Nr. 176/94

TOPOLOGICAL ASPECTS OF THE CHARACTERIZATION OF HIDA DISTRIBUTIONS – A REMARK

Matthias Timpel & Fred Espen Benth

Topological Aspects of the Characterization of Hida Distributions - A Remark

MATTHIAS TIMPEL University of Mannheim, D-68131 Mannheim, Germany

FRED ESPEN BENTH
University of Mannheim, D-68131 Mannheim, Germany
and University of Oslo, N-0316 Oslo, Norway

1. Introduction

In the recent years, the dual pair of smooth and generalized random variables on the White Noise space, (S) and $(S)^*$, has found many applications. For example, stochastic (partial) differential equations [LØU 90, LØU 91, Po 92, Po 93], quantum field theory [PS 93] and Feynman integrals [FPS 91, KS 92, LLS 93]. The main advantage of (S) and $(S)^*$ is the S-Transform, which in a nice way characterizes the pair. This transform maps generalized Hida distributions into a space of complex valued functions on $S(\mathbb{R})$. This space of functions is called the space of U-functionals. Moreover, the S-Transform turns out to be a bijection onto this space [PS 91].

In most applications, one is really working on the space of U-functionals. For this reason, it is natural to topologize the U-functional space. The aim of this paper is to construct the U-functional space using inductive and projective limits of Banach spaces. This construction is in light of the construction of (S) and $(S)^*$ quite natural. With the given topologies, we show our main result: The S-Transform is a homeomorphism.

Related topics have been investigated by other authors: Y.-J. Lee [Le 91] and Y. Yokoi [Yo 93] have characterized (S) and $(S)^*$ using Bargman spaces.

2. Mathematical Preliminaries

Let

$$(\mathcal{S}'(I\!\! R),\mathcal{B},\mu)$$

be the white noise probability space. Denote the algebra of polynomials generated by $\langle x, \xi \rangle, \xi \in \mathcal{S}(\mathbb{R})$, by \mathcal{P} . $(\mathcal{S})_p$ denotes the completion of \mathcal{P} in the norm $\|\cdot\|_{2,p}$, where

$$\|\varphi\|_{2,p} = \|\Gamma(H^p)\varphi\|_2, \varphi \in \mathcal{P}$$

Here, $\Gamma(H^p)$ is the second quantization of the harmonic oscillator H. The space of Hida test functions, (S), is defined as the projective limit of $(S)_p$. The dual of (S), the space of Hida distributions is denoted $(S)^*$. We have the following triple:

$$(\mathcal{S})\subset (L^2):=L^2(\mathcal{S}'(I\!\! R),\mu)\subset (\mathcal{S})^*.$$

In the present paper, the S-Transform is investigated. We now give a short review of some important aspects of this transform on the space of generalized Hida distributions.

For $\Phi \in (\mathcal{S})^*$, the S-Transform is defined as

$$\mathcal{S}\Phi(\xi) = \langle \Phi, : e^{\langle \cdot, \xi \rangle} : \rangle, \xi \in \mathcal{S}(\mathbb{R}),$$

where : $e^{\langle \cdot, \xi \rangle} := e^{\langle \cdot, \xi \rangle - \frac{1}{2} |\xi|_2^2}$. Of course, the outer dual pairing is the one between (S) and $(S)^*$. Using the S-Transform, one can characterize the space $(S)^*$. We need the following two definitions:

Definition 2.1. A complex valued function F on $\mathcal{S}(\mathbb{R})$ is called ray entire at $\eta \in \mathcal{S}(\mathbb{R})$ if and only if for every $\xi \in \mathcal{S}(\mathbb{R})$, the mapping $\lambda \longmapsto F(\eta + \lambda \xi), \lambda \in \mathbb{R}$, has an entire analytic extension. If F is ray entire at every $\eta \in \mathcal{S}(\mathbb{R})$, then F is called ray entire on $\mathcal{S}(\mathbb{R})$. Assume that F is ray entire at 0, and set for R > 0 and $\xi \in \mathcal{S}(\mathbb{R})$

$$M(R,\xi) := \sup_{|z|=R} |F(z\xi)|.$$

F is said to be of growth (ρ, τ) , $\rho \geq 0$, $\tau \geq 0$, on $\mathcal{S}_p(\mathbb{R})$, if and only if there exists a constant C > 0, so that for all $\xi \in \mathcal{S}(\mathbb{R})$, and all R > 0,

$$M(R,\xi) \le C e^{\tau R^{\rho} |\xi|_{2,p}^2}.$$

 ρ is called the order of F, τ is called the type of F. F is said to be of growth $(\rho,0)$ on $\mathcal{S}_p(\mathbb{R})$, if and only if for every $\tau > 0$, there exists a C > 0 so that the above bound holds.

Definition 2.2. A complex valued function F on $\mathcal{S}(\mathbb{R})$ is called a U-functional, if and only if F is ray entire on $\mathcal{S}(\mathbb{R})$ and of growth $(2,\tau)$ on $\mathcal{S}_p(\mathbb{R})$, for some $\tau \geq 0$ and some $p \in \mathbb{N}_0$.

We can now formulate the characterization theorem by Potthoff and Streit, [PS 91, KLP 94]:

Theorem 2.3. If $\Phi \in (\mathcal{S})^*$, then $\mathcal{S}\Phi$ is a U-functional. If F is a U-functional, then there exists a unique Φ in $(\mathcal{S})^*$ so that $\mathcal{S}\Phi = F$.

One can also characterize the space (S) in a similar way (cf. [KPS 91]):

Theorem 2.4. If $\varphi \in (\mathcal{S})$, then $\mathcal{S}\varphi$ is ray entire on $\mathcal{S}(\mathbb{R})$ and of growth (2,0) on $\mathcal{S}_{-p}(\mathbb{R})$, for every $p \in \mathbb{N}_0$. Conversely, if F is ray entire on $\mathcal{S}(\mathbb{R})$ and of growth (2,0) on $\mathcal{S}_{-p}(\mathbb{R})$ for every $p \in \mathbb{N}_0$, then there exists a unique $\varphi \in (\mathcal{S})$ so that $\mathcal{S}\varphi = F$.

Remark: In [HKP 93] it is shown that the S-Transform of an $(S)^*$ -element is always of growth (2, 1/2) on $S_p(\mathbb{R})$. Traversing the proof of the characterization theorem, it is easy to see that the growth of a U-functional can be chosen to be (2, 1/2).

For a complete account on the White Noise theory, the reader should confer [HKP 93] and the references therein.

3. Spaces of U-Functionals

For each $p \in \mathbb{Z}$ define \mathcal{U}_p to be the space of all mappings

$$F: \mathcal{S}(I\!\! R) \longrightarrow \mathbb{C},$$

where F is ray entire, and satisfies the following growth bound:

$$|F(z\xi)| \le Ke^{\frac{1}{2}|z|^2|\xi|_{2,-p}^2}, \forall z \in \mathbb{C}, \xi \in \mathcal{S}(\mathbb{R}).$$

Equip \mathcal{U}_p with the norm

$$||F||_p = \sup_{\substack{z \in \mathbb{C} \\ \xi \in \mathcal{S}(I\!\!R)}} |F(z\xi)| e^{-\frac{1}{2}|z|^2|\xi|_{2,-p}^2}$$

Proposition 3.1. \mathcal{U}_p is complete for all $p \in \mathbb{Z}$.

Proof: Let (F_n) be a sequence of elements in \mathcal{U}_p such that

$$\sum_{n=1}^{\infty} \|F_n\|_p < \infty.$$

We show that $\sum F_n$ is an element of \mathcal{U}_p . Of course, by the triangle inequality, $\sum F_n$ satisfies the growth bound in \mathcal{U}_p . Define

$$F^{(N)}(\xi) = \sum_{n=1}^{N} F_n(\xi).$$

Then $F^{(N)}$ will be a sequence of ray entire functions, and an application of Vitali's theorem gives that $F = \sum F_n$ is ray entire. Hence $\sum F_n$ is an element of \mathcal{U}_p .

For p < q we have that

$$|\cdot|_{2,-p} \ge |\cdot|_{2,-q}.$$

Hence

$$||F||_p = \sup_{z,\xi} |F(z\xi)| e^{-\frac{1}{2}|z|^2|\xi|_{2,-p}^2} \le \sup_{z,\xi} |F(z\xi)| e^{-\frac{1}{2}|z|^2|\xi|_{2,-q}^2} = ||F||_q.$$

This means that the norms are comparable in the sense of [GV 68]. The family of norms are also compatible: Let (F_n) be a Cauchy sequence in both of the norms $\|\cdot\|_p$ and $\|\cdot\|_q$, and assume $F_n \longrightarrow 0$ in $\|\cdot\|_p$ -norm. We show that $F_n \longrightarrow 0$ in $\|\cdot\|_q$ -norm. Note that convergence in $\|\cdot\|_r$ -norm implies pointwise convergence. This means that $F_n(z\xi) \longrightarrow 0$ for every z, ξ . Assume $F_n \longrightarrow F$ for some $F \neq 0$ in $\|\cdot\|_q$ -norm. Hence, $F(z\xi)$ is different from 0 for at least one pair z, ξ , which is impossible.

Define

$$\mathcal{U} = igcap_{p \in Z\!\!\!Z} \mathcal{U}_p$$

and equip this space with the projective limit topology. Define

$$\mathcal{U}^* = \bigcup_{p \in \mathbb{Z}} \mathcal{U}_p$$

equipped with the inductive limit topology. We then have the following chain of inclusions

$$\mathcal{U} \subset \ldots \subset \mathcal{U}_2 \subset \mathcal{U}_1 \subset \mathcal{U}_0 \subset \mathcal{U}_{-1} \subset \mathcal{U}_{-2} \subset \ldots \subset \mathcal{U}^*.$$

According to [GV 68], \mathcal{U} is a countably normed space, and hence a Fréchet space.

Remark: The reader should note that \mathcal{U}^* not necessarily is the dual of \mathcal{U} . However, we will show later that \mathcal{U}^* can be identified with the dual of \mathcal{U} through the \mathcal{S} -Transform. The two characterization theorems for (\mathcal{S}) and $(\mathcal{S})^*$ stated in the preceding section, can now be reformulated as:

Theorem 3.2. The S-Transform is an algebraic bijection from $(S)^*$ onto U^* , and from (S) onto U.

4. Topological Aspects of the S-Transform

Now we want to state our main result:

Theorem 4.1. The S-transform $S:(S)^* \longrightarrow \mathcal{U}^*$ is a homeomorphism if both spaces are equipped with the inductive limit topology (which for $(S)^*$, as well known, coincides with the strong topology, cf. [HKP 93], Chapter 3).

Furthermore also the S-transform $S:(S) \longrightarrow \mathcal{U}$ is a homeomorphism if both spaces are equipped with the projective limit topology.

Proof: We will show that for a suitable choice of p and q, $S:(S)_p \longrightarrow \mathcal{U}_q$ and $S^{-1}:\mathcal{U}_p \longrightarrow (S)_q$ are continuous, the rest of the proof is done by standard topological arguments.

Proposition 4.2. Let $\Phi \in (\mathcal{S})_p$, $p \in \mathbb{Z}$. Then $\mathcal{S}\Phi \in \mathcal{U}_p$ and $\|\mathcal{S}\Phi\|_p \leq \|\Phi\|_{2,p}$.

Proof: In the proof of the characterization theorem ([PS 91, HKP 93]) it is shown that

$$|\mathcal{S}\Phi(z\xi)| \le \|\Phi\|_{2,p} e^{\frac{1}{2}|z|^2|\xi|_{2,-p}^2}$$

for all $z \in \mathbb{C}$, $\xi \in \mathcal{S}(\mathbb{R})$. Hence

$$\|\mathcal{S}\Phi\|_{p} = \sup_{\substack{z \in \mathbb{C} \\ \xi \in \mathcal{S}(\mathbb{R})}} |\mathcal{S}\Phi(z\xi)| e^{-\frac{1}{2}|z|^{2}|\xi|_{2,-p}^{2}} \leq \|\Phi\|_{2,p}.$$

Proposition 4.3. Let $F \in \mathcal{U}_p$, $p \in \mathbb{Z}$. Then there exist constants $c_1, c_2 > 0$ independent of p such that for $q \leq p - c_1$, $\mathcal{S}^{-1}F \in (\mathcal{S})_q$ and $\|\mathcal{S}^{-1}F\|_q \leq c_2 \|F\|_p$.

Proof: Such constants can be found quite easily elaborating the constants in the proof of the characterization theorem [PS 91, HKP 93].

Some particular choices for these constants have been worked out, e.g., in [KS 91, Le 91, Ya 90, KLP 94].

As an immediate consequence of Theorem 4.1. we have the following result.

Corollary 4.4. The space \mathcal{U}^* can be identified with the dual space of \mathcal{U} .

Proof: Let \mathcal{U}' denote the dual space of \mathcal{U} . Then the action of $F \in \mathcal{U}^*$ on $f \in \mathcal{U}$ can be defined by $F(f) := \langle S^{-1}F, S^{-1}f \rangle$, where the pairing on the right-hand side is the one between $(S)^*$ and (S). Hence $F \in \mathcal{U}'$.

Now for $F \in \mathcal{U}'$ there is a corresponding $(\mathcal{S})^*$ -element Φ defined by $\langle \Phi, \varphi \rangle := F(\mathcal{S}\varphi)$ for $\varphi \in (\mathcal{S})$. But then $G := \mathcal{S}\Phi \in \mathcal{U}^*$ and for $f \in \mathcal{U}$ $G(f) = \langle \mathcal{S}^{-1}G, \mathcal{S}^{-1}f \rangle = \langle \Phi, \mathcal{S}^{-1}f \rangle = F(\mathcal{S}(\mathcal{S}^{-1}f)) = F(f)$, hence $F = G \in \mathcal{U}^*$.

Another consequence of Theorem 4.1. is the following

Remark: Since (S) and $(S)^*$ are nuclear Fréchet spaces (cf. [HKP 93]), by theorem 4.1. this is also true for \mathcal{U} and \mathcal{U}^* . Hence by general theory (e.g. [Sch 71]) \mathcal{U} is the projective limit of a sequence of Hilbert spaces, i.e. a countably Hilbert space in the sense of [GV 68].

Acknowledgements: We would like to thank Jürgen Potthoff for valuable comments and suggestions. The second author is supported by the Norwegian Research Council(NFR), 100549/410.

References.

[FPS 91]	de Faria, M., Potthoff, J. and Streit, L.: The Feynman integrand as a Hida distribution, J. Math. Phys. 32 (1991) 2123-2127
[GV 68]	Gel'fand, I.M. and Vilenkin, N.Ya.: Generalized Functions II. New York, London: Academic Press (1968)
[HKP 93]	Hida, T., Kuo, HH., Potthoff, J. and Streit, L.: White Noise - An Infinite Dimensional Calculus. Dordrecht: Kluwer (1993)
[KLP 94]	Kondratiev, Y., Leukert, P., Potthoff, J., Streit, L. and Westerkamp, W.: Generalized functionals in Gaussian spaces – the characterization theorem revisited; <i>Preprint</i> (1994)
[KPS 91]	Kuo, HH., Potthoff, J. and Streit, L.: A characterization of white noise test functionals; Nagoya Math. J. 121 (1991) 185-194
[KS 91]	Kondratiev, Y. and Streit, L.: A remark about a norm estimate for white noise distributions; <i>Universidade da Madeira Preprint</i> (1991), to appear in: <i>Ukrainean Math. J.</i>
[KS 92]	Khandekar, D.C. and Streit, L.: Constructing the Feynman integrand; Ann. Physik 1 (1992) 49-55

Lee, Y.-J.: A characterization of generalized functions on infinite dimensional [Le 91] spaces and Bargmann-Segal analytic functions; in: The Third Nagoya-Levy Seminar, Gaussian Random Fields; Ito, K. and Hida, T. (eds.). World Scientific (1991)[LLS 93] Laschek, A., Leukert, P., Streit, L. and Westerkamp, W.: Quantum mechanical propagators in terms of Hida distributions; Preprint (1993) [LØU 90] Lindstrøm, T., Øksendal, B. and Ubøe, J.: Stochastic differential equations involving positive noise; Preprint (1990) Lindstrøm, T., Øksendal, B. and Ubøe, J.: Wick multiplication and Ito-Skorohod [LØU 91] stochastic differential equations; In S. Albeverio et al (eds.) Ideas and methods in mathematical analysis, stochastic and applications. Cambridge University Press (1992), pp. 183-206 Potthoff, J.: White noise methods for stochastic partial differential equations; in: [Po 92] Stochastic Partial Differential Equations and Their Applications, B.L. Rozovskii, R.B. Sowers (eds.). Berlin, Heidelberg, New York: Springer (1992) Potthoff, J.: White noise approach to parabolic stochastic differential equations; Po 93 in preparation Potthoff, J. and Streit, L.: A characterization of Hida distributions; J. Funct. [PS 91] Anal. 101 (1991) 212-229 [PS 93] Potthoff, J. and Streit, L.: Invariant states on random and quantum fields: φ-bounds and white noise analysis; J. Funct. Anal. 111 (1993) 295-311 Schäfer, H. H.: Topological vector spaces. New York, Heidelberg, Berlin: Springer [Sch 71] [Ya 90] Yan, J.-A.: A characterization of white noise functionals; Preprint (1990) Yokoi, Y.: Simple setting for white noise calculus using Bargman space and Gauss Yo 93 transform; Manuscript (1993)