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1. Introduction

In the recent years, the dual pair of smooth and generalized random variables on the
White Noise space, (S) and (S)*, has found many applications. For example, stochastic
* (partial) differential equations [LOU 90, LOU 91, Po 92, Po 93] quantum field theory
[PS 93] and Feynman integrals [FPS 91, KS 92, LLS 93]. The main advantage of (S) and
(8)* is the S-Transform, which in a nice way characterizes the pair. This transform maps
generalized Hida distributions into a space of complex valued functions on S(IR). This
space of functions is called the space of U-functionals. Moreover, the S-Transform turns
out to be a bijection onto this space [PS 91]. ' ‘

TIn most applications, one is really working on the space of U-functionals. For this reason, it
is natural to topologize the U-functional space. The aim of this paper is to construct the U-
functional space using inductive and projective limits of Banach spaces. This construction
is in light of the construction of (S) and (S)" quite natural. With the given topologies, we
show our main result: The S-Transform is a homeomorphism.

Related topics have been investigated by other authors: Y.-J. Lee [Le 91] and Y. Yokoi
[Yo 93] have characterized (S) and (S)* using Bargman spaces.

2. Mathematical Preliminaries

Let
(S'(IR), B, 1)

be the white noise probability space. Denote the algebra of polyxiomials generated ‘by
< z,&>,& € S(IR), by P. (S)p denotes the completxon of ’P in the norm ||-||, ,, where

lls0||z,p IT(HP)pllz, 0 € P

Here, I'(HP) is the second quantization of the harmonic oscillator H ." The space of Hida
test functions, (S), is defined as the projective limit of (S),. The dual of (S), the space of
Hida distributions is denoted (S)*. We have the following triple:

(8) € (2%) = LX(S'(R), 1) € (5)"
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In the present paper, the S-Transform is investigated. We now give a short review of some
important aspects of this transform on the space of generalized Hida distributions.

For ® € (S)*, the S-Transform is defined as
SO(£) =< ®;: <% :> £ € S(R),

where : e<€> = e<">~3l¢3, Of course, the outer dual pairing is the one between (S) and
(S)". Using the S—’I‘ransform, one can characterlze the space (S)*. We need the folloWing
two definitions: : ' '

" Definition 2.1. A complex valued function F' on S(IR) is called ray entire at n € S(IR)

if and only if for every ¢ € S(IR), the mapping A — F(n + A¢), A € R, has an entire
analytic extension. If F is ray entire at every n € S(IR), then F' is called ray entire on

A S(R) Assume that F is ray entire at 0, and set for R>0and £ € S (R)

M(R,£):= sup |F(2£)].

F is said to be of growth (p, 7), p'> 0, T > 0, on S,(R), if and only if there exists a constant
C > 0, so that for all £ € S(IR), and all R > 0, ‘

M(R,£) < CeT”'lelas

vaS called the order of F', 7 is called the type of F. F is said to be of growth (p,0) on
Sp(IR), if and only if for every 7 > 0, there exists a C' >0 s0 that the above bound holds.

Definition 2.2. A complex valued function F on S (IR) is called a U-functional, if and

- only if F is ray entire on S(IR) and of growth (2,7) on S,(IR), for some 7 > 0 and some

p € INo.

We can now formulate the characterization theorem by Potthoff and Streit, [PS 91, KLP
94]:

Theorem 2.3. If & € (5)*, then S® is a U—functlonal If F is a U-functional, then

there exists a unique @ in (S)* so that S® = F.

One can also characterize the space (S) in a similar way (cf. [KPS 91]):

Theorem 2.4. If ¢ € (S), then Sy is ray entire on S(IR) and of growth (2,0) on
S_p(IR), for every p € INo. Conversely, if F is ray entire on S(IR) and of growth (2,0) on
S_p(IR) for every p € IN, then there exists a unique ¢ € (S) so that Sp = F.

Remark: In [HKP 93] it is shown that the S-Transform-of an (S)*-element is always of ‘
growth (2,1/2) on S,(IR). Traversing the proof of the characterization theorem, it is easy
to see that the growth of a U-functional can be chosen to be (2,1/2).

For a complete account on the Whlte Noise theory, the reader should confer [HKP 93] and
the references therein.




‘ 3..‘Spaces of U—'Funcf:ionals
- For eaoh pe Z define U, to be the spacé of all mappings
| F:S(R)— C,
where I is ray’/e:ntire, and satisfies the following growth bound:
iF(zg‘)| < Keb Kkl vz € €€ € S(R).
Equip U, with the norm

|Fll, = sup |F(s€)| e 312 1EE
' . z€C
LES(R) -

Proposition 3.1. U, is complete for all p €EZ.

Proof:  Let (Fy) be a sequence of elements in Uy such that

" 0o
S |Full, < co.
n=1

We éhow that S Fy, is an element of Up. Of course, by the triangle inequality; >  Fn
satisfies the growth bound in U,. Define : '

N
FME) = Fa(6)-

,Then F(N) . will be a sequence of ray entire functions, and an application of Vitali’s theoreﬁ
gives that F' =) Fy is ray entire. Hence Y F, is an element of Up. ' O

For p < ¢ we have that -
| |1g—p Z 1 1o,—q
Hence - - | . ;.2 )
|||, = sup |F(26)] e 21 ehamr < sup |F(2€)] e7 2 ke = || F],.
z’& . - Z’E . .
This means that the norms are comparable in the sense of [GV- 68]. The family of norms °
are also compatible: Let (F») be a Cauchy sequence in both of the norms ||-{|,, and ||-||, and
assumie F,, — 0 in ||:|| -norm. We show that F, — 0 in ||-{|;-norm. Note that convergence
in ||-||,-norm implies pointwise convergence. This means that F,(z§) — 0 for every 2z, €.
Assume Fy, — F for some F # 0 in ||| ,-norm. Hence, F(z¢) is different from 0 for at
least one pair z,¢, which is impossible. ‘ ‘




Define |

U= (U
. PEZ . ‘

and equip this space with the projective limit topology. Define

u = Ju |

pEZ
" equipped with the inductive limit topology. We then have the following chain of inclusions
UC..ClUyCUyCUgCU1CUC...CU"

According to [GV 68], U is a countably normed space, and hence a Fréchet space.

Remark: The reader should note that U/* not nééessarﬂy’is the dual of U. However, we
will show later that * can be identified with the dual .of U through the S-Transform.

The two characterization theorems for (S) and (S)* stated in the preceding section, can’
now be reformulated as: .

Theorem 3.2. The S-Transfbrm is an algebraic bijection from (S)* onto U*, and from
(S) onto U. '

4. Topological Aspects of the S-Transform
Now we want to state our main result:

Theorem 4.1. The S-transform S: (S)* — U* is a homeomorphism if both spaces are
equipped with the inductive limit topology (which for (S)*, as well known, coincides with
the strong topology, cf. [HKP 93], Chapter 3). ‘

Furthermore also the S-transform S: (§) — U is a homeomorphism if both spaces are

equipped with the projective limit topology. :

- Proof: We will show that for a suitable choice of p and q, ‘S : (S)b — Uy and
S~ U, — (S), are continuous, the rest of the proof is done by standard topological
arguments. ’ :

Proposition 4.2. Let @ € (S),, p € Z. Then §& €Uy and [|S2||, < |9, |
Proof: In the proof of the characterization theorem ([PS 91, HKP 93]) it is shown that
S8(:6)| < [10lly et e |
for all z € €, £ € S(IR). Hence :
|52l = sup |s@(:6)|e”H B < 12l
£ES(R)

O

Proposition 4.3. Let Fel,,p€ Z. Then there exist constants ¢, cg > 0 independent
of p such that for g < p—c1, ST'F € (S), and ”S"lF“q < e [|FY|,-
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Proof:  Such constants can be found quite easily elaborating the constants in the proof

~ of the characterization theorem [PS 91, HKP 93].

Some particular choices for these constants have been worked out, e.g., in [KS 91, Le 91,
Ya 90, KLP 94]. | | | 0

As an immediate consequence of Theorem 4.1. we have the following result.

Corollary 4.4. The space U* can be identified with the dual space of U.

Proof: Let U’ denote the dual space of U. Then the action of F € U* on f € U can be
defined by F(f) :=< S~ 1F,8~1f >, where the pairing on the right-hand side is the one
between (S)* and (S). Hence F € U’

‘Now for F € U’ there is a corresponding (S)*-element @ defined by < <I>, @ >:= F(Sy) for

¢ € (5). But then G := S® € U* and for f € U G(f) =< 871G, 871f >=< 8,57 1f >=
F(S8(871f)) = F(f), hence F = G e ux. ‘ , 0

Another consequence of Theorem 4.1. is the followmg

Remark: Since (S) and (S)* are nuclear Fréchet spaces (cf. [HKP 93]), by theorem 4.1.
this is also true for I and U*. Hence by general theory (e.g. [Sch 71]) U is the projective
limit of a sequence of Hﬂbert spaces, i.e. a countably Hllbert space in the sense of [GV
68].°

Acknowledgements We would like to thank Jiirgen Potthoff for valuable comments and
suggestions. The second author is supported by the Norwegian Research Council(NFR),

100549/ 410.
_ References.
[FPS 91] de Faria, M., Potthoff, J. and Streit, L.: The Feynman integrand as a Hida
: distribution, J. Math. Phys. 32(1991) 2123-2127
[GV 68] - Gel’fand, I.M. and Vilenkin, N.Ya.: Generalized Functions II. New York, London:
' Academic Press (1968) ‘ :
[HKP 93] Hida, T., Kuo, H.-H., Potthoff, J. and Streit, L.. White Noise ~ An Infinite
Dimensional Calculus. Dordrecht: Kluwer (1993)
[KLP 94} Kondratiev, Y., Leukert, P., Potthoff, J., Streit, L. and Westerkamp, W.: Gen-
eralized functionals in Gaussian spaces — the characterization theorem revisited;
Preprint (1994)
[KPS 91] Kuo, H.-H., Potthoff, J. and Streit, L.: A characterization of white noise test
functxona,ls, Nagoya Math. J. 121 (1991) 185-194
[KS 91] - Kondratiev, Y. and Streit, L.: A remark about a norm estimate for white noise
‘ distributions; Universidade da Madeira Preprint (1991), to appear in: Ukrainean
Math. J.
[KS92] - Khandekar, D.C. and Streit, L.: Constructmg the Feynman integrand; Ann.

Physik 1 (1992) 49-55



|

[Le 91]

" [LLS .93]

'-@ngm

[LOU 91]

[Po 92]

[Po 93]
[PsS 91]

‘[Psgﬂ

[Sch 71]

[Ya 90]
[Yo 93]

Lee, Y.-J.: A characterization of generalized functions on infinite dimensional
spaces and Bargmann-Segal analytic functions; in: The Third Nagoya-Levy Sem-
inar, Gaussian Random Fields; Ito, K. and Hida, T. (eds.). World Scientific
(1991)

Laschek, A., Leukert, P., Strelt L. and Westerkamp, W.: Quantum mechanical
propagators in terms of H.lda distributions; Preprint (1993)

Lindstrgm,; T., @ksendal, B. and Ubge, J.: Stochastic differential equations in-
volving positive noise; Preprint (1990)

Lindstrgm, T., @ksendal, B. and Ubge, J.: Wick multiplication and Ito-Skorohod
stochastic differential equations; In S. Albeverio et.al (eds.) Ideas and methods in
mathematical analysis, stochastic and applications. Cambridge University Press
(1992), pp. 183-206

" Potthoff, J.: White noise methods for stochastic partial differential equatlons in:

Stochastic Partial Differential Equatzons and Their Applications, B.L. Rozovskii,
R.B. Sowers (eds.). Berlin, Heidelberg, New York: Springer (1992)

Potthoff, J.: White noise approach to parabohc stochastic differential equations;
in preparation

Potthoff, J. and Streit, L.: A charactenzatxon of Hida- dlstnbutmns, J. Punct.
Anal. 101 (1991) 212-229

Potthoff, J. and Streit, L.: Invariant states on random and quantum fields:
¢-bounds and white noise analysis; J. Funct. Anal. 111 (1993) 295-311

Schéafer, H. H.: Topologzcal vector spaces. New York, Heldelberg, Berlin: Springer

(1971)

Yan, J.-A.: A characterization of white noise functionals; Preprint (1990)
Yokoi, Y.: Simple setting for white noise calculus usmg Bargman space and Gauss
transform; Manuscript (1993) .



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007

