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Abstract. In this paper we investigate some properties of trigonometrie B-splines, whieh
form a finitely-supported basis of the spaee of trigonometrie spline funetions. We establish a
eomplex integral representation for trigonometrie B-splines, which is in eertain analogy to the
polynomial ease, but the proof of which has to be done in a different and more eomplieated way.
Using this integral reprel'ientation, we ean prove some identities eoneerning the evaluation of a
trigonometrie B-spline, its derivative and its partial derivative w.r.t. the knots. As a eorollary
of the last mentioned identity, we obtain a result on the tangent spaee of a trigonometrie spline
funetion. Finally we show that - in the ease of equidistant knots - the trigonometrie B-splines
of odd order form a partition of a eonstant, and therefore the eorresponding B-spline eurve
possesses the eonvex-hull property. This is also illustrated by a numerieal example.

Keywords. Trigonometrie Splines, Trigonometrie B-Splines, Partition of Unity, Convex-Hull
Property, Integral Representation, Reeursion Formula .
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Identities for Trigonometrie B-Splines

1. Introd uction and Preliminaries

3

'frigonometrie spline funetions have been eonsidered the first time by Sehoenberg [8]. Orig-
inally they were introdueed as functions whieh are pieeewise in the spaee

Tm := span{l, eos(x), sin(x), ... , eos(kx), sin(kx)} (1.1)

of dimension m = 2k + 1. Among other things, Sehoenberg already proved the existenee of
loeally supported trigonometrie splines, the so-ealled trigonometrie B-splines. However, maybe
due to the faet that it makes no sense to eonsider the spaee Tm for even values of m, the
question for a reeurrenee relation for these functions was open for quite a long time. In 1979,
T. Lyehe and R. Winther [4] had the great idea to introduee the "intermediate" spaees

Tm := span{ eos(~), sin(~), ... , eos( k
2
x), sin( k

2
x)} (1.2)

~

t

for m = 2k, kEIN, whieh enabled them to establish a reeurrenee relation for trigonometrie
B-splines of arbitrary order, Le., regardless if m is even or odd (see (1.4) and (1.5) below).

A niee eompendium of the fundamental properties of trigonometrie splines ean be found in
1.L. Sehumaker's book [9]; moreover, quite reeently the interest in these functions has inereased
signifieantly, see for example [7] or, in partieular, [3] and the many referenees therein.

The objeetive of the present paper is the following: In the first part (Seetion 2) we will
establish a eontour integral representation for trigonometrie B-splines in analogy to the one
whieh is well-known for the polynomial ease (see [5,6,10]). This will enable us to prove in
Seetion 3 quite general reeursions for trigonometrie B-splines themselves, their derivatives with
respeet to the variable x, as well as for the partial derivative with respeet to the knots; for the
(easier-to-handle) ease of polynomial B-splines, similar results were proved in [11]. Moreover,
we will see how the tangent spaee for trigonometrie splines looks like.

Furthermore, a eonvex-hull property in the usual sense will be proved, for trigonometrie
splines with equidistant knots (Seetion 4) as well as for the subspaee of eosine splines with
arbitrary knots (Seetion 5). In a numerieal exmaple we will apply this to a eurve design
problem. The question of classieal ehebyehev approximation will be eonsidered in a fortheoming
paper [12].

In the rest of this introduetory section, we will define the trigonometrie B-splines and repeat
some basie results. With some natural number m, consider a knot sequenee .6. = {Xj }jE~ ,

sueh that

i!

. .. ~ X-I ~ Xo ~ Xl <

and Xj < xj+m < Xj + 271" for all j E 7Z .

< Xj < (1.3)
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For arbitrary fixed index 11, we define the following reeursion formula: For j= 11, .•. , 11+
m -1, put

{

1,
T '(x):= 01,) ,

for Xj :::;x < Xj+! ,

otherwise.
(1.4a)

Then eompute for T = 2, ... , m and j = 11, ••• ,11 +m - T the functions

( . (X - Xj) ( . (Xj+-r - X) ( )T-r,j x) := sm -2- B-r-l,j x) + sm 2 B-r-l,j+! x , (l.4b)

where

{

T-r-l,J.L(X)
. Xfl:+7"-l-XB-r-l,J.L(X):= sm( 2 ,. )

0,

XJ.L< XJ.L+-r-l

XJ.L= XJ.L+-r-l,

(1.4e)

(1.5)

.f

for J.L = j or J.L = j + 1. Then the final result of this reeursion, i.e. the function Tm,v, is the
trigonometrie B-spline of order m associated with the knots Xv, ... , Xv+m .

It is well-known (see [3] or [4]) that the B-spline Tm,v is pieeewise in the spaee Tm; more
preeisely, the functions {Tm,v}vE.lZ span the spaee of trigonometrie splines of order m, but we
will not go into details about this.

The support of the B-spline Tm,v is the interval [xv, xv+m] , in the interior of whieh it is
strietly positive; furthermore it is easy to see that this support is minimal, i.e., there is no
non-trivial trigonometrie spline of order m, which is zero outside a smaller knot interval than

[xv,xv+m] .

Remarks .
1) What we have defined are the so-ealled normalized trigonometrie B-splines, as they were
ealled in [3] or [7]; we will diseuss later (see Theorem 4.1) another type of normalization, whieh
leads to trigonometrie B-splines whieh share the eonvex-hull property.
2) If xJ.L= XJ.L+-r-l for some J.L, then the eorresponding denominator in the first line of (l.4e)
vanishes; but then also T-r-l,J.L(X) == 0, and thus putting B-r-l,J.L(X) = 0 in this ease is well-
motivated.
3) Gf course, for eaeh T = 1, ... ,m, the funetion T-r,j defined in (lAb) is also a B-spline (of
order T); but for all T < m, it may happen that T-r,j vanishes identically.
4) If, for some T, xJ.L< XJ.L+-r-l for J.L = j and J.L = j + 1, then reeursion formula (1.4) ean be
written in the more instruetive form

sin( 9) sin( xi+;-x)
T-r,j(x):= . (Xi+ ...-1-Xi) T-r-l,j(X) + . (Xi+"'-Xi+1) T-r-l,j+l(X) .

sm 2 sm 2

This is in particular true for all T, if the knots are all distinet, or, in other words, of multiplicity
one.
5) If, for some 11,

•

Xv+l Xv+2 Xv+m,
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whieh implies that

Xv < Xv+l = Xv+m < Xv+m+l,

then, according to (1.4), Tm,v takes the simple form

5

Tm,v(x) =

sinm-1( T)
sinm-l(xv+~-xv) ,

for Xv ~ X < Xv+l ,
(1.6)

o , otherwise .

Throughout the paper we will make use of some addition theorems for trigonometric func-
tions; for convenience, we collect these in the following proposition.

Proposition 1.1: For alt a, ß E (f) , the /oltowing relations hold:

,/

2 sin(a) . sin(ß) = cos(a - ß) - cos(a + ß);

2 sin(a) . cos(ß) = sin(a - ß) + sin(a + ß);

sin(a - ß) = sin(a) cos(ß) - cos(a) sin(ß);

cos(a - ß) = cos(a) cos(ß) + sin(a) sin(ß).

(1. 7)

(1.8)

(1.9)

(1.10)

2. An Integral Representation for Trigonometrie B-Splines

A fundamental tool for most of our proofs will be the following contour integral representation
of the functions Tm,v' A similar result for polynomial B-splines is known since many years
(see [5,6,10]), but the proofs given there do not go through for trigonometrie splines.

Theorem 2.1: For given m,1/ E IN and X E IR let C = Cx be a circle in the complex plane
whieh does not go through a knot and has alt knots xI-' with X < xI-' ~ Xv+m and no others,
nor one 0/ the points xI-' + 2k1r, k E ~ \ {O} , in its interior. Then

Tm,v(x)
sin( xV+'2-xv) J sinm-1 (_z--z_x) dz

= 4""''; . . {z-xv \ . {Z-XV+l \ . (Z-xv+="" CI'"Tl , C'1Y\ , ••. C'ln _

C

(2.1)
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Proof. Let us denote the right hand side of (2.1) by Im,v(x), We prove the equality Im,v =
Tm,v by induction w.r.t. m, so let m = 1 . In this case,

lt,v(X)
= sin ( x,,+~-x" )

47fi J dz
w(z)

c
(2.2a)

with
( ) . (Z - Xv) . (Z - Xv+l )

W Z := sm 2 . sm 2 . (2.2b)

If x 2:: Xv+1 , the integrand in (2.2a) has no poles in the interior of C, and so Im,v(x) = 0 .

If Xv :::;x < Xv+1 , there is one pole of the integrand in the interior of C, namely the knot
Xv+1 • According to the Residue Theorem, we obtain

J dz
w(z) =

C

27fi
w'(xv+1)

=
47fi

sin ( x,,+~ -x,,) ,

smce
'() 1 (. (Z-Xv) (Z-XV+l) (Z-Xv) . (Z-XV+l))

W Z = 2" sm 2 cos 2 + cos 2 sm 2 '

and so Im,v(x) = 1.

Finally, if x < Xv , we again use the Residue Theorem and find that

J dz . ( 1 1)
w(z) = 27fz w'(xv) + w'(xv+d = 0;

C

(2.3)

due to continuity, (2.3) still holds true for Xv+1 ---t Xv , and so the theorem is proved for m = 1 .

We assurne now that, for some m 2:: 2, statement (2.1) is true for m - 1 , and prove its
validity for mitself.

Gase 1. It is Xv < Xv+m-l and xv+1 < Xv+m. In this case, we have to verify that the relation

Im,v(x)
sin(T)

sin( X"+=2"l-X" ) Im-1,v(x) +
sin ( x,,+;' -x)

sin( x,,+=;X"+l ) Im-1,v+1(x) . (2.4)

holds. To do this, we use the linearity of the integral and find that the right hand side of (2.4)
equals

1 {sin( x-2x" ) sin( z-x;+= ) + sin( x,,+;,-x) sin( z-2x" ) } . sinm-2 ( z;x) dz ()-.J------------- 2.5
47fi c sin( z-2x" ) sin( Z-~"+l) ... sin( z-x;+= )
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Now we apply (1.7) to the bracketed term in the numerator of (2.5) and obtain the equality

sin(X ~ Xv) sin( Z - ~v+m) + sin(Xv+~ - X) sin(-Z---2-X_v)

1 (X - Xv - Z + XV+m) 1 (X - Xv + Z - XV+m)- cos -------- - - cos --------
2 2 2 2

1 (Xv+m-X-Z+Xv) 1 (Xv+m-X+Z-Xv)+ - cos -------- - - cos --------
2 2 2 2

1 (Xv+m-Xv-Z+X) 1 (Xv+m-xv+z-X)2 COS ----2---- - 2 cos ----2----

sin (_X_v_+_m_
2
_-_X_v_). sin (_Z_;_X) ,

which, together with (2.5), completes the proof of Theorem 2.1 in Case 1.

Gase 2. It is Xv < xv+! = xv+m . In this case we verify directly that Im,v, which reads in this
case

( ) . m-I (z-x), dzsin xv+,;-xv. ,sm -2- ,

Im,v(x) ~ 4~i f sin(T) sinm (,-;.+.) (2.6)

coincides with (1.6). Obviously, Im,v(x) = 0 for X :2: Xv+m. Moreover, using the result of
Case 1 we obtain immediately that

# Im,v(x) = 0 for X < Xv ,

since the integral depends continuously on the parameters Xv+I,"" Xv+m .

(2.7)

Now let Xv ~ X < Xv+! . Here, according to the Residue Theorem and using (1.7), we have

Im,v(x)
(

sinm-I( ~) )1. Xv+I - Xv 2; Z = Xv+I
= -sln( 2 ) . Res . (z-x) . m(z-xv+1)2 sm ~ .sm 2

. m-I (z-x) )sm -2- .Z = X v
1 . (X

V
+I-

X
V) . Res ( . (z-x ) .. m(~)'= - 2 sm 2 sm ~ sm 2

•

1 . (XV+I - Xv)= -2sm --2-- .

sinm-I(T)
sinm-I ( XV+~ -xv)

sinm-I( ¥)
!.sinm (XV-;V+1 )
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Gase 3. It is Xv = Xv+m-1 < Xv+m. In this case, the statement can be proved in complete
analogy to Case 2. 0

In the next section, the representation (2.1) will be used for proving some new identities for
trigonometric B-splines, which cover as special cases the recursion (1.4) resp. the differential
recursion (3.16), proved in [4].

3. Identities for Trigonometrie B-Splines
The first theorem in this section can be viewed as a generalization of the recursion formula

(1.4). Our aim is to express the B-spline Tm,v by some others of order m- k, k E {1, ... ,m-
1}. Since the index 1/ is not important here, and since we shall have indices enough to struggle
with, we set throughout this section 1/ = 0 and use the notation Tm := Tm,v .

We need some more notation: For fixed k E {1, ... ,m - 1} , let N denote the following set
of k -tupies:

N := {(j1,'" ,jk); 0 ~ j1 < 12 < ... < jk ~ m}.

Futhermore, for each (h, ... ,jk) E N, we denote by

Tm-k(x Ih,... ,jk)

(3.1)

(3.2)

the B-spline of order m - k with knots {xo, ... ,Xm} \ {XjI"" ,Xjk}' Finally we define, again
for each (h, ... ,jk) E N, two indices rand s by

r := min{ i ; 0 ~ i ~ k + 1, ji > i - 1} , and

s := max{ i ; 0 ~ i ~ k + 1, ji < m - k + i} ,

(3.3a)

(3.3b)

where we have set formally jo := -1 and jk+1 := m + 1. Note that these indices count how
many of the first resp. last subsequent knots are deleted in (3.2).

Now we are ready to formulate the following result.

Theorem 3.1 (Generalized Recursion Formula): For each (h, ... ,jk) E N, set

!-L(jl, ... ,jk) -

sin ( xm-k+:i -Xr-l )

sin( xm;-xo )
(3.4)

Furthermore, let there be given functions A(jl ,... ,jk) (x) such that for each z E (E the relation

k
"A ( ) II. (z - X ji ) . k (Z - X)L.J (jl, ... ,jk) x . !-L(jl, ... ,jk) . sm 2 = sm -2-

(h ,...,jk)EN i=1

(3.5)
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holds, with A(lI, ... ,jlc)(x) independent of z.

Then the following identity is true:

Tm(x) = L A(jl, ... ,jlc)(x), Tm-k(x Ih,... ,jk)
(11 , ... ,jlc)EN

9

(3.6)

Before proving this result, we would like to illustrate it by considering some aspects of the
special case k = 1 . Here we obtain with

/Lo
sin( Xm2X) )

sin(xm2xo) , /Lm

sin( XTn-~-xo)

sin( xTn2xo )
(3.7)

and /Lj = 1 for j = 1, ... ,m - 1 , the identity

m

LAj(X) .Tm-1(xlj)
j=O

whenever the Aj 's satisfy

m

'"' (Z-X')~ Aj(X)' /Lj . sin __ J =
j=O 2

for Z E (J} .

Tm(x) ,

(
z - X)sm -2-

(3.8)

(3.9)

For example, if Xo < Xm-l and Xl < Xm , we may choose

AO(X)
= sin( X Tn2-X )

sin( xm2Xl) ,
Am(X)

sin( x-;xo )

sin(XTn-~-XO) ,
(3.10)

and Aj(X) = 0 for j = 1, ... ,m-1, which leads us back to the recursion (1.5) (with T replaced
by m).

But there are also other possibilities: For two indices a, ß E {1, ... , m - 1} with Xa #- xß ,

set

Aa(X)
sin( x-

2
xß )

sin(x,,~xß) ,
Aß(X)

sin(¥)

sin( x,,~xß) ,

and Aj(X) = 0 otherwise. Then, (3.9) is satisfied, and we obtain the recursion

Aa(X) . Tm-1(x I a) + Aß(X)' Tm-1(x I ß) = Tm(x). (3.11)
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Proof of Theorem 3.1. We first observe that, aeeording to the definition of rand s, the sup-
port of the B-spline Tm-k(X IiI,...,jk) is precisely the interval [Xr-I, Xm-k+s] ; in particular,
Tm-k(X I iI,...,jk) is identically zero, if Xr-I = Xm-k+s'

Henee, using (2.1) we may write

L A(h ,... ,jk)(X) . Tm-k(X I jl,' ..,jk)
(jl, ... ,jk)eN

L A(jl, ... ,jk)(X)' Tm-k(x liI,...,jk)
<h •.... ik)EN

Zr-l <Z7n_Ic+s

L
Ul •...• ik)EN

Zr-l <Zm.-Ic+s

. (xA Sln ",_k+.-X

(h,...,jk) (x) . 2 r-l)
47l'i .J

e

. m-k-I(z-x) dsm -2- z

rrm . (~)sm 2
1'=0

I'Il{h •...•ik}

mrr
1'=0

I'(i;'{jl, ...•id

L
<h ..... ik)EN

zr_l <::Cm-1c+s

. (~)
sm 2 J

A(jl, ... ,jk)(X) . l1(h, ... ,jk) . 47l'i -.
e

sinm
-
k-I (T) dz

sin( Z-
2
X
I' )

= LA' ( sin(~)
.. (Jl, ... ,jk) x) . 11" 2

(Jl ,... ,Jk)e N (Jl," .,n) .
.J
e

mrr
1'=0

I'(i;'{h, ...•ik}

Sinee all A(h, ... ,jk)(X) are independent of z, we ean use the linearity oft he integral and simplify
the last expression furt her to

k
sin( x",;xo) i[IIsin( Z-;i; ) . sinm

-
k-I (z'2x) dz

7l'i . J L A(h, ... ,jk)(X)' l1(jl, ... ,jk) . -----m-----
e (jl, ... ,jk)eN rr sin( z-2

x
l'

1'=0

= sin( ~) . J sink ( z'2x) . sinm
-
k-I ( z'2x) dz

47l'i e 11 sm\ 2
1'=0

= Tm(x) ,

where we have used (3.5). This eompletes the proof of Theorem 3.1. D

Our next result provides a generalization of the differential reeursion fomula for trigonometrie
B-splines, originally proved in [4].
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Theorem 3.2 (Generalized Differential Recursion Formula): With the numbers J.tj defined
in (3.4) resp. (3.7), let >'j(x) be real functions, such that for all z E (f} the relation

~ (z-x') I-m (Z-X)L.J>'j(x), J.tj' sin -2-J = -2-' cos -2-
j=O

holds.

Then for eaeh point x, where d~ Tm (X) exists, the following identity is true:

(3.12)

d
dx Tm(x) =

m

L >'j(X) . Tm-1(x I j) .
j=O

(3.13)

Proof. Differentiating the Representation (2.1) w.r.t x, we obtain

d (1- m)sin( xm;-xo) cos( z;x) . sinm-2( z;x) dz
-Tm(x) = . ./--------
dx 8m c sin( z~xo) sin( Z~Xl} ; .. sin( Z-;m ) (3.14)

From this point on, the proof runs along the same lines as the one of Theorem 3.1 and is
therefore omittedhere. 0

Using relations (1.8) and (1.9), it is easily verified that (3.12) holds in particular for

>'O(X)
I-m cos(~)

2 sin( Xm;-X]) , >'m(X)
m-l cos(x~xo)

2 sin( Xm_~ -xo) ,
(3.15)

and >'j(x) = ° for j = 1, ... ,m - 1 ; with these choices for the >'j 's, Relation (3.13) reads

d
dx Tm(x)

cos(~) cos(xm-x)m-l 2 I-m 2
-2-' ( ) .Tm-1(xlm)+-2-' ( ) .Tm-1(xIO),sin Xm-l -xo sin ~2 2

(3.16)

a formula, which was originally proved in [4].

Remark. Of course it is no problem to differentiate the representation (3.14) further, and thus
to derive identities like (3.13) for higher derivatives of Tm. But then, the right hand sides of
(3.12) become quite unpleasant, and so I think that such identities will not be of great practical
importance.

Now that we have found an identity which represents the derivative of Tm w.r.t. x, in the
next theorem we establish a corresponding result for the partial derivative of Tm w.r.t. one of
the knots.
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For its precise formulation, we need to extend our previous notation: Let

T~)(x Ij)

12

(3.17)

denote the trigonometrie B-spline of order m, which arises from Tm by deleting the knot Xj ,

and adding the knot Xi one more time. Note that, aeeording to this notation,

T~)(x Ij) = Tm(x) . (3.18)

Furthermore, let for j E {O, ... ,m}, Pj denote the multiplicity ofthe knot Xj, Le., the number
of times x jappears in the set {xo, ... , xm} . We assurne from now on that Pj < m for all j ,
and that at least one inner knot exists.

Theorem 3.3 (Partial Derivative): Choose some index i E {O,... ,m}, and let again /-Lj,
j = 0, ... , m, denote the numbers

/-Lo
sin(~)

sin( xm2xo) ,
/-Lm

= sin ( Xm-~ -xo )

sin( xm2xo )
and /-Lj = 1 for j = 1,... ,m-I. (3.19)

Furthermore, let there be given real numbers Ao, ... , Am, such that for all Z E (C the relation

~ (Z-x') p' (z-x')~Aj/-Ljsin T = 2
t
•eos -2-

t

j=O

holds. Then for each x, where d~i Tm(x) exists, the following identity is true:

(3.20)

In particular, we have

d
dx. Tm(x)

t

m

L AjT~)(x I j) .
j=O

(3.21)

d
dx. Tm(x) =

t

Pi
2

(

COS ~ (i) cos( ~) (i) ) .
. :z:m-:Z:I) Tm (xIO) - . (:z:m_l-:Z:o) Tm (xlm) ,1:Sz:Sm-1,
Sin 2 Sin 2

((~) )cos 2 1 (0) . _
. (:z:m_:z:o)Tm(X) - . (:z:m_l_:z:o)Tm (xlm), z-O, (3.22)
Sin 2 sin 2

( (~) )1 (m) cos 2 _

. (:z:m_:Z:I)Tm (xIO) - . (:z:m-:z:o) Tm(x) , z-m,
Sin 2 Sin 2

i.e., for each i, d~i Tm can be written as a linear combination of two mth order B-splines.
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Proo/. Differentiating the Representation (2.1) w.r.t. xi, we obtain

.!!:- _ sin( xm2XQ) J sinm-1( z;x) . P;f. cos( Z-r/i) dz
Tm(x) - "

dXi 41TZ
C

Using (2.1) also for the B-splines T~)(x I j) , this leads us directly to (3.21).

To verify (3.22) we have to show that

13

(3.23)

(X -X') (Z-XO) (XO-X') (Z-X) (X -XO) (Z-X')cos m 2 t sin --2- -cos 2 t sin 2 m = sin m 2 COS -2-t (3.24)

for all i. But this can easily be done, using some of the identities listed in Proposition 1.1, and
regarding that 1 = cos( xQ;XQ ) = cos( Xm;Xm ) . D

For some nEIN, n 2: 2 , let

(
Xl

Sm := Sm PI Xn-1)
Pn-1

denote the space of trigonometrie splines with (inner) knots Xl,'" Xn-1, of multiplicities
PI, ... Pn-1. It is well-known (cf. [3, 9]) that - very similar to the polynomial case - this
linear space possesses a B-spline basis, and that

dirn Sm
n-l

m+ Lpj.
j=l

(3.25)

Using the result ofTheorem 3.3, the next corollary follows in complete analogy to the polynomial
case.

Corollary 3.4 (Tangent Space): Consider some arbitrary, but fixed s E Sm. Then the
tangent space T( s) 0/ s is the space

0/ dimension

(
Xl

T(s)=Sm P1+1
Xn-l )

Pn-l + 1

n-1

dirn T(s) = m + n - 1+L Pj .
j=l
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4. A Convex-Hull Property

14

In contrast to the polynomial ones (see e.g. [1,2]), trigonometrie B-splines in general do not

establish a partition of unity, and therefore the trigonometric B-spline curve

t(X) :=L bvTm,v(x)
v

(4.1)

cannot be expected to lie in the convex hull of the control points bv.

To overcome this difficulty, P.E.Koch, T.Lyche, M.Neamtu & L.L.Schumaker [3] introduced
quite recently the concept of trigonometrie convexity and control curves, thus obtaining niee
results concerning curve design properties of trigonometrie B-splines.

In the present paper, we go a bit more the "classieal" way and show that - for equidistant
knots and m odd, whieh corresponds to the space Tm as defined in (1.1) - the Tm,v 's indeed
add up to a non-zero constant and so, after a suitable re-normalization, the trigonometrie B-
splines form a partition of unity. In the remainder of this section, -we work out and prove now
these roughly sketched ideas.

Theorem 4.1 (Partition of Unity): Let mEIN be odd, and assume that

Xv+1 - Xv = h > 0 for all v E 7L . (4.2)

Then there is a positive constant Cm, which depends on h, but not on {xv}, such that

L Nm,v(x) == 1,
vE-'Z

where
Nm,v(x) := Cm. Tm,v(x)

for all v E 7L .

The constants Gm can be given explicitly, see the proof. For example, it is

(4.3a)

(4.3b)

Cl = 1, G3 = cos(~),

Gs = ~ (cos(~) .cosC;) +~), and (4.4)

C7 = ~ (cos(~) .cosC2h
) .cosC2h

) + ~(cos(~) +cos(32h) +cosC2h
)))

Before proving Theorem 4.1, we state an easy, but for applications important corollary.
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Corollary 4.2 (Convex-Hull Property): For eaeh x E IR, the point

t(X) :=L bvNm".,(x)
vEiZ

15

(4.5)

lies in the eonvex hult of the eontrol points bj, j E Jx . Here, Jx denotes the finite set

Jx = {j E ~j Nm,j(x) i= O}.

Proof. Since Gm > 0, and since Tm,v 2: 0 for all x E IR (cf. [3, 9]), the statement follows
immediately from Theorem 4.1. 0

Proof of Theorem 4.1. For m = 1 , the result is obvious, so let m 2: 3. We make use of the
Marsden type identity

sinm-1 (Y ; X)
m-l

= L Tm,v(x), rr sin(Y - XV+i) ,
vEiZ i=1 2

(4.6)

whieh is due to T.Lyche & R.Winther [4]' see also [9]. Here, Y EIR is some dummy variable,
and (4.6) is a trigonometrie polynomial in Y from the space Tm, as defined in (1.1). The basie
idea of our proof is now to compare the constant terms of this polynomialon both sides of the
identity (4.6).

From the well-known relation

(

",-3
1 -2- ",-1. m - 1

sinm-1(cp) = 2m-1 2 f; (-1)-2--) ( j ) cos((m - 1- 2j)cp) + (:~n), (47)

valid for all odd integers m and cp E IR, we deduce that the constant term on the left hand
side of (4.6), denoted as lm, equals

l _ 1 (m - 1)
m - 2m-I' m21

and is obviously positive. Here we have used that, for k E lNo ,

cos (2k (Y ; X)) = cos(ky) cos(kx) + sin(ky) sin(kx) ,

(4.8)

(4.9)

due to (1.10), whieh implies that no other term in (4.7) contributes to the constant.

Now we consider the product on the right hand side of (4.6). Since m - 1 is even, we may
group the factors in pairs and find, again using (1.7) that

m-lg sin(Y - ;V+i) "'rr;I(. (y-xv+j) . (y-xv+m-j))= SIn --~ . SIn ~---~
.22
)=1
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m-l

= tl (~(cos(Xv+m-~ - XV+j) - cos(y - "Im)))

(1) m;-l m;-l ( 2 . 1 )
= 2 ]1 cos( -7- h) - cos(y - "Im) , (4.10)

2
"Im := Xv+m-1 + Xv+1

where we have defined

Now we have to recall the definition of the elementary symmetrie functions O"kN) of order
N,which can be done through the polynomial identity

N

(al - z)(a2 - z) ... (aN - z) = 2:) _z)N-k O"kN) ,
k=O

or explicitly
k

O"kN) = L IIail
1::;il<i2< ... <ik::;N 1=1

(4.11)

with O"~N) = 1. For example, we have

N

(N) - '" al0" 1 - L...J
1=1

N

and 0"<;') = IIal .
1=1

Using this notation, we can re-write (4.10) as

rn-I rn-1

(1)-2- 2 k k (m;-l)- L (-1) cos (y - "Im) 0" m;-l_k
2 k=O

(4.12)

where the 0" 's are defined through (4.11) with

(
2j - 1 )a. = cos --h .

J. 2
Obviously, they depend only on h. Now we have to filter out the constant terms (w.r.t. y) in
the representation (4.12). To do this, we apply the elementary identities (cf. (4.7))

cos2"(,,) = 2;" (2 ~ ejn) cos(2(n - j),,) + (~)) (4.13a)

and 1 n-1 (2n - 1)
COS2n-1(cp) = 22n-2 L . cos((2(n - j) - l)cp) ,

j=O J
(4.13b)
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valid for all nEIN and ep E IR.
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From (4.13) we reeognize that in (4.12) only the terms with k even, say k = 2n, eontribute
to the eonstant, and that this eontribution equals

(
~) m;-l _1 (2n)
2 22n n

(m;-l )
am-1_2n

2
(4.14)

Summing up all these eontributions now gives us the constant term Tm on the right hand side
of (4.6); it is

(~)Tm
= (~) m;-l

[m;l]

L
n=O

1
22n

(m;-l)
a m-1_2n-2

(4.15)

So we have proved that

im = Tm L Tm,v(x)
vE;Z

(4.16)

with im and Tm defined in (4.8) resp. (4.15). Since im is positive, and sinee eaeh Tm,v is
nonnegative everywhere and positive within its support, we eonclude that Tm> O. Therefore,
setting

Gm

[!!!.=l ]

_
Tm = 2m;-1'(C:=11))-1. t
im 2 n=O

1
22n (2:) =-1 )(-2 ,

a=-1 -2n-2 --
(4.17)

Theorem 4.1 is proved. D

Let us now work out the application of this result to a eurve design problem, and illustrate
it by a numerical example. Sinee we are foreed to work with B-splines with simple knots, and
due to the faet that we are dealing with trigonometie functions (whieh are surely the prototype
of periodie funetions), it is natural to eonsider problems for closed spline eurves.

We first have to make our normed B-splines Nm,v periodic: To do this, we ehoose some
nEIN, n 2: 2, and define for j = 0, ... , n - 1, the periodic trigonometrie B-splines Pm,j
through

P, .(x) :=m,J L Nm,v(x).
vE!Z

lJ:j mod n

(4.18)

Obviously, these functions are periodic on the interval [xo, xn] , and their restrictions to this
interval establish a basis of the eorresponding periodic spline space. Note that for eaeh x E
[xo, xn] only a finite number of terms on the right hand side of (4.18) is different from zero; in
particular, if n 2: m, what we want to assurne from now on, there are at most two non-zero
summands.
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Consider now a set of control points bo, ... , bn E JRd with bo = bn. We define the closed
trigonometrie spline curve associated with these control points as the mapping

t : [xo, xnl -+ JRd,
n

t(x) = L bjPm,j(x),
j=O

in complete analogy to the well-known polynomial case (cf. [1,2,9]). Due to Corollary 4.2, each
point t(x), x E [xo, xnl , lies in the convex hull of the control points bo, ... , bn .

For d = 2, n = 5 and m = 3 , this behavior is illustrated quite nieely in Figure 1 (here,
the control polygon concides with the boundary of the convex hull).

Figure 1. A 'Trigonometrie Spline Curve and its Control Polygon

5. Remarks on Cosine-Splines
In some situations it maybe useful to consider trigonometric splines, which are piecewise in

the space
Cm := span{l, cos(x), ... , cos((m - l)x)} , (5.1)

the so-called cosine-splines. Here, we have to impose the condition that Xj < Xj+m < Xj + 1r

for all j E Zl , since otherwise Cm is no ECT space. For distinct knots, the B-splines Gm,,,
for this trigonometrie spline space are defined through the recursion

Gm,,,(X) = cos(X) - cos(x,,) G () COS(x,,+m) - cos(x) G () (5'))
( ( m-I" X + ( ) ( ) m-I ,,+1 X, ._a

COS X,,+m-I) - COS x,,) , cos X,,+m - COS X,,+I '
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where for all j

see e.g. [4].

G1,j(X) _ {1,
. 0,

for Xj s:; x < Xj+1,

otherwise,
(5.2b)

•

We only want to mention here that most of the results presented in our paper also hold for
these B-splines Grn,v: An integral representation similar to (2.1) exists, and therefore identities
like those presented in Section 3 can be derived. Moreover, the B-splines Grn,v might be of
particular interest for curve design techniques, since they form a partition of unity for all m
and for arbitrary knot vectors, as follows easily from (5.2), using induction on m.

Acknowledgements: I am indebted to the referee of my paper [11]' who helped (in the
polynomial case) improving the formulation of Theorem 3.1. Also, I thank Rainer Ginsberg for
drawing Figure 1.
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