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Abstract. In this paper, we apply the dual approach developed by A.
Chambolle for the Rudin-Osher-Fatemi model to regularization func-
tionals with higher order derivatives. We emphasize the linear algebra
point of view by consequently using matrix-vector notation. Numeri-
cal examples demonstrate the differences between various second order
regularization approaches.

1 Introduction

In this paper, we are interested in constructing for a given function f a function
u that minimizes 1(u - 1)2 dx + 2A11.:J(u) I dx, (1)

where the regularization functional I(u) := In 1.:J(u)1dx is convex and positive
homogeneous of degree one, i.e., I(o:u) = o:I(u) for every u and 0: > O. By
n we denote an interval [a, b] in the onedimensional setting and a rectangle
[a, b] x [c, d] in the twodimensional case. There is a large amount of literature on
applications of (1) with various, in general nonlinear, regularization functionals
in image processing. Here we only refer to the books [1,23] for an overview. A
frequently applied approach in image denoising and segment at ion is the Rudin-
Osher-Fatemi (ROF) model [20] with the gradient .:J(u) := \lu.

In recent years, there has been a growing interest in higher order variational
methods. In [5]' the minimizer of the functional In(f - u)2 + All\lu - \lvi +
A21\l2vl dx was studied and in [21] the asymptotical case Al ---700 was considered.
In [7]' a second order term (directed Laplacian) was added to the TV functional
in order to reduce the staircasing effect known from TV regularization. For
the same purpose, a regularization functional of the form In <p(IL-ul) dx with
<p corresponding to the Perona-Malik diffusivity [18] was considered in [24]. In
[13], second order regularization functionals were applied in magnetic resonance
imaging and in [12] for denoising and convexification. Higher order regularization
functionals were embedded in a scale-space context in [16].

In this paper, we will apply the dual approach developed by A. Chambolle [4]
for the ROF model to regularization functionals with higher order derivatives.

http://www.kiwi.math.uni-mannheim.de


For dual approaches to the ROF model we also refer to [6,3]. To be more con-
crete, we are only concerned with a discrete version of (1), where the functions
are considered at equispaced points. We arrange the function values in corre-
sponding vectors, where we reshape twodimensional arrays columnwise. Then,
with a discretization J of .:J and the usual vector norms, we obtain

Ilu - ill~ + 2AIIJ(u)111-+ min, (2)

where IIJ(u)lll is a lower-semicontinuous, proper convex function in u which
is again one--homogeneous. We will solve this problem by considering its dual
formulation. Problem (2) is equivalent to the computation of u = i-v, where
v satisfies the constrained convex optimization problem

where

Ili - vll~-+ min, subject to v EVA' (3)

(4)

see Proposition 1 in the appendix. In the following, we apply this dual approach
to various regularization functionals with higher order derivatives. We prefer to
use matrix-vector notation which makes the MATLAB implementation of the
corresponding algorithms very comfortable. Our operators J are in general of
the form J(w) = g(Aw) with an (M,N) matrix A ofrank smaller than N and
with a function 9 : IRM -+ IRM satisfying g(O) = O. Then it is not hard to prove
that

where R( A T) denotes the range of AT, see Proposition 2 in the appendix.
This paper is organized as follows. To make the general idea more compre-

hensive, we start by considering the onedimensional setting in Section 2. We
will see the close relation of (3) to the support vector regression (SVR) prob-
lem with spline kernels. Section 3 deals with the twodimensional problem. First,
we recapitulate A. Chambolle's approach for the ROF model using our matrix-
vector notation. Then we apply the idea to various functionals with second or-
der derivatives. Section 4 contains numerical experiments. Finally, the appendix
briefly explains the equivalence of (2) and (3) and verifies the above restriction
of VA'

2 Onedimensional Setting

We find it useful to consider the onedimensional case with derivative operators
.:J (u) = u (m) of various orders m first. As discretization of the first derivative of
u, we use the forward difference u'(jh) ~ (u((j +1)h-u(jh))/h, j = 1, ... ,N-1
with h := (b - a)/N. For simplicity, we assume in the following that h = 1.



For r < N, we introduce the (N - r, N - r + 1) matrices D N,r and their
transposed matrices by

(_1 1 0 0) -1 0 0 0
1 -1 0 00-1 1 0 -T

DN,r := . .' and DN,r=. ... . .
0 0 1 -1

0 0 -11
0 0 0 1

2.1 First order derivatives

For m = 1, we are concerned with the (N - 1,N) matrix D := DN,l of rank
N - 1. We use J(u) := Du in (2) . For this special J we want to characterize
V>. in a different way. Since the columns of DT add up to zero, we see that
v E R(DT) if and only if

N2:>j = O.
j=l

This condition is in particular fulfilled if v is white Gaussian noise. Then, for
any v E R(DT), there exists a unique V E jRN-l such that v = DTV and

(v,w) = (DTV,w) = (V,Dw)::; 1IVllooIIDwill Vw E JRN,

where the inequality is sharp in the sense that there exists no constant C <
IIVlloo such that (v, w) ::;CIIDwill holds true far all w E JRN. Consequently,
v,>. = {v := DTV : 1IVIloo::; A, V E jRN-l} and problem (3) is equivalent to

subject to 11V11oo::;A. (5)

The final solution u = f - DTV satisfies I:~l u(j) = I:f=l f(j). Problem (5)
can be solved by standard quadratic programming (QP) methods.

2.2 Higher order derivatives

For arbitrary m :::::1, we use the (N - m, N) matrix D N,m := DN,m ... DN,l
of rank N - m and J(u) := DN,mU to define a discrete version of the m-
th derivative of u. Regarding the discrete momentum properties of the finite
forward differences, we see that v E R(D'Jr,m) if and only if

N

Lfvj =0,
j=l

r = 0, ... , m - 1. (6)

Then we obtain as in the previous subsection that there exists a unique V E
JRN-rn such that v = D'Jr mV and



where the inequality is sharp. Thus, problem (3) is equivalent to

Ili - Drr,m VII~ --f min, subject to 1IVIloo~ A. (7)

The final solution is u = i - Drr,m V and can be computed by standard QP
methods.

Remark: In [22]we have examined the relation between (7) and SVR meth-
ods with discrete spline kernels. To see this relation, we introduce the invertible
(N, N) Toeplitz matrix

-1 1 0 0 0
0-1 1 0 0

D_I = (0 .~. 0 -1) =
0 0 0 ... -1 1
0 0 0 0-1

Note that its inverse D=i is the upper triangular matrix with coefficients -1.
Instead of DN,m we want to use the m-th power D"!:I of D_I. The first N - m
rows of D"!:I coincide with those of D N,m' Now, for any v E !RN, there exists
a unique V E !RN such that v = (D"!:I)TV. Assuming that VN-j = 0 far
j = 0, ... ,m - 1which is equivalent to the restrictions (6) on v, we obtain with
- TV := (VI,"" VN-m) that

where the inequality is sharp. Consequently, (7) can be rewritten as

Ili - (D"!:I)TVII~ --f min,

subject to 1IVIloo~ A and Vn-j = 0, j = 0, ... , m - 1.

Defining Fand U by i = (D"!:I)T Fand u = (D"!:I)TU, this problem becomes

subject to

and

II(D"!:I)TUII~ --f min,

IIF - Ulloo ~ A,

Fn-j = Un-j, j = 0, ... ,m - 1.

(8)

Both problems can be solved by standard QP methods. However, far m = 1, the
solution of (8) can be computed by the so-called taut-string algarithm. This
algarithm has complexity G(N) and is much faster than QP methods, see [9,14].

Finally, let us consider u = D"!:I (D"!:I)T"IjJ as discrete counterpart of u =
'ljJ(2m).Then 'ljJ= k * u, where k is the fundamental solution of the (2m )-th
derivative operator, i.e., the spline k(x) = x~m-I. Here (x)+ := max{O,x}.
In our discrete setting, we have with K := (D"!:I(D"!:I)T)-I that "IjJ= Ku.



Let U := 7j;(m) = k * u(m). Its discrete version reads U
c := D:':l U, OUT minimization problem becomes '

cTKc -t min,
subject to IIF - Kclloo ::::;A and FN-j = (KC)N-j, j = 0, ... ,m - 1.

This is an SVR problem with discrete spline kerneIs, see [22].

3 Twodimensional Setting

For simplicity, we restrict OUT attention to quadratic (n, n) arrays and reshape
them columnwise into a vector of length N = n2. Further, we introduce the
matrix

Do := (0 .~.0) .
3.1 First order derivatives

In this subsection, we are concerned with the ROF model.:J(u) := Vu. Since we
will apply similar ideas for regularization functionals with higher order deriva-
tives in the next subsection, we repeat the approach of A. Chambolle [4] using

OUT matrix-ve(c~I )not~tion. 1 2 N

For F:= F2 w1th F,F E]R. ,let

where 0 denotes the componentwise vector product. As discrete version of .:J we
use J( u) = l1)ul with the (2N, N) matrix of rank N - 1

..•.•..=(In0Do), T ( T T )
L/ D I 1) = In 0 Do , Do 0 In .

00 n

Here 0 denotes the Kronecker product. Since the columns of 1)T add up to zero,
we see that v E R(1)T) if and only if

N2:>j = o.
j=l

Then we obtain for all V E ]R.2N with v = 1)TV that

(9)

Applying Schwarz's inequality to the sum of corresponding components in both
inner products, we get



This inequality is not sharp for an arbitrary V E !R2N, but becomes sharp if we
restrict ourselves, e.g, to V E R(V) which does not imply further restriction on
v. Finally, we can estimate the right-hand side of (10) by

(v,w):::; IIIVIllooIIIVwlill Vw E !RN,

wh ich becomes sharp, if we replace 1IIVIlloo by inf 111V111ooll,see [2]. This
v='DTV

was denoted as Gd-norm of v in [2] and can be considered as discrete version
of Meyer's G-norm [15]. Recently, the G-norm was generalized to second order
derivatives in [17]. This is related to the next subsection. Now problem (3) reads

Ilf - VTVII2 ---> min, subject to 1IIVIIIoo:::;.\. (11)

This is a quadratic problem with convex constraints. The Lagrangian of (11) is
given by

where e denotes the vector with components one and 0 E !RN with 0 ~ 0
componentwise. A necessary condition for V to produce a minimum of (11) is
that the gradient of I:-with respect to V is the zero vector, i.e.,

(12)

Let W := VVTV - Vf. If o.j > 0, then, by the Karush-Kuhn-Tucker condi-
tions, the j-th constraint in (11) has to be the equality (V})2 + (V;)2 = .\2.
Consequently, by (12), W} = -o.j ~l and WJ = -o.j ~2 so that

(13)

If o.j = 0, then W} = 0 = o.j and WJ = 0 = o.j so that we also have (13). Hence
we can replace 0 in (12) by (13) and obtain

1 (IWI)W+~ IWI oV=O. (14)

By [8, Theorem9.2-4], the Karush-Kuhn-Tucker conditions summarized in (14)
are also sufficient for V to provide a minimum of (11). To solve (14), A. Cham-
bolle [4] suggested the semi-implicit gradient descent approach

In summary, we obtain the following algorithm:

Algorithm 1.
Input: fand v(O) := o.



Repeat for k = 0 until a stopping criterion is reached

Wek) := VVTVek) - Vi,

Vek+1) '= (1+ = (IW
ek

) I)) -1 0 (Vek) _ TWek))
. A IWek)1 '

k:= k + 1,

where the inverse is taken componentwise.
Output: u := i - VTVek).

A. Chambolle proved that VTVek) converges for k ~ 00 to the solution v of
(3) if

T :::; l/IIVTII~.
Now IIVT~~ = p(VTV), where p denotes the spectral radius of the matrix. The
matrix V V is well-known from the five point finite difference discretization
of the Laplacian with Neumann boundary conditions. The eigenvalues of this
matrix are given by 4(sin(j71-j(2n))2 + sin(k7r/ (2n) )2), j, k = 0, ... ,n - 1. Thus,
IIVTII~ = 8. However, in numerical experiments convergence was observed far
T:::; 1/4.

Since
1IVIloo :::;IllVllloo :::;hllVlloo.

we also consider the problem

Ili - VTVl12 ~ min, subject to 11V11oo:::;A. (15)

This problem has linear constraints and can be solved by standard QP methods.
Constraints of the form (15) were also used also by W. Hinterberger, M. Hin-
termüller, K. Kunisch, M. von Oehsen and O. Scherzer [11J. However, motivated
by the taut-string algarithm, these authors minimized a mare complicated func-
tional.

3.2 Second order derivatives

Starting with the Hessian \72u := (uxx U
XY) of u, we consider the following

uyx Uyy
functionals:

1. the trace of the Hessian, i.e., the Laplacian

J(U) := 6.u = UXX + Uyy,

2. the Frobenius norm of the Hessian mentioned also in [lOJ

() (
2 2 2 2 ) 1/2J u := uxx + Uyy + UXY + uyx ,

3. the modified Laplacian considered in [13]



1. The Laplacian. As diseretization ofthe Laplaeian we use J(u) := 1J6.U,
where

1J6. := 1JT1J = In 0 D6 Da + D6 Da 0 In
denotes the symmetrie matrix of rank N - 1 arising from the five point finite
differenee discretization of the Laplacian with Neumann boundary conditions.
Sinee the eolumns of 1JT1J add up to zero, we have that v E R(1J 6.) if and only
if (9) holds true. Then we obtain for all V E !RN with v = 1J6.V that

(v,w) = (1J6.V,w) = (V, 1J6.w) ~ IIVllooll1J6.wlll Vw E !RN. (16)

Regarding that the nullspaee of 1J6. is given by {ce : c E !R}, we see that
v = 1J6.V if and only if v = 1J6.(V + ce). Choosing /-L:= (Vmin + Vmax)/2
with the maximal and minimal components Vmin and Vmax of V, respectively,
we obtain that the components of V := V - /-Lefulfill -(Vmax - Vmin)/2 ~ fj ~
(Vmax - Vmin)/2, where we have lower and upper equality for some eomponents
j_ and j+, respeetively. Thus, IIVlloo = (Vmax - Vmin)/2 and IIV + celloo =
IIVlloo + IcI- Consequently, min IIVlloo = IIVlloo' Choosing 1J6.W as veetor

v='DL, V

eonsisting of zeros except for (V6.w)j_ := -1 and (V6.w)J+ := 1, we obtain in
(16) the equality (v,w) = (V, 1J6.w) = 211Vlloo= IIVllooll1J6.wlll'

Finally, we solve

Ili -1J6. VII~ --+ min, subjeet to IIVlloo ~ A. (17)

2. The Frobenius norm of the Hessian. We diseretize the Frobenius
norm of the Hessian by J(u) := I1JHul, where

(

(In0D6)(In0Da)) (In0D6Da)
1JH:= (D60I:r)(Da0In) = D6J?a0In

(In 0 Da )(Da 0 In) Da 0 Da
(Da 0 In)(In 0 D6) Da 0 D6

and where for F:= (F1
, F2

, F3
, F4

) with Fi E !RN, i = 1, ... ,4,

IFI := ((F1)2 + (F2)2 + (F3)2 + (F4)2)1/2 E !RN.

We ean just repeat the arguments from the previous subsection. Again, 1J'-fIhas
. T

rank N -1 and its eolumns sum up to zeros. Therefore we have that v E R(1J H)
if and only if (9) holds true. Then we obtain for V E !R4N with v = 1J'-fIV that

4

(v, w) = (1J'-fIV, w) = (V,1JHW) =L (vi, (1JHWt) .
i=l

Applying Schwarz's inequality to the sum of the eorresponding components in
the four inner produets, we obtain (v, w) ~ (lVI, 11JHWI) and further (v, w) ~
IIIVllloo, 1111JHwllll Vw E !RN. We solve the problem

Ili -1JHVI12
--+ min, subject to IIIVllloo ~ A. (18)



by the following algorithm which can be deduced in the same way as Alg. 1 in
the previous subsection:

Algorithm 2.
Input: i and V(O) := O.

Repeat for k = 0 until a stopping criterion is reached

W(k) := vHv'fI V(k) -VH i,

V(k+1) := (1+ ~ (IW(k)l, IW(k)l, IW(k)l, IW(k)l) T) -1 0 (V(k) _ TW(k)) ,

k:= k + 1,

where the inverse is taken componentwise.
Output: u := i - v'fI V(k) .

Similarly as for Alg. 1 it can be proved that the iterative process converges
for step sizes T ~ 1/llv'fIll~ = l/p(V'fIVH)' Having a closer look at the spe-
cial structure of v'fI VH, we conclude by Gerschgorin's circle theorem that
the eigenvalues of this matrix lie in a circle around 20 with radius 44. Thus,
p(V'fIVH) ~ 64 and we can prove convergence for T ~ 1/64. However, in nu-
merical experiments, convergence can be observed for T ~ 1/32.

3. The modified Laplacian. Here we use the discretization J( u) := V6,1u,
where

V61:= ((In/9D'6)(In 0Do)) = (InT0D'6Do).
, (Do ° In)(Do ° In) Do Do ° In

We have that V E R(VI,1) if and only if (9) is fulfilled. Using our standard
arguments, we arrive at the problem

Ili -vI,1 VI12 -+ min, subject to 1IVIloo ~ A

4 Numerical experiments

(19)

For the onedimensional setting, numerical experiments are already contained in
[22].Therefore, we restriet our attention to two dimensions. We apply the various
algorithms to the part (50 : 150,100: 200) of the clown image in Fig. l.

All programs are written in MATLAB. For the solution of the standard QP
problems we have used the CPLEX package whose QP routine is based on a
barrier optimizer.

Fig. 2 shows the results of Alg. 1 versus (15). Both algorithms show seg-
mentations. However, the image transformed by (15) emphazises horizontal and
vertical directions and introduces harder staircasing effects.

The following figures show results for regularization functionals with second
order derivatives. In general, these images look smoother than those in Fig. 2.
Fig. 3 shows the results for the Laplacian. Both images have visible artifacts



Fig. 1. Left: Original clown image. Right: Part of the clown image.

(white pixels). Finally, Fig. 4 presents the results obtained far the Frobenius
norm of the Hessian by Alg. 2 and for the modified Laplacian by (19). For the
Hessian the smoothing effect is larger than for the modified Laplacian.

Fig.2. Left: Clown image (part) transfarmed by Alg. 1 with A = 10. Right:
Clown image (part) transfarmed by (15) with A = 10.

Appendix

Let us briefly derive the equivalence of (2) and (3). We follow mainly the lines
of [2,4].

Proposition 1. The problems (2) and (3) are equivalent.

Proof. Set I(u) := IIJ(u)lh. Since (2) is a convex functional, its minimizer
has to fulfill the necessary and sufficient condition

OE u - f + AoI(u), i.e.,
f-u-A- E oI(u), (20)



(21)

Fig.3. Clown image and its part transformed by (17) with A = 10.

where 81 denotes the subgradient of I. By [19, Theorem 23.5], condition (20) is
equivalent to

UE8I*(i~U) i.e., i-AvE8I*(v),

where AV := i - u and where 1* denotes the Legendre-Fenchel conjugate of I.
Now v fulfills inclusion (21) if and only if v minimizes the functional

Ili/A - vl13 + (2/A)I*(V). (22)

By definition of the conjugate function and since I is one-homogeneous, we have
for arbitrary A > 0 that

I*(v):= sup {(v, w) - 1(w)} = sup {(v, w) - >.I(W/A)} = AI*(V). (23)
wERN wERN

Therefore and since 1* is proper, either 1*(v) = 0 or 1*(v) = 00 holds true. In
the second case, the vector v cannot become a minimum of (22). Consequently,
problem (22) can be rewritten as

Ili - Avl13 -; min, subject to I*(v) = O.

Setting v := AV, we see by (23) that this problem is equivalent to (3). 0

For special I, the set VA can be further restricted as follows:

Proposition 2. Let J(w) := g(Aw) with an (M, N) matrix A of rank
smaller than N and a function 9 : ~M -; ~M satisfying g(O) = O. Let VA be
defined by (4). Then v E VA implies that v E R(AT).

Proof. Assurne that there exists v E VA with v <I- R(AT). Since ~N =
R(AT) EBN(A), where N(A) denotes the nullspace of A and EB the orthogonal
sum, the vector v can be written as v = Vo+ ATV with Vo E N(A), Vo =I- O.
Then we obtain for w := Vo that

(v, w) = (vo + ATV, vo) = Ilvol13 + (V, Avo) = Ilvol13 > o.



Fig.4. Top left: Clown image (part) transformed by Alg. 2 with A = 5. Top
right: Clown image (part) transformed by (19) with A = 5. Bottom left: Clown
image (part) transformed by Alg. 2 with A = 10. Bottom right: Clown image
(part) transformed by (19) with A = 10.

On the other hand, we have that

IIJ(w)lh = Ilg(Avo)lll = Ilg(O)lll = 0,

so that we conclude by definition of Vx that v rf. Vx. This contradicts OUT as-
sumption. D
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