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to New Recursion Formulas
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/

Abstract. We present a unified approach to and a generalization of almost all known
recursion schemes concerning B-spline functions. This includes formulas for the com-
putation of a B-spline’s values, its derivatives (ordinary and partial), and for a knot
insertion method for B-spline curves. Furthermore, our generalization allows us to denve
interesting new relations for these purposes.
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0. Preliminaries .

B-spline functions and curves are nowadays important tools in many fields of ma-
thematics and engineering, and in the meantime there exist a lot of recursion formu-
las for the computation of a B-spline’s values (e.g. [deBoor 1972], [Cox 1972]), its de-
ri’va._tive' (e.g. [deBoor 1972], Meinardus [1984]), its partial derivative w.r.t. the knots
(e.g. [Schumaker 1982], [Meinardus&Walz 1993]) and for knot insertion (e.g. (Boehm
1980]). A compendium of these relations can be found in many textbooks, such as [de-
Boor 1978), [Farin 1988], [Hoschek&Lasser 1989], [Niirnberger 1989], {Schumaker 1981].

In this paper we would like to present a unified approach to these formulas; we will -

“do this by proving generalized relations for each of the above-mentioned situations: B-

spline value recursions in Section 2, formulas for a B-spline’s derivatives in Section 3, and

_knot insertion in Section 4. Our generalizations do not ohly cover -almost all formulas

"mentioned in the first paragraph as special cases, but they allow also to derive quite

easily some interesting new relations.

The approach we are going to present is in all cases based. on the very nice contour

integral representation of B-splines (1.2), due to G.Meinardus [Meinardus 1974].

1. Introduction

Let us be given natural numbers m and k with m > k > 1, and a set of knots

z, € R, v=0,...,k, satisfying
Ty < T <."' < zp -

To each knot -z, there is associated a natural number 7, , called the myltiplicity of z,
such that .
o + 71 + 0+ T = m+1.

We call a real function f a (polynomial) B-spline of order m, belonging to the set of

knots {z,} with multiplicities »,, v =0,..., k., if it possesses the following properties:

"1, It is ‘
f(:c) =0 forallz<zy and forallz > x4,
9. The restriction- of f to the subinterval [z,,Zv41), ¥ = 0,...,k =2, and to
[Zr-1, :c;,] belongs to the space II,,_; of polynomials of degree at most m — 1. '
3. I r, <m,itis : v
’ ’ f‘E Cm—l—n,(U(mU))
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for a suitable neighborhood U(z,) of the knot z,, v =0,1,...,k,

4. We have
e o
NAROERE

—_—

It is well-known that there exists one and only one such function f. It is called B-spline

of order m and denoted by.

In the case of simple knots, we will also use the notation
1 ’ m ...... w”
B,”(CC) = 'B‘m'(m 10 e 1L )

and

m~1

1 . .— Ty - Awu—l Ty Tpgel ' m;n
B _1(z;#72) = Bm—1($| T ... 1 0 1 - 1 )’

where of course a zero multiplicity indicates that the corresponding knot is no longer an

active one for this B-spline.

The basic theory of these functions is well-developed and can be found in any text-
book on spline functions ([deBoor 1978], [Schumaker 1981}, [Niirnberger 1989]) or CAGD
([Farin 1988], [Hoschek&Lasser 1989]), where sometimes other approaches and definitions

are taken, but which of course lead all to the same functions.

vFurthermore. it should be noted thatv there exist in the literature also other normali-
zations than the one given under # 4. Sometimes the integral is set equal to 1/m, the
resulting B-spline being denoted by @,.(z), and in other approaches to (z — 20)/m,
.whic:h yields the normalized B-splines N..(z). We stick to the normalization f B, =1,

which is historically the correct one; however, since all these functions are related by

m

: B/n = m'in = 'N/n,, (1.1)

Tr— ZTo

all of the following results carry over to the @, ’s and N,,’s by a simple multiplication

with constants.

Our fundamental tool will be the following contour integral representation of a B-
spline, which was proved by G.Meinardus in [Meinardus 1974} and further investigated
in several publications, see [Meinardus&Walz 1993]. '
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Theorem 1.1 [Meinardus 1974]: Let, for z € R, C'='C, denote a simply closed and -
rectifiable curve in the complex plane, such that all the knots z,, v € {0,...,k},
with ¢ < =, and no others lie in the interior of that curve. '

' Then, carrying out the integmtidn in the positive sense, we have

...... " _ pym—1 4,
B, | e e ) = m L (z :I:) )
(m : ) 21 Jo (z —zg)o(z — )" -+ (2 — T )" (1.2)

‘The representation (1.2) can serve as a theoretical tool as well as a practical instrument

for the computation of a B-spline, via the residue theorem (see [Meinardus&Walz 1993]).

2. B-Spline Value Recursions
- We bégin this section by proving the following genera,l B-spline recursion formula:

" Theorem 2.1: With some natural number n, n<wr, forv :zO,'...,k; let there be

given real functions \,, v =0,...,k, satisfying

. v
Yo A(e)-el =2, j=0,...,n. (2.1)

v=0

Then the following recursion formuld holds:

Tn v ot a:
B, ($’ 0. A) —
7‘0 ...... TA .
m k —_— : (2.2)
. ] Ty - Ty— z Tyyl - Tk ’
= S M(8) B (=] 20 Tt S St )
m—"Nn 0 - 0 . Tv—-1 Tu Tu41 k
v= '

Remark. In a recently published thesis by M. Neamtu [Neamtu 1991] one can find two
formulae which turn out to be special cases of (2.2) (resp. (3.2) below) for n = 1 and
* the case of simple knots. The author traces those formulae back to [Dahmen 1980]
and [Micchelli 1979], who found independently a corresponding relation for multivariate
simplex splines. However, although more general, the following proof is surely- more

clementary than the one in the above-mentioned publication.

Proof of Theorem 2.1. " Let us for the moment use the abbreviations

Hj:l)(z— ;)"

. (Z _ l:l,)n 3

v=0,....k I. (2.3)

Lﬁ’u.:b(z) =
1

v — Ty o Ty-1 Ty Tupl o ka).
Bm—iz(a:). T ‘B”i—’l (ml"rﬂ e Tyl TL—T Tugl 7L :

and
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. -~ Then, according to (1.2), we have

Y m-n 7 — mnldz
- Bi_(e) = /(

m-—n
Wy Z)

?

and therefore
k

’ " — "o, _ ‘l'l»‘;ll.—l ‘ .
Z $) ‘BHI 10 ($) 'ﬁ Zu:(j All(m)(z $U) (Z :B) dz

It

v=0 271 el ,(Z—$(])7'0(zfml)7‘l "'(Z—m;‘,)"k
_ 1 f (z—m)""(z _'2:)777.‘—71_—1 dz
T miJe (z—zo)(z =)t - (2= @) ]
by means of l(2.1) and the Binomial Theorem. This proves (2.2). . 0

Before analyzing this general formula in more detail, we note that it covers as a very

special case the standard recursion formula-

33( ...... T \
B’” (ZI TJ ...... TA ) -
k
‘ /
m T — Ty Ty v Th— aglk
= . B,,L_L(:El 7': ! -1 (24)
m-—1 T — 2y 0} Th-1 Tk
T, — T Tz, - Ty S
+ Bm—l (xl 21 ’
Ty — T T T T

which is due to [deBoor 1972] and [Cox 1972].

If we assume to have simple knots and fix some value E € IR, the assertion of Theo-

rem 2.1 can also be interpreted as follows:

Corollary 2.2: If the point & 1is written as the wezghted sum of the knots z,,

m m

= Az, with A, = 1,
> >

v=0 .
kthen the value of the B-spline Bl - at & is the weighted sum of the B-spline, values
Bl _ 1(5 #z,) with the same coeﬁ‘iczents Ayl

m

B.(§) = r ZAVB,” (&#z). . | (2.5)

v=i)

As an example, let & denote the Greville abscissa

50 _ 1 + -+ :E.m—l )

. m-1
Then

m

nL(&U) Z‘Bm 1 EUa#m ) ’ ‘ (26)
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Proof. Set Ay = X, =0 and A\, = 1/(m—1) for v = 1,...,m — 1, and apply.
Corollary 2.2. : , _ O

"We now come back to the general case and ask for the existence of functions A, ,

which satisfy (2.1) and are as simple as possible. The answer is given in

Theorem 2.3: Adopt the notation of Theorem 2.1, and assume furthermore that n < k .
Then.the following statements hold: | V
a) There exist k+ 1 polynomials Xg,..., A\ €1l , such that (2.1) is satisfied.
b) For each choice of n + 1 distinct indices {vy,...,v,} C {0,...,k}, there exist
n+ 1 uniquely determined polynomials A,;,..., A, € o, , such that

n

)\,,g(a:) . :c,’, = m’ ,7i=0,...,n ‘ ' (2.7)
0

p={

(i.e. (2.1) is satisfied under the additional condition that

A, =0 for ve{0....k}\{v,...,vn}).

Proof. - We only have to prove statement b). To do this, we must show that there are

coefficients a,, ., #,0=0,...,7, such that (2.7) holds with

n
)\”g(z), = Za”f'/‘w“'

pe=0.

This means that, for § = 0,...,n, the polynomial identity

: n

n ' ’ )
> Yt = (29)

p=0 p=0

;

must hold. Comparing the coefficients of z/ on both sides of (2.8) leads us to the n+1

systems of linear equations

y 1, ifj=p I
Z . 3:‘/, — ' ] K . (2.9)
oot S 0, ifje{0,....,n}3# s -

for u =0,. ,n The matrix of these systems is a Vandermondian, hence regular, and

so the existence and uniqueness of the coefficients a,, , follows. (]
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-~

. Ezample. ~Take n = 1, and set, for simplicity of the exposition, v =1 and vy 1= s.
Then the systems (2.9) have the solutions

Ty —&¢
0y = y Q50 = y
Ts — Tt Ts — Ty
-1 . 1 -
apn = y Os1 = ’
T — Tt Tg — Tt

and we obtain, inserting this into (2.2), the recursion formula

m“ ...... mA \
B, (zl S ) =

0 ----- 'T‘A
_ m . ] Tg— T . B 1($‘$0 RN PR T: o T 33;,) )
- n—

m-1 \zy,—z, Py cce Tio1l Ti—1 Tep1 et Ty (2.10)
+ T — Ty . B »'l (m Ty v Te_q T, Top1 - T >
n= .
_ Ty — Ty ' TG e Te—t re—1 . )

Specializing once more to the case ¢ = 0 ‘and s.= k, we recover again the classical

recursion formula (2.4).

Remark. The deBoor algorithm for the iterative computation résp. construction of a B-
spline curve is sufely one of the fundamental and most widespread algorithms in CAGD..
Since it can be viewed as the B-spline-curve analogue to the classical recursion formula for
the B-splines itself (using which it is also usually proved, see e.g. [Hoschek&Lasser 1989)),
it is clear that it would also be possible to formulate something like a “generalized deBoor-

algorithm”, just using (2.1) instead of (2.4)-

We close this section with a result of convolution type, connecting the B-splines with
the Bernstein (basis) polynomials, defined for ke IN by

k

Plf”(a:) = <V>w"’(1 )" v = 0,....k ._ | (2.11)

(We note in passing that, since P¥ is also a B-spline, it possesses a contour integral

representation of the type (1.2), but we will make no explicit use of this fact here).

It is well-known that the Bernstein polynomials have linear precision w.r.t. the points

t,i=vi/k,v=0,...,k,ie.

k. - : ‘ L ) ,
Z P)(z)=1 and Z t,Pi(z) ==z for all z. (2.12)
v=0 . _

v=0

Using Theorem 2.1, we therefore have proved:
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. o ) Theorem 2.4: Consider the B-spline B,, corresponding to the equidistant knots t, ,
each of which_ is endowed with the multiplicity r,, v =0,...,k (i.e. m:=rg+---+

ri — 1 ). Then the following recursion formula holds:

B, (1,‘

: k
= —m— . Z P,f(a:) . Bm..—l (13

v=_0

ty - tu-y t, tl/+1 tA)
Ty Tu—d 7'//"1 Ty+1 o Tk

In particular, in the case of simple knots we have

m

. oom m ) . )
Bl@) = =0 (Mot Bl (e,
‘ v=I{} : .

m—1

By a simple shift of variable it becomes clear that the results of Theorem 2.4 also hold

for any B-spline with equally spaced knots.

i

3. Derivatives and Partial Derivatives of B-Splines

With the same approach as in the previous section, it is possible -to find general
recursion formulas for the derivatives of a B-spline; actually this is the case for the
ordinary derivatives (i.e. with respect to the variable z).up to a certain order, as well
as for the partial derivatives with respect to the knots z, . Throughout this section we

assume m > 2.
1

Theorem 3.1: With some natural number n, n<r, for v=20,...,k,and n<m,

let there be given real numbers X, , v =0,. .., k, satisfying

' 0, j=0,...,n—1,
{ (3.1)

I‘.
E AT, =

v=0 1, j=n

Then the following recursion formuia holds:

dr glzo T, )
dz” m TG e v T =
L , (3‘2)
m! Ve e T T e Ty
- ———,—— A . B T 0 ) v—-1 v v+1 X .
v m—n . — vee P
(m = n)! : oot Tu—l TeT T Tyl k
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Proof. The proof is in analogy to that of Theorem 2.1, using the fact that

ar B.,n(x&l’o m,\,) _ ((_1)/2.7@! _1__/(( (z = z)"="1dz (33)

dz" To o Tk m—n—1)! o z—ap)0 (2 —zp)*

Equation (3.3) can’ be easily deduced from (1.2), see also [Meinardus&Walz 1993]. O

It should be emphasized that here — in contrast to the recursions of the previous
section — the ), ’s do not depend on z. Moreover, we can prove the following lemma,

which gives us one possible choice of these numbers explicitly.

Lemma 3.2: Adopt the notation of Theorem 3.1, and assume in addition that n < k .
Furthermore choose any subset of n+1 distinct indices {vy,...,v,} from {0,...,k}.
Then the real numbers A, , v =0,...,k, defined by

A, =0 forve{0,....;k}\{vo,..., v},

Ay, = —— l. - foro=0,...,n (3.4)

o n

[1 (m‘/g —Zy,)

) a=0. a#p

 satisfy relation (3.1).

Proof. We only have to apply Cramer’s rule to the reduced system

- . 0) j:O,....,n—l’v .
A (35)
e=0 . 17 ] =n,
which yields the solutions » | |
(=1 *e- I (2w, — @)
05”<;$r:
A, = et |
b - , H (ml’r - :DU“)
0<a<r<n » :
— (—1)"*e
H (ml/g '—(El,a)-(_l)n.-—e
0<a<n
a#o
1 .
= fbrg::o’u_’n_
I.-_I()(xlli‘ - Q:L’a)
oo
)

A closer look onto the system of equations (3.5) and its solutions (3.4) leads us to
the following rather funny relation between the n— th derivative of a B-spline and the

n— th order divided difference of certain other B-spline values:
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Theorem 3.3: Choose, as in’' Lemma 8.2, any n+ 1 distinct indices {vy,...,v,}, and

set for simplicity

. 1
e Ty xu(,-—l ml./” mI/ 41 T Tk _
Yo = B (a: Py e el Thm Tt e Ty forp=0,...,n. (3.6)
Then
d” T » 'm'
g o Ty _ . .
o B (el T I e R IR SN P X

where. A denotes the usual divided difference operator, here applied to the vector

y=(Yo,-- ¥)-

Proof. It is well-known (svee any textbook on Numeriéal Analysis) that the divided

difference A of some function ¢ can be written as a linear functional of the form

Az, - - ml,,,,cp Z A, ()

e=0

- with the A, ’s as given in (3.4). N‘ovw the assertion follows from (3.2). O
Ezample. We choose again n =1 and set vy :=s and v, :=t. Then
1 1
Ay = and A =.- ,
T Ty — Ty Ty — Ty

which gives us the following recursion formula for the first derivative:

i B . xU ...... ZA _ . . ‘

mn z Y . - '
dIIJV To e Tk ‘ |

m ‘ e 5 3 . ¥ Y . '
= . <By,,,_; (wi oy Ty-1 Ty Tyyi Ty ) (3.8)
Ts — Ty - Ty v Ts—| Ts—1 Tepl v Tk
B 1 (m'iﬂ() cer L1 Ty $t+l_ See By ))
= Trg -+ T 7»1'_1 Tigr c - e )

Specializing once more to the case s = k and t = 0 yields the well-known standard
ﬁB,,, , due to C.deBoor.. '

recursion formula for :
Of course our remark in section 2 about possible generahza.tlons of deBoor type algo-

" rithms also applies here, i.e. in the case of computing a B-spline curves’ derivatives.

Combining equations (2.10) and (3.8), one can now easily prove the following in-
teresting relation between a B-spline and its first derivative; it generalizes a result of

G. Meinardus (see [Meinardus [1984]), which is recovered by setting s =k in (3.9).
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Theorem 3.4: For all s € {0,. ..,lc} and z € IR, we have the relation

B”<m Ty e xk)~ m . B ( Ty - ms__lv Ty Tstl
t . P n— .
Ty e Tk -1 " Tg o Teol Ts—1 Tsqg
B m—ms‘iB (mlmo C'?k) :
m—-1 de "\l Tg -ee e SV
Proof. Eliminating the term -
B, (m\ 0 -1 T Tk k )
ShTe o Te—1l Ty L Tegr o Tk

from both equations (2. 10) and (3.8), (3.9) is easily established.

11

.. $k>
. 'rk

O

We are coming now to the non- tnvxal problem of computing the partial denvatlve of

a B-spline with respect to the knots z,. For simplicity of the exposition we restrict

ourselves to the case n =1 (first derlvatlve) the transfer to higher order derivatives is

easxly done with similar methods as, for example in Theorem 3.1.

Theorem 3.5: Let there be given real numbers A, , v =0,...,k, such that

k :
Z)\,, =0 and Z/\,,wl, = 1.
. C =0 .
Furthermore pick some indez p € {0,...,k}, and set

| {r forv=0,..kv#u,
ey =

r,+1, forv=p.

Then the following recursioyn formula for the partial derivative f’—’l)f
6 - 1; ...... T
. —— B ( ‘ 0 k ) —
Oz H m\® LV I Tk
o \
o ) Ty v Tyl T, Tyuyl o By )
= Tu z% Av - Bm (m‘ 00 Qu—t Q=1 Qugrocc 0k
= .

Proof. Again we use the contour integral representation (1.2) and find

ez, T %/+1 zk)
Z Av ‘B"’< Qu o Qu—1 Ov—1 Quy1 Ok
_ M T . ZU 0 )‘U( - l')'(z_x)m-ldz
- 211 (z_mo)eo(z—wl)m ...(z_ mk)L)k

_om-ry, / ) » (z—-a:)’”"ldz
¢

2ri Jo (2 —ao)o(z—z)" (2 - zy)e (2 = 2p)

B,, holds:

(3.10)
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An alternative pro'of of Theorem 3.5 can be given based on Theorem 3.1, using the

relation

0 B,,;<w‘m0 ...... m_):' T—/ déwl(ﬂc - ..... mk)

Oz, LOBEREER Tk “m+1 dz

which was proved in [Meinardus&Walz 1993].‘

4. Knot Insertion

One of the fundamental algorithms for the insertion of knots into B-spline curves was
presented by W.Boehm in [Boehm 1980} (cf. also [Farin 1988]). The essential formula of
that paper reads, in our notation, '

:z: ...... :z: 3\

B, (xl 0 k ) _
7‘“ . ----- 7‘/\ .
’ .
- -z B, (ml Zy z; £ z;41 z) ) (4.1) :
\ Ty — T Ty i b omin =1 .
n I:k_f ‘B,n<$l Ty e T &' Tjy1 - wl\)’
T —Zo ' rg—1 ooy Lorigy ey J

it connects a B-spline over the old knot sequence with two B-splines over the new one,

which is refined by adding the new knot £.

Using our approach, based on the contour integral formula_(l;Q), we can now generalize_. ,
this formula in two ways: |
1. We allow an n— fold knot to be inserted, and
2. Instead of z, and z;, arbitrary knots can be dropped in the B-splines on the right
hand side of (4.1).

The generalized knot insertion formula reads as follows:

Theorem 4.1: Let thére be given some point £ € [zo,zi], say z; < € < zj4q1 . With
some natural number n, n < r, for v =0,...,k, let there be given real numbers

Av, v=0,...,k, satisfying

k :
Z Aol = €&, forp=0,...,m. : (4.2)

v= ,(A)

" Then we have the relation ' ' -

_ ZAL<-B»};1($]‘”° ez, eemy € omyer o m) |

Ty v T,—M - 7-] n 7'-‘)'+1 e Ty
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Sketch of proof. The proof of Theorem 4.1 follows the same idea as that of Theorem 2. 1
" the essential formula which relates the integrands on both sides of (4.3) is given by

vv(z——a:)’”_vl dz _ Zf:(,/\l/(z-m,/)rl .(zfa:)"'_' dz
(z_$0)/'0...(z_mk)"k —, (z_mu)'/'()...(z f‘xl\‘)’.k .(z;f)'ll
t I .

7 - (z—a)"ldz
A, . : ,
Z (Z - ;B“)/'U .. '(Z - -‘r“)"u_“ .. -(Z — :Ek)"k . (2? - f)”

by means of (4.2). ‘ | _ 4

fl

Remarks. 1.1t is not necessary that the new knot £ liesin the interval [zo,z,]. This was
only assumed for notational reasons, but one could choose any real number ¢ instead.
2. For fixed z = ¢, condition (4.2) coincides with (2.1); this is a new proof of the well-
known fact that the knot insertion algorithm can be v1ewed as the first step of deBoor’s
algorithm.

5. Final Remarks’

The present paper is on B-splines and some of their propertles but what we were
in fact talking about was “something which has a contour integral representation of
the type given in (1.2)”. Now, such contour integrals are by far not restricted to the
representation of B-splines, but can be used to represent rather general recursion schemes,
see [Brezinski&Walz 1991]. Only as an example we remark that the (cla,ssma.l) divided

difference A can be wr1tten as

_ o) = p(z)dz - |
A(zu,...,x,,,,go) 2wy (z=—zo)(z—-2z1) - (z—z4) (5'1)

© bemg analytic inside the simply closed contour W . From (5.1) it can be-seen that
most of the present paper’s assertions apply also to the divided difference case, ‘thus
recovering some of the results in [Miihlbach 1973, 1978] on classical and generalized

divided differences.

Similarly there is no reason to be seen why our results should be restricted to po-
lynomzal splines. Since there exist contour integral representations sm'ular to that in
(1.2) for several types of non-polynomial B-splines (see e.g. [Walz 1989, 1993]), it is most
likely that we can find genel‘al recursions and knot insertion methods for non-polynomial
(e.g. trigonometric or exponential) spline curves as well. This will be investigated in a

forthcoming paper.
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