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Abstract

In this paper, we modify the robust local image estimation method of R. van den
Boomgaard and J. van de Weijer for the approximation of scattered data. The derivation
of our knot and data dependent approximation method is based on the relation between
the Gaussian facet model in image processing and the moving least square technique
known from approximation theory. Numerical examples demonstrate the advantages of
ourrobust scattered data approximation.
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1 Introduction

A popular approach to scattered data approximation is the moving least squares (MLS)
method which requires in contrast to standard interpolation methods by radial basis functions
only the solution of smaIllinear systems of equations. The size of these systems is governed
by the degree of the polynomials which are reproduced by the method. The MLS approxima-
tion is theoretically weIl examined, see, e.g., [5] and the references therein. In particular, the
Backus-Gilbert approach offers another way to look at the polynomial reproduction property
which in turn determines the approximation order of the method.
On the other hand, there exist various locallinear methods for smoothing noisy data in image
processing. One example is the Gaussian facet model introduced by R. van den Boomgaard
and J. van de Weijer [17] in the linear ,scale-space context. Interestingly, this method is
basically the same as the MLS technique with a Gaussian weight function. The only difference
consists in the fact that in scattered data approximation we know the (noisy) function only
at some special, in general nonequispaced knots and no data are given within these knots,
while in denoising problems in image processing the noisy function is known on the whole
grid. This leads to an ansatz with shifted basis functions in the MLS approach in contrast to
the Gaussian facet model.
In their averaging process, the MLS method and its relatives give similar weights to data
within a similar distance from the evaluation point, where neighbors are heavier weighted
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2 2 MLS FROM DIFFERENT POINTS OF VIEWS

even if these neighbors are on very different levels of the function. Consequently, edges are
smoothed. This led to the development of robust estimation procedures and nonlinear filters
that also data-adaptively determine the influence of each data point on the result. Among
the rich variety of these methods, see, e.g., [15J and the references therein, we focus on the
robust Gaussian facet model [17J. Having the relation between the linear approaches in image
processing and scattered data approximation in mind, we modify this robust model in such a
way that it can be also applied to scattered data. Moreover, we change the method slightly
toward a generalized bilateral filter approach that does not only reproduce constahts but also
polynomials of higher degree.
This paper is organized as follows: first, we consider the linear methods used independently in
image processing and scattered data approximation, where we start with the continuous MLS
method in Subsection 2.1 and move to the discrete method in Subsection 2.2. In Subsection
3.1, we use these results for introducing our robust scattered data approximation method.
Its power is demonstrated by numerical examples in Subsection 3.2. The paper is concluded
with a short summary.

2 MLS from different points of views

The aim of this section is twofold. Firstly, we want to show the relation between the weIl
examined MLS method in approximation theory and the Gaussian facet model recently in-
troduced in the context of linear scale-space theory by R. van den Boomgaard and J. van de
Weijer [17J. It is not hard to see that both methods differ only by an ansatz with shifted basis
functions such that applied to spaces of polynomials they lead to the same result. However,
we find it useful to direct the attention of people from the image processing society to theo-
retical results from approximation theory and vice versa, to benefit from new ideas in image
processing for the approximation of scattered data.
Secondly, the MLS results of this section will serve as the basis for our robust approach in
Section 3. In particular, we will use the MLS approximation as initial input for our iterative
algorithm.

2.1 Continuous MLS

Let
V := span{<pj : j = 1, ... ,M}

be an M-dimensional space of real-valued functions defined on Rd. Although some results can
be formulated in this general setting, we will restrict ourselves to polynomial spaces. More
precisely, let V := II~ be the space of d-variate polynomials of absolute degree ::; 8. Then V
has dimension M = (s~d). Our main reason for the restriction to polynomial spaces is that
II~ can be also spanned by the translates of <Pj with respect to an arbitrary fixed x ERd, i. e.,

v = span{<pj(- - x) : j = 1, ... ,M}.

Let w be a non-negative weight function with moments

(1)

J w(t)dt = 1
]Rd

and J tCiw(t) dt < CX) for all a E I"::lt lai::; 28.
]Rd
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Then

3

(p, q)w := J p(t)q(t)w(t) dt
. jRd

is an inner product on V with norm Ilpll; = fjRdP2(t)w(t) dt.
Now the continuous MLS problem can be formulated as follows, see, e. g., [1): for a given
function f E Loo(JRd) and x E JRd find the coefficients Cj = Cj(x) such that

M

u(x, t) := LCj (x)epj (t) (2)
j=1

minimizes the functional

Then

J(x) := J (J(t) - u(x, t))2w(t - x) dt.
jRd

(3)

M

u(x) = u(x, x) = L Cj (x)epj (x) (4)
j=1

can be taken as an approximation of f(x). Obviously, for arbitrary fixed xE JRd, the function
u(x,.) is the w(- ~ x)-orthogonal projection of f onto V.
On the other hand, we obtain by (1) that the polynomial u(x, .) of the form

which minimizes (3), Le.,

M

u(x, t) := L aj (x)epj (t - x)
j=1

(5)

(7)

. MJ (J(t)-u(x,t))2w(t-x)dt= J (f(x+t)- :?=aj(x)epj(t)rw(t)dt (6)
jRd jRd J=1

is also the w(. - x)-orthogonal projection of f onto V. Consequently, u(x, t) = U(x, t) and

M

u(x) = u(x,x) = Laj(x)epj(O).
j=1

The approximation (7) of f, where the coefficients aj = aj(x) are determined by the mini-
mization of (6) is exactly the approximation method that R. van den Boomgaard and J. van
de Weijer have considered in [17). In particular, they have used monomials epj, where epl == 1,
as basis functions in (7), so that theyhave only to compute u(x) = a1(x). This simplification
of MLS by using shifted monomials was also mentioned by G. E. Fasshauer in [4J. Having
finished this paper we realized that the shifted approach (5) was also examined in detail in
[11).
The minimization problem (6) can be solved for any fixed x E JRd by setting the gradient
with respect to a(x) := (aj(x))~1 to zero. Using the vector notation ep(t) := (epk(t))~l' this
leads to

a(x) = G-1 (U(x + .),epk)w):l = (U(x + .),(C-1ep(.)) j )w) :1' (8)
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where (C-1<pO) j denotes the j-th component of the vector and where the Gramian C is
given by

C:= ((<pj, <Pklw)~=l.

In summary, we obtain by (7) and (8) that

M

u(x) = (f(x + .),L (C-1<p(.))j<Pj(0)) w
j=l

= J f(x + t)q(t)w(t) dt = J f(x + t)'lj;(t) dt,
~d ~d

(9)

where

(10)'lj;(t) := q(t)w(t).and
M

q(t):= L (C-1<p(t))j<Pj(0)
j=l

In other words, u is the correlation of f with the function 'lj;.

R. van den Boomgaard and J. van de Weijer have used the monomials of absolute degree
:S s as basis of rr~. We can orthogonalize this basis with respect to (., .lw so that the new
basis fuHills (<pj, <Pklw = II<pj"~6jk (j, k = 1, ... ,M). Then C = diag (11<pjll~)~l is a diagonal
matrix and the polynomial q in (10) can be represented alternatively as

M
'" <Pj(O)q(t) = LJ -11 -.1-12 <Pj(t).
j=l <PJ w

(11)

The function 'lj; has various properties.

Proposition 2.1. The function 'lj; in (10) fulfills the moment condition

J to.'lj;(t) dt = 600.

~d

(lai :S s) (12)

and has, for all p E rr~, the repraducing praperly

J p(t + x)'lj;(t) dt = p(x).
~d

(13)

Praof. Let {<pj : j = 1, ... ,M} be w-orthogonal. Then it is easy to check that the Christoffel-
Darboux kernel

M 1
K(t, x) =L -11 -.1-12 <Pj(x)<Pj(t)

j=l I.pJ w

is a reproducing kernel in rr~with respect to (., .lw, i. e.,

J p(t)K(t, x)w(t) dt = p(x)
~d

for all p E rr~.
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In particular, we obtain for the monomials p(t) = tO'.with lai::; sand x = 0 by (11) that

J tO'.K(t, O)w(t) dt = J tO'.'ljJ(t)dt = 000'.'
]Rd ]Rd

By the binomial formula this implies for any fixed x E JRd that

J (t + x)O'.'ljJ(t)dt = xC<.
]Rd

Consequently, (13) holds true.
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•
In the following, we are mainly interested in radial weights w.

Proposition 2.2. Let w(t) = w(lltll) be a radial weight junction, where 1I . I1 denotes the
Euclidian norm in JRd. Then the junction 'ljJ in (10) is also radial.

Prao/. On the one hand, the polynomial p(y) := "£~~O'k y2k with Si := ls /2 J which satisfies

J IltI12jp(lltll) w(lltll) dt = OOj

]Rd

(j = 0, ... , Si)

is uniquely determined and p(lltll) E ITd. Since on the other hand the polynomial q E ITd in
(10) is also uniquely determined by the moment condition (12), it suffices to show that p(II.II)
actually fulfills

(Iod::; s)J tC<p(lltll)w(lltll) dt = 00C<'
]Rd

Switching to polar coordinates, the left side of (14) reads as

00J rIO'.I+d-lp(r) w(r) dr J tC<dS,
o Sd-l

(14)

•

where dS is the element of the (d - l)-dimensional measure on the unit sphere Sd-l in JRd.
If a contains any odd component, then it is easy to check by the orthogonality of sin and
cos functions, that JSd-l tC< dS = 0, cf. [8, p. 80]. Otherwise, we have by definition of p with
lai = 2j that

00J r1c<I+d-lp(r) w(r) dr = J IltI12jp(lltll) w(lltll) dt = boc<
o ]Rd

This completes the proof.

Example 2.3. The most popular weight function is the Gaussian

w(t) := 7f-d/2 e-W .

By the separability of the d-variate Gaussian, orthogonal polynomials with respect to the d-
variate Gaussian weight are given by the tensor products of the univariate Hermite-polynomials
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Using their three- term recurrence relation

Ho(Y) = 1, Hl(y) = 2y,
Hn+l(Y) = 2yHn(y) - 2nHn-l(y),

we see that H2n+l(O) = 0 and H2n(O) = (_I)n(2;)!. Moreover, it lS weIl known that
(Hn, Hk)w = 2n n! 6nk, so that

Consequently, we obtain far even sand t := (tl, ... , td) by (11) that

d daj (-I)ßj
= L II-dt-ajw(tj)-2a-j-ß-'!

lal::08,j=l J
a even

da (_I)lal/2
= L -dt-aw(t)-21-al-ß-l!-' '-'-ßd-'

lal::08,
a even

8/2 (-Ir r! da
=L -22-rr-' L -ßl-' -.. -. ß-d-"-dt-aw( t)

r=O lal=2r,
a even

8/2 ( l)r
= '" ---=-ßrw(t)L..-J 4r , '

O r.
r=

where ßw(t) := ~1=1~w(t) is the Laplacian of wand ßrw(t) its r-th iterate.
J

In particular, we have for d = 2 that

These special functions were also computed in [17]and the corresponding polynomials q in the
context of the so-called approximate approximation in [6]. For the relation of q to generalized
Laguerre polynomials see [12] and the references therein. Since the convolution of a function
f with the Laplacian of the Gaussian can be considered as backward diffusion, the convolution
with 'IjJ far s 2: 2 leads to a better reproduction of f in particular at edges. This is another
way of looking at the improvement of the approximation by a better polynomial reproduction
with increasing s. The influence of the additional sharpening terms in 'IjJ is illustrated in [17]
and in our examples in Subsection 3.2.
Other weights used in the scattered data literature are the Wendland functions [18]. In
contrast to the Gaussian these functions have a compact support. For d = 2 and s = 1 the
corresponding functions 'IjJ can be found in [4].
Another popular weight function in image processing is the characteristic function w(x) :=

X{x:ltxlloo::OC}, which leads to the so-called Haralick faeet model [9]. 0
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(15)

Remark 2.4. The computation of our approximating function u of f in (9) requires the dis-
cretization of the correlation integral. If we use the rectangular quadrat ure rule over a grid
of mesh size hand equispaced integration knots {Xk := hk : k E Zd}, we obtain

u(x) ~ hd L f(Xk)'IjJ(Xk - x).
kEZß

If we replace W by its dilated version WO" = t!aw(~), then 'IjJwith respect to WO" becomes
'ljJ0"= O"ld'IjJ(~) and the discretized continuous MLS approximation of f with respect to WO"
with (J = VDh is

u(X) ~ u../i5h = D-d/2 L f(Xk)'IjJ (Xk;;) .
kEZd h D

The right-hand side of (15) is known as approximate approximation of f. V. Maz/ya and G.
Schmidt [13] have proved that for f E Loo(IRd) n cs+l(lRd) and a function 'IjJ satisfying the
moment condition (12), the following error estimate holds true

where c('IjJ, D) denotes a saturation error which can be controlled by appropriately choosing
the dilation factor a of the generating function 'IjJ.
Note that [13] contains alsoerror estimates if nonequispaced knots Xk are used in (15). 0

.2.2 Discrete MLS

In scattered data approximation, the function f is in general only known at nonequispaced
knots Xk E lRd (k = 1, ... ,N), where N 2: M. Instead of using a continuous MLS approach
with a discretization of the convolution integral at these knots, we prefer a discrete MLS
approach. Basically, we have the same setting as in Subsection 2.1, (2)-(4), except that we
want to minimize

N

J(x) :=L (J(Xk) - U(X,Xk))2W(Xk - x) (16)
k=l

instead of (3). For fixed x E JRd, this is a weighted least squares problem for the coefficients
Cj = Cj(x) which has the solution

e(x) = (cI>W(X)cI>T)-lcI>W(x)f,

where e(x) := (ej(x))~l' f := (J(Xk))~=l and

cI> := (<Pj(Xk))~::l' W(x) := diag (W(Xk - x))~=l'

(17)

Here we have to assume that the points Xk E lRd are distributed such that cI> has full rank,
i. e., not all Xk lie on the zero set of a polynomial of degree :::;s. Then, by (4),

_ is taken as approximation of f (x).

u(X) = <p(X)T c(x) (18)
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(19)

Remark 2.5. In the case s = 0, i.e., V = {I} and M = 1, we obtain that <:P= (1, ... ,1) and
consequently by (17) and (18) that

N2: f(Xk)W(Xk - x)
u(x) = Cl(X) = -k=-l-N----_

2: W(Xk - x)
k=l

This approximation is known as Shepard's method [14J. The approximate value u(x) of f(x)
is the weighted average of the values f(Xk), where the weights decrease with an increasing
distance of Xk from x. We will have a look at this method again in connection with bilateral
filters. 0

Remark 2.6. From the Backus-Gilberi approach [2J it is well-known that, for an appropriate
function g, the function 'l/Jgwhich solves the constrained minimization problem

1 ~ 'l/J~(Xk,x) .
- L...J ~--- -----t mIn
2k=1 g(Xk,x)

subject to the polynomial reproducing property

N

LP(Xk)'l/Jg(Xk, x) = p(x) for all p E II~
k=l

is given by

where

(20)

D:= diag (g(Xk,x)):=l.
Usually, g(x, Xk) := W(Xk - x) is chosen in the literature. Then, by (17), we can rewrite (18)
in the form

N

u(x) = L f(Xk)'l/Jw(Xk, x). (21)
k=l

This approach is also known as quasi-interpolation of f. If f is a polynomial of absolute
degree :s: s, then, by the constraint (20), it is reproduced exactly, i.e., u coincides with f.
Note that on the other hand, the discrete MLS problem can be considered with the shifted
ansatz (5), where one has to minimize a discrete functional corresponding to (6). This leads
directly to the form (21) of u. 0

3 Robust loeal approximation of seattered data

In [17]' R. van den Boomgaard and J. van de Weijer suggested a robust Gaussian facet
model for various applications in image processing. Robust estimators classically dealt with
statistical outliers, but can be also used to better reconstruct edges. In this section, we want
to use the robust facet approach in a slightly more general form for the approximation of
(noisy) scattered data. Furthermore, we propose a novel method which seems to be more
related to the idea of bilateral filters.
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3.1 Generalized bilateral filters

9

In order to make our approximation more sensible with respect to edges we introduce a
differentiable function p in J which punishes small differences harder but sees larger differences
more gently, i.e., instead of (16) we minimize the functional

N

Jp(x) :=L p( (J(Xk) - u(x, Xk))2)W(Xk - x).
k=l

In (16) we have simply used p( 82) = 82. In this section, we apply

(I': « 1) (22)

which results (approximately) in a weighted f1-norm of (J(Xk) - U(X,Xk)):=l in Jp, and

(23)

which gives an approximation of a weighted fo-norm. The function (23) was suggested in [17J.
Computing the gradient of Jp(x) with respect to ce(x) (f = 1, ... ,M) and setting this gradient
to zero, leads to the following nonlinear system of equations

where

q> W(x)Bp(x) q>T c(x) = q> W(x)Bp(x) f,

Bp(x) :=diag (P'((f(Xk) - U(X,Xk))2) )~=1
M N

= diag (p' ((f(Xk) - LCeipe(x- Xk) )2) ) k=l.
e=l

(24)

(25)

Note that for p defined by (22) or (23) the function p'(82) is a monotone decreasing function
in 82. In contrast to the diagonal matrixW(x) appearing in (17), we incorporate now the
diagonal matrix W(x)Bp(x) which does not only depend on the knots Xk, but also on the
data f(Xk). Thus, we obtain both a knot and data dependent method. We solve (24) bya
fixed point iteration, i. e., we compute successively

where

and set
(26)

As initial vector cCO) (x) we use the values obtained from the discrete MLS in Subsection 2.2.
The question of convergence of this iterative m,ethod is still open.
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Remark 3.1. If s = 0, then we obtain as in Remark 2.5, that u{i)(x) = eii\x), in particular,
after one iteration,

NI: f(Xk)W(Xk - x)p'((J(Xk) - u(O)(x))2)
u(1)(x) = -k=-l-N-------------

I:W(Xk - x)p'((J(Xk) - u(O) (X))2)
k=l

(27)

For x := Xj (j = 1, ... ,N) and input u(O)(Xj) := f(xj), the approximation (27) is known
as bilateral filter [3, 16J. In contrast to Shepard's method (19) do the weights of the values
f(Xk) in (27) not only decrease with an increasing distance of Xk from x, but also with an
increasing distance of f(Xk) from f(x) (or its approximation u(O)(x)). Thus the averaging
process is reduced at ed~es. 0

Based on Remark 3.1 and Remark 2.6 we propose the following new approximation method
which can be considered as a generalization of the bilateral filter. Obviously, the division by
NI:W(Xk - x)P'((J(Xk) - u(O)(x))2) in (27) ensures at each iteration step i that u(i) repro-
k=l
duces constants f == C. By Remark 2.6, the idea of using bilateral filters for scattered data
approximation can be generalized such that polynomials of arbitrary absolute degree ::; s are
reproduced. We have to compute

(28)

where

D~i)(X) := diag (P'((J(Xk) - U(i) (X))2) )~=l'
In contrast to B~i) in (25), where we find it difficult to interpret the differences f(Xk) -
u (i) (x, x k), our diagonal matrix D ~i) contains the approximated differences f (x k) - f (x) ~
f (x k) - u (i) (x). The function p' may be any appropriate decreasing function. Moreover, as
initial data u(O) we can take any reasonable approximation of f. Of course, for s = 1, both
methods (26) and (28) coincide.

3.2 Numerical examples

In this section, we present numerical examples with the proposed algorithms in one and two
dimensions. The algorithms were implemented in C. As weight function w, we have always
used a dilated Gaussian function wcr(Y) = e-y2/(2cr2) which we have truncated for lyl > 30". In
this presentation, we have restricted ourselves to the nonlinear function p(s2) = 1_e-s2/(2m2

)

in (23). However, we have computed various examples with the function p in (22) as weIl.
In 2D, these results look very similar to those obtained by applying (23). The corresponding
images can be found at our web page

http://kiwi.math.uni-mannheim.de/-mfenn/RMLS.html.

The nonlinear methods were always performed with five iterations, since we observed reason-
able convergence in all our experiments within ::; 5 iteration steps.

http://kiwi.math.uni-mannheim.de/-mfenn/RMLS.html.
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Figure 1 shows a onedimensional example with the 'ramp'-signal. The first row contains
the original 256 pixel data in (a) and 64 scattered data points (uniformly distributed randorn
numbers) with some Gaussian noise added in (b). Here the signal-to-noise ratio (SNR) defined
by

Ilz - zl12
SNR = 20loglO IInl12

with z standing for the original signal with mean z, and n representing noise, is 8 dB. The
following rows of Figure 1 show the results of the MLS approximation in (c)-( e), of iteration
scheme (26) with the diagonal matrix Bp in (f)-(h), and of our generalized bilateral filter (28)
with the diagonal matrix Dp in (j)-(k), where the polynomial reproduction degree increases
from s = 0 to s = 2 from left to right. The parameters (Y for the knot-dependent weights and
the parameter m for the data-dependent weights were chosen such that the optical impression
was the best. In the MLS approximations, we have taken (Y = 3/64, and in the nonlinear
schemes (26) and (28), the parameters (Y = 6/64 and m = 0.2. As initial data for the iterative
algorithms we have always used the results from the MLS approximation with the same degree
of polynomial reproduction. However, it should be noted that our algorithm (28) has shown
a quite robust behavior with respect to the choice of the initial data. Even very rough initial
data approximations, e.g., a simple linear approximation, has led to nearly the same results
(j)-(k).
As expected, the MLS' approximation smoothes at edges. This effect can be reduced by using
the data dependent iteration schemes. However, the nonlinear method (26) still intro duces
some artefacts at edges. The same effect can be observed in 2D.
Since the original signal is piecewise linear, the methods which reproduce quadratic polyno-
mials (right column) do not bring sorne furt her improvements.

Figure 2 compares scattered data approximation in 2D. We took the 256 x 256 pixel image
'trui.png' in (a), added some Gaussian noise with SNR = 16 dB in (b). Finally, we chose
randomly 1/16 of the data in (c). The images (d)-(f) in the second row of Figure 2 show the
results of the MLS approximation for s = 0,1,2 from left to right. The parameter (Y = 4/256
was chosen such that the images look best. However, we have also computed the images with
respect to those parameter (Y which gives the best SNR. The results are reported at our web
page. The third and fourth row present the results for the nonlinear methods (26) and (28),
respectively, with an increasing degree of the polynomial reproduction s = 0,1,2 from leftto
right. Here (Y = 6/256 and the parameter m was chosen such that we have obtained the best
SNR. In general, we had mE [0.18,0.28]. The SNR of each image can be found in the caption
of Figure 2. The quality of the images improves with an increasing degree of polynomial
reproduction. As expected, the nonlinear methods produce somewhat sharper images. In
order to observe this effect more carefully, the reader may have again a look at details of the
images at our web page. The best result was obtained with our generalized bilateral filter
(28) and s = 2. Note that one iteration step takes less than two seconds here.
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Figure 1: (a) original signal; (b) seattered noisy signal (1/8 of the data, SNR = 8); (e)-(e)
MLS approximation; (f)-(h) method (26); (i)-(k) our generalized bilateral filter (28).



3.2 Numerical examples 13

Figure 2: (a) original image; (b) noisy image (SNR = 16); (c) scattered noisy image (1/16
of the data); (d)-(f) MLS with s = 0 (SNR=7.62), s = 1 (SNR=7.73), s = 2 (SNR=9.79);
(g)-(i) method (26) with s = 0 (SNR=8.70), s = 1 (SNR=8.58), s = 2 (SNR=1O.48); (j)-
(1) our generalized bilateral filter (28) with s = 0 (SNR=8.82), s = 1 (SNR=9.41), s = 2
(SNR=10.62).
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Figure 3 is based on a data set frequently used in numerical examples for scattered data
approximation: we are given 873 scattered data points representing certain contour lines of
a glacier. First, we applied the MLS method with (J" = 6/128 and s = 2. The contour plots
evaluated at the 128 X 128 grid are presented in (b). Part (c) of the figure shows the result
for our algorithm (28) applied with (J" = 8/128, m = 15 and s = 2. The corresponding 3D
plot can be seen in (a).
The contour plots (b), (c) reveal the differences of both methods. Although the MLS approx-
imation (b) is quite good, our nonlinear method (c) better reconstructs smaller structures.
For example, the peaks in the middle right part of the images are smoothed by the MLS, but
retain by our algorithm.

4 Summary

We have introduced a robust local scattered data approximation method which can be con-
sidered as a generalization of bilateral filters for scattered data. In particular, the averaging
process takes spatial and data values into account. Our approach provides bett er polynomial
reproduction properties than the original bilateral filters at the cost of solving small linear
systems of equations. Numerical examples have proved the advantages of the new method
with respect to the reproduction of edges. However, this is our first attempt to incorporate
robust estimators in scattered data approximation. A couple of theoretical questions is still
open. In particular, the convergence behavior of the algorithm and its dependence on the
distribution of the scattered knots as well as stability properties were not examined up to
now. Furthermore, it should be possible to further speed up the performance of the algorithm
by using fast Fourier transforms at nonequispaced knots (NFFT). The NFFT was considered
by the authors in various papers [7, 10J and was recently applied by E. G. Fasshauer and J.
G. Zhang [6Jfor scattered data approximation.

Aeknowledgment: The basic idea of this paper goes back to a talk given by R. van den
Boomgaard within the Mathematical Image Analysis Group in Saarbrücken in February 2004.
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Figure 3: Approximation of 873 scattered data points from the 'glacier' at the 128 x 128 grid;
(a) 3-D plot of (c); (b) original data (dotted) and contour plot of the MLS approximation
with s = 2, (c) our generalized bilateral filter (28) with s = 2.
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