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‘ . . abstract ‘ ,

- We find an explicit unique solution in the space of Kondratiev distributions, (S)7!, to
a stochastic differential equation modelhng populatlon growth in a crowded stochastlc
environment.

1. Introdtiction

In this paper we are going to study a stochastlc version of the Verhulst model for
population growth,

» E T oAt - . v T2 ’ . . .
X =Xo+ r/ Xso(N =X )ds+a- / Xs o (N — X;)6B; (1)
v - Jo ‘ 0 . ,

where 7, , N are constants, N, T positive. 8B, denotes the (generalized) Skorohod integral.
A’ precise meaning of this integral will be given in the next section. We denote by ¢ the
Wick product. | B . : :

(1) was first proposed by Lindstrgm et. al. [L@OU] as a modell for population growth
in a crowded stochastic environment. For deterministic initial conditions X, where 0 <
Xy <1 and Xp # -%, they foimd an explicit solution to (1) usmg white noise methods.
Their solution is a “true” stochastic variable. The case Xo = 5 represents some kmd
of “stochastic bifurcation point”, since no stochastic variable ex1sts as a solution for this
initial condition (see Lindstrom et. al. [LOU] for their remark.) The main motivation for
. this paper is to give an explicit solution also for the case Xo = %— In section 4 we show that
for this initial condition, we do not even have a solution in the spacge of Hida distributions,
(S)*. This suggests that the space of Kondratiev distributions, (S)~! , is the natural space
for this problem.. Moreover, using Wick Calculus on the space of Kondratiev distributions,
(8)~1, we are able to find an explicit solution of (1) for general initial conditions with -
positive expectation. Now, however, the solution is no longer a stochastic variable, but a
generalized stochastic variable living in the abstract space (S)~!



2. Some Preliminaries.

We start by recalling some of the basic definitions and features of the white noise
~ analysis. For a more complete account see Hida et. al. [HKPS] and Gjessing et.. al. -

- [GHL@UZ].
As usual, let S (le) denote the space of tempered dlstnbutlons on Rd which is the
dual of the well—known Schwartz space S (IRd) By the Bochner-Minlos theorem there ex1sts ,

a measure pg on S’ such that
/ ‘6i<“”.¢>d,u(w-) — e_v'%nd’nz,‘(ﬁ eSS '
s

- where ||.]| is the Lz(Rd) _norm. (-,-)'is the dual pairing between S" and S. Let B denote
the Borel sets on S’ (equipped with the weak star topology). Then the triple -(S', B,p)is
called the white noise probability space. .

If we define - : _ ‘ ’
B, (w) B, ,md(w) (@, Xo,z1x...x[0, zd]( )

then B, has an x-continuous version B, which- becomes a d- parameter Browman motzon
The d-parameter erner-Ito integral of ¢ € L? is deﬁned by’ ‘

v

S)dB, () = (. ¢) S

Rd

Of special interest will be the space L2(S (IR?), ), or L2( ) for short. The Wiener-Ito
chaos erpansion theorem says that every F' € L?(u) has the form

m):i /';fn(de?"(wf), e \

where f,, € LQ(IR”d) and fn is symmetric in its n variables (1n the sense that fr(Ug,,...,Us,) =
fnlug,...,uy,) for all permutatlons o, where u; € IR%). The rlght hand side of (2) are the

. multiple Ito integrals.

There is an equivalent expansxon of F e L2( ) in terms of the Hermlte polynomials:

S 2 d" 22.
hn(z) = (—1)”erxn (e77)n=0,1,2,...

. We explain this more closely: Define the Hermite function fn(:v) of order n as

Eula) = 71/ "-1>v>-1/2 % by (V22)

where 2 € R,n =1,2,.... {£,}32; forms an orthonormal ba81s for Lz(lR). Therefore the
family {ea} of tensor products | p '

€a : eal_»--,am‘ =8 @ ... ®&ay,




(where o denotes the multi-index (@1,...,04q)) forms an orthonormal basis for LQ(Rd).
Assume that the family of all multi-indices 8 = (,81, ..., 0B4) is given a fixed ordering

(50,6,...,6,..)

where §*) =‘(ﬁ§’“?, ey (gk‘)). Put

en.z €a(n); L = 1,2’

Let a = (al, e am\) be a multi-index. It was shown by Ito that _ ' <
@al > > @am @mn. a“ \ . :
e; Q... Qe dB®" = ”ha. 6;) 3
/(JR‘*)" ' v _ = J(‘])_ ' ( )

where 0;(w)'= [pa e]( )dBz(w),n = la| and & denotes the symmetrized tensor product

(e.g., fRg(z,y) = L[f(x)g(y) + f(y)g(x)] if ,y € IR and similarly for more than two
varlables) If we deﬁne, for each multiindex a = (al, ey am), .

=._H he; (6;)
j=1

then we see that (3) can be written
: / | ®“dB®'°‘| = H, (w)‘ | (4
(R4)m o '

‘using multi-index notation: e®® = e®°“(§> ®e§°‘m if e = (e1,e2,...). Since the family -
{e®°‘ |a| = n} forms an orthonormal basis for the symmetric functions in L2((IRY)"), we
see by combmmg (2) and (4) that we have the representation

:ZCQHO‘(LU‘ B : ‘ | . (5)

(the sum being taken over all multi-indices o of nonnegatlve integers). Moreover it can

be proved that
© PN g = D aled

a3

where al = arl. .. am!l. . -
The Hida test function space (S) and the Hida distribution space (S)* can be given
the following characterization, due to Zhang [{Z]. ,

' Theorem 2.1: Let 3 € L?(p) have the chaos expansion

: Y(w) = anHa(w)



_ Then 1 is a' Hida test fuhctz’o’n, ie Y e(8)if

sup c2a!(2IN)** < 00, ¥ natural numbers k < oo
a ‘ '

i

where .
| o (21N H(2dﬁ(3) ﬁ(J) % for a —'(al, . Om)

A Hida distibution ¥, o E.:(S.)*, is a formal series )

V=) boHo - (6)
where . :
. supbZal((2IN)~*)? < oo for some ¢ > 0
If ¥ € (S)* and 9 € (S) is given as in the theorem, the action of ¥ on ¢ is given by

=> albaca | (7)
Note that no assumptions_ are made regarding .the’ convergence of the formal series in (6).

We can in a natural way regard L?(u) as a subspace of (S) In particual, if FF € L?(u)
~ then by (7) the action of F on ¢ € (S) is given by :

(F, ) = EIF w]

 Since 1 is an element of (S), the expectatlon functlon can be extended to (S)
E[Y] = (¥, 1))

We will now introduce the spaces (S)! and (S)~! which were first constructed by
Kondratiev [K]. For a complete account on the following results, see Albeverlo et. al
[ADKS] and Kondratiev et. al. [KLS]: '

: ‘Deﬁmto_n»2.2. Define (S)? and (S)~7 as follows: ” | C | ‘
Part a): For.0 < p <1 let (S)° consxst of all ' o ‘

) = anH € L(p)

- such that : T
”1/’||2k —ZC (! H"’(Zﬂ\/’) < oo forall k < co '



Part b): The space (S )~P consists of vall‘_formal_expansvions ‘
V=Y b.H, | I

such that o ‘ :
' Z-bi(a!)l"’(ﬂ\/)_—"‘q < oo for some ¢ < 0o

~ The family of semmorms |lf]|p o k =1,2, ... defines a topology on (5)°. . n

We remark that (S) = (S)? and (8)* = (8)~° in the above construction. (S)‘1 will be
called the space of Kondratiev distributions. |

Definition 2.3: Let ® = Y aoHo, ¥ = Y bgHp be two elements of (§)~”. Then the
chk product of & and U is the element @ o \Il in (8)~* given by

/ @cw'zzaabﬁHaw
| £ 0080

It can be shown that (S)! is closed under the Wick product.
' The Hermite Transform, see Lindstrgm et. al. [L@U], has a natural ‘extension to
(S)~1, the space of Kondratiev distributions:

Definition 2.4: If ¥ = E ba H € (.5')‘1 then the Hermite Transform of F, H¥ = T, is
defined by TN,
| S U(2) H\I/(z Zb z®

‘where z = (21, 22, ....) € C&, and

for a = (ai,...,am)- . ‘ : ' O

The Hermite Transform characterizes (S)~! in the following way:

"~ Lemma 2.5: ¥ € (8)~1! if and only if there exist some € > 0, ¢ < oo such that the Hermite-
transform of ¥, H¥, is a bounded analytic function on B,(0,¢€). : O

Convergence of sequences in (S)~! can be characterized in terms of the Hermite Transform
as follows: ' ' '

Lemma 2. 6 The followmg are equlvalent
I: ¥, = ¥ in (S)!
II: There exist € > 0,q < 00, M < 00 such that

HY, (z)—>H\II( )asn——»ooforzGB (0,¢€)

5
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|H\Iln(z)| < M»fo'r alln =1,2, ..;;z € B4(0,¢)

where -

(0 €) = {z — (21,22, .)€ _C{,’V;Z [§;|2(2N)aq < €%} |

Note that the Hermite Transform transforms the Wick product into an ordinary prbduct.
The Wick product gives a nice relation between functlonal integration in (S) “and
Skorohod/Ito integration. We define mtegratlon in (8)~! as follows: :

Definition 2.7: Assume ¥, € (S) -1 for each s € [0, T], where 0 < T < oo. If

: . e << 8’¢>> ([Oa T],dS) '
for all ¢y € (S) we deﬁne the unique (S)~ -element «' fOT ¥,ds by

T T
(] wads,on = / (W, 6))ds
~Jo 0
Con51der the case d = 1, i.e the probablhty space S (R) Define the element

. Z &k(t €k

where € is the multl—mdex Wlth ZEros except at posmon k, where it has value 1. It can

be shown, see for instance Gjessing et. al. [GHL@UZ], that W; € (S)". Moreover, for a
Skorohod integrable element ¥, € L?(y) it can be shown that

t ’ t
' / U, o W,ds = / V.68,
-~ Jo a o

where the integral on the right hand side is the Skorohod integral. See Lindstrgm et.

al. [L@U], Hida et. al. [HKPS] and Benth [B] for a discussion of this relation. We can
say that functional integration in (S)~! involving Wick product with W, generalizes the

- Skorohod/Ito integration. This connectlon motivates the followmg mterpretatlon of (1):

We look for an element Xy in (8)~1 which satisfies

Xt X0+1~/X<>N de—i—a/XoN X)<>st | (8)

We end thls section with a nice property of the (S)~!

Calculus theorem, see theorem 12 in Kondratiev et. al. [KLS]:

Theorem 2.8: Let ¥ € (S)~L. Assume f: € — C'is analytic in a neighborhood of E [¥].

" Then o
o F(¥(2)) = &(2)
‘is the Hermite Transform of an element & of (S)~!.. : o Nn

We remark that the definitions and results presented in the above language can be
found in Holden et. al [HLOUZ]. :

space, the so~called Wick

(2 3



v. where

8. The SolutiOn Of The Population Modell'

o For 51mphc1ty we w1ll assume that N = 1 in modell (8) We also assume that vXo €
(S) and that : o o
E [Xo] >0

Hermlte transforming the stochastic equat1on (8) into an ordmary complex dlfferentlal
equatlon and solving, we- obtam the candldate

(1+@0<>exp°(—rt—aB ))°( 1). | _ | o 9) |

O =(1- Xo)oXE,’(‘” ;XS“‘” 1 g

. We havevvvritte‘n'exp<> for the Wick exponentz’al, i.e the element 'deﬁned by

exp@Z@‘m /

(see theorem 2.8 above.) We show that Xy | is-an element in (S) -1

Define : :
| g(z) = 2“1 -1

~ Obviously, g(z) is analytlc in a nelghborhood around E [Xo] > 0. Hence <I>0 is an element
of (8)~1{ Furthermore, define - o | : -

f(2) = (1+2)"

.We have - ' v o
El‘I’o oexp®(—rt — aBy)] = (E[Xo] ™' = 1)e™"

When 0 < E[Xo] < 1 we have | | ,
0SB e < (B - 1)
and, when B[Xo] > 1, _,

BT ) S B - et <o

for all ¢ > 0. In both cases is the expectatlon bounded away from —1 for all ¢t > 0 Hence
- there exist constants q, ¢ such that :

§(Go(z) exp(~rt - aBy(2))

s analytlc and bounded for z € By(0, e) for all t > 0. Tl’llS lmphes by theorem 2 8 that
X, is an element of (S)~! for all't > 0. :
To show that X is a solution of equatlon (8) we must prove that X satlsﬁes

X,

qt =.(T + aWt)O Xt 1% (1— Xt) ,

LT




in (S)."l,." But by lemma 2.6, IT this is equivalent with showing that |

 Xegn(2) — Xe(2)

- — (r + aWt(Z))Xt(Z)‘(vvl %'Xt(z))

pointwise boundedly for z € B,(0, e) When h — 0. ThlS can be seen to hold by dlrect
calculatlon The Hermite transform of (9) is:

Xt(z) — (1 + éb(izt)'e—’rtv—aéz(Z))—l

Hence, after some manipulation,

Xt+h(z) - Xt(z) - _____.1 _ e—rhe—af?z(Z) +‘e“'7'h (e_aét(z) — e—aét+h(z)). g
R\ & - o .-
.—th:)O( ) X¢(2 )Xt+h( )

We see that Xt+h(z) — X.(z) pointwise boundedly for z € B4(0, 6) By definition -we have

d —aét(z)-_'  e=a@Bi(z) _ g=aBu(2) e f—-aBt(z)
Zﬁe = ’111_% — = ath(z)e

for every z € B4(0, €). Moreover, we can show that this convergence is bounded on Bq(O, €).

. Hence

Xin(2) — Xt(z),‘
h :

—(r+ aWt(Z))_Xt(Z)(l - Xu(2))

pointwise boundedly on B 4(0,€).

Since Xt(z) is the unique solution of the Hermite transformed version of equatlon
(8), it follows. by 1nject1v1ty of the Hermite transform that X, is unlque We have the
' conclusron '

Theorem 3.1: Assume Xo € (S)'_1 with E[Xo] > O Then
X = (1 + ©goexp®(—rt — aB;))°D

where , \
| =XV 1 - o

is the imiqlie (S)~! solution of (8) with N = 1. , : Lo 0

F 4



4. Some _ConCluding Remarks

© As pointed out in the introduction, Lindstrgm et. [L@U] did not ‘obtain any

solution of (8) for the “stochastic blfurcatlon point” XO = 1 . We discuss this special case
more 1n detail: With initial condltlon Xo = 5, we obtain @0 =1 which gives the solution
(1 + exp°(—rt —aB,))°= n o (1)

We show that X; is not an element of the Hlda dlstrlbutlon space (S)*: In Hida et. al.
[HKPS] the S- transform of an element of (S) , 18 deﬁned as : -

SF(E) = <<F o' W)

for £ EIS(R) The S-transform of Xt given in (11), is .

| SXt() (1+exp(rt+a/ f(s ds) |

This obJect is. well defined for all £ € S(IR), and v; = SX(&) is the uniqne solution of the
' problem S S ~ ‘

o - - . |
vy = §+r/ vs(l’—vs)ds'—l-a\/ vs(1 — vs)E(8)ds
Y R “Jo I
for each . However, SX,(¢) can not be extended to an analytic function
z —>7 SXt(zf)‘ ’ .

‘on the complex plane (E’ Hence, X, is not an element of (5)*. (See Hida et. al. [HKPS] for
a characterization of (S)*-elements in terms of the S- transform We see that for § 77 €S (ﬂ%)

" ~ the mapping -

/\ — SX(§+ /\n)

‘can only be analyticin a nezghborhood of zero in €. This tells us that Xt is not contained in
any of the spaces (S)7%, p€[0,1). (See Albeverlo et. al. [ADKS] for the characterization
_ of these spaces by the S-transform.) ;

By the uniqueness of the Hermite Transform, the (S)~! élement X, given in, (9) and
(10) has to coincide w1th the solution found by Lindstrgm et. al. [L@U] for constant initial
conditions Xg = ;é . As we have seen, the results above are worked out for general
initial conditions : '
' Xo € (8)_

'Where E[Xo] > 0. This means that for stochastic varlables as initial conditions we have a
solutlon as well. Note that the case of antlclpatlng initial conditions is also included.
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