
,
Calculating p-adic orbital integrals on GSp(4)

via a family of special subgroups

Michael Schröder

Universität Mannheim

Mai 1993

, ,



(2)

Calculating p-adic orbital integrals on GSp(4)
via a family of special subgroups

Michael Schröder

Particularly in applications of the trace formula intriguing problems are already posed by the local
orbital integrals

O~U)= r f(g-lsg)diJ.
lG.(p)\G(P)

For G = GSp( 4) and a semisimple element s in G(F) which is regular we propose in this paper
a two-step method for calculating them explicitly. It is based on subgroups He of G depending
only on the stable conjugacy class C of s, and possessing a hypothetical codiscreteness property
which we prove and apply.

o. Notation: Unless otherwise specified F is a nonarchimedean local field with uniformizing
element 7r, ring of integers 0 Fand residue field k(F). We write U(F) for the set of units in 0 F.
The order on F is normalized such that ord 7r = 1, and 17r1 = l/#k(F) = q-1.
Let 1be the involution on M(2n, F), the 2n by 2n matrices with coefficients in F, defined by

leg) =J-1.tg.J with J= (;n -~n).
The group GSp(2n, F) of symplectic similitudes is the set of aB gin M(2n, F) such that tg. J. 9 =
/-L(g) . J or equivalently such that leg) . g = /-L(g) . E2n.

1. The groups He: Let F be any perfect field. A method to classify the stable conjugacy
classes C of maximal F-tori in GSp(2n), by which He are parametrized, dates back to A. Weil.
Let T be a torus in C and s in T(F) regular. The centralizer C(s) of s in M(2n, F) is isomorphie
to the algebra F[s]. Now F[s] is isomorphie to the direct sum £e = ${E : E E F} ofthe extension
fields E of F defined by the irreducible factors of the characteristic polynomial of s. The image
TC of T(F) in £e consists of aB x in £e with l(x)x = /-L(x)!' One is thus led to study the action
of I on the elements of .r.
By [S, Kapitel 5] each Ein Feither belongs to a pair of factors (E, E') which I interchanges, i.e.
with leE) = E', or I restriets to a nontrivial involution (TE on E. The first case gives rise to tori in
Levi factors coming from general linear groups. In the second case we obtain tori of unitary groups.
The group He can be thought of as interseetion with GSp(2n) of the smallest product of general
linear groups which contains representatives of aB conjugacy classes in C. Thus it decomposes in
two factors uniquely determined by C only: One factor is constructed from the unitary data of the
second case, the other from the Levi factors of the first case above. No new insights are required
for the part of general linear type.

We thus assurne that each factor in F is of unitary type: F = F unitary' For any E in Flet E+ and
E- be the (+1)- and (-1 )-eigenspaces of (TE respectively. Decompose £e = £i: $£c accordingly.
For any invertible a = (aE) in £c define the symplectic form Be(a) on the F-space £e by

(1) Be(a) ((XE), (YE)) = l::EEFtrE/K(XE .aE . (TE(YE)).

Conjugating by diag( ... , diag(1, bE), ... ) with b = (bE) invertible in £i: transforms GSP(£e, B(a))
into GSp(£e, B(ab)). Therefore

Hc(F) = GSp(Fe, Be(a)) nE9 {GLE+(E) : E E F}

= {(4) E) E E9 {G L E+(E) : E E F} : ( ... , det 4>E, ... ) E K* . 1pc }

is independent of the form B(a) and defines the algebraic F-subgroup He of GSp(2n). We embed
£e in Endp(£e) mapping a to the multiplication l(a) by a on the left. The intersection of l(£e)
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with each group GSp(£e,B(a)) is f(re), so that f~re) defines a subtorus Tc of He in the stahle
conjugacy class C. For all b = (bE) invertible in Fe we let

(3) Te(b) = (Intdiag ( ... , G b~) , .. .)) (Tc).

The Tc(b) account for all conjugacy classes of tori in C. Furthermore, Tc is conjugate to a Te(b)
in GSp(2n, F) if and only if Tc is conjugate to Te(b) in Hc(F).

2. The GSp(4) results: The stable conjugacy classes of maximal F-tori in GSp(4) with
unitary parts were classified in [8, Kapitel 6]. They are the tori of type T3A and the basic tori
which, in fact, both have no parts of general linear type. This is the situation where we expect our
codiscreteness results to hold in general.

(2.1) Tori of type T3A: Such a torus is characterized by a pair e = (E, L) of quadratic extensions
of Fand by definition is isomorphie to the F-subtorus

(1) rE,L = {(x, y) E E* x L* : NE/F(X) = NL/F(y)}
ofthe F-torus E* x L*. Fix normalized primitive elements JA of E and VB of Lover F, so that
A and Bare representatives in F of F* j(F*)2 which both have orders 0 or 1. We take 1E, 1L,
JA, ..Jij as sympleetic orthonormal basis so that H(F) = HfJF) consists of all matrices

. (a b) , (a' b')wlth h = cd' h = c' d'(2) [h h'] - (~ ~, ~ ~), - c 0 d 0
o c' 0 d'

in G L( E) x GL( L) which satisfy the symplecticity condition det h = det h'. We will prove

(2.2) Theorem: The set H(F)\GSp(4, F)/GSp(4, Op) is discrete, re:presentatives are

w=(~ ~)
with either., = 0 or., = 7(-£ and f > 0 an¥ natural number.

(2.3) Basic tori: Such a torus is charaeterized by a pair e = (E, (J'E) consisting of an extension
E over F of degree four which has a nontrivial involution (J'E. Let JA be a normalized primitive
element over F of the fixed field E+ of (J'E. Then HE ~ {g E GL(2, E+) : detg E F*}. By [8,
A.19.8] it can be realized as the subgroup of GSp( 4, F) of all matrices

(3)

a2A-1
a1
A-1C2

C1A-1

with

Actually, this is the embedding used by Prof. Weissauer in his proof of the fundamental lemma.
By definition, the basic torus to eis rb(e) = {x E E* : NE/E+(X) E F*}. We will prove

(2.4) Theorem: The set1i€ = H€(F)\GSp(4,F)/GSp(4,OF) is discrete. For allf~ 1 let

(

7(-£ 0)
S(f) = 0 0 .

1f E+ is unramified over F I representatives of 1i€ are E4 and g( f) with f ~ 1. 1f E+ is ramified
over F, representatives of1i€ are g(f) with f ~ 1.
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3; A technique for calculating orbital integrals: Let s be a regular, F-rational element
ofthe torus Tc(b). Let J( = GSp(2n,OF). Assume He\GSp(2n,F)/J( diserete, thus eountable.
For any Heeke operator f on GSp(2n, F) one has by [Wa I, p.477, A 1.2] and [KoGL, p.36lf]

ofjSp(2n)(J)dg r f(g-lsg)dg
JTc(b)\GSP(2n)

"'" volGSp(2n)(J()
- L....JxEHc\GSp(2n)/K volHc(He n xJ(x-1)

where we identified the gtoups with their F-rational points and measures are suitably normalized.
The support of foAd X-I is supp(JoAd X-I) = Hc(F)n(Adx)(supp(J» = He(F)nx.supp(f).x-1.

We want to show next that this is a tool for ealculating orbital integrals for the group GSp(4).

4. Calculating the GSp(4)-orbital integral Os (T(7I'») for s in a torus of type T3A: Let
F be a loeal field with odd residue eharaeteristie and G = GSp( 4). Let T( 71') be the Heeke
operator on G(F) defined as eharaeteristie funetion of the double eoset J( . diag(E2, 71'E2) • J( with
J( = GSp( 4, 0F ). This operator is closely eonneeted with the problem of eounting points mod p
of the Shimura variety to G by the traee formula.

(4.1) Embeddings of tori of type T3A: In the loeal ease the first eohomology group of the
torus TE/ L of type T3A is by dass field theory trivial for E i- Land eyclie of order two for E = L.
Representatives of the eonjugaey dasses of F-embeddings of TE,L into GSp(4) taking their values
in H were determined explieitly in [5, ~llBl. We fix the F-rational, semisimple element s in the
image T of TE,L under any of these, so that

(1) [( a bD-1A) (a' biß)] [(,\) (A' )]s = [SE, sLl = bD a ' b' a' ,....,F fl' fl'

where D = 1 in the stable ease E i- Land where D E {I, G} ~ F* /NE/F(E*) in the instable ease
E = L. Our aim is to prove

(4.2) Theorem: Let F be a local field with odd residue characteristic and let s be regular.

The GSp(4)-orbital integral Os(T(7I'» is nonzero only ifthe similarity factor fl(S) of s has order
one in Fand E,L are both ramified over F.

Then in the stable case E i- L

Os(T(7I'»)dg r T(7I')(g-lsg)d (flGSP(4») (g) = 2. vOlG(GSp(4,OF»).
JT\GSp(4) flT volT (T(OF»)

Inthe instable case E = L let liD(S) = 1 if -bD/b' is a quadratic residue modulo 71'OF and
5D(s) = 0 otherwise. Then

wheTe N = ordF(('\ + fl) - (A' + fl'») and ~F(e) = 1/(1 - q-l) is the zeta function of F evaluated
aU.

Remarks: In the instable ease E = L our ealculation identifies the instable contribution from
the regular elements in tori of type T 3A to the traee formula "evaluated for T( 71')" .
The II:-orbital integral to s on GSp( 4) is in this ease up to a sign the differenee of the orbital
integrals to the two eonjugates of s. Thus we get ß(s) . O;(T(7l'» = O~t(T(O, 71'» with transfer
faetor ß(s) = ::I::i,\flI1/2 . I(AjA' - 1) . (A'/'\ - 1). (fl/A' - 1). (A'/fl- 1)11/2. ~F(N)/~F(I) =
::1::1('\ + fl) - (A' + fl')I. ~F(N)/~F(I).
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(4.3) The operators T(f,7I") and the groups H(f): Define for all integers f ~ 0

(2) z(O)=E4, z(f) = (~2 7I"-~E2)g(7I"-l)= (~2 :=~~) W= Ü 6), f.~1,

(2) H(f) = H(F)nz(f). J{. z(f.)-l,

(4) T(f,7I") = T( 71") 0 (Ad z(f)-l) iH(F) E 1i (H(F), H(f»).

The family of all z(f) is again a system of representatives for H(F)\GSp(4, F)j K. We claim

(4.3.1) Proposition: For any f. ~ 0 the support ofT(f, 71")is H(f.). [diag(l, 71"),diag(7I", 1)]. H(f)
and supp(T(.e,7I"» ~ supp(T(f',7I")) ~ supp(T(O,7I"» for all f > f.'.

(4.3.2) Lemma: Let pr be the projeetion of H<f) on its first GL(2)-faetor. Then for all
f ~ 0 the sequenee 1---+{E2} x f(.e)---+H(.e)~GL(2,(')F)---+1 is exaet, where f(.e) is
the prineipal eongruenee subgroup of SL(2, (')F) of level 7I"l.
Furthermore H(.e) = ([X, Y] E H«(')F) : X == YW(mod,-l(')F)} where yw = (Intw)(Y) and
w = E12 + E21.
(4.3.3) Symmetrization by the automorphism 1 x <I>of H: For W = E12 + E21 let

(5) (1 x <I» ([h, h'n = (Ad ([E2, WJ)) ([h, h'n = [h, (Ad W)(h')] = [h, <I>(h')].

Then Hip(f) = (1 x <I»(H(f» = ([X, Y] E H«(')F) : X == Y(mod,-l(')F)} and the support of the
pullback ofT(.e,7I") by 1 x <I>is Hip(.e). [diag(l, 71"),diag(l, 71")]. Hip(.e).

A straightforward calculation shows (4.3.2). To prove (4.3.1) we first indicate a general strategy
to determine the H(f)-double cosets e in the support of the pullback f 0 (Adz(f.)-l) to H(F)
of a Hecke operator f. Choose a representative of e whose first GL(2)-component is a diagonal
matrix diag( a1, d1) with pure 7I"-powers a1, d1 and ord a1 :::; ord d1. We have to decide when
Yl,S = z(ft1. [diag(a1,dd,diag(d1,a1)' s]. z(.e) is in the support of f, where S is chosen in
SL(2, F)jf(f).
Using the filtration f(f. + 1) ~ f(f) ~ f(O) one should deal with this problem iteratively, starting
with f. = O. For.e fixed, one decides in a first step for which parameters Yl,S has entries in (')F.
Only for these one determines then in a second step the elementary divisors.
Let f = T(7I"). Then a1 = 1, d1 = 71"imply that Yl,s has entries in (')F only if S is in f(f).

(4.4) Necessary conditions on s: The similarity factor j1.(s) = a2 - b2A = (a')2 - (b')2 B
of s has by Rensei 's lemma the same order one as j1.(T( 71"»only if ord A = ord B = 1, if ord a,
ord a' ~ 1, and if b, b' are both units. Especially then, E and L are ramified over F.

We use an iterative procedure based on the support filtration (4.3.1) to calculate the orbital
integrals Os (T(f., 71"»,the key step being (4.6).

(4.5) The parameter set N(E, L): We have E* jpr(T(F)) ~ N(E, L), where

N(E,L) = {~~::x} ~ # f with x = [XE, XL] = [(~ D~lA) ,(~~)] ,

since by construction j1.(T(F» = NE{F(E*) n NL{F(L*).

(4.6) Proposition: In the ease E = L the support of o{! (T(O, 71"))is

{h E H(F) : T(O, 7I")(h-1sh) i= O} = T«(')F)\H«(')F) = {T«(')F) . h : h E H«(')F)}'

For E i= L the support {h E H(F) : T(O, 7I")(h-1sh) i= O} is the disjoint union of the two sets

T«(')F)\H«(')F) = {T«(')F)' g: gE H«(')F)},

x-1. T«(')F)' X\H«(')F) ~ T(F)\T(F). x. H«(')F) = {T(F). x. h: h E H«(')F}}'
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(4.7) Proposition: For a = [aE, aLl in N(E, L) and f? 1 let R(a, f, s) be the number of Y in
SL(2,(h/7rI.OF) such that [SE,y-1(aL1sLaL)Y] is in the support ojT(f,7r). Then

VOIH(H(f))
Os (T(f, 7r)) = VOlT (T(OF )) 2::O:EN(E,L) R(a,f, s),

vola(GSp(4,OF)) ( '" '" )Os(T(7r))= . I C( )) [EL:E]+6 At 6 R(a,f,s).vo T T 0F o:EJV (E,L) 1.>0

The elements [1,y] with y in S L(2, 0F / 7riOF ), which we consider as seetion in M (2,0F) for
SL(2,OF)/f(f), are representatives for H(OF)/H(f). So (4.7) follows by (4.6) and 33(1).

Proof of (4.6): Our argument is based on the fact that gn = diag(l,7rn) with n ? 0 are
representatives of r(F)\GL(2, F)/GL(2, OF), where r is any of the tori E*, L* or XL1 L*xL.
Fix [h, h'] in the support set. By (4.3.1) - (4.3.2) each factor of [h-1SEh, (h')-lsLh'] is in ~ =
GL(2,OF)diag(I,7r)GL(2,OF). Writing h = tognk with to in E* and kin GL(2,OF) it follows
that g;;l sEgn is in e. Since b is a unit an explicit calculation shows that this implies n = O.
Decompose to in the form to = tEaE where aE is in N(E, L). Choose tL in L* such that dettE =
dettL. By construetion y = (iLaL)-lh'k-1 is in SL(2,F) and T(O,7r)([h,h']-l. s. [h,h']) =
T(O,7r)([SE,y-1(a£,lsLaL)Y]). As above, y == (aL1t'aL)k' with t' in L* and k' in GL(2,OF).
Then t' is a unit, so that the entries of aL1t'aL are in 0 F. Hence y is in SL(2, 0 F). The reverse
inclusions are easily checked.

(4.8) Characterizing R(a,i,s) by congruence conditions: Let P = diag(l,7r), so that
SE = hEP for hE in GL(2,OF). Let y be in SL(2,OF/7riOF), taken as set ofrepresentatives for
SL(2, 0F)/f(f) in M(2, OF). Then [SE, y-1(aL1sLaL)Y] is in the support ofT(i, 7r)if and only if

( -1( -1 )) () () (7rOF 7rU(F))<I> y aL SLaL y E f f . SE . f f <; U(F) 7rOF .

The order conditions hold only for the elements

(7) Y(w,ß,8) = (~ ;)
wß-1

with ,= -8-
w E (7r, , 1I'i-1),

and ß E (1,11', , 7ri-1),
8 E k(F)* EB(1I', ... , 7ri-i).

(8 - 1)

(8 - 2)

They are defined by the interseetion of three quadrics in the affine space of dimension four over
OF/7riOF: In the case a = E4 multiply Y, with entries denoted as in (7), by w - 8VB on the left
and let ß1(Y) = w2 - PB, Zl(Y) = w, - 8ßB. For a = x multiply by xL1(W - 8(A/ B)VB)XL
and let ß",(Y) = w2 - 82(A/ B) . A, z",(Y) = w, - 8ß(A/ B) . A. Then

(
a' + zlb' b'ß1)

<I>(y-1sLY) = b'(B - zn a' _ zlb' ,
LS1

(
a' + z'" B b' b' B ß", )

<I>(y-1(XL
1
SLXL)Y) = b'(A - t:1BZ;) a' -~",~b' .

Their entries have orders as in (6) only if ord ßo: == 1 and ord Zo: ? 1. These conditions characterize
the elements Y(w,ß,8).
By construction <I>(y-1(aL1sLaL)y)p-1 has entries in OF for all Y = Y(w,ß,5). Thus the
following easily proved criterion applies to determine for which (ß, z) the f(f)-double cosets of
<I>(y-1(aL1sLaL)Y) and SE = hEP are equal.

(4.8.1) Lemma: Let g', g" be in GL(2,OF)' Then f(e). g'p. I'(i) = f(i). g"p. f(f) if and
only if there is ß in ~-1 k( F) such that

g'=g"(~ ~)(modf(f)).
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For a = E4 these congruences are equivalent to a == a'(mod7TlOf), ° =: z(mod7TlOF) and

_ ~ _ A b l ( b ) 2 A B - z2 l
~o - -; = 7TDP (mod7T OF), p -; =: --11"- (mod7T OF).

EspeciaHy then, the values mod 7TlO F of ~o, z are completely determined. Since ord z ~ f we
obtain (b/b')2 =: B/A(mod7Tl). So A = B by Hensel's lemma and since A and Bare normalized.
Consequently (b/b')2 =: 1(mod 7Tl). In the case a = x we obtain similar congruences. They, too,
hold only for A = B, contradicting the assumption A =f B.

We note that a =: a'(mod7TlOF) implies b2 :::::(b')2(mod7TlOF) and thus b =: €b'(mod7TlOF)
because of (4.4).

For a smooth affine variety V over OF the fibres of V(OF/7Ti+10F)--+V(OF/7TiOF) have cardi-
nality #k(F)dim V for all i ~1. The following result, proved by showing that the Jacobian has fuH
rank, now completes the proof of (4.2)

(4.8.2) Lemma: For z in 7TOF, Y in 7TU(F) and ~o in U(F) let Q1 be the zero set 01 ~o =
7T-1(W2 - 02Y), Z = WI - oßY, 1 = wß - 0, in the lourdimensional affine space. Then Q1 is a
smooth variety over 0Fand

#{( ß C ) Q (0 / lO ).w=:O(mOd11"OF),}_{2.(#k(F))l -~~oEU(F)2
w, ,0,1 E 1 F 7T F. 0 =f; O(mod7TOF) - .1 .° otherwzse.

5. Proof of Theorem (2.2): Using the Iwasawa decomposition of GSp(4, F) one starts with
representatives in the Borel subgroup of upper triangular matrices in GSp( 4, F). Multiplying on
the left by suitable upper triangular matrices in H(F) they can be modified to representatives of
the form h( a, b, 0) in the Heisenberg subgroup of GSp( 4, F) consisting of all matrices

h(a,b,c) =
(

1 a
o 1

o °° 0

c b)b 0
1 0
-a 1

with a, b, c in F. Since h(O,O,c) is in H(F) for all c in F, the relations

h(a, b, 0) . h(a', b', 0) = h(a + a', b+ b', ab' - alb), h(O, 0, -c) . h(a, b, c) = h(a, b, 0)

show that one may in fact choose representatives g(a, b) = h(a, b, 0) with a, b in the k(F)-space
( .•. , 11"- 2 , 7T-1). Here we follow a suggestion of Prof. Weissauer for simplifying out original proof.

We reduce to pure 7T-powers a and b. Let a = ua and ß = wb for units u und w in U(F). Then

g-l(a,ß)[(u; ~),(~ ~)]g(a,b)=diag(uw,w,l,U)

is in GSp(4, OF) so that g(a, ß) and g(a, b) are in the same coset of H(F)\GSp(4, F)/GSp(4, OF)'
By the same reasoning we reduce further to representatives g( I) = g(O, I)' In the case ord b ~ ord a

o 0)° °° 1
1 °

is an element of GSp(4, OF)' For orda < ordb
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To prove independence, assurne that g( a) and g(ß) are in the same coset. Equivalently, there is h in
H(F) such that hg(a). GSp(4, ()F) = g(ß). GSp(4, () F). Taking images of this GSp(4, (}F)-coset
under each element of a dual basis one obtains four equalities of ideals in () F. They translate into
four conditions on the orders of the entries of hg(a) and g(ß). Distinguishing the cases aß = 0
and aß # 0 it follows easily that a and ß have the same orders and thus are in fact equal.

6. Proof of Theorem (2.4): One starts again with representatives in the Borel subgroup of
upper triangular matrices in GSp( 4, F). Their components in the Levi factor {diag(A, ,XtA) : A E
GL(2, F), ,X E F*} can be reduced to matrices diag(g£, gel), where g£ = diag(1, 1r£) with f ~ 0 are
representatives of (E+)*\GL(2, F)JGL(2, ()F). Because of

(

1 0 b1 b2) (1 0 x Y) ( 1 0 a + b1 1r-£(b2 + 1r£Y) )o 1 b2 b1A 0 1r£ 1r£Y 1r£Z _ 0 1r£ b2+1r£Y 1r£z+1r-£b1A
00100010 -001 0
o 0 0 1 0 0 0 1r-£ 0 0 0 1r-£

we can choose representatives with Y = Z = O. After multiplying from the right by a suitable
unipotent matrix in GSp(4, ()F) we can assurne x in (... , 1r-2, 1r-1) and obtain the matrices g(f,x).

We now show that we can achieve f = O. For l ~ 1(-, ° 0

~ ) g(l,O) = (! 0 -1

Dg(O, ~-')-' ~!1r-l 0 1 0
0 1r£ 0 1r£

A-1 0 1rl 0 A -11r£ 0

isinGSp(4,()F)' Forx#0Ietz=-(1+1r£)x-1. Then

C' 0 0

0) c 0 0

Dg(O, - •• -')-' ~;
1r-£ 0

~ g(l, x) = ~
1 0

0 1r£ 0 -1
zA-1 0 1r£ 0 zA-1 0

is in GSp( 4, () F)' We reduce to pure 1r-powers by the calculation

( )-1 (E2 0) ( ) ( E2
9 0, Xo UE2 9 0, Y = 0

(E -Y 0 ) (E2 0 -VA g(O, y) = '2

o E2 0
eventually shows that representatives of He are of the form E4 = g(O, 0) and gel) = g(O, 1r-£) with
l ~ 1 for ord A = 0, i.e. for E+ unramified over F, and gel) with l ~ 1 for ord A = 1.
To check their independence is tedious, but straightforward given the method indicated in ~5.

7. Acknowledgements: This paper is on parts of my thesis. The general construction of He
is based on ideas of my advisor Prof. Weissauer, the proof of (4.2) owes much to his criticism.
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