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1. Introduetion

In th~ reeent years, the dual pair of smooth and generalized random variables on the
White Noise spaee, (S) and (S)*, has found many applieations. For example, stoehastic
(partial) differential equations [L0U 90, L0U 91, Po 92, Po 93], quantum field theory
[PS 93] and Feynman integrals [FPS 91, KS 92, LLS 93]. The main advantage of (S) and
(S) * is fhe S-Transform, which in a niee way eharaeterizes the pair. This transform maps
generalized Hida distributions into a spaee of eomplex valued functions on S(lR). This
spaee of functions is ealled the spaee ofU-funetionals.Moreover, the. S-Transform turns
out to be a bijeetion onto this spaee [PS 91].
In most applications, one is really workingon the space of U-funetionals. For this reason, it
is natural to topologize the U-funetional spaee. The aim of this paper is to eonstruct the U-
functional space using inductive and projective limits of Banaeh spaces. This construetion
is in light of the eonstruction of (S) and (S)* quite natural. With the given topologies, we
show ourmain result: The S-Transform is a homeomorphism.
Related topics have been investigated by öther authors: Y.-J. Lee [Le91] and Y. Yokoi
[Yo93]have characterized (S) and (S)* using Bargman spaees.

2. Mathematieal Preliminaries

Let
(S'(lR), B, 1-£)

be the white noise probability spaee. Denote the algebra of polynomials generated by
< x, ~ >,~E S(lR), by P. (S)p denotes the eompletion of P in the norm 11.112,p' where

1I'P112,p = IIr(HP)'P1I2, 'P E P

Here, r(HP) is the seeond quantization of the harmonie oseillator H. The spaee of Hida
test funetions, (S), is definedas the projective limit of (S)p. The dual of (S), the spaee of
Hida distributions is denoted (S)*. We have the followingtripie:
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In the present paper, the S-Transform is investigated. We now give a short review of some
important aspects of this transform on the space of generalized Hida distributions.
For' <I>E (S) *, the S-Transform is defined as

Sq>(~) -< <1>; : e<"~> :>, ~E S(IR),
"

where: e<"~> := e<',~>-~I~I~. Of course, the outer'dual pairing is the one between (S) and
(S)*. Using theS-Transform, one can characterizethe space (S)*. We need the following
two definitions:

Definition 2.1. A complex valued function Fon S(IR) is called ray entire at rJ E S(lfl)
if and only if for every ~ E S(IR), the mapping A 1---+ F(rJ + A~), A E IR, has an entire
analytic extension. 1£ F is ray entire at every rJ E S(IR), then F is called ray entire on
S(IR). Assurne that F is ray entire at 0, and set for R > 0 and ~ E S(IR) .

M(R,~):= sup IF(z~)I..
Izl=R

Fis said to be of growth (p, T), p? 0, T ? 0, on Sp(IR), if and only if there exists a constant
C :> 0, so that for all ~ E S(IR), and all R > 0,

M(R,~) ~ CerRPI~IL.' ,

p is called the order of F" T is called the type of F. F is said to be of growth (p, 0) on
Sp(IR), if and only if for every T> 0, there exists a C >0 'so that the above böund holds.

Definition 2.2. A complex valued function F on S(IR) is called a U-functional, if and
only if F is ray entire on S(IR) and of growth (2, T) on Sp(IR), for some T ? 0 and some
pE INo.

We can nöw formulate the characterization theorem by Potthoff and Streit, [PS 91, KLP
9~: .

Theorem 2.3. 1£ <I>E (S)*, then S<I> is a U-functional. 1£ F is a U-functional,. then
there exists a unique <I>in (S)* so that Sq>= F.
One can also characterize the space (S) in a similar way (cf. [KPS 91]):

Theorem 2.4. 1£ I.pE (S), then SI.p is ray entire on S(IR)' and of growth (2,0) on
S_p(1R), for every pEIN o. Conversely, if F is ray entire on S(IR) and of growth (2,0) on
S_p(IR) for every pE !No, then there exists a unique l.p'E (S) so that SI.p= F.

/

Remark: In [HKP 93] it is shown that the S- Transform- of an (S) *-element i8 always of
growth (2,1/2) on Sp(IR). Traversing the proof of the characterization theorem, it is easy
to see -that the growth Qfa U-functional can be chosen to be (2,1/2).

For a complete a<;counton the White Noise theory, the reader should confer [HKP 93] and
the references therein.
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3. Spaces of U":Funetionals
•

.For each p E ~ .defineUp to be the space of all mappings

F : S(JR) -+ C,

/

where F is ray' entire, and satisfies the following growth bound:

Equip Up 'with the norm

Proposition 3.1. Up is complete for all p E ~.

Proof: Let (Fn) be a sequence of elements in Up such that

00

I)IFnllp <00.
n=l

We show that EFn is an element of Up' Of course, by the triangle inequality; EFn
satisfies the growth bound in Up' Define

N

F(N)(~) = l:Fn(~)' ~
n=l

Then F(N).~will be a sequence of ray entire functions, and an application of Vitali's theorem
gives that F =E Fn is ray entire. Hence E Fn is an element of Up• 0

For p < qwe have that

Hence
\IFIlp , sup IF(z~)1 e-tlzI21~1~,-p ~ supIF(z~)1 e~tlzI21~1~,_q = IlFllq•

z~ . z~

This means that the norms are comparable in the sense of [GV 68]. Thefamily of norms
are also compatible: Let (Fn) be a"Cauchy sequence in both ofthe.norms 11'\Ipand 11,lIq, and
assume Fn -+ 0 in 11.\Ip-norm.We show that F,n -+ 0 in 11.llq-norm.Note that convergence
in 11.llr-norm implies pointwise convergence. This means that Fn(z~) ~ 0 fore-yery z,~.
Assurne Fn -+ F for sOme F =1= 0 in\l,llq-norm. Hence, F(ze) is different from 0 for at
least one pair z,~, which is impossible.
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Define
u=nup

pE~

and equip this spate with the projective limit topology. Define

U* = U Up
pE~

. equipped with the inductive limit topology. We then have the following chain of inclusions

U C ... C U2 C Ul C Uo C U-l C U-2 C ... C U*.

According to [GV 68], U is a countably normed space, and hellce a Frechet space.
Remark: The reader should note that U* not necessarily is the dual of U. However, we
will shmy later that U* .can be identified with the dual.of U through the S-Transform~
The two characterization theorems for (S) and (S) * stated in the preceding section, can
now be reformulated as:

Theorem 3.2. The S-Transform is a~ algebraic bijection from (S) * onto U*, and from
(S) onto U.

4. Topological Aspects of the S-Transform

Now we want to state our main result:

Theorem 4.1. The S-transform S: (S) * ~ U* is a homeomorphism if both spaces are
equipped with the inductive limit topology (which for (S) *, as weil known, coincides with
the strong topology, d. [RKP 93],Chapter 3).
Furthermore also the S-transform S: (S) ~U is a homeomorphism if both spaces are
equipped with the projective limit topology.
Proof: We will show that for a suitable choice of p and q, S : (S)p ~Uq' and
S-l : Up ~ (S)q are continuous, the rest of the proof is done by standard topological
arguments.

Proposition 4.2. Let <PE (S)p' P E ~. Then S<P E Up and \IS<Pllp:::; 11<p112,p'
Proof: In the proof of the characterization theorem ([PS 91, HKP 93]) it is shown that

IS<p(ze)1:::;11<p112,pe!lzI2Iel~._p

for all z E <17, e E S(IR). Hence
I\S<Pllp= sup IS<p(ze)1e-!lzI2Iel~._p :::; 1\<p112,P'

zEC
eES(lR)

o
Proposition 4.3. .Let F E.Up, 'P E iZ. Then there exist constants Cl,C2> 0 independent
of p such that for q :::;p - Cl, S-lFE (S)q and IIS-l Fllq :::;c211Fllp' .
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Proof: Such constants can be found quite easily elaborating the constants in the proof
of the characterization theorem [PS 91, HKP 93].
Some particular choices for these constants have been worked out, 'e.g., in [KS 91, Le 91,
Ya 90, KLP 94]. 0

As an immediate consequence of Theorem 4.1. we have the followirig res,ult.

Corollary 4.4. Thespace U* can be identified with the dual space ofU.

Proof: Let U' denote the dual space of U. Then the action of F E;: U* on f EU can be
defined by F(f) :=< S-1 F, S-1 f >, where the pairing on the right-hand side is the one
between (S) * and (S). Hence F E U'.
Now for F EU' there is a corresponding (S)* -element eI> defined by.< eI>, <p>:= F(S<p) for
<pE (S). But then G := SeI>E U* and for f EU G(f) =< S-1G, S-1 f >=< eI>, S-1 f >=
F(S(S-1f)) = F(f), hence F = G E U*. 0

Another consequence of Theorem 4.1. is the following

Remark: Since (S) and (S)* are nuclear Frechet spaces (cf. [HKP'93]), by theorem 4.1.
this is also truefor U and U*. Hence by general theory (e.g. [Sch 71]) U is the projective
limit of a sequence of Hilbert spaces, Le. a countably Hilbert space in the sense of [GV
68].

Acknowledgements: We would like to thank Jürgen Potthoff for valuable comments and
suggestions .. The second author is supported by the Norwegian Research Council(NFR), ,
100549/410.
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