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1. Introduction

In this paper we continue our work begun in [PS 92] on the construction of limits for
the composition of the Dirac distribution br concentrated at x E IRd with an IRd-valued
process X over [0,1]. In our first paper [PS 92] we established limit theorems,tesembling
the law of large numbers (LLN) and the central limit theorem (CLT) in the case that
X is a one-dimensional Gaussian process. The limits were taken in the sense of strong
limits of Hida distributions. (In case of the LLN we also proved weak convergence in
the Meyer- Watanabe space.) In the present paper we extend these results to solutions of
one-dimensional, non-degenerate Ho equations. Gur final aim is to show such limit results
for systems of interacting diffusions, andconstructing solutions of the McKean- Vlasov
equation.

LLN and CLT for generalized random variables have also been considered indepen-
dently in [Am 92]. The relation between the results there and in the present paper has
still to be worked out.

As in our first paper [PS 92] we work in the framework of white noise calculus. Gur
proofs use a combination of results from white noise analysis (in particular from [PS 91])
and of techniques from Malliavin calculus. The methods of the present paper work as
well in the general case of d-dimensional diffusion processes, that arise as solutions of non-
degenerate Ho equations. However, for d > 2 the calculation of the S-transform given in
Section 3 for d = 1 has to incorporate higher order derivatives, and therefore necessitates
the estimation of much more complex terms in the resulting Malliavin calculus. Also, as
a result formula (5.2) for the "variance" appearing in the centrallimit theorem is more
eomplieated for arbitrary dEIN. Sinee the additional eomplieations which eome up by
treating the ease of general d would obfuseate thoroughly the arguments of our proofs, we
eonsider in the present paper only the one-dimensional ease, and in aseparate fortheoming
paper the situation of arbitrary d.

The paper is organized as follows. InSeetion 2 we reeall quiekly some faets from
white noise and Malliavin ealculus. In Section 3 we prove the essential teehnieal result:
we derive a formula for the S-transform of 0x 0 X for non-degenerate X belonging to
the Meyer-Watanabe spaee V. In Seetion 4 we prove the LLN, in Section 5 the CLT. In
an .Appendix we eolleet some teehnieal results related to isometrie transformations of the
underlying prob ability spaee.

2. Some Background and Results From Stochastic Calculus

In this section we give a brief sketch of pertinent not ions and results from stochastie
ealculus. For more details we refer (for example) to [HK 92]' and the literature quoted
there. As in our previous paper [PS 92], we continue to use white noise analysis as our
general framework, and the interested reader may eonsult Section 2 of [PS 92] for a quiek
introduetion.

Let (S'(IR),B,J-L) be the probability spaee of white noise. Le., J-Lis the eentered
Gaussian measure on the weak Borel u-algebra B of S'(IR) whose eovarianee is given by
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the inner product of L2(IR, dt)~ L2(JR), dt denotltlgLebesgue measure. In Sections 4 and
5 we shall prove limit theorems in the space (5r of Hida distributions which is the dual
of a certain space (5) of smooth functions on 5' (IR). For a construction 6f (5), and for
properties of (5) and (5)* we refer to [HK 92, PS 91]. The canonical dual pairing between
(5)* and (5) is denoted by < ',' >.

In the proofs of the following sections, an essential role is played by the infinite dimen-
sional gradient V, and the associated directional derivatives. Natural domains for these dif-
ferential operators (in the context ofthe present paper) are the spaces Vp,k, p > 1, k E~,
introduced by Meyer [Me 83] (cf. also, e.g., [Su 85, Wa 83, Wa 84]). Roughly speaking we
have

where N is the number operator (i.e., the negative of the Ornstein-Uhlenbeck operator).
The norm of Vp,k will be denoted by 11I . Illp,k' Let h E L2(IR), and consider the Gä.teaux
derivative Dh in direction h acting on an appropriate function <P on 5'(IR):

whenever the right hand side exists. The Meyer inequalities (e.g., [Me 83, Su 85]) give the
estimate

IIIDh<PIIIp,k ::; Cp,k Ih12111<p IlIp,k+l,
where I . 12 is the norm of L2(IR) and Cp,k > 0 is a constant. Clearly, this entails that
Dh extends from a suitable dense dass of functions (say, smooth cylinder polynomials)
to a continuous operator from Vp,k into Vp,k-l. Moreover, if <P E Vp,k, k 2: 1, then the
mapping h 1----+ (D h <p)( w) defines for /-l-a.e. w E 5' (IR) a continuous linear mapping from
L2(IR) into <C'. Therefore there exists an element Vip E L2(IR) 0 Vp,k-l, such that for
every h E L2(IR) and /-l-a.e. w E 5'(IR) we have

where the inner product on the right hand side is the one of L2(IR). Also, it is well-known
that the adjoint Dh of Dh is given by

(where equality is in the sense of L2(/-l)) and that N = V*V, where V* is the adjoint of
V (with respect to dt 0 d/-l).

In order to apply the results of the following sections to diffusion processes, we will
apply the important result of Malliavin calculus which states that the solutions of non-
degenerate Ito equations belong to the Meyer- Watanabe space V, which is the intersection
of the spaces Vp,k, and that these solutions have a non-degenerate Malliavin covariance
matrix. The dual of the space V (V being equipped with the projective limit topology)
is denoted by V*, and the dual pairing between these spaces is also denoted by < ',' >.
(There is no danger of confusion because (5) is continuously embedded into V.)
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A crucial role in the proofs of the LLN and the CLT is played the S-transform

~ E S(IR),

defined for all <I>E (S) *, because the function

belongs to (S). Pointwise convergence of the S-transforms of a sequence in (S)*, together
with a certain uniform bound, is equivalent to strong convergence in (S) * [PS 91]. w

3. Calculating the S-Transform of 8x 0 X

This section contains the technical key result which will be used in Seetions 4 and 5
to derive the LLN and the CLT for certain versions of 8x 0 X.

Throughout this paper we shall assurne that X is areal random variable in V, that
the mapping

exists p-a.e., and that it belongs to every LP(p), p ~ 1.

Theorem 3.1. Let

For all x E IR, ~ E S(IR),

(3.1a)

(3.1b)

I
• I

In passing we mention the following consequence of Theorem 3.1 which might be of
independent interest:

Corollary 3.2 Assume that f E C(IR) is polynomially bounded. Then

(SfoX)(O=jf(x)j I\7XI2"2(F(X)-DeX) :e<.,e>: dfLd-r.
{X~x}

Theorem 3.1 is proved by the next two lemmas.

4



Lemma 3.3. For all x E IR, r.p E V,

< 8x 0 X, r.p>= r V'* ((V' X)IV' XI;-2r.p ) dll.
J{x"?x}

(3.2)

(3.3)

;

Proof. By definition, 8x 0 X is the unique element in V* which is obtained as the strong
limit of 8x,n 0 X, where {8x,n, nEIN} is any sequence in S'(IR) converging strongly to 8x

as n tends to infinity (cf. ["Va 83]).

For nEIN, let Bx,n be any monotonically increasing CCO-function, so that Bx,n = 0
on (-00, x - ~], and Bx,n = 1 on [x, +00). Then B~,n converges strongly in S'(IR) to 8x.
Following Malliavin [Ma 78]' we use the chain rule to write

(V'X, V'Bx,n 0 Xh2(JR) = B~,n 0 X . IV'XI~.
Thus we have

< B~,n 0 X, r.p> =< (V' X, V'Bx,n 0 X), IV'XI;-2r.p >

= J Bx,n 0 X V'* ((V' X)IV' XI;-2r.p) dll.

Our hypotheses on X entail that all quantities under the integral are weH defined. Letting n
tend to infinity, by Watanabe's result [Wa 83] the left hand side converges to < 8x 0 X, r.p >.
On the other hand the dominated convergence theorem applied to the integral expression
shows that this term converges to the right hand side of (3.2). 0

Lemma 3.4. For all x E IR, r.p E V,

< 8x 0 X, r.p>= r IV'XI;-2 (F(X}p - (V' X, V'r.p)) dll.
J{x"?x}

Proof. The product rule (for suitable r.p, 'Ij;) of D'h reads
D'hr.p'lj;= (D'hr.p)'Ij; - r.pDh'lj;.

Moreover, we note that D'h = (h, V'*). Working out equation (3.2), and using N = V'*V',
we get immediately (3.3). 0

Theorem 3.1. follows now from the choice r.p =: e<.,e> :, e E S(IR), in (3.3).

In order to prepare the computations of the next sections we prove now a modification
of Theorem 3.1. Assume that , is a linear unitary mapping on L2(IR), whose restrietion
to S(IR) is a homeomorphism of S(IR). Then, and ,* = ,-I extend to S'(IR). Let us
define

w E S'(IR).
It is clear that 11 is invariant under,: 110, = 11. Moreover, we show in the Appendix that
all quantities in (3.1) not involving e transform "covariantly" under" i.e .. \ve have the
following relations (cf. Lemma A.1 and Lemma A.2):

(i) F(Xr) = (F(X))r,
(ii) IV'Xrl2 = (IV'XI2)r,
(iii) DhXr = (DrhX)r.
Thus, we arrive at the foHowing result.
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Theorem 3.5. For all x E IR, ~ E S(IR),

(Sbx 0 XT )(0 = r I\7X122 (F(X) - DTeX) : e<.,Te> : df-L. (3.4)
J{X~x}

4. Law of Large Numbers

In this section we prove a limit theorem for bx 0 X which resembles the law of large
numbers. In particular, X may be chosen as the solution of a non-degenerate Ho equation
evaluated at t > O.

For simplicity, we shall consider processes over the unit time interval [0, 1J. Let B(t)
denote the version of Brownian motion given by W f-+< w, l[o,t] >, t E [0,1]. Bt denotes
the sub-a-algebra of B generated by {B(s), s E [0,tn. (In other words, Bt is generated by
the random variables W f-+< W, ~ >, with ~ E S(IR), and supp~ C [0, tJ.} From now on let
t > 0, and consider areal random variable X satisfying the following hypotheses:

(H.1) X is Brmeasurable;
(H.2) X E D;
(H.3) X has a non-degenerate Malliavin variance, i.e., 1\7Xj2 is f-L-a.e.non-zero, and

1\7XI;! belongs to all LP(f-L), P 2: 1.
Similar to [PS 92]' we construct independent versions of X on (S' (IR), B, f-L) by means

of a family of unitary transformations on L2(IR). As in the case of Gaussian random
variables considered in [PS 92], the transformations Tn given by

(Tnf)(S) = f(s + n), nEIN,

can be used to prove a LLNfor bx oXn, where Xn(w) = X(TnW). However, as pointed out
in [PS 92]' these versions of X are not suitable to prove a CLT. Thus - as in our previous
paper - we use the following transformations:

1 m+s
(Tn,mf)(S):= ~f(-),

yn n
nEIN, m = 0,1, ... ,n - 1.

(It is obvious that Tn,m satisfies the conditions stated before Theorem 3.5.) For a random
variable Y, define Yn,m:= Y( Tn,mW), W E S'(IR), nEIN, m = 0,1, ... , n - 1. Since f-L is
invariant under Tn,m, we have for all A E IR, nEIN, m = 0,1, ... , n - 1,

J exp(iAXn,m) df-L = J exp(iAX) df-L,

showing that Xn,m and X have the same distribution for all n, m. Moreover, Xn,m is
measurable with respect to the sub-a-algebra Bn,m,t generated by {Bn,m(s), s E [0,tn.
Since Bn,m(s)(w) = Vii < w, 1[~, mt.] >, it is clear that for every nEIN, the Brownian
motions Bn,m and Bn,m" rn =1= m', m, m' = 0,1, ... ,n -1, on [0,1] are independent: Thus
Bn,m,t and Bn,m',t are independent for all t E [0,1]. Consequently, Xn,m and Xn,m' are
independent. Altogether we have proved
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Proposition 4.1. For each nEIN, the family

{Xn,m, m = 0,1, ... , n - I},

is a family of i.i.d. versions of X.

For the proof of the LLN and the CLT the following (almost obvious) result will be
useful. .

Lemma 4.2. For every h E L2(IR),

where Pt is the orthogonal projection in L2(IR) onto L2([0, t]) (i.e., Pt is multiplication by
I[o,t]). .

Proof. Let {j(n), nE lNo} be the sequence in the symmetrie Fock space over L2(IR) which
gives the chaos decomposition of X:

00

X = I: In(J(n»),
n=O

where In(J(n») denotes the n-fold multiple Wiener integral with respect to the Brownian
motion B. Then the measurability hypothesis (H.1) entails that j(n) E LifiRn) C denotes
symmetrization) is ofthe form j(n) = g(n) . I[o,t]", for some g(n) E L'fo-:Jinn). Since

where

00

DhX = I:nln_1((j(n), h)),
n=l

(J(n),h)(Sl, ... ,Sn-d = J j(n)(Sl, ... ,Sn_l,Sn)h(sn)dsn,

the statement of the lemma is now obvious.

Now we are ready for the proof of the LLN.

Theorem 4.3. As n tends to inn.nity,

1 n-l;;I: Oz; 0 Xn,m
m=O

converges strongly in (S)* to lE(oz; 0 X) :=< Oz;0 X, 1 >. Moreover,

lE(Oz;oX)= { I'VXI2"2F(X)dIL,
J{x?z;}
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where

Proof. Observe that by hypotheses (H.2) and (H.3), F(X) E LP(j.L), for all p ~ 1. By
Theorem 3.5, the S-transform of

1 n-1
- " 6x 0 Xn mnL '
m=O

at ~ E S(IR) is given by

Let us first show that the term under the sum involving the derivative in direction oi
rn,m~ vanishes. Ta this end, it suffices to prove that DTn,m~X converges to zero in L2(j.L),
uniformly in m, because obviously IVXI2"2 : exp < " rn,m~ >: belangs to L2(j.L), tao, and
is uniformly bounded in n, m in L2(j.L). (Use Hölder's inequality, the fact that every term
is in every LP(j.L), p ~ 1, and 11 : exp < ',rn,m~ >: IIp = expO(p - 1)1~1~).) From Lemma
4.2 we know that

Now,

Thus we can estimate

1/2 m + sPtrn,m~(s) = n- ~(-n-)l[o,tl(s), sE IR.

IIDTn,mexllz = IIDPtTn,meXII2
1

:::;IPtrn,m~12I1N2 XI12
:::;tl/2n-l/21~looIIIXIII2,1.

(The first inequality above is well-known (e.g., [HK 92]). For example, it follows from (4.1)
and Schwarz' inequality, and it is a special case of the Meyer inequalities.) Clearly, this
estimate shows that DTn,meX converges in L2(j.L) to zero, uniformly in m. as n tends to
infinity.

Next we show that as n tends to infinity,

converges to
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Now we have

uniformly in m = 0,1 ... , n - 1. By assumption, Bx(X)IV XI;2 F(X) is Bt-measurable.
Decompose Tn,me = ptTn,me +P/-Tn,me, where P/- = id - Pt. Then W f----+< w, p/-Tn,me >
is independent of Bt. Using the fact that J : exp < .,h >: df-L = 1, for all h E L2(lR), we
can compute as follows:

In order to show that the last expression converges to Jx>x IVXI;2 F(X) df-L(x) as n tends
to infinity, uniformly in m = 0,1, ... ,n -1, it is sufficient [0 prove the following two claims:

(i) exp( - 21nJ: e( m:s )2ds) ~ 1, as n ~ +00, uniformly in m,

(ii) exp( < .,PtTn,me » ~ 1 in L2(f-L), as n ~ +00, uniformly in m,

because 1{x;::::x} IVXI;2 F(X) belongs to L2(f-L). Claim (i) is obviously true, since e is
bounded. Concerning (ii) we remark that ptTn,me converges in L2(lR) to zero as n tends
to infinity, uniformly in m:

lt2 -1 m + s 2
IPtTn,meb = n 0 e(-n-) ds

~ tn-1Iel~.

Ile<"Plrn.m~> _ lll~= e21PIrn,m~l~ - 2el/2IPtrn.m~l~ + 1,

and therefore also the convergence claimed in (ii) above holds true.

Altogether we have proved so far that the S-transform of

1 n-1
- ~ 8x oXn mn LJ '

m=O

converges pointwise to S8x 0 X(O), which is equal to JE(8x 0 X). By Theorem 2.7 in
[PS 91] it now suffices to show that there exists constants K1, K2 > 0 so that for all
z E <17, e E S(lR), nEIN, m = 0,1, ... ,n - 1, we have

in order to conclude the proof.
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(SOx 0 Xn,m)(zO is defined by analytic continuation, and is given as follows:

(SOx 0 Xn,m)(zO = r IV'XI22(F(X) - ZDTn,mE.X) : eZ<',Tn,mE.> : dJ-i,
JU("~x}

where we used linearity of h ~ Dh, and : eZ<',h> :, h E L2(IR), denotes the function

By the triangular and Hölder's inequalitieswe get

I(Sox 0 Xn,m)(zOI ::; 111V'X122 F(X)11211 : eZ<.,Tn,mE.> : 112+
+ IzllllV'Xl22lh IIDTn,mE.XII311 : eZ<"Tn,mE.> : 113.

Now use

and
IIDTn,mE.Xllp ::; Cplrn,meI211IXlllp,1

= CpleI211IXlllp,1,
(cf. Section 2) to obtain abound of the form

ISox 0 Xn,m(zOI ::; K1(1 + IzlleI2)e3/2IZI21E.li

::; yleKl e2IZI21E.li,

where K1 depends only on X.

, 5. Central Limit Theorem

o

We continue to consider a random variable X satisfying hypotheses (H.l), (H.2), and
(H.3) of Section 4, and the family {Xn,m, nEIN, m = O,l, ... ,n -I} oE independent
copies of X. As in the previous sections, we denote

Let X be a random variable satisfying conditions (H.l), (H.2), andTheorem 5.l.
(H.3). Then

n-lJn ~o (Ox 0 Xn,m - JE(ox 0 X)) (5.1)

converges strongly in (S)* to u(t, x)Z, as n tends to infinity, where Z is a standard normal
random variable, and u( t, x) is given by

10
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For the proof of Theorem 5.1 we prepare first the following simple result.

Lemma 5.2. Let ~ E S(IR), Tn,m, nEIN, m = 0,1,2, ... , n - 1, and Pt, t > 0, be as
above. Then n-1/2 2:::10 PtTn,m~ converges in £2(IR) to (J01 ~(u)du) .1[0,tJ.
Proof. Let s E IR, then we have by Taylor's theorem

n-l n-l

(n-1/2 L PtTn,mO(S) = (L n-l~(:))l[O,t](s) + Oe,t(n-1)1[0.t](s)
m=O m=O

where IO~,t(n-l)1 :::;tn-11(loo' Since ~ is continuous, it is clear that the claimed conver-
gence holds pointwise for every s E IR. The statement of the lemma follows then by a
simple application of the dominated convergence theorem. 0
Proof of Theorem 5.1. The S-transform of (5.1) evaluated at ~ E S(IR) is given by (cf.
Theorem 3.5)

n-l~ L J IV XI2"2 ((F(X) - DTn,m~X) : e<.,Tn,m~> : -F(X)) df.l =vn m=O {X~x}
n-l

= _1 L J IV XI2"2 F(X)(: e<',PtTn,m~> : -1) df.l- (5.3)vn m=O {X~x} .
n-l

- In L J IVXI2"2(DPtTn,m~X) : e<',PtTn,m~> : df.l,
yIri m=O {X~x}

where we used the same arguments as in the proof of Theorem 4.3 to reduce Tn,m~ to
PtTn,m~. Consider the first term on the right hand side of (5.3). First we show that

n-l

n-1/2 L (:e<',PtTn,m~> : -1)
m=O

(5.4)

converges in L2 (f.l) to B( t) J01 e(u) du, as n tends to infinity. We do this in three steps:

(i) We prove that the £2(f.l)-limit of (5.4) is equal to the £2(f.l)-limit of

n-l

n-I/2 L (e<',PtTn,m~> -1).
m=O

(5.5)

Indeed, using the triangular inequality, the £2 (f.l )-norm of the difference IS obviously
bounded by

n-l 1 lt m + s
n-1/2 "'" lIe<"PtTn,m~>1I211 - exp( -- e(--)2 ds)1

L.J 2n 0 n
m=O

n-l

:::;n-1/2 L el~li O~An-l)
m=O

O ( -1/2)= ~,t n ,
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where we used Taylor's theorem, and the estimation

Ile<.,p,rn,m~>112 = elp,rn,m~l~

:S elrn,m~l~

= el~I~.

(ii) Now we prove that the L2(J.L)-limit of (5.5) is equal to the L2(J.L)-limit of

n-1
-1/2 ~ P tn L...J <., tTn,m<.,> .

m=O

ByTaylor'stheorem the difference of both terms is equal to

n-1 1 .

n-1/2 L (1(1 - A)eA<.,p,rn,m~> dA) < .,PtTn,me >2 .
m=O 0

The L2 (J.L )-norm of the last expression is bounded from above by

(5.6)

n-1 1

n-1/2 L1(1- A)lleA<.,p,rn,m~> < ',PtTn,me >2 112dA :S C1tn-1/2Iel~eC21~1~,
m=O 0

where Cl, C2 > 0 are constants, and we made use of Hölder'sinequalityand the estimates
IPtTn,mel2 :S t1/2n-1/2Ieloo, IPtTn,mel2 :S lel2.

(iii) Finally, by Lemma 5.2 n-1/2 2::::::::10 PtTn,me converges in L2(IR) to J01 e(u)du 'l[o,tj'

which entails immediately that (5.6) converges in L2(J.L) to B(t). J01 e(u)du, as n tends to
infinity.

By hypothesis 1{x~x}IVXI22F(X) belongs to L2(J.L), and we have thus proved that
the first of the two terms on the right hand side of (5.3) converges for every e E S(IR) to

as n tends to infini ty.

Next we show that the second term on the right hand side of (5.3) converges to

To this end it is sufficient to prove that

n-1
n-1/2 ~ Do cX . e< ..Ptrn,m~> .L...J rtTn,m, . .

m=O
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converges in L2(p) to DeI X, where we have set ~:= f0
1 ~(u) du. We use the fact that

" [0,'] JI

for h E L2(IR) X E D2,1, the mapping h t-----+ DhX is linear, and the triangular inequality
to estimate as follows

n-1

< liDe X - D- XI12 + Iln-1/2 ~(Dp e X)(. e<"P"",rnE.> . -1)11- "n,' ~I(o,,] LJ "n,rn,,- . . 2,
m=O

where we have put ~n,t := n-I/2 E:~10PtTn,m~. Again by linearity, the first term on the
right hand side is equal to

IID~n" -el(o,,]XI12.
It is clear (see above) that we can bound this from above by

Now we can apply Lemma 5.2 which shows that this terms vanishes in the limit n -+ +60.
Using Hölder's inequality we can bound the second term above by

n-1

n-I/2 I: IIDP,'n,rn~XII411 : e<"P"n,m~> : -1114
m=O

n-1

::; const. IIIXII14,1n-I/2 L IPtTn,m~1211 : e<"P"n,m~> : -1114,
m=O

where we applied Meyer's inequality (cf. Section 2) in the second step. Thus we get a
bound of the form

n-I

const. tl/21~I(xJXII14,1 n-I L 11: e<',Pt'n,m~> : -1114
m=O

for this term. With the help of Taylor's theorem, Hölder's inequality and IPtTn,m~12 ::;
tl/2n-l/21~loo, it is straightforward to show that the last L4(p)-norm is bounded by
O~,t(n-l/2), and therefore this term, too, converges to zero as n tends to infinity.

Altogether we have shown that the S-transform of (5.1) converges pointwise to the
S-transform of O'(t, x}B(1), where O'(t, x) is given by (5.2). As in the proof of Theorem 4.3,
it remains to show a uniformbound on the S-transform of (5.1) evaluated at z~, z E 4j.
But if one uses (5.3) and the preceding estimations, this is completely analogous to the
arguments at the end of the rpoof of Theorem 4.3. The details are left to the interested
reader. 0

We conclude this paper with an illustration of Theorem 4.3 and Theorem 5.1 by
applying these results to solutions of one-dimensional, non-degenerate Ito equations.
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Let a > 0 and b be funetions in COO( IR), with all derivatives being bounded. Further-
more, let Xo E IR, and consider the SDE (in Ho sense)

dX(t) = a(X(t)) dB(t) + b(X(t)) dt
X(O) = Xo.

(5.7)

Then it is well-known (e.g., [IVV81]) that (4.2) has a unique solution X satisfying (H.1).
Moreover, it is proved in [Wa 84, Theorem 2.1] that X(t), t > 0, admits (H.2). Finally,
the assumption that a > 0 implies that also (H.3) holds true for X(t), t > 0, cf.. e.g., ["Va
84, Theorem 2.7]. Consider now the versions Xn,m(t), nEIN, m = 0,1 ... , Tl- 1, of X(t).
We remark in passing that Xn,m solyes (4.2) with B replaced by Bn,m'

Theorem 5.3. Let x E IR, t > 0, and let X(t) be the solution of (5.7). Then

n-1

lim n-1 ""' 8x 0 Xn,m = IE(8x 0 X),
n .....•+oo LJ

m=O

and
n-1

lim n-1/2,,", (8x 0 Xn,m - IE(8x 0 X)) = O"(x, t) B(l)
n .....•+oo LJ

m=O

as strong limits in (Sr, where

IE(8x oX) = { IV'XI;-2F(X)diL,
J{X~x}

and
O"(x, t) = ( IV'X(t)I;-2 (F(X(t))B(t) - D1[o,I]X(t)) diL,

J{X(t)~x}

with

Appendix

In this Appendix we colleet some results related to unitary transformations on the
underlying Hilbert space L2(IR).

Assurne that r is a linear unitary transformation on L2(IR), such that its restrietion
to S(IR) is a homeomorphism of S(IR). By duality, r and r-1 extend to S'(IR) (weakly
continuously).
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Lemma A.l. Let h E L2(IR), and assurne that r.P E DP,1, p> 1. Then

Proof. It is sufficient to consider an everywhere defined, differentiable function 'P on S' (IR).
Then, for W E S'(IR),

(Dr-lh(c.p 0 I))(W) = lim ,\-1(c.p 0 T(W + ,\1-1h) - c.p0 I(W))
A--O

= lim ,\ -1(c.p( IW + '\h) - c.p(IW))
A--O

= ((Dhc.p) 0 I)(W).

o

Lemma A.2.

a) Let c.p E DP,1, P ~ 1, then

b) Let c.p E DP,2, P ~ 2, then

N(c.p 0 I) = (Nc.p) 0 I,

and

Proof. We only give a proof of statement a), the proofs of the statements in b) are shown
in a similar way. Let {ek, kEIN} be a CONS of L2(IR). Then

00

IV'(c.p0 I )I~=L IDelc (c.p 0 1)12
k=1
00

=L IDrelcc.p12 0 I,

k=l

where we used Lemma A.1. Hut now {lek, kEIN} is another CONS of L2(IR), and
therefore the last expression equals 1V'c.pI~0 I. 0
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