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Introd uction:

In the following we are concerned with the endoscopic fundamental lemma (see [L5) for
the general conjecture) in the case, where

G = GSp(4,F)

is the group of all 4 x 4-matrices, such that

t ( 0 -E) ( 09 E 0 9 = >"(g) E -E)o .
with coefficients in a local field F of positive residue characteristic different from 2.

It was shown in [H], that the endoscopic fundamental lemma holds for the group
GSp(4, F). However, this proof does not describe the correspondence between func-
tions with matching orbital integrals, which is important for applications. Often it is
enough to know this correspondence for functions in the spherical Hecke algebra. Using
the trace formula one can reduce to the study of one particular function, the unit element
lK of the Hecke algebra. We restriet ourselves to this important case.

There are essentially two types of tori, for which endoscopic comparison lemmas are
needed for the case of the group GSp(4,F). In this paper we deal with the generic type,
the degenerate one was considered in a previous paper [W).

The torus T:

Consider some field extension ElF of degree 4 with an involution (T, which has fixed
field E+ such that [E : E+] = 2. Let q be the number of elements in the residue field of
E+. Then E+ = F(VA) for some element A E F*. We assume A = Ao to be normalized,
i.e. to be integral of minimal possible order. Consider the subgroup He GSp(4, F) of all
matrices

This group is isomorphie to the group

q; : Gl(2, E+)O = {g E Gl(2, E+) I det(g) E F*} .

The isomorphism q;-1 maps the matrix above to the matrix

s=(~ ~),
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Consider the torus T

T = {x E E* INormEjE+ (x) = xxO" E F*} .

T can be embedded as maximal torus into Hand G. Any embedding is conjugate to one
of the following standard form:

Choose D E E+ such that E = E+(Vi5). For simplicity we assume D to be integral.
Embed T by the D-regular embeddings, mapping elements

x = a + bVi5 a, b E E+

of T to
s = cPD(X) = (~ ~b) E Gl(2, E+)O .

Via the isomorphism above, we can view T as a maximalsubtorus of Hand G. Two
such standard embeddings are conjugate (in G or H) if and only if the quotient of the
corresponding D's is of the form (j2 for some B in F* . NOrmEjE* (E*).

Problem:

Gur aim is to calculate the GSp(4, F) orbital integral

for the unit element lK of the Hecke algebra (= characteristic functions of the unimodu-
lar symplectic similitudes). This will be used to calculate the so called ~-orbital integrals
in the end:

where
(x E T) ,

and where BE (E+)* is such that E* = F*NormEjE+(E*) U BF*NormEjE+(E*). Here we
assume the G - M regularity in the sense that E = F(x).

For this we can restrict ourselves to the case, where ElF is a noncyclic galois extension.
In all other cases (E+)* = F* . NormEjE+(E*) and the ~-orbital integrals vanish. For
the noncyclic galois extensions ElF exactly one of the two extensions EI E+ I E+ I F is
ramified respectively unramified.
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Assumption: Choose D = Da to be normalized of minimal order 0 or 1. We can assume,
that Da E F*. However this does not mean, that D = DaB2 is also normalized or in F*,
because in case E/E+ is unramified ord(B) = 1. Using this convention we us as prime
elements 7rE+ = -Da resp.7rE+ =.jA;;" according to whether E/E+ is ramified or not.

The endascapic gratip M:

As the torus T is the pullback ofthe maps Norm: E* ~ (E+)* and the diagonal embedding
K* ~ (E+)*, the dual group i' is the pushout of the the diagonal map (C*)2 ~ (C*)4 and
the multiplication map (C*)2 ~ C*. This is i' = (c*)4/{(t,t,c\t-1)). The galois group
G(E/F) acts by the generator (T of Gal(E/E+) permuting, say the first and second and
third and fourth component respectively. Let T =I- (T be a second involution in G(E/F)
with fixed field L = F( ~), where we assume Da E F* to be normalized, i.e. integral
of minimal possible order. Then T acts by permuting, say the first and third and second
and fourth component. The map (Zl,Z2,Z3,Z4)/(t,t,c\c1) f-+ (ZlZ4,Z2Z4,Z3/Z4) induces
an isomorphism i' ~ (C*)3. The action of (T is transported to

The action of T is tra nsported to

This defines an embedding of L-groups

'IjJ: LT ~ LGSp(4,F) = GSp(4,C) x r

~(T) ~ (~1~~D
Identify i' with its image under 'IjJ. Then Z(G) is the group of all (t1,t2, t3) = (x,x, 1) and
i'r = Z(G) UZ(G)K, where K = (1,-1, -1). The centralizer of 'IjJ(K) = diag(l, -1, 1,-1) is
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Äs 'lj;(u), 'lj;(r) are contained in this group, the general construction defines the trivial
homomorphism p : r -+ Out(M). We therefore consider L M = M x r as a subgroup of
LGSp(4, F) in the trivial way. The morphism 'lj; factors in the evident way 'lj; : LT -+ LMe
LGSp(4, F). The group

M = Gl(2,F?/F* ,

more precisely M = Gl(2,F) x Gl(2,F)/{(t,t,rl,rl) I t E F*} has LM as its L-group.

Namely X*(TM) = {nlx~ + n2x:;; + n3x3 + n4x.i I nl + n2 = n3 + n4} and X*(TM) = ~Xh +
.. +~X4*/~(Xh +X2* -X3* -X4*) with the obvious roots and coroots ::l:(x~-x:;;),::l:(x3 -x.i)
resp. ::l:(Xh - X2*), ::l:(X3* - X4*). Dualizing gives the root system of the maximal torus in
the group {(gl, g2) E Gl(2, c)1 det(gd = det(g2)}.

Now let L = E(T) = F(~), L' = E(TI7) = F(JAaDa) and E+ = E(I7) be the three fixed
fields of E. Consider some torus TM = (L* x (L')*)/K* in M = (Gl(2,F)2)/K*. The
isomorphism

p: (L* x (L')*)/K* ~ T ,

given by the map (h, t2)/(rl, t) I--t tlt2 I--t cPD(tlt2), defines an admissable embedding of
the torus

p: TM = (L* x (L')*)/K* -+ T C GSp(4,F) .

Let us record for comparison with [L5] for x = tlt2 E T

DH(tl, t2) = DH(tl, t2)11 - h/trll1 - t2/t~1 = DH(tl, t2)11- x/x17TI11 - x/xTI .

The valuation is chosen, such that I7rFI = qül, where qa is the cardinality of the residue
field of F.

Orbital integrals on M:

The orbital integrals on Mare stable

Here by some abuse of notation 1K will denote the unit elements of Hecke algebras
whatsoever.

We will show by explicit computations

Theorem: For residue characteristic different from 2 we have

ß(x,(h,t2))O;(1K) = SO~h)(1K) ,
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where

ß(X,(tl,t2)) = (xL/FI . I)((X-X")(XT _X"T))

is the transfer factor of [LS]. Here XL/F denotes the quadratic character of (F)* attached
to the field extension L/F. Furthermore 'TJ = cPDo(x) E cPDo(T) is assumed to be G - M
regular with image (tl, t2) E TM under p-l.

Remark: Observe that the (stable) orbital integrals on Mare the same as the orbital
integrals on Gl(2, F) x Gl(2, F), up to some appropriate normalization of measures

We have

( )( f(L': K) IDoAoII/2(qo -1 + f(L' : K)) I "1-1)10*(£1) t2 ----- + ---------- t2 - t2qo - 1 qo - 1

in case of L' / F. Here f(L/ F) resp. f(L' / F) denote the degrees of the residue field
extension. The valuations are normalized, such that I7fFI = qüI.

Red uction to H :

Using a double coset representatives for H \ G/K and [W] appendix 2, we are led to
calculate an infinite (actually then finite) sum

G ~ volG(K) 1 -1
07) (lK) = L.t l (K) 1Ki(h 'TJh)dh/dt.

i=O vo H i T\H

where
Ki = Gl(2,OE+(i))O C Gl(2,OE+)O = Ko = KH .

Here 0E+(i) denotes the order OF + 7flcoE+ in 0E+ for i > o. The index ° indicates, that
determinants should be in 0* = 0F.

The analogous formula holds for the K;-orbital integrals.

Proof of formula: We use appendix 2 and the double coset decomposition

CXl

G = UH. z(i). GSp(4,o) ,
i=O
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where

zCi) ~ G 0 -1

D
-JL

1 0
0 1
0 0

~
for JL= A1f}". See [5]. A.19.3(2).

Cd~' £>2+12 ß1 -£>1+81 -11 ~)A I-'

(')-1 (') 02 01
ß2-£>2 ~

Z 2 T/Z 2 = I-' I-'

WY1 i!::ll- 81 - 1'1 82A
i!::ll- !!::i.!. 82-12 81A A A

for

4J-1(T/) = (;c ~).
If this matrix is in GSp(4,0), then 01,02,81,82 E o. Furthermore then 1'1 E 0 and 02 =

-1'2 = -82 mod (A), hence especially 1'2 E o. Furthermore

ß2 = 02 = -82 mod (JL)

ß1 - 01 + 81 - 1'1 = 0 mod (JL) .

Especially ß1,ß2 E o. Put

Then these conditions are equivalent to 9 E Gl(2, OE+)O together with 02,82 E (JL), 1'1 E (JL)

and ß1 E hlA) and 1'2 E (A). If we replace 9 by

then these conditions are equivalent to

and det(g) E op. In other words for JL = A1f}", the isomorphism

h(JL) = (~ ~) (!1 ~)(~ JA) EH
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identifies (~)-l(T n z(i)GSp(4,o)z(i)-1) with the subgroup Ki C Gl(2, OE+)a

Warning: The isomorphism allows to work still with the same x E E*, but ~ does not
preserve the galois action. We will have to take care of this at the end by making the
substitutions tY f-t tY, T f-t tYT and tYT f-t T in the final formulas.

We can and will use measures on G, Hand G'T) = T, such that the volumes of maximal
compact subgroups are one, i.e. vola(K) = 1, vol(KH) = 1 andvol(oT) = 1. This means

Preliminary considerations on x:

Fix some xE T and assume T(V15ö) = V15ö, i.e. L = F(V15ö). The coordinates a,b and
a' = aT,b' = bT of

x=a+b~

and
xT =a' +b'~

depend on the choice of the parameter D = Da. From now on we fix notation, such that
these coordinates will be reserved for some fixed choice of normalized Da E F*.

Observe, that E/E+ is ramified iff L'/F and L/F are ramified. Furthermore if E/E+ is
unramified, then L/F is unramified and E+/F and L'/F are ramified. Especially L'/F is
always ramified.

Assumption: Suppose xE T is a unit in E* with x = xT mod IIE (in later notation x> 0)
in case E/E+ is ramified.

Then

is solvable with units h E 0L and t2 E OL'.

Proof: xE Tno'E implies X/X~T E NinoL. Namely x E T implies xx~ = XTX~T, which gives
X/X~T E E(T) = L. Furthermore NL/F(x/x~T) = xx~ /X~TXT = 1. We claim, that there is a
unit h E 0L' such that X/X~T = h/t'{. The image of 0L under t f-t t/t~ is Ni n (1 + 1rL0L) ,
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if L/F ramifies, and Ni otherwise. But L/F ramifies iff E/E+ ramifies. The assumption
X> 0 in the case, when E/E+ ramifies, shows xT = X(1I"E), hence

This garanties the existance of a unit tl E o'i such that X/X'TT = tI/tl = h/tIT. But then
t2 = X/tl is a unit, and t'2" /t2 = I, hence t2 E o'i and x = tlt2 E O'iO'i"

Because of E = F(x) we have a =j:. a'. Let the valuation on E+ be normalized with minimal
value 1. Put

x = ord(a - a') F = ord(b) = ord(b') .

Th F hF , F , f . , . F h b Ien X< 00. urt ermore b = 1I"E+B,b = 1I"E+B or unlts B,B In o~+. or t e a so ute
values, normalized such that /1I"FI = qol, we get

Furthermore

and

respectively

Lemma 1: Suppose X> 0 (if E/E+ is unramified). Then the following holds under the
assumptions on x made above:

2) X = ord(Da(b2 - (b'?)) ,hence

3) X ~ ord(Da) + 2F.

Proof: Observe that X > 0 is automatie for E/E+ ramified by our assumptions on x. We
have

2X = ord[(a - a')2 - (b - b')2 Da)] + ord[(a - a')2 - (b + b')2 Da] .
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For ord(b:l: bl
) ~ ord(a - al

) this implies ord(b T bl
) = 0 and ord(b:l: bl

) = ord(a - al
) = X > 0,

hence F = ord(b) = ordW) = o. Claim 1) and 2) follow immediately. Otherwise, if for
both signs ord(b:l: b') < ord(a - a'), the equality above gives

hence 2). This and F = min(ord(b - b'), ord(b + bl
)) implies 1).

Finally one has the following

Parity rule: If EjE+ is unramified, then ord(Do) =0 and X is odd (because a-al E E+\F
and E+jF ramifies). On the other hand ord((h -tnj2~) is even (LjF is unramified)
and ord((t2 - t2)j2~) is odd (by lemma 1).

The residue rings 8 = op+hrk:

Let 8 denote some residue ring OE+j7r~ and R the corresponding ring R = oFj7r~. Observe,
that the image ofthe order oE+(i) in 8 is exactly the subring R of 8. Obviously for A = Ao

8 = R[X]/(X2
- A) = R + RVA ,

where VA = X mod (X2 - A). Let Gl(2,8)0 be the group of matrices with determinant in
R*. The image of Ki in Gl(2, 8)0 is Gl(2, R).

The integrals
[Ko :K] r lK,(k-1sk)dk,JKo

for (j E T are zero unless sET n Ko. Let us assume this therefore. Then the value of
this integral is the number of left co sets kKi c Ko for which k-1sk E Ki or equivalently
the num ber of left cosets y . Gl(2, R) C Gl(2, 5)0 J such that

y-l sy E Gl(2, R) .

Assumption: Suppose s is of the form

_ (a bD)
s - b a '

where a, bE 5 and DoID. We will show

Lemma 2: Let e = e(EjE+) be the ramification index. We will show, that the following
conditions are equivalent:
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1) It exists an y E Gl(2,5)O such that y-1sy E Gl(2,R).

2) It exists a unit E E (5*)e such that

(~
3) It exists a unit E E (5*)e such that

in other words: a ER, Eb ER, c1bD E R.

Proof: The statement are trivial for b = o. Hence let us assume b =j:. o. Consider a solution
y E Gl(2,5)O of 1) or also a "weak" solution y E Gl(2,5). Remark: It is c1ear, that any
weak solution y with

det(y) = r. det(z) E R* . det(Gl(2, 5)s) = R* . ND

can be made into a solution by replacing y by

-1 (1 0)-1
Z Y 0 r

If e = I, E/E+ is unramified and E+ /F is ramified, then R*(5*)2 = 5* C R*det(Gl(2, 5)s) .
If e = 2, E/E+ is ramified and E+/F is unramified, then R*det(Gl(2,5)s) = (5*)2. Hence
3) obviously implies 1). Furthermore 2) and 3) are trivially equivalent. So let us discuss
the remaining implication 1) implies 2):

Of course y-1sy E Gl(2,R) is equivalent to y-1sy = y-TsTyT, which is equivalent to

for

But x uniguely determines the left coset yGl(2, R) of the (weak) solution y.

If y is a solution, then det(x) = 1 and
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hence

x = (r3JA r2f) r2,r3 ER.

Th is gives, beca use of a = aT, the conditions Xl b = bTXl, Xl bD = Xl bTDT, VAr2b =
VAr3bTDT. For b/bT (because of b=j:.O and ord(b) =ord(bT)) one gets

~ xr = Xl + Anns(b)

bT
b"xrDT = xlD + Anns(b)

~ r2VA = r3VADT + Anns(b) .

But det(x) = 1. Hence

hence

= xi + Anns(b) - r~ADT + Anns(b) .

But Anns(b) C 7rE+S because b =j:.0 and 7rFIAoDoIADT, because E/ F is always ramified!
Hence

Therefore Xl E S* and
b/bT = xI/xr + Anns(b) .

One finds therefore

~) . Gl(2, S)s .
Xl

12



f-------------------"IlII~'!!!.!I;•..•••---------------------
---..;

We get (2) (weak form)

;;

Here Xl E S*. Hence 3) (weak form)

It only remains to show

o ) -1 S (1
Xl 0

0) E Gl(2,R) .
Xl

Xl E (S*)€

in the case e(E/E+) = 2. But if E/E+ is ramified (E+ /F is unramified) we have ND = (S*)2
and R* c (S*)2. But we have shown XIX! = 1mod 7rE+' The norm map of the residue
field extension of E+ / F is surjective. Therefore the kernel is contained in a subgroup,
whose quotient has a index-2 subgroup, thus it is contained in the group of squares.
This implies

if e = 2. Lemma 2 is proved.

In the situation of lemma 2 consider the set of solutions S

{y E Gl(2, S)o /Gl(2, R)

and the set of solutions C

y-l sy E Gl(2, Rn

The map y I-t X = yTy-l defines an injection

i:S'--+C.

This map is not surjective in general. However, if e(EjE+) = 2, then R ~ S is etale and
Sl(2) is smooth and connected. Therefore the map i is surjective, therefore bijective. If
e(EjE+) = 1, then E+ jF is ramified. Therefore

whereas xT = x-I implies x2 = id mod 7rE+, hence only

X = :i:id mod7r E+ .
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Indeed if x E C, then also -x E C. But if x = id mod 1rE+ is in C, then one shows easily
x = yTy-1 for y E Gl(2,8)0 (by recursion mod powers of 1rE+). But then it is c1ear, that
xE C implies y ES. Therefore C = i(S) U -i(S). We get

#(S) = ~e(E+ /E)#(C) .

So in our counting problem we are reduced to count all xE 8l(2, 8) with x = x* = (xT)-1
and xsx-l = ST.

Nonvanishing of C:

5uppose we are given
= (a bD)

S b a .

Consider the set C

Put b = B1rE+ and
inv(b, D) = (b/b")D E 8 .

Actually this is only welldefined modulo Anns(b), but we later choose some fixed repre-
sentative. 5uppose

Ci- 0 .

This implies
inv(b, DY = inv(b, D) mod Anns(b) .

Namely one has (bT/b)DT = (xI/xr)D mod Anns(b) and (xI/xr)D = (b/bT)D mod Anns(b).
So we can and will fix some

inv(b, D) ER

depending only on s.

Description of C:

Then we have already shown, that

C = {x = (Xl T2~) I det(x) = l;xr = xI(bT /b) mod Anns(b);T3VA Xl

T2VA= inv(b, D)T3VA + a for a E Anns(b)} .

where of course
a E Anns(b) n VAR .
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We get from b = B7rE+
bT/b=(Hr/B)(-I)€V.

This gives, modulo Anns(b), the relation (xl/Br = (-I)€V(xl/B). But xl/B E S* and
therefore (_I)€V = 1 automatically has to hold. Only the case e = 1, where E+/F is
ramified, has to be considered. But then S* n VAR = 0. Hence

(xl/Br = (xl/B) or Xl E B. R .

We get for C

{ _ (rIB(1 + 8)
X - rsVA

inv(b,D)rsVA+a) _ . . T_ ,....,
r
I
BT(1 +8r I det(x) -1,a,8 E Anns(b),a - -a} / =,

where we consider solutions x = (rl,rs,8,a) and x' = (r~,r~,8',a') equivalent x ~ x', if
rs = r~,a = a' and rl(1 + 8) = r~(1 + 8'). 50 we have a description of C in terms of
equivalence c1asses of elements (rl,rs,8,a) E R2 x Anns(b)2 fullfilling equations

and
ri BBT (1+ 8)(1+ 8r - dA . inv(b, D) - ars VA = 1 .

We can now choose 8 E Anns(b), a E Anns(bVA) nRand rs ER arbitrarily. Put a = VAa.
Then there are exactly two solutions rl ER of the equation

ri BBT (1+ 8)(1 + 8r - r~A . inv(b, D) - ars = 1 .

This foliows, because the coefficient BBT is a square in R*. Otherwise C = 0. Furthermore
A.inv(b, D) and aA are in the maximal ideal. Extracting square roots from units congruent
one is always possible and gives exactly two solutions. The equivalence relations identifies
1+ Anns(b) n R solutions. Therefore

#C = 2#R#Anns(b)[(Anns(b) nRVA) : (Anns(b) n R)] .

This is
2#R#Anns(b)

in the case where E/E+ is ramified and also in the case E/E+ unramified, if ord(b) = v
IS even. However this is satisfied if bi-O and Ci- 0.

We get

Lemma 3: 5uppose that the set of solutions 5 is nonempty. Then the number of solution
#5 is either Sl(2, S)/ Sl(2, R) if b= 0 in S or otherwise

#5 = e(E/E+)#R#Anns(b) .
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On T \ H-integration:

In this section assume Do E E+ and 8 E E+ to be normalized of order 0 or 1. Consider
regular elements

TJ = cPIPDo(X) EH

with centralizer cPIJ2DO(T). We write H asa disjoint union of double cosets

U cPIJ2DO(T) . r. Ko ,
rER

where the representatives rE Gl(2, E+)O are of the form

for certain jE IN and £0 E o~+. This implies

r f(h)dh = 2:)OT : (T n rKor-1)] r dt r f(trk)dk,JH r JT JKo

hence
r f(h)dh/dt = 2:)oT/(T n rKor-1)] r f(rk)dk.
h\H r J~

It allows to calculate the orbital integrals on H by integrations over Ko and gives

O~(lK) =L I)OT/(T n rKor-1)][Ko : Ki] j 1Ki(k-1r-1TJrk)dk.
i2':O rER Ko

Observe x = a + byIJG = a + (b/8)J82 Do, hence for e = 8/1fo;;:(IJ)

because TJr is

bBDO) (1 0 ) ( a
O j-ord(lJ) = ba 1fE+ £0 --~,-

8<o7r E+

Therefore T n rKor-1 c OT = {x E oE I Norm(x) E o*} is the group

{x = a + bv"lJo" I Norm(x) E 0*; a, 1f~~b E 0E+} .
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It does not depend on the choice of the (normalized) Da resp. e.

Constraints (for fixed rand corresponding i): xE T n rKor-1 means xE 0E(j) n T.

Furthermore the index is

[oT/(T n rKor-1)] = [oE: oE(j)*][(NormEjE+(oE) n 0*) : (NormEjE+(oE(j)*) n 0*)]-1 .

Certain constraints have to be satisfied, if the orbital integral

should not vanish. Namely k-17/rk E Ki implies 7/r E Ko, hence xE T n rKor-1.

Suppose these r-constraints are satisfied. Then evaluating the orbital integral

means counting all cosets kKi c Ko, for which k-17/rk E Ki. This is the number of all
cosets y E Gl(2,OE+/7fk+OE+)0/Gl(2,OE+(i)) in Gl(2,OE+/7f~OE+), such that

holds (a number computed in lemmas 2 and 3).

Double cosets in H:

For normalized Da we have

Gl(2,E+) = U 1>Do(E*) (~
j?'O

? ) Gl(2,OE+) .
7fE+

This gives a decomposition (with unigue integers j ~ 0) for elements hE H

k E Gl(2,OE+),l E E* .

In order to adjust the data to the group H we are only allowed to change k to kak for
some ko E Gl(2, OE+) with the property

o ) -1 * (1j-ord(O) 1>o2Do(E) 0
7f E+ loO
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which means
ko E 0'E(j) .

Hence ko can be assumed to lie in Ko, whenever Norm(o'E(j))o* = 0'E+ . This is the case
only if j = 0 and E/E+ is unramified. In all other cases Norm(oE(j))o* = (0'E+? has index
two in 0e+'

On the other hand hE H imposes conditions on det(k). Namely det(h) E F* implies

det(k)7f~-~ord(O) = 1 in (E+)*/(F* . NOrmEjE+(E*)) ~Hl(F,T).

In the case, where E/E+ is ramified, we choose 7fE+ = NOrmEjE+(ITE) = -Do to be in
NOrmEjE+(E*). Then (*) implies det(k) E Norm(L*)noe+ = (oe+)2. Changing k by some
ko with determinant in (oe+)2 allows to assume det(k) E 0*, hence k E Ko eH.

We therefore get H as a disjoint union of double cosets

U cP02Do(T) . r. Ko
rER

R=INo

and for j E INo

_ _ ,I. (IT-j+ord(O)) (1r - rj - 'l'02Do E 0 j-~rd(O) )
7fE+

(7fE+ E F* n NOrmEjE+(E*)) .

Now consider the case, where E/E+ is unramified. Then det(k)7f~~ord(O) E F* NOrmEjE+(E*)1

implies
j - ord( B) = 0 mod 2 .

Secondly, to achieve det(k) E 0*, we are only allowed to change det(k) by elements in the
group NOrmEjE+(oE(j)). This is (0*)2 unless j = o. Let EO be in 0e+ \ (oe+)2. Then we
get H as a disjoint union of double co sets

U cP02Do(T) . r. Ko
rER

where Re ((0* /(0*)2) X IN U (1 x 0) consists of all elements (Eo,j) E (0* /(0*)2) x INo with
the property

j = ord(B) mod 2 .

The representatives are

_ . _ ,I. (IT(-Hord(O))j2 ') (1r - rEO,) - 'l'02Do E EO 0 j-o~d(O) ) .
7f E+ EO

Here E~ E 0'E is chosen, such that NOrmEjE+(E~) = EÜ
1 and where EO E 0'E+/(oe+)2.

Furthermore 7fE+ = y'AQ.
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Summation conditions:

Let us usethe notationsF, v=F-j, x=ord(a-a'). Then bI7r~+ =B7rE+,b'/7r~+ =B'7rV

for some units B,B' E 0;';+. Put () = 87'1;:(11). If EIE+ is unramified we put () = 7rE+'

From lemma 2 we get conditions on the summation indices (i,r) E INo x R for r = (Eo,j),
in order to yield a nonzero contribution to the orbital integral. These are:

1) o:=:; i:=:; X meaning a = a' mod 7rk+

2) v < i then (7rE+B8-1EÜl)/(7rE+B8-1Eült = E/ET mod 7r~-:has to hold for some
E E (o;,;+)e(E/E+).

3) If 2F + ord(Do) - v < i, then i:=:; X - v has to hold.

For condition 3) observe, that the conditions of lemma 2

and
( 2F-vB8 D )/( 2F-vB8 D)T - TI d i-2F-ord(Do)+v7'1E+ EO 0 7'1E+ EO 0 - E E mo 7'1E+

(for some E E (o;,;+)e(E/E+)) can be combined and thus simplified. For that we as-
sume 7r~+ E F because either 7rE+ = NormE/E+.,fI5Q = -Do or 7rE+ =.jA;;". It means
(B2 Do)/(B2 DO)T = 1mod 7r~-;F-ord(Do)+v or in other words i-2F-ord(Do)+v :=:; ord(DoB2-
(DoB2t). Now 2F+ord(Do)-v < i forces i > 0, which is only possible for X = ord(a-a') > 0

by 1). From x> 0 we get X = ord(Do(b2 - (b')2)) by lemma 1. Hence by lemma 1

Therefore the condition can be reformulated to

2F+ord(Do)-v<i implies i:=:;x-v.

R'" '"esume:

We now express the results of the chapter on T \ H integration in terms, wh ich are
suitable for summation. We saw, that the domain of possible values i is divided into
three parts:

A) Conditions on i (apart fram 0 :=:; i :=:; X relevant for X = 0 ):

Range of small i: o:=:; i :=:; v

19



Large range i: v< i ~ X - v

B) Conditions on v and B:

In the domain of possible values v we have, in addition to possible restrictions mentioned
above, the conditions:

v = F + ord(B) mod 2 ( if e(E/E+) = 1) .

Furthermore in the large range (concerning i) we have contributions only if

is satisfied. This forces v = 0 mod 2 in the large range for e(E/E+) = 1.

C) Contributions from the index index(v):

The relevant contributions are
1 (v = F)

(q+1)qF-v (v<F),
2q

in the case where E/ E+ is unramified and

in the case, where E/E+ is ramified. (See appendix).

D) Contributions from counting solutions sol (v, i):

Put 8 = 0E+/7r} and R = o/7r}. Then sol(v,i) is

#8l(2, 8)/#8l(2, R) (i ~ v small range)

In principle we now could compute the orbital integrals. We leave this to the reader. We
concentrate on the x;-orbital integrals instead.
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The summation (EIE+ ramified):

For 'TJ corresponding to x = t1t2, both h E L* and t2 E L' can be assumed to be units.
Otherwise our I\;-orbital integral is zero. This follows from the r-constraints and the
following fact: For the 1\;- orbital integral we do not get any contribution from the
small range of the i-summation in the ramified case, because this contribution is stable
(does not depend on e). The middle and large range contributions remain. The whole
summation is therefore empty unless X > 0, i.e. x = x' mod II in addition to x, x' E OL'
This is true, because X = 0 implies i = 0, which is in the stable range. This allows to
apply the preliminary remarks, made earlier.

Let xo be the quadratic character of (E+)* attached to E/E+. It is trivial on (0i-+)2 with
Xo(e) = -1. We get from qF-v. (2qVqb) = 2qFqb with qo = q1/2

O;(1K) = 2qFxo(B) .lo~xoLI(t1,t2) L L
O::;v::;F v<i::;x-v

The double sum gives
(qo _1)-1 L (q~+l-v _ q~+l)

O::;v::;F

= (qo _1)-1[q~+l(qüF-1 -1)/(qü1 -1) - qo(qÖ+1 -l)/(qo -1)]

= ( qo )2 (1 - qÖ+l)(l - q~-F) = qo r 1K(g-1(t1, t2)g)dg/dl .
qo - 1 JCI(2,F)2/(L*)2

Hence O;(1K) is equal to

The factor 2 disappears, because in the ramified case [aT: p((o£)2)] = 2. Further-
more qo cancels 12~12. Finally XO(;~) = XL/F((X - XCT)(XT - XCTT))xL/F(2-2Dü1) and
XL/F(2-2Dü1) = XL/F(-l). If we now make the substitutions IJ f-> IJ, T f-> IJT and IJT f-> T,

in order to compensate the effect of the isomorphism ~, we get the desired formula. The
theorem in the case, where E/ E+ is ramified, is proved.

The summation (EIE+ unramified):

To compute the I\;-orbital integral we concentrate on the case X > O. The case X = 0
is excluded by the parity rule, X is always odd. From the resume we get the following
contributions:
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1) 5mall term range: Its contribution will be

SRC = L L (-l)F-V#(fo - reprs.) . index(v) . sol(i)
O::;v::;FO::;i::;v

The representatives fO appearing in R give an additional factor 2 in the first sum! So

SRC = L sol(i)( _q)F-i .
O::;i::;F

But sol(i) = q3i/2 or 0 depending on the parity of i (because we use the primes 7re+).
Thus

SRC = (_q)F L qj = (_q)F [(q _ 1)ql+(F/2J - (q - 1)] .
O::;j::;F/2 (q - 1)2

Here [xJ is the largest integer n ::;x.

2) Large range contribution: We get

LRC= L L (-l)F-v'#(fo-reprs.).index(v)'sol(v,i).
v<i::;x-v O::;v::;F

The number sol(v, i) = 0 unless v and i are even. Hence

LRC= L ( L (_1)F.2.qi/2+v.q;lqF-v)
v<i::;x-v,i even O::;v<F,v even q

+( L (_l)F .1.qi/2+F .1)
F<i::;x-F,i,F even

The summations over i and then v give

in the case F odd and

(_q)F ((q + l)qx.t' _ 2qX-~+1 _ (q2 + l)q-T + (q + 1))
(q - 1)2

in case F is even.
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3) Total contribution: Adding together the contributions from 1),2) gives

where ev is the even number among F, X - Fand odd is the odd one (parity rule). But
IDol = 1, IAol = q-l/2, q = qo, (-I)F = Xo((x - x")/2~) = XL/F((X - X")(X"T - xT)). In
the present case the first of the two GI(2, F)-orbital integrals (for M) corresponds to the
unramified extension LI F, the second to the ramified extension L' I F. This proves the
theorem in the unramified case, once we apply the substitutions T t-+ IJ"T and vice verca.
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Appendix on orders (E /E+ ramified):

Let the situation be as above. Then the orders OE(j) = 0E+ + 1f~+OE C OE (where j > 0
by assumption) have the following properties:

1) Norm(oE(n)*) = (oE+?

This is c1ear from (oE+)2 C Norm(oE(n)*) c Norm(oe) C (oE+)2.

2) [oe(n): (1+ 1fE+OE)] = [oE+ : (oE+ n (1+ 1fE+OE)] = [oE+ : (1+ 1fE+OE+)] = (q - l)qn-l

3) [oe: oE(n)] = [oe: (1+ 1fE+OE)]/[Oe(n) : (1+ 1fE+OE)] = (q _1)q2n-l /(q - l)qn-l = qn

4) [OT : (T n rKor-1)] = [oL : oL(j)] = qj because (oe)(CT+l)(T-l) = (OE(j)*)(CT+l)(T-l)

follows from 1).

Finally for 8 = 0E+ /1fk+OE+ and i > 0

5) #(8l(2, 8)) = (q - l)(q + 1)q3i-2

and
6) #(Image(c/JD: 0L ---+ Gl(2, 8)) = qi(q - l)qi-l = (q - 1)q2i-l for i > o.

Appendix on orders (E/E+ unramified):

Let the situation be as above. Let OE(j) = 0E+ + 1f~+OE C OE for j > o.

1) Norm(oEU)*) = (oE+? if j > 0 and Norm(oe) = 0E+

This is c1ear from (oE+)2 C Norm(oe(j)) C Norm(oe) = (oE+) and [OE+ : (oE+)2] = 2 and
0eU) C 0E+(1 + 1fEOE).

2) For n > 0 we have [oe(n) : (1 + 1fE+OE)] = [oe+ : (oe+ n (1 + 1fE+OE)] = [oe+
(1+ 1fE+OE+ )]= (q - l)qn-l

3) For n > 0 we have [oe : oE(n)] = [oe (1 + 1fE+OE)]/[Oe(n) (1 + 1fE+OE)]
(q2 _ 1)q2(n-l) /(q _ l)qn-l = (q + l)qn-l.

Using 1) and 3) we get

5) [OT : (T n rKor-1)] is 1 or ~(q + l)qj-l. This follows because NormE/E+(Oe) n
0* = NormE/E+(oEU)*) n 0* for j = 0 and has index two for j > 0 (namely
(oE+)2 n 0* = (0*)2 in this case has index two in 0E+ n 0* = 0*.

This value is
1

~(q + l)qj-l
2

(j = 0)

U > 0) .
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