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ABSTRACT

We investigate two-dimensional timelike surfaces ¥ in a spacetime (X, g). It is shown that
orientable surfaces with two spacelike boundary components v (homeomorphic to S*) are
necessarily of topological type [0,1] x S1. We treat the initial value problem of a string
(known from physics) as a purely geometric problem: Find a minimal surface ¥ which is
specified by an initial curve 4 and by a distribution of timelike tangent planes along .
We prove local existence and uniqueness of ¥ and also obtain global existence for special
types (X, g). Global existence does not generally hold; we give a counter-example which
can be interpreted as a string collapsing into a black hole.
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Introduction

Since our considerations are motivated by the theory of classical strings [1], we use that
picture as an intuitive guideline. The basics of that theory can be summarized as follows:
A closed string is an object v in space that is homeomorphic to S!, v = S!. During
the time evolution a string sweeps out a surface I, called worldsheet, in spacetime (X, g);
we generally assume dim(X) > 3. For physical reasons ¥ is supposed to be a timelike
surface, i.e. at each p € ¥ the tangent plane T,T C T, X is generated by a timelike and
by a spacelike vector. The dynamical equations for a string are defined by a variational
principle: The first area variation of ¥ must vanish subject to the condition that the initial
and final configuration of the string are held fixed. Hence, £ will be a minimal surface
having two spacelike boundary components. The geometric point of view suggests to ask
whether such minimal surfaces allow for different topological types; in Euclidean spaces
this so-called Douglas problem [2] indeed does. We will show in chapter 1 that for C2-
immersed surfaces ¥ only those of topological type [0,1] x S! can be consistent with the
physical requirements on ¥ to be timelike and to have spacelike boundaries. For later
needs we also give a direct construction of conformal parameters on [0,00) x St.

To determine a concrete string motion one has to solve a Cauchy problem whose solution
defines the surface ¥.. Generally, the "initial data” for a surface & are not uniquely fixed,
but depend on the specific parametrization of 3. To overcome this ambiguity, we formulate
the Cauchy problem in purely geometric terms. Let us first assume that we are given a
timelike minimal surface ¥ C X which contains a spacelike curve v = S! (v represents
the configuration of the string). The tangent planes of £ with base points on v fix the
"direction” in X, into which the string moves in the following sense: The planes provide
a linear approximation of ¥ in a neighbourhood of 7, and they represent the velocity
distribution along the string. These observations suggest to define a geometric Cauchy
problem: Find, for v prescribed, a timelike minimal surface ¥ containing v such that the
tangent planes of ¥ along v coincide with a given distribution of tangent planes on ~.

In chapter 2 we simplify the equations of motion by conformal parameters and show
how these parameters are used to remove singuldrities which can arise in these equations.
Of course, the geometric singular behaviour cannot be removed; this behaviour is in sharp
contrast to the one of minimal surfaces in Riemannian manifolds.

We establish local existence and uniqueness for the geometric Cauchy problem in chap-
ter 3. We show that global existence of the nonlinear hyperbolic equations of motion holds
if (X,g) has a certain product structure. As an illustration we compute in chapter 4 a
minimal surface ¥ in Schwarzschild spacetime*.

* The only other solution in a curved space I found is given in [3]. It describes a closed string

interacting with a gravitational wave.
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1. Topology and parametrization of immersed timelike surfaces

Let (X,g) be a spacetime, i.e. a time-orientable Lorentz manifold. We consider a two-
dimensional, compact and orientable manifold M of class C*°, having two disjoint bound-
ary components y = S1. M is immersed into X by a C*-mapi: M — X, k > 1, such
that the pullback metric A = i*g has signature (-1,1) on M, and i(0M) consists of two
disjoint spacelike curves®. If all these properties are fulfilled we speak for convenience, of
an immersed timelike surface (M,i*g).

Theorem 1.1: An immersed timelike surface (M,i*g) is homeomorphic to [0, 1] x S,

Proof: First, we construct nonvanishing vector fields on the double 2M of M: The
induced metric k has signature (—1,1) so the set 7, = {v € T, M|h(v,v) < 0} consists of
two disjoint parts, 7, = '];,"' U7, . Let 7;,'*' be the future pointing part of 7, with respect
to a fixed time orientation of X. The forward light cone BT+ is generated by two vectors,
Tt = {R*-v,} U{R" - w,}, which form a positive ordered basis {vp,wp} in T,M (M
is or1entable) We normalize v, and w, with respect to a fixed Riemannian metric on
: M and obtain an ordered basis {e,(p), e2(p)} of unit vectors for each p € M. The maps

: p — en(p) (n = 1,2) define two nonvanishing C*~!-vector fields e; and e; on M.
Because OM is spacelike, the fields e; and e; are transversal to OM. Thus, nonvanishing
continuous vector fields on 2M exist. '

This shows that 2M has Euler characteristic zero so it must be a torus T'. The set
OM C T consists of two disjoint closed curves. Taking into account the fundamental
group 7(T) & Z & Z one verifies M = [0, 1] x S, by simple topological arguments. O

Remark: The condition on i(OM) to be spacelike is crucial because on noncompact
manifolds (especially M\OM) smooth Lorentz metrics always exist. Theorem 1.1 can easily
be extended to more complicated situations. For example, there is no timelike surface M
having the topology of a sphere with three open discs removed and with spacelike boundary
components: The double of M would be a surface of genus two.

The above result suggests that immersed timelike surfaces of type M, = [0,a] X S ! are
appropriate for the description of motions of closed strings. The equations of motion
simplify considerably in conformal parameters (7,0) on M,, i.e. h = i*g has coordinate
expression h(7,0) = A(r,0)(—dr? + do?), where A is a functlon Global existence of such
parameters is guaranteed by

Proposition 1.2: Let i : M — X be a C*-map with M = [0,00) x S1 and k > 2.

Suppose that (M, h|m,) is an immersed timelike surface, for all a > 0. Then (M, h)
admits a conformal C*~1-parametrization with 7(-) € [0,00), o(-) € [0,27) mod 27 and
({0} x §') = {0}. |

Proof: The C*~'-field e; constructed in the proof of Theorem 1.1 has mtegral curves
reaching from points P; € {0} x S! to {a} x S, because e; is transversal to each {c} X ST,

* These are physically natural conditions on a worldsheet T£=i(M); i need not be injective because

a string is allowed to have self-intersections.
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¢ € [0,a]. Therefore, the set of integral curves which meet {0} x S! cover M and each p € M
lies on exactly one integral curve of ;. The vector field e; has integral curves with similar
properties, starting at P2 € {0} x S1. This pair of integral curves constitute the coordinate
lines of local C*~!-coordinate systems around p € M. In such coordinates, say (u,v), the
metric h is given by h(u,v) = f(u,v)dudv, because 8, and 0, are lightlike vectors. The
map ¥ = m; X 72, assigning to each p € M the initial points (P;, P;) € S* x S! is locally
bijective of class C*~!. We parametrize S! = {e'”|oc '€ IR } by charts ¢4 (e'?) = o € (0, 27),
pp(e’”) = 0 € (—m,m) and obtain a closed one-form w on Sl w = dpq resp. w = dpg
on each domain of definition. Then do; := 7}w and do, := 7w are pointwise linear
independent closed one-forms on M of class C¥~2. The functions 7(p) := 3 ;:(dal —dog)
and o(p) := % f:o(dﬁ + dos) mod 27 (po € {0} x S? fixed) now are conformal parameters
W1th1'200r7~'§'00nM. We set 7 = 7 or 1 = —7 to achieve 7 > 0 on M. O

Remark: Conformal coordinates are not uniquely determined: If we apply a diffeomor-
phism ¢ : S — S we obtain (7', ¢') in the same way as above but with w replaced by *w
Intuitively, this means that we can choose the ”density” of the integral curves of e; and e;
arbitrarily. More generally, the whole construction above holds for M = IR x S*. In that
case we have the additional freedom to choose an arbitrary pair of diffeomorphisms %1,
¥g : S — S! to define new conformal (7',0')-coordinates via do; = m}¢fw (then 7' =0
does not correspond to {0} x S*). The map Py, y, : (1,0) — (7',0') obeys &}, , h=f-h
(f a function), i.e. @y,y, is a conformal coordinate transformation. This provides a clear
interpretation for the group action of Diff(S?)xDiff(S?) on conformal coordinates.

2. Timelike minimal surfaces

First, some notations are given: For v,w € Tp,X we set vw := g(v,w) = guv*w”
(summation convention in coordinates). The flat, two-dimensional Lorentz metric reads
= diag(—1,1). Derivatives with respect to (u!,u?)-coordinates on M are labeled by
= 0,f = fa. We use local z#—coordinates on X to represent the map:: M — X.
The induced metric kb = i*g has components hqsp = guv2,z%. In conformal parameters
on M we obtain g,,zf " = A(7,0) - nep. With z# = %L: and z#' = % these equations
are obviously equivalent to

6
au“

$22+2%=0 , @z'=0 | (2.1)

and for @ = b = 0 we read off A = —z2. In the physical literature (2.1) is called the

conformal gauge condition (imposed on the surface parametrization).
The area functional of an immersed timelike surface M reads

S=/ V—|hld®u , |h| = det(has) - (2.2)
M

Demanding stationarity of S, i.e. §S = 0, one obtains a system of coupled Euler-Lagrange

equations for the components z# (p = 0,...,dim(X) —1):

Ba (v —Ihl heb "ygvn) — \/ [h]h**2’,a %g”” =0 . (2.3)
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By I't, we denote the Christoffel symbols of g and by O := %29, 8, the flat wave operator.
In conformal coordinates we have \/—|h|- ho® = A . (£7°%) = n°, and (2.3) simplifies to

Oz* + F’;,,(x)zf’a:c:’bn“b =0 , p=0,.,dm(X)-1 . (2.4)
In slight generdlization of notation we call a map ¢ : [0,a] x S? = X a solution of (2.4), if
any chart representation z#(7,0) of 7 obeys (2.4). The next lemma is standard in string
theory, at least when (X, g) is Minkowski space. For an elementary proof in the general
case we refer to [4].

Lemma 2.1: Given a C?-solution i : [0,a] x S* — X of the system (2.4) that obeys
(2.1) at 7 =0, then (2.1) is satisfied for all T € [0,a], o € [0,27) mod 2.

Suppose such a solution ¢ is given with the additional condition, that ¢|{o}x 51 is a spacelike
imbedding , so we have z'>(0,0) > 0 for all . Then z'*> > 0 remains valid on [0, €] x S!,
and for € small enough, the parameters (7,0) € [0,¢] x S! are automatically conformal
parameters on Ly :=1([0, €] x S1), due to Lemma 2.1. Because (2. 4) holds, X, is indeed
a minimal surface.

Note that 9,1/—|h| and h?® in (2.3) are singular at points p € X where |h](p) =0,
but these singular terms completely drop out in the representation (2.4). This fact allows
us to handle the singularities of (2.3) in a natural way: We simply consider the Cauchy
evolution ¢ of initial configurations v by (2.4). The evolution may yield |h| = 0 at certain
points, so there are problems with (2.3), but nevertheless the map ¢ is well-defined. This
extends the notion of a timelike minimal surface X to an amount that is necessary from the
viewpoint of time evolution, because the case |k| = 0 already arises in simple examples,
e.g. (4.7) below. _

At points (7,0) with z'2 = —&? # 0 the map ¢ is a local immersion in a neighbourhood
of (1,0) but ¢ need not be a global immersion. If z' ? vanishes, the image & = i(M) can
have edges or cusps at those points. This behaviour is in sharp contrast to the smoothness
~ properties of minimal surfaces, immersed in an Euclidean space. It is due to the fact that an
area element im Minkowski space can have zero (two-dimensional) volume: Combining such
two elements with an edge in common gives a small surface with zero volume; smoothing
out this edge can only increase the volume. An example with a cusp (that approximates
the cusp of a light cone) is given by (4.7) below, cf. also examples in [5].

3. The geometric Cauchy problem

Consider a spacelike C2-submanifold v 22 S* in X. It can be described as image under
a C?-imbedding i¢ of S* into X with parameters ¢ = ¢ mod 27 on S!. Along v, we are
given an orientable* C!-distribution of timelike tangent planes, i.e. there exists a C'-map
v from S* into TX, such that v(c) € T (X is a timelike vector and the tangent plane
in ig(c) is generated by -Lio(o) and v(o). The geometric Cauchy problem is now to find

* We need this condition to exclude surfaces like a Mébius strip.
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a minimal surface ¥ D v whose tangent planes on v contain the vectors v(o). We call a
solution ¥ locally unique if any other solution ¥’ coincides with ¥ in a neighbourhood of
vin X. ' o
Theorem 3.1: Given a spacelike C?-submanifold v = S* in a Lorentz manifold (X,g),
and an orientable C*-distribution of timelike tangent planes along v, then there ezists a
C?%-solution ¥ of the geometric Cauchy problem; ¥ is locally unique.

Proof: There exists a C*-imbedding j : M, = [0,¢] x §! — X with j(0,0) = io(c),
having the given distribution of tangent planes along v. We equip M. with conformal (r, o)-
parameters as in Prop.1.2, and denote a chart representation of j around j(r,0) € X by
z#(7,0). The vectors :L"“(O o), #(0,0) generate the given tangent plane at i¢(c) and
in addition they satisfy the conformal gauge condition (2.1) at 7.= 0. A unique C?-
solution of (2.4) with respect to these initial data exists (see [6]) in a neighbourhood of v
on each chart representation z#. These solutions glue together on overlapping charts and
they define (because of Lemma 2.1) a minimal surface X in a neighbourhood of 7. Hence
existence holds.

For uniqueness, consider another solutxon ¥'. We parametrize v C ¥’ by the same
map %o as before. Applying the construction of Prop.1.2 for &' gives conformal (7/,0")-
parameters on X' with 0 = o' at 7 = 7/ = 0. The tangent planes of ¥ and ¥’ coincide
-along v, implying z%.(0,0') = 2#(0,0) for ¢ = o'. Therefore, both surfaces £,E’ are
determined by the same analytlcal Cauchy problem hence they coincide locally. a

Global existence for nonlinear hyperbohc equations is in general a much more difficult
problem. The solution of (2.4) exists at least for small values T € (—¢, €), denoted by Yioc.
When ;.. extends to all values 7 € R ~we call the resulting surface a global solution ¥ of
the geometric Cauchy problem. If global existence holds for one conformal parametrization
of Tioc, then it also holds for any other conformal parametrization which is induced by a
diffeomorphism ¢ : S 1 _, §' as discussed after Prop.1.2; we skip the proof of that fact..
For a string, the conservation law of Lemma 2.1 leads to global existence:

Theorem 3.2: Let the Lorentz manifold (X,g) be defined by X = IR x N and ds? =
—dt? + r;j(z)dz'dz?, where (N,r) denotes a complete Riemannian manifold. Then the
- geometric Cauchy problem with initial data on v C {0} X N has a global solution.

Proof: From Theorem 3.1 we get a local solution ¥, in conformal (7, 0)-parameters.
We reparametrize the initial data to simplify the time component (2° = t) of (2.4) as
" follows: The timelike vector v*(o) = £#(0, o) has a nonvanishing zero-component t(O o) =
f(o) for all o € [0,27) mod 27. Therefore,

(0) 1= 5 [ fes

defines another 27- periodic parametrization of v, with (energy) E = 2" f(s)ds. The
vectors z/;(0,5) = f(a) z#,(0,0) and 9#(5) = f(d)v“(a) genera.te the sa.me dlstrlbutlon of

tangent planes along . At 7 = 0 the equation (2.1), Z2 +: £'? = 0, transforms into

—E? +r,]vv +r1]:v m’- = . (3.1)
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We thus obtain a geometrically equivalent initial value problem with 3°(0,6) = E. The
choice of ds? implies I'), = 0, so the zero component of (2.4) simplifies to Ot = 0. The
solution reads t(7,5) = E7. Using Lemma 2.1 we find that (3.1) is conserved by the time ,
evolution. In particular T‘ij(x)l':.;.w',’,-. < E? and rij(m)xi&zj& < E? hold. These pointwise
estimates imply that the local solution z'(,5) of (2.4) ‘extends to all values # € R. O

Note that the solution existé for all values of the physical time parameter t = E - 7.
We do not claim uniqueness in the global case (the uniqueness proof fails at points where
|h|(p) = 0). A discussion of possible branching effects will be given elsewhere, cf. [7].

4. A minimal surface in Schwarzschild spacetime

Let (X,g) be Schwarzschild spacetime, i.e. a manifold X = R x (IR +\{2M}) X S? with

a line element ds? = —(1 — Mygi2 4 (1 - 2142 4 r?(sin® 8dyp? + d6*), where ¢ and 6

are the sphere coordinates on S2. Let v C X be a circle, defined by i0(c) = (0, R, 0, 7),
with o € [0,27) and R > 2M fixed. We choose (i,f‘,gb,é)(O,a) = (E,0,0,0)* and the
requirement 32 + z'2 = 0, at 7 = 0, yields E = R/\/f(R) with f(r) :=1— 2M. " The
relation #z' = 0 also holds so the conformal gauge (2.1) is satisfied for 7 = 0.

In order to solve (2.4) for these initial data we make an ansatz: t = ¢(7),r =r(7),p =0
and 6 = 7. We obtain '

. 2M .. ' '
—t = mtr y ‘ | (41)
—7':=l "(r)f(r .2——1-——fl(r)r"2 r r
o/ (I =57y ™+ £(r) , (4.2)

from (2.4) as well as the equations [y = 0 and 00§ =0 which are satisfied by the ansatz.
So we are left to solve (4.1) and (4.2). If our ansatz is correct, we have the conservation

law 2 + 22 = 0 which is rewritten as

| 2 _ _1_7;2 L2 |
f(r)t® = oA | (4.3)

Replacing f(r)? in (4.2) by the right hand side of (4.3) yields a cancellation of all nonlinear

terms! We find the equation —# = r — M (a harmonic oscillator) which is solved by ’

r(1) = (R — M)cosT + M . | (4.4)

Equation (4.3) also gives f(r)t = /f2 +r(r —2M) = /R(R — 2M). The last equation is
due to energy conservation of the harmonic oscillator. With & := +/ R(R —2M) we obtain

i(1) =k#§)7M— C (4.5)

*  These initial data describe a string at rest, lying at a.” distance” R>2M from the singularity r=0.
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We have to check (4.1) for a solution of this equation, because the ansatz fnight fail. We

. _ ) M :
differentiate (4.5), t = —k(T_ZZM—)zT' = - T(TZ_A;IM)T - k——577 and replace the second factor by

f to obtain —f = mz_%ﬂ—)t'f'. Therefore, any solution of (4.5) satisfies (4.1). An elementary

integration yields
| oM ,/1—m—{-tanZ
Hr)=7-Ry/1— = +2M -In & 2
' , a1 = 2—?{- —tany

Note that (4.4) and (4.6) satisfy the initial conditions so the problem is solved completely.
The reader may compare this result with a particle falling without angular momentum
into a black hole, e.g. in [8], p. 666. The singular term in (4.6) coincides with the singular
term of the particle motion given there. '

The Schwarzschild radius r, = 2M is reached by the string in the limit 7 — 7, =
cos‘l('Rf‘_'IM , and t() tends to infinity for 7 — 75. At Tmaz = cos_l(MAfR») the string
meets the singularity r = 0. It is not hard to verify in Kruskal-Szekeres coordinates that
(4.4) and (4.6), together with ¢ = o and § = 7, define a smooth surface in Kruskal
spacetime for all 7 € [0, Tmaz). We observe that the domain of existence [0, Tmaz) X S*
_cannot be extended beyond Tmas- ‘ '

Replacing M by zero in (4.4) and (4.6) yields ¢ = Rr,r = Reost,p =cand § = §. In
Minkowski space (R ?,diag(—1,1,1)) (we suppress the constant z-component) this solution
coincides with a well-known oscillating solution of period Ar = m:

. (46)

(t,z,y) = (R, Reostsino, Rcostcoso) VT € R . _ (4.7)

Note that the surface & defined by this smooth solution has cusps at 7, = 7 + n, and
the "observable” oscillation period At = Rr tends to zero for R — 0.

Final comments

1. We have seen that global existence holds for special types (X,g) but not in general.
Are there sufficient conditions on (X, g) (e.g. boundedness of curvature etc.) that guaran-
tee global existence? This problem is similar to the problem of geodesic completeness and
both might be connected: One can argue heuristically that a small string moves approxi-
mately along a geodesic, performing rapid oscillations on its way, like in (4.7) (the smaller
the string, the higher the frequency). Therefore, geodesic completeness of (X, g) may be
a necessary condition for global existence. :

2. The Cauchy evolution of v respects the conformal gauge i*g = A -7, with A = -2,
and A(p) = 0 occurs in several examples. In principle, A might change sign, reversing the
role of 7 as timelike vector and z' as spacelike vector. Then the curves i(r,-) (7 fixed) will
not be spacelike curves for all values of 7, hence the interpretation of T as a time-evolution
parameter for a physical string gets lost. Note that this does not happen in the special
case X = IR x N (cf. chapter 3.).




3. In chapter 1, we assumed ¥ = i(M) to be a timelike surface, from which we concluded
M =[0,1]xS 1 This conclusion fails if the induced metric i*g degenerates at certain points
and indeed, there are minimal surfaces of higher topological type, describing splitting and
merging effects of strings on a classical (i.e. non-quantized) level. A discussion of such
surfaces in Minkowski space and their relation to the so-called Krichever-Novikov theory
[9] is given in [7].

Acknowledgement
I thank Giinter Schwarz for helpful discussions. This work was supported in part by the
GradFoG Fund of Baden-Wiirttemberg.

References.

‘1. L. Brink and M. Henneaux, Prmczples of Strzng Theory, Plenum Press, New York,
(1988).

2. J. Douglas, Minimal surfaces of higher topological structure, Ann. of Math. 40, 205-298
(1939). '

3. Ademollo M. et al., Theory of an Interacting String and Dual-Resonance Model, Il
Nuovo Cimento 21A 77-147 (1974).

4. Gu C.H., On the motion of a string in a curved space-tlme, in: Hu Ning (ed), Proc.
3rd. Grossmann meeting on General Relativity, Beijing, 139-142, (1983).

5. Turok N., Grand Unified Strings and Galaxy Formation, Nucl. Phys. B242, 520-541
(1984).

6. Courant R., Hilbert D., M ethods of Mathematical Physics vol.2, Interscience, New York,
(1962).

7. T. Deck, Classical string dynamics with non-trivial topology, Mannheimer Manuskripte
148/93, (1993).

8. Misner C.W., Thorne K.S., Wheeler J. A Gravitation, Freeman and Company, San
Francisco, (1970) :

9. I.M. Krichever and S.P. Novikov, Virasoroe Type Algebms, Riemann Surfaces and Strings
in Minkowsk: Space, Funk. Anal. i Prilozhen 21 (4), (1987) 47-61.



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010



