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Toward an Iterative Algorithm for
| Spline Interpolatlon

In Richtung eines iterativen
Spline-Interpolationsalgorithmus

‘Guido Wolz, Mann‘héim

Summary. One of the fundamental results in spline interpolation theory is the fa-
mous Schoenberg-Whitney Theorem, which completely characterizes those distributions
of interpolation points which admit unique interpolation by splines. However, until now

‘there exists no iterative algorithm for the explicit computation of the interpolating spline

function, and the only practicable method to obtain this function is to solve explicitly
the correspondmg system of linear equations. In this paper we suggest a method which

‘computes iteratively the coefficients -of the interpolating function in its B-spline basis

representation; the startmg values of our one-step iteration scheme are quotients of two .
low order determinants in general, and sometimes even just of two real numbers. Fur-
thermore, we present a generalization of Newton’s mterpolatlon formula for polynomials
to the case of spline interpolation, whlch corresponds to a result of G. Muhlbach for Ha.a.r
spaces.

Zusammenfassung. Eines der fundamentalen Resultate in der Spline-Interpolations-
Theorie ist der berithmte Satz von Schoenberg-Whitney, der eine vollstindige Charak-
terisierung derjenigen Verteilungen von Punkten angibt, welche eindeutige Interpolation
durch Splines zulassen. Allerdings gibt es bisher keinen iterativen Algonthmus ZUr ex-

- pliziten Berechnung der interpolierenden Splinefunktion, und die einzig praktikable Me-

thode zur Gewinnung dieser. Funktion ist die exphzxte Losung des zugehdrigen linearen

Gleichungssystems. In dieser Arbeit schlagen wir eine Methode vor, die auf iterative -

Weise die Koeffizienten des interpolierenden Splines in seiner B-Spline-Basis Darstell-
lung berechnet. Die Startwerte unseres Einschritt-Iterationsverfahrens sind Quotienten '
zweier Determinanten von, im allgemeinen Fall, kleiner Reihenzahl, und in manchen
Fillen sogar nur von zwei reellen Zahlen. Weiterhin geben wir eine Verallgemeinerung
von Newton’s Interpolationsformel fiir Polynome auf den Fall der Spline-Interpolation
an, die einem Resultat von G.Miihlbach fiir den Haarschen Fall entspricht.

Key Words and Phrases: Spline Interpolation, Schoenberg-Whitney Theorem, Mul-

* tistep Formula, Newton-Type Interpolation Formula. .
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1. Introducf-io‘n and, Preliminaries

Let there be given a natural number m, m > 2, and a set of real numbers K = {z;},
the so-called knots, with the property z; < z;41 forall j. A real function s is called

a spline of order m belonging to the knot sequence K, if

" 1. the restriction of s to each intervall [z;,z;41] belongs to the space I, , and -

2. if s € C""(RR).

We denote the real vector space of all these splines by §,,(K). It is well-known that,
for each fixed index 7, there is precisely one function B,,; € S,,(K) with the properties

ij(il’) =0 for CDS T;0r T Z Tipm and - (11)

S e . o »
/, B-,,,Y./‘(:Zi)d(l} = M - ) . (12)

o m

The collection of these functions B,,,',: , the VB-spline‘s, form a comfortable basis of the
spline space $,,(K). They have the property B, ;j(z) >0 for z; <z < 24, and are »

normalized such that

Z B.,,,_,'-‘(:c) =1. o - (1.3)

Now, for some n € IN, let S,,(K,) denote the restriction of S.(K) to the interval

I:= [:cu,a:,,]v,.i.e. to the finite knot sequence
K, =2 < - < &, .

Sin(Ky) isa finite-dimensional linear space, its dimension being m+n -1 ;furthermore,

" the restrictions of the B-splines B, —wt15---s Bm.n-1 t0 the interval I provide a basis

of the space S,,(K,) (see any textbook on splines, e:g. [2,6,10,12]).

We now consider the following Lagrange type interpolation problem: Given a real

function f and m +n — 1 points
t'—7n+l' < t—-m-}-'.’ < -es <ty < _tﬂ—l

on the interval I, does there exist a spline s € S,,(K,) satisfying the interpolation

S(tj) = f(t,) for j:—m+1,...,n’-—1? o (14)

Since the space S,,(K,) does not satisfy the Haar condition, this problem cannot be
expected to be solvable for each distribution of the points ¢;, but there is a very nice
characterization of those situations, where unique Lagrange interpolation is possible,

namely. the famous Schoenberg-Whitney-Theorem:
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Theorem 1.1 (I.J.Schoenberg & A.Whitney [11]): The following statements ‘are equi-
valent:
a) There exists eractly one spline function s € S.(K,) satisfying
s(tj) = f(tj) for j=-m+1,...,n—-1.
b) For all j € {—m+ 1,...,n— 1}, we have
B..(t;) # 0.

c) Forall je {-m+1,...,n— 1},‘we have

z; < tj < Tjtm .

* While the equivalence of statements b) and c) is obvious from the B-splines’ finite-
support-property, the remaining implications are fundamental results within the spline

theory. For the purposes of this paper, we would like to re-state it in the following form:

1)

The matrix of the linear system of equations

ri—1 . : - .
S @uBaty) = f(t), j=-m+l..n-1, (1.5)
n=—m+l

is regﬁlar if and only if all elements on the main diagonal are different from zero.

This matrix, the so-called B-spline collocation matriz, possesses many important and
interesting properties, see e.g. [1,2,5,10]. We only note in passing that it is totally -

positive, but we shall make no explicit use of this fact here.

We close this introductory section by giving the following stronger version of the above

»statemént, which is due to C.deBoor:
Theorem 1.2 (C.deBoor [1]): Let {vi,...,v,} with v <--- < v, be any subsequence

of {-m+1,...,n—1}. Then the matric of the linear system of equations

P ' .
Zau}lB7’I";4(t.'j) = f(tj) ) ]: 1,...,p ,

n=1

is regular if and only if all elements on the main diagonal are different from zero.
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2. Tterative Computation of Determinantal Quotients

From now on let us fix the values of n and m; we assume that one (hence all)
assertions of Theorem 1.1 are satisfied (we say that the interpolation poiﬁts t; are
in Schoenberg- Whitney position), and concentrate on the explicit computation of the
interpolating spline, i.e. of the coefficients a, in the representa.tioh (1.5). So far, the
only practicable way to do this is the solution of the linear system (1.5); it was shown by
C.deBoor and A.Pinkus [3] that this is possible in a numerically stable way by Gaussian
elim.ina.tibn, but the matrix under consideration is usually quite large, and one would

surely prefer to have an iterative procedure for the computation of the aj,s.

In the followihg, we want to suggest such a method; it reduces the original “large”
problem essentially to that of computing a much smaller determinant (as initial value),
in general, and in some cases eVgxi to that of computing only a 1 x 1 -determinant, i.e. a

real number.

We are going to use the following notation: For functions ©0,.-.,rx and points
20,. .., 24, We set '
' (pF'(Z()) e [P (pk‘(z“)
p(® #) ae
20 . e P Z. : ‘ : : :
So()(zk) vee e (PA'(Zk)
Now let us be given a function f, and a fixed index p € {-m +1,...,n — 1}; we

introduce the following re-notation for the interpolation points t; and the B-splines
B, ;:For 3=0,...,m+n—2 put

Citpr forj=0,...,n—p—1,

Ti = tu—i—1, forj=n—p,....,n4+m-—2,

: and_in the same way

B it / forj=0,...,n—pu—1,

' P'i = Bm.’n—.i—h forj:?l_/"'""’n+‘m-_2'

Furthermore, define for k=0,...,m+n -2 and v=0,....m+n—-2—k:
D(f P - P )
Ty e “ee Tl/+l\'

D(Pﬂ _Pl R <% ) T
T, e e T1/+I.'

)

Th = THf) = (2.1)
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provided that the denominator is different from zero (we shall give sufficient conditions
for'this in the next section). Then the following result on the recursive computation of

the interpolating spline’s coefficients holds:
Theo_rem 2.1: a) The number T(';”+”"‘)(f) always ezists, and we have
a, = T"YTNf) . . (2.2)
" 0 '

b) Assume that, for some k € IN and v € [Ny, the values .T,ffﬂ, Tk=1 . and T,f'_;l'
ezist (i.e. that the corresponding denominators are different from zero). -

Then the following reccurence relation holds:

Ti (PO T () = TN (PO TR )

S .
Tu (f) - T,I;:: (P[,) _ Tlél_l(PA.) (23)

/

Proof. Assertion a) is a simple applicémtion of Cramer’s rule, the denbminator being
different from zero due to the assumed Schoenberg-Whitneyv position of the interpolation
points (note that Td”f”‘“"’(f) really depends on g, through the indexing of the P;’s

~and t;’s). | _ : p

In order to. verify the second assertion, we first note that T)(f) is a linear functional

on the space of real functions f, possessing the property

k" 1 forj =0, and : }
TH(P) = ' (2.4)
‘ 10 forj=1,...,k, )
as can readily be seen from (2.1), cf. also [1}. This implies that the B-splines {Fy, ..., P} |
span a characteristic space of the linear functional T} - (see [4]), and we can conclude by
Theorem 4.1 in [4] that relation (2.3) holds true, if the regularity condition
.. PI PI\'—I ) - ) ' B
D o 0 2.5
GRS R @5)
is satisfied.

Since T} exists, we conclude from (2.1) that |
o(h - B Y s

Ty Ttk

" This impiies, by-means of de Boor’s Theorem 1.2 that the main diagonal of this matrix
is different from zero; but the matrix in (2.5) has no other diagonal elements, and so a

‘second application of Theorem 1.2 yields the desired result. U

{
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Here is a first a little ezample: Suppése we want to compute the linear spline inter-
polant (i.e. m = 2) on the interval defined by the knot sequence zy = 0, z; = 3,
24 = 5. The dimension of this spline space is 3, and for simplicity of the exposition we
choose the interpolation points ‘ )

ty =1, tg=2, t, = 4.,

The collocation matrix is easily computed to be »

2/3 1/3 0 .
1/3 2/3 0 | . ( (2.6)
0 1/2 °1/2

(Note that the row sums are all equal to 1, according to the normalization (1.4)). Now
let us compute the coeﬁic1ent ay in the representation (2.5) of the mterpolatmg spline;
of course, this can be done here directly by Cramer’s rule, and for control reasons we do
this and find

B;’v.—l [ B )
D " '
' ( t_y  ty Ot

By _y Byy B, )
D
: ( ) to t

- L (o) - | g f(t-1) . 2f(2)’.—vf(l)" - @D

6

Now let us apply Theorem 2.1; we have to set
To=ty=2, =1L =4, M=t = 1,

" and in the same way the P;’s. It turns out that for all values of k and v the assumptions

of the theorem are satisfied, and we can compute successively

‘T(?.(.-f) = 3 f(2) v' TV(f) = 2 f(4) TI(f) = 3 f(1)
CTo(f) = 3 £(2) Ti(f) = 3 f(1)
Ti(f) = 2£(2)- £(1)

in accordance with (2.7).
Needless to say that this example was only for illustration a,nd has no practical rele-
vance, since the recursive computation of the coefficients usually is worth only for larger

matrices.

Obviously, our method for the iterative computation of 'interpolation coefficients is
not restricted to splines, but can be applied to rather arbitrary linear spaces; in {7,8],
G.Miihlbach studied the case of complete Haar spaces Chebyshev systems), where the
- nomn-vanishing of the denominators is automatically satisfied, and derived by direct me-

/

thods the corresponding reccurence relations.
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3. Criteria-fbr Non-Zero Denominators. Strategies.

The situation as we had it in Theorem 2.1 is not quite the one you will meet in
practice; there one usually has computed the values of the T'— sequence of some specific
stage, say k — 1, and wants to know if T* is computable via (2.3) without explicitly

assuming its existence. So we need criteria for this; we begin by analyzing the special

case g = —m + 1, where it will turn out that no additional assumption is necessary:
Remark. Still keeping our notation from section 2, let us put p:=-m+1,1i.e.
Pj = B-,n‘.,'_,,,+; and T, = t_,'_.,”+| fOI‘j = 0,...,m+n—2‘,

and assume that 75! and T/} exist, hence

D(Bm.—-m-{—l Tt "/'» Bm,—m-{—k) ?/__ 0 (31)
tu—m+| oot tl/——m-}—k -
-and
D(B,,,__,”_H Bm.-m-}-l«) # 0. (32)
tu—-m+'.’ Tttt tu—-m-}-k+l

We claim that in this situation the existence of T*(f) is automatically satisfied. To

prove this, we have t-.o show that

D ( Bm.-—m-l—l sttt Bm.—m—{-k-l—l ) # 0 ’ (3‘3)
tl/-—m-l-".’ A tl/—m+l.'+l .
holds. But in view of (3.1) and using Theorem 1.2, (3.3) is true if the new diagonal

element is different from zero, i.e.

Bm,;/lg+l+A'(t1/—/f;+l+L-) # 0. . (3.4)

This can be seen as follows: Using agaih Theorem 1.2, we can conlude from (3.2) that
Bon—mik(tvma1sr) # 0,16 tu_myr+x < €. On the other hand, the Schoenberg-
‘Whitney con'ditionﬂimp’lies Bm,,,_,,,+|+A.(t,,_,,,+|+k.) #0, ie. Ty—mtl+hk < Luomyisk - ‘
Altogether we have found the inclusions

T_m41+k < Ty—m+1+k < tu-m-&-l-{-]v < 2 < Ti41 (3-5)

which proves (3.4). '

! N +
. This remark implies that if some values of the k' stage, say Tk, .. .,T,f'+‘\ exist,

_b then we already know that also the value T} of stage k + A and all intermediate
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values exists and can be computed one after another by the recursive scheme (2.3). So,
a first approach to a good strategy would be: Compute all values T of stage 0, which
have non-zero denominators (note that these are just 1 x 1— “determinants”). ‘Whenever
two or more subsequent ones of the T!’s exist, apply the iterative scheme (2.3) to get
the corresponding values for k = 1,2,.... If some Tt' does not exist, then compute the
related values of stage 1 directly, i.e. by evaluating the de}terminanta.l quotient (2.1).
If some of the T!’s still have zero denominators, compute the related T? by means of

(2.1), otherwise you may use (2.3), and $o on.

If m is not too small compared with n, it turns out that rather soon all denominators
" become non-zero, such that we have from a certain low order stage on a completely

iterative scheme for the computation of the desired value a_,41 = T2 (f).

For arbitrary values of p, the situation is a little more complicated than in the above
rema.rk since here we need an additional assumption on the non- vamshmg of some B-
“spline values; however note that our condition (3.6) is sufficient, but far from being
necessary for the assertion of the following theorem. This is one reason for the “toward”

in this paper’s title.

"Theorem 3.1: We make the general assumptid_n that
B:i:.ll+./(t—/:z+l+,/) # 0 fO’I‘j =0,...,n— 1__/1" (36)

" (that s, the zero triangle in the upper right corner bf the Schoenberg- Whitney matric
is not too large). » -~
If, for some v and k, the values T)~'(f) and T* n SH(f) exist, then also Tk(f)

ezists and can be computed by means of the recursive scheme (2.3 ).

Proof. At the beginning of this technical proof it is a good- idea to visualize the -

Schoenberg-Whitney matrix as it:looks like in our notation: 'We have

(,Pn,-}-m-'l(ru—{-m—f.‘) e P:l—;l(T/J-}i:nij—'_’) -P()(Tn-*—m—'.)) B e PII—]—/I(T‘II+’IN‘—-'2)\ '

' Pn+m—'3(7-n—ll~) e P”"vll(T”"ll) P“(T“-I') e Pll—l‘llv(Tl'—fl-) (3 7)\
Pn+m (TO) ctt Pu—p,('r()) PO(TO) e -P’n—l—y(;r())
\ Pn'+(1n—‘2(7'n—1—;1) o PI)—/L(TH—-l—[l) -P(I(T'n—l—/m) St Pn—l—p.('r'n,—l—;;.) }

Note that in this matrix the B-splines P; as well as the points 7; appear in their

“correct” ordering, i.e. Theorems 1.1 and 1.2 can be directly applied; it is regular if and
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oxﬂy if ' ' ' |
‘ D(P“ SRR P,1+m—)3>‘ £ 0 , (3.8)

To oot Tt m

holds, since: (3 7) is constructed from the matrix in (3.8) only by permuta.tlons of lines
and columns, which does not vaﬁ”ect the regularity, and the same holds true for any

. submatrices of these two.

The following easy observation will be a fundamental tool in some pla,cesl of the proof:
If two numbers in a row of the matrix (3.7) are non-zero, then each number in between is
also different from zero (follows.exactly as in the proof of (3.4)), and the same is true for
two non-zero elements in the columns (follows dlrectly from the finite-support property
of the B-splines).

We now prove the existence of T%(f), i.e. the non-vanishing of each diagonal element

Py - .- P C
(7'1/ e e Tu+l.~) 1. - (39)

under the assumption that the diagonals of the matrices

(pu pk_l). nd ( Py e e pk_l)

T, TL/+II\'-'l : » Tu+l Tl/+k

(the denominators of TE=1(f) and T)7'(f)) do not vanish. We must distinguish three
cases: | '

Case 1.Itis v+k<n—-1-p
‘Then also k <n-1- /L and this means that we are in the lower right corner of the

of the matrix

| - matrix (3.7). Therefore, the only new diagonal element in (3. 9) is Pu(Tusr), which is

immediately seen to be n0n-zero exactly as in the above remark:

Case 2. 1t is V+IC>TL—-1—;L but still k<n—-1-—p

This means that we are in the right “half” of the matrix in (3 7). Let for a moment d"
j=0,...,k =1 denote the diagonal element in the 7" column of TF~'(f) (whlch is
known to be non-zero), and analogously let d’; , 7 =0,...,k denote the diagonal element
in the j" column of TX(f). '

"Then we see that, for j=0,...,k—1, d’; lies in a column between
d_];—! a-nd P ( u—}-m—’-}—/) = _Brzt.;1.+_j(t—;ll+1+.i) ;é 0 )

and is therefore also different from zero. Finally, for j = k, the elem‘eht d,’:'. lies in a
column between Pi(7)) and Pi(Tnym—24k) = Bn7_l,+];(t__7n+]+‘k) # 0, and the same

\ implication follows.
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Case 3. Itis k>n—1-p. _

+This implies v +k >n—1- , i.e. we have entered the left “half” of the matrix. In

this case we have again only one new. dlagonal element say P (7). Since v +k >k >

n—1- @, itis . '

I>j2n-p. o (320)
But sincé the main diagonal as well as the first line of the left “half” of the matrix (3.7)
contain only non-zero numbers, a multiple application of our observation from above

" immediately implies that all elements P;(7) sa"cisfying (3.10) are different from zero.
This completes the proof of Theorem 3.1. | ‘ ' CJ

Corollary 3.2: Assume that (3.6) holds_and that, for some k,v and X the values

T(f), s Tiaa(f)

ezist. Then also the value THA(F): and all intermediate ones ezist and can be com-

I

puted one after another by the iterative procedure (2.3).

If assumption (3.6) is satisfied, we can take our strategy from above word-by-word for

the computation of all a,’s. In particular it follows from Corollary 3.2 that, if for some
k all values TJ(f), ..., T¥y, oy
this stage on.

~ However, (3.6) is not a niecessary condition for the existence of the higher order Tk s
and therefore there is — depending on the special structure of the matrix under consi-
deration — much freedom for creating better strategies in special cases. Also, there are
other choices for the mdexmg of the 7;’s and P;’s, which might in some situations be

better than ours; once agam we have some reasons for the “toward” in our title.

If the condmon given in (3.6) is not satisfied, it may happen that for some [ € IN
the values T*(f),. +,(f) as well as T/t!(f) do exist, but the intermediate values
do not. In this situation (2. 3) cannot be applied, but it is possible to ‘jump” over this
singularity by using the following multistep formula; the same is true if the denominator
in (2.3) is small in absolute value. In this case a severe propagation of rounding errors

can occur and thus using the following formula can improve the numerical stability of

the algorithm considerably.

Theorem 3.3 (C.Brezinski & G.Walz [4]): Let, for some 1 >1 , the determinant

| [ THR) - Ti(Pen) o TE(Per)
‘ D(T,f Thy, - Tfﬂ) — det Tu+‘l('P0) T+1(PA+1) oo TP (Prtr) |
Py Piyr -+ Py . . .

,,+,(R,) T,f;l(Pkfl)‘ o TE (Pryr) )

(f) exist, then we have a fully recursive scheme from -



" Toward Iterative Spline Interpolation : 11

be different from zero. Then the value T+!(f) can be expressed as linear combination

of the values Tk(f),.. H_,(f) . We have the relation : \
D(Tﬁ' Ty - Tu+l)
THH(F) = f Pyt o Py
v - Tk Tk . TR\
D( v v 1 ] 1/+1)

Py Py - Py

Remark. For k = 0 we recover the determinantal formula (2.1) while, for [ = 1, we
obtain (2.3). For an arbitrary value of [ this multistep formula can be used to compute'
directly TA+!(f) from the T}(f)’s.

In genera;l’ we can say that our method works very efficiently (since it comes down to a
very small size of the initial values) if the Schoenberg-Whitney matrix has not too many
Z€ero entnes i.e. if the band in the middle of this matrix is qulte small. On the other
hand, if we have a very sparse Schoenberg Whitney matrix, then the explicit solution of

the underlying linear system can be done qulte easily.

4. A Newton-Type Interpolation Formula

In [8], G. Miihlbach presented a generalization of Newton’s polynomial interﬁolation
formula to the case of Haar spaces. We would like to conclude our paper with the
presentation of a corresponding formula for spline interpolation, where - in contrast to
the Haar case — additional attention to the location of the interpolation points ¢; must

be paid.

First we need some notation: For every ke {-m+1,...,n~ 1}, we define the

generalized divided difference through

' D(B'“-—“H-l Bm.k"—l f)
. e e th1 N
Ar(f) == ;- 4.1
5(f) D(Bm.——/n-H ~- B, 41 Bm.l.-) ‘ (4.1)
t et s Tt ts

a special case of (2.1) (the name is inspired by the fact that replacing in (4.1) the B-splines

by the monomials just gives the “ordinary” divided difference, see e.g. [5,7,9]).

Furthermore, for k € {-m + 1,...,n — 1}, define the spline space

l’,l." = Spa'n{Bm,—n?+l I B:n,l\'}"[J'g,J.~,,] . . (42)
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/

Then, according to Theorem 1..1, for each k there is one and only one spline function
s; € By satisfying ‘ o
v o ' SA.(t‘,') = f(t',') for j=-m+1,...,k. o (4.3)

Moreover, we consider for k € {—-m + 1,...,n — 1} the error function

'D<Bm.—m+l teroe B'm.l.' f)
. et o e ty z) ’
W) = g (4.9
S D( =i+l 1)1.A'>

| tomgl e e ‘tl.-

= si(z) —'f(z),

and set for completeness 7_,,(f)(z) = f(z). Then the following generalization of

Newton's interpolation formula holds:

Theorem 4.1: a) For éach k € {-m +1,...,n— 1} the interpolating s}:line sk can
‘be written as - ‘ . ‘ )
‘ 7 v _
si(z) = Y Ai(f)ri-1(Bu)z) - - (49)
: j=—m+1 _ : ’ :
In particular, for k =n —1 we obtain a new representation for the spline function
s =8,-1 € Su(K,) which satisfies our initial interpolation problem (1.4): -
b) The determinantal quotients defining A, and r;(f) can be computed by means of

the iterative procedure (2.8) resp. by the strategies suggested in section 3.

Proof. It'is important to emphasiz.evtha.t for all values of & the denominator in (4.1)
resp. (4.4) does not vanish, due to the Schoenberg-Whitney position of thee int'erpola,tion“
points t_,ni1,---,tk for all k, and therefore the coefficients Ai(f) and the functions
ri(f) are well-defined. ' -

We only have to prove (4.5), and do this by induction with respect to k. For k =
—m + 1, the assertion is obviously true, so let now k> —m 41, and assure that (4.5) ’

holds for k — 1. We consider the spline function

*

§° = 8p— Sp-1 € By,
and we have to show that o \ ‘

s = A(f) ri-1(Buk) - : (4.6)
To do this, we first note that s* has the representatidn |

ke , '
(@) = D BiBu(@) + Af) Bu(a) (a7

i=—m+i
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with A, (f) from (4.1), according to Cramer’s rule. On the other hand, r._(By)(z)
is also a function from the space B , the coefficient of B, , in its basis representation

" equals 1.

' Combining this with (4.7), we obtain the follovﬁng result: The spline function
e(z) = s7(2) = Ay(f) i-1(Bi)(a)

lies in the space B,_q and vanishes at the points ety S teey Since these points
are for each k in Schoenberg-Whitney positien,' we must have e(z) = 0, which yields
(4.6) and ﬁnally proves the assertion. : » ]

Remark. Obviously, the result of Theorem 4.1 also holds for any re-ordering of the
B-splines {B, —ut1s--»Buu-i}-
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