli

numbers. However, for the application of an extrapolation method this is not needed, since the

ezistence of the expansion is information enough.

The (univariate) Romberg method consists in applying repeated Richardson extrapolation

(cf. (2.2)) to the elements of the sequence {T,[ll}(f)} , wh‘ich is justified by Theorem 1.1.

We now transfer this approach to the bivariate case.
triangle A = A(vy,vs,v3) in IR? with vertices vy,vs,v3

For each point z in IR?, there exists a unique triple

3
ZTZ"Ui = Z,
1e=1
3
ZTi = 1,
i=1

Let there be given a non-degenerate
. By |A|, we denote the area of A.

(11, 72,73) of real numbers, such that

(1.12)

called the barycentric coordinates of z with respect to the points {vy,v2,v3};if 2 € A, then

all barycentric coordinates of z are non-negative.

If there is no confusion possible, we also drop the

v; ’s and identify 2z with the triple

(11,72, 73) . Also, we will not distinguish between the two representations of a function as a

function of 2z = (z,y) or z = (71,72, 73).
Given a function f € C(A), we are now interested
integral

1e(f) = [ S iz

by a proper generalization of the trapezoidal rule (1.3).
To do this, we introduce for n € IV the index set

N, = {(n,va,v3) € 17\/'03; vy +

in the numerical computation of the

dy (1.13)

V2+I/3=n}

with (";2) elements. Then, for each (vy,vs,v3) € N, , we define the point z(,, ., .,) € & by

setting its barycentric coordinates to

vy Va2 (V3
Z(v1,v2,v3) T (;7 Ev ;) . (1.14)
Then the set of points
{Z(VI»VZyV3) ) (1/1,1/2,1/3) € Nn} (1.15)

defines an equispaced triangulation of the initial triangle
{6j}j=1,.“,n2 y
each of which has the same area |A|/n?.

It is well-known that there exists a uniquely determine
this triangulation, which interpolates f in the vertices 2z
bivariate spline by s£l2 ] ; then we have the following resul

2

A into n” subtriangles

d piecewise linear spline function over
viwaws) (€8 [15]). Let us denote this
t.
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Theorem 1.2: Adopting the notations from above, the t
the triangle A 1is explicitly given by the formula

TP = S'ﬁllz : { f(1,0,0) + f(0,1,0) + f
n—1

" 3-2_)1(f(§, =¥ o)+ f(

n—2 n-v;-—1 v, vy n—uy

S ID DD DN C S

vo=1

Here, as usual, empty sums are set equal to zero.

Proof. Let 6; denote an arbitrary subtriangle of the tr

denote the vertices of §; for the moment by (j1,(j,2, al

There exists a unique linear polynomial p;, which i
integral of p; over §; is easily verified to be

1551

2 (£ + 4

/ pi(z,y)dzdy

7]

IAI
3

(G +
Thus

152

Z/pj(:vy dz dy

LS (st +
7=1

and formula (1.16) follows by re-ordering the sums in (1.1
is the vertex of exactly six subtriangles 0;, if 2, .,, vs)

3

itrary Triangles 6
ntegral of the spline function sgl over
0,0,1)
n n n
— v
2)} . (1.16)

iangulation under consideration, and
'1d ijg .

nterpolates f in these vertices. The
(Gi2) + f(Cj,s))

(1.17)
F(G2) + 1(Ga)) -

(1.18)

HG2) +1G3))

8), taking into account that z(,, u,,.4)
lies in the interior of A, of exactly

three subtriangles, if it lies on the boundary of A (but is not a vertex), and of exa.ctly one

subtriangle, if it is a vertex of A.

The idea is now to imitate the univariate situation an

O
d to take the right hand side of (1.16)

as definition for the trapezoidal rule over a triangle A . We set
(2] |Al
Tn (f) = 3.n2 : f(l,0,0) + f(Oa]-»O) + f(0,0,l)
n—1
v v v n—v v n—v
+3'Zl(f(; )+ 1(5 0 ) 100 ))
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n2ranl L v n—y L
L6 (2,22, nnow)

> 2 T : (1.19)

v1=1 vo=1
Since S£,,2 ] converges to f, or more precisely,

sl — f = O(n™?) forn— oo

(cf. [11]), we get that the sequence {TPN(£)} converges to I2(f). But we can prove even

more:

Theorem 1.3:
{T,-[f](f)} possess an asymptotic expansion of the for

If the function f 1is sufficiently smoo

TE(f) = 19(f) + 30 S + ol
pn=1

Here, the number T depends on the smoothness of f.

Proof. We proceed in exact analogy to the proof of Theo
of the spline sgl to an arbitrary subtriangle é;. Th
interpolates f in the three vertices (j1,(; 2, and ;3 ©

As a special case of Theorem 1 in {11} it follows that t

such that for each z € §; the representation

3
F2) =pi(2) = =D D f(€z4)(és
=1

holds. Here, for i = 1,2,3, the point £, ; lies on the li
particular &, ; € §;, and l;(z) denotes the Lagrange po

Using (bivariate) Taylor-expansion of D2f, and due
any two points in é; is bounded by const /n, we again

th, then the elements of the sequence

m

—2r)

for n— oo . (1.20)

rem 1.1. Let p; denote the restriction
us p; is a linear polynomial, which
fo;.

here exist points &;1, &z,2,and &3,

= 2)% - li(2)/2 (1.21)

ne segment connecting (;; and z, in
ynomial w.r.t. the points {{j.}-

to the fact that the distance between
obtain the estimate (cf. (1.10))

1 P&, 2 _
5@ -pial € o3 D 4 o). (1.22)
=2
Thus
- d#(j,z) -
f(2) —pi(z) = ZT + o(n7?), for n— o0
p=2
and therefore, for all z € A, the asymptotic expansion
"~ 2 (2)
f(z) — sBl(z) = Z —‘i”— +o(n=f) for n— o0 (1.23)

=2




Romberg Type Cubature over Arb

with some integer p, depending on the smoothness of
which do not depend on 7, holds.

The rest of the proof is completely analoguous to that
mean value theorem of integration, and the fact that
totally symmetric (w.r.t. their barycentric ¢coordinates ).

2. The Algorithm and Numerical R

Having proved the existence of the asymptotic expansi
ing extrapolation algorithm for the numerical integration

Choose natural numbers ng and K with K < r, ar
generalized trapezoidal values

itrary Triangles

f, and coefficient functions «,(z),

of Theorem 1.1, using the (bivariate)
the trapezoidal points z(,, ., .,) are

O

esults

on (1.20), we can now state the follow-
of a function f over the triangle A.

1d compute by the formula (1.19) the

v = TB(f), i=o0l1,2..., (2.1)
where n; 1= ng - 2* for all i. Now apply linear eztrapolation , i.e., compute the improved
approximations

k—1 k-1
NOR. y(k—1)+y§+1 )—yz( ) { k=1,2,...,K, 2.2)
i i+l gk -1 i=0,1

It is clear that each of the sequences {yl(k)}ie v then pos

form
" o T )
g = 185 + ) =+ o(n;
p=k+1 "

with coefficients dﬂc) , which are independent of n;. In p

converges faster to the limit I2l(f) than its predecessor,

Remark. Instead of the basis 2, one could take in (

n; := ng - b* ), and then replace the term 4F in the denominator of (2.2) by

in order to imitate the classical Romberg process as far

“classical” case above.

The algorithm given by (2.1), (2.2) establishes the de
for an arbitrary triangle. As generally known for linear ¢

sesses an asymptotic expansion of the

n2r)

for n; = (2.3)

articular, each of the sequences {yz(k)}

2.1) any natural number b (i.e., set
b2k . However,

as possible, we consider here only the

sired Romberg type cubature method
xtrapolation , it is numerically stable

and fast. The results (and similarly the errors) are usually displayed in a triangular array of

the following form, called Romberg tableau.
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itrary Triangles

0
v
e
y(()K—-l)
s
y§K—1)
(1
Yxk-1
9
Table 1. A Romberg Tableau

We illustrate the efficiency of the method by the result
domain of integration was the triangle A with vertices

= (g) = (3) and

in euclidean coordinates.

1
0

0
1

As a first test, we applied the method to the bivariate
fi(z,y) = 3zy®.
.3500 (00)
.3750 e(-1)
.1156 e(00)
2344 ¢(-2)
3066 (-1)
11465 e(-3)
776 e(-2)
9155 e(-5)
11951 (-2)
5722 e(-6)
4881 (-3)’
3576 (-7)
1221 e(-3)

Table 2. Errors in Approximatis

s of some numerical experiments. The

(2.4)

polynomial

(2.5)

.0000 e(1)
.0000 e(1)
.0000 e(1)
.0000 (1)

.0000 e(1)

g I121(f1)
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(k

i

) of the true val

method with K =2, ng=1,and ¢=0,...,6, are show

The errors of the approximations y

of the third column are identically zero, since f; is a p
the second extrapolation step already gives the exact res
the integral of the function

fa(z,y) = exp(z +

and again compare our numerical approximations with t
IP(f) = exp(2) — 2exp(1) = 1.9

This time, the errors (in absolute value) of the approxim
K=3,ny=4,and i =0,...,6 are shown (Table 3).

Y)

trary Triangles 10

lue I'2l(f,) = 0.35, computed by our
yn in Table 2. As expected, the entries

olynomial of degree 2, and therefore

ult. As a second example we compute

(2.6)

rue value

0249244201... .

ations computed by our method with

1026 e(-1)

2263 e(-4)
2548 e(-2) 3280 e(-8)

1417 e(-5) 1088 e(-12)
6359 e(-3) 5135 e(-10)

8863 e(-7) 4258 e(-15)
1589 o(-3) 8028 e(-12)

.5540 e(-8) | 1664 e(-17)
3972 e(-4) 1255 e(-13)

3463 e(-9) 6501 e(-20)
9931 e(-5) 1960 e(-15)

2164 ¢(-10)
2483 (-5)

Table 3. Errors in Approximating 7121(f2)

In Table 4, finally, we have the quotients of two subsequent values in the columns of Table 3.

As predicted by (2.3), the entries of the k** column (sta

4.027
15.965

4.007 63.867
15.991

4.002 63.967
15.998

4.000 63.992
15.999

4.000 63.998
16.000

4.000 63.999
16.000

4.000

Table 4. Quotients of the Entries

rting with k& = 0) converge to 4%+!.

255.492
255.873
255.968
255.992

of Table 3
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This is of course only a selection of several numerical te
behaviour which was predicted by the theory above.

3. Concluding Remarks

itrary Triangles

11

sts. All of them showed the asymptotic

We have considered a Romberg type method for cubature over triangles in IR?, which is
completely coordinate-free and therefore independent of the special triangle. Thus, the following

extensions resp. applications of the method are easily done:

— Numerical cubature over arbitrary polygon regions in
same algorithm as above, since each polygon region can
triangles. One just has to apply the algorithm to each tr

— Development of (bivariate) Newton-Cotes formulae ov
the trapezoidal rule in (1.16) resp. (1.19), we computed t
is piecewise a linear polynomial. Obviously, the same ap
spline consisting of higher degree polynomial pieces, an
those polynomials given in [11] yield that we obtain Nes
arbitrarily high order. However, we do not follow this
reach the same goal (cubature of arbitrarily high order),
the efficiency of extrapolation is simply unbeatable.

— Numerical integration over a convex polyhedron in
dron in JR? with exactly d + 1 vertices. Then each po
(d + 1)— tuple of barycentric coordinates , and a general
ward.
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