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Abstract. We present an extrapolation type algorithm for the numerical solution of fractional
order differential equations. It is based on the new result that the sequence of approximate
solutions of these equations, computed by means of a recently published algorithm by Diethelm
[6], possesses an asymptotic expansion with respect to the stepsize. From this we conclude that
the application of extrapolation is justified, and we obtain a very efficient differential equation
solver with practically no additional numerical costs. This is also illustrated by a number of
numerical examples .
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Fractional Order Differential Equations

o. Introduction and Preliminaries

2

Recently, differential equations of fractional order have gained very much interest, see for
example [6] and the references therein. A prototype example of such a problem is given by the
fractional order differential equation

(Dq[x - xa])(t)

x(O)

ß x( t) + f (t) , 0 ~ t ~ 1 ,

xa,

(0.1)

(0.2)

•
..,

•

where f is a prescribed function, ß ~ 0, and Dqx denotes the Riemann-Liouville fractional
derivative of order 0 < q < 1 of the function x, defined by (see [18])

1 d t x(u) du.
(Dqx)(t) := nil _ q) dt Ja (t - u1q

An important observation here is (cf. [7]) that we may interchange differentiation and integration
to obtain

(Dqx)(t) = _1 t x(u)
r(-q) Ja f. '--'-' du,

where we now have to interpret the strongly singular integral in Hadamard's finite-part sense .
Note that it is a consequence of this identity that we may interpret our equation (0.1) either as
a differential equation or as a Volterra integral equation with a strongly singular kernel. Both
points of view are justified, and we shall switch between the two interpretations as appropriate.

Following the common practice in the theory of these differential equations, we have incor-
porated the initial condition (0.2) into the differential equation (0.1). Since the complete initial
value problem may easily be transformed to an arbitrary interval, our choice of the interval
[0,1] does not mean an essential restriction.

There are very many possible applications for such an equation in areas like mechanical
damping laws, diffusion processes, electromagnetics, electrochemistry, material science, the the-
ory of ultra-slow processes, and special functions, see [6,18] and the references therein.

Possible generalizations include the case of non-constant ß or nonlinear terms, but these
more general equations do not seem to have attracted attention from the point of view of
applications so far.

In the present paper, we will mainly focus on equations of the type given in (0.1) and
develop an extrapolation algorithm for its numerical solution. In the field of classical, i.e.,
non-fractional, differential equations, several kinds of extrapolation methods are quite well-
developed, see e.g.[ll] or [21]. Our aim was to obtain a similar approach to the fractional
case .
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Extrapolation should be viewed as a numerical process which accelerates the convergence of

a given sequence, cf. [2,3,21]. Its applicability depends on the fact that a given sequence of, say,
numerical solutions of a discretized differential equation, possesses an asymptotic expansion.
For non-fractional differential equations, the first rigorous analysis of this fact was given by
Gragg [8,9], and a very nice proof for a general dass of methods is due to Hairer & Lubich [10].

In Seetion 2 of our paper, we prove a corresponding result for the approximate solutions of
the equation (0.1), computed by a method recently introduced by Diethelm [6]. This method
works as follows: For some nEIN, compute the approximations {x j}, j = 1, ... , n, by the
formula

1 ((,)q j
Xj = D:Oj-(j/n)qr(-q)ß ~ q-q)!(tj)-L:D:kjXj_k-:ro),

k=l q

where, for each j , the coefficients D:kj are determined by the relation

{

-I for k = 0

q(l - q)j-qD:kj = 2k1-
q - (k - l)l-q - (k + l)l-q for k = 1: ... ,j - 1.

(q - l)k-q - (k - l)l-q + k1-q for k = j .

(0.3)

(0.4)

•

",

'I

.;

Then, as shown in [6]' each Xj is a good approximation of the true value x( tj) , where {tj}
is the equispaced grid on [0,1]. (Here and below, by Xn we always denote the final result of the
process (0.3), i.e., the approximation of the value x(tn)') Note that, due to our assumptions
on ß and q, the denominator in (0.3) is always strictly negative, and so the numbers Xj are
well-defined.

In order to prove our main Theorem 2.1, we first need several results on the existence of
an asymptotic expansion for the numerical solution of finite-part integrals by certain numerical
methods. In the context of the present paper, these might be viewed as auxiliary results, but
it is certainly also interesting by itself, since the numerical methods under consideration are
generalizations of the trapezoidal (resp. piecewise constant interpolation) method, ancl thus the
extrapolation process, when applied to these methods, is not hing else but a generalization of
the famous Romberg sehe me (cf. [19,21]).

Finally, in Seetion 3 we state the extrapolation process itself, and illustrate its efficiency by
means of some numerical examples.
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1. Asymptotic Expansions for the Error in Quadrature
of Finite Part Integrals

In this section we consider the numerical solution of the Hadamard finite-part integral

Iq[g] := 11
C(q+1)g(t) dt,

4

(1.1)

•
~.,

where 0 < q < 1 and 9 E CS[O, 1] with q < s, by means of certain generalized compound
quadrat ure formulae, introduced in [5].

These can be described as follows: Given the equidistant mesh {tj = j In : j = 0,1, ... ,n}
on [0,1], and an integer d ?: 0, we construct a function gd that interpolates our function
g. On every subinterval [tj-1, tj] (j = 1,2, ... , n), the function gd is defined to be the
d th degree polynomial that interpolates 9 in the (equidistant) nodes tj-1 + JL(tj - tj-dld,
JL= 0,1, ... , d. (For d = 0, we only use the node tj-1 .) The piecewise polynomial gd is then
integrated exactly in the finite-part sense with respect to the weight function r(q+1). Thus,
we obtain our desired approximation Qn[g] := Iq[gd] with remainder term Rn := Iq - Qn .
We remark that, following our construction, it is clear that Qn [g] depends not only on n but
also on the degree d of the piecewise polynomials and on the order q of the singularity. It is
possible to use other meshes as weIl, this has been discussed in [5] too, but for the application
we have in mind, the uniform mesh is most appropriate.

First, we are interested in the asymptotic behavior of the so-called Peano error constant

p = p(s, d, q, Rn) := sUP{ IRn[g] I ; 9 E CS[O, 1] and Ilg(s) 11 :S I} . (1.2)

It is weIl-known (see [5]) that the parameters q, sand d must satisfy the relation

q<s:Sd+l. (1.3)

•

..

In [5]' asymptotic bounds for p(Rn) satisfying (1.3) are given; it is our aim now to analyze
further the asymptotic behavior of this quantity in the sense that we establish the existence of
an asymptotic expansion. We restrict to the extremal case s = d + 1 , since this is the only one
which will be needed later in Section 2.

Moreover, since d E !No and q < 1, (1.3) is automatically satisfied in this case. We therefore
may simplify the notation a little bit and write p(d)(Rn) instead of p(s, d, q, Rn) (note that
this notation slightly differs from that used in [5]).

Later, mainly the results for d = 1 (trapezoidal formula) will be needed, but for complete-
ness, and also to get the reader used with principle of proof, we begin with the case d = 0 .
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~ Theorem 1.1: For 0 < q < 1, the error constant p(O)(Rn) possesses an asymptotie expansion
of the form

p(O)(R
n
) = _q-l ((q) + b1(q) + '"' bll+l(q)

n1-q n L....t n21l
Il=l

(1.4)

where the eoeffieients bll (q) depend on q, but not on n.

Remarks. 1. As usual in the context of asymptotic expansions (cf. [21]), the notation in (1.4)
(no upper limit of the sum) denotes the fact that the asymptotic expansion is of arbitrary order,
i.e., we have

p(O)(Rn) _q-l ((q) + b1(q) + ~ bll+1(q) + 0(n-2M)
n1-q n L....t n21l

Il=l
(1.5)

for each MEIN.
2. A elose inspection of the proof below will show that the coefficients bll(q) can all be given
explicitly; but since we are interested in extrapolation methods, the existence of these coeffi-
cients is information enough.
3. Since ((q) is negative for 0 < q < 1, the asymptotic constant _q-l ((q) is indeed positive.
Furthermore, in connection with [5]' Theorem 2.2, we obtain the inelusion

Proof of Theorem 1.1. In [5]' Theorem 2.2, is was shown that

•
,

(q + 1)/2
(1 - q)q

~ < _-(_(_q) < _(q_+_1_) /_2
6 q (1 - q)q

p(O)(Rn) = n
q
-
1

( n)(1 _ q)q n1-
q

- (1 - q) . ~ v-
q

~ (1 ~ q)q (1 - (1 - q) . n,-l .t,V-') (1.6)

Since :L~=lv-q is the nth partial sum of the Riemann (- function, we obtain the existence
of the asymptotic expansion (cf. [17,21])

n 1 1 ()
nq-1 . '"' v-q = nq-1 ((q) + _ + '"' '11l qL....t q - 1 2n L....t n21l

v=l Il=l

with certain coefficients '11l' Inserting (1.7) into (1.6), gives

p(O)(R
n
) = 1 (1 _ (1- q). ((q) -1- 1- q _ '"' (1- q)'1Il(q))

(1 - q)q n1-q 2n L....t n21l
Il=l

(1. 7)

•

~;

-((q)
q . n1-q

12qn + L _q-l '11l(q)
J1.=1 n

21l



Fractional Order Differential Eqllations

which is of the desired form.

6

o
Applying the same methods, in a bit more tricky way, as in the prüof of Theorem 1.1, we

obtain an analoguous result for p(l)(Rn), i.e., for the application of the modified trapezoidal
rule. This will be the basis for the proof of our main result in the next section, the existence of
an asymptotic expansion for the fractional differential equation solver described in Section O.

Also, the remarks following the formulation of Theorem 1.1 carry over to the following result.

Theorem 1.2: FOT 0 < q < 1, the eTraT constant p(l) (Rn) possesses an asymptotic expansion
of the fOTm

p(l)(Rn) = -2((q -1) . _1_ + '" cl-'(q)
q (1 - q) n2-q L..t n21-'

1-'=1

(1.8)

wheTe the coefficients cI-' (q) depend on q, b'ut not on n.

Praof. Again we refer to [5]' where it was shown that p(l)(Rn) can be decomposed into the
sum

•
.,

with

Tl(n,q)

T2(n, q)

p(l)(Rn) := Tl (n, q) + T2(n, q) + T3(n, q)

nq-2 - 1

2-q

nq
-
2

( n )(1 _ q)q (q + l)n2-q + nl-q - q - 2 . ~ 1J1-q , and

(1.9)

nq-2
T3(n, q) =

\J. - <j)\£. - <j)

Now we have to manipulate these terms and to collect the coefficients oft he resulting asymptotic
expansions. First we get that

Tl(n,q) +T3(n,q)

Then, applying (1.7) we obtain

q+l 1
T?(n, q) = --- + --
- (1 - q) q (1 - q) qn

nq-2

l-q

nq-2

l-q

1
2-q

2 nq-2 n

(1 _ q)q .L 1J1-q

v=l

(1.10)

.'

..

q + 1 1 nq-2 2nq-2
= -- + .. - - - .. ((q-l)+1_ q h .\.

+ __ 2 1_ + '" _11-'_(q_)
(q - 2)(1 - q)q (1 - q)qn ~ n21-'

_(q_-_2_)_(q_+_l_)_+_2 _ (_1_ + _2 (_( q_-_l)) n q_ 2 + '" _11-'_( q_)
(q - 2)(1 - q)q 1 - q (1 - q)q ~ n21-'

(1.11)
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, with coefficients :::;J.L(q),which do not depend on n.

Now we sum up the right hand sides of (1.10) and find that the constant term cancels out,
while the coefficient of nq-2 equals -~l'i~)ql).This completes the proof of Theorem 1.2. 0

We now prove the main result of this section, Theorem 1.3, on the existence of an asymptotic
expansion for the remainder itself, provided that the function 9 is smooth enough:

Theorem 1.3: If, for some m 2 1, 9 E em+1[0, 1] , then the seq'uence of remainders Rn[g]
possesses the asymptotic expansion

m+l J.L*

Rn[g] = L dJ.Lnq-J.L+L d~n-2J.L + O(n-m-1+q) for n ......•CXJ

J.L=2 J.L=1

(1.12)

•

i

"

where j.L* is the integer satisfying 2j.L* < m+1- q < 2(j.L* + 1), and dJ.L and d:, are certain
coefficients that depend on g.

Proof. The first steps of the proof follow the ideas of [12]' Section 2. By construction of the
quadrat ure formula, we can represent the integration error in the form

n-l 1

Rn[g] = ~L1((l + s)/n)-q-l.
n 1=0 0

. ([g((l + s)/n) - g(l/n)](1 - s) + [g((l + s)/n) - g((l + 1)/n)]s )ds .

We express the two terms in brackets with the help ofTaylor's expansion centered at (l+s)/n
and obtain

Rn[gj = ~~ l'((I + s)/n)-'-' (~n-"-2g<"+2)«(1 + s)/n)s(l- 8)n"(8) + "(8)) ds

where 7fr(s) = (sr+l - (s -lt+1)/(r + 2)! is a polynomial of degree rand EI is the error of
the Taylor approximation. Using Lagrange's representation of the latter, it is easily seen that

1 n-l 1 m-2

Rn[g] = - L1((l + s)/n)-q-l L n-r-2g(r+2)((l + s)/n)s(1 - S)7fr(s)ds + O(n-m-1+q).
n 1=0 0 r=O

Reorganization of the double sum yields

m-2 1 n-l

Rn[g] = 2: n-r-21 s(1 - s)7fr(s)n-1 2:((l + s)/n)-q-lg(r+2)((l + s)/n)ds + O(n-m-1+q).
r=O 0 1=0

This expression has got a form that allows a direct application of Theorem 3.2 of [16]. As a
consequence of this, we derive

Rn[g] =I:n-r-2 (mfl aj,rnq-j + mf=-lbj,rn-j + o(nr_m)) + O(n-m-1+q)
r=O j=O j=O
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where, in particular, the eoefficients bj,r are given by

eonst.l
1

s(1 - s)1rr(s)Bj(s)ds

8

whe re Bj is the j th Bernoulli polynomial. It is easily seen that 1rr is an even (odd) function
with respeet to the point 1/2 if r is even (odd). The same is known about the Bernoulli
polynomial. Thus, the integral vanishes if r + j is odd, and therefore the expansion does not
eontain any odd integer powers of n. Colleeting terms with identieal powers of n in the rest
of the last expression, we obtain (1.12). 0

A numerieal example, whieh illustrates the statement of Theorem 1.3 quite nieely, is given
in Seetion 3 (cf. Table 2).

We eonclude this seetion by establishing some results on the Peano kerneIs of the remainder
functional Rn' The prineiples are similar to those applied to the classical trapezoidal method,
see, e.g., Seetions II.2 and V.l of [1]. However, in the classical ease the analysis is drastieally
simplified by various properties like symmetry and periodieity of the kerne 1 functions defined
below that do not hold in our situation.

Lemma 1.4: Let D1(x) := Rn[(- - x)~] for 0 < x < 1, and D1(0) := D1(1) := 0, where
(-)~ is the truncated power function given by

,
I

Then, for every 9 E Cl [0,1] ,

x~ .~ {:/2 for x< 0,
for x = 0,
for x> O.

Rn[g] =11

D1(x)g'(x)dx.

Proof. This is a simple eonsequenee of the classical Peano kernel theorem [20].

(1.13)

o
The function D1 introdueed in Lemma 1.4 is usually ealled the first Peano kernel of the

remainder funetional Rn' Based on this funetion, we shall now define the funetions Dk,

k = 2,3, ... , by the relations

and

D~(x) = Dk-1(X) (1.14)

(1.15)

#

11

Dk(x)dx = O.

Sinee Rn[g] = 0 for g(x) = x, it follows from the Peano kernel theory that (1.15) also holds
for k = 1.
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Lemma 1.5: Let gE Ck[O, 1] for some k 2: 1. Then,

9

1 k-l

Rn[g] = (_l)k+l 1Dk(x)g(k)(x)dx + z=(-l)j+lDj+l(O) (9(j)(1) - g(j)(O)). (1.16)
o j=1

Proof. We note that, as a consequence of (1.14) and (1.15),

Dk(l) = Dk(O) for k = 1,2, ...

Thus, (1.16) follows from (1.13) by (k - 1)- fold partial integration.

Lemma 1.6: For k = 2,3, ... , we have the asymptotic expansions

k

DdO) = z= ';,knq-J-L + z= 'J-L,kn-2J-L
J-L=2 J-L=1

with some constants 'J-L,k and ';,k . In particular, 'k,k =I- 0 .

Proof. We note that, as a consequence of (1.14) and (1.15),

DdO) =11

tDk_l(t)dt.

o

.
I

..

Performing k - 2 partial integrations and using (1.14) and D j (1) = D j (0) (cf. the proof of
Lemma 1.5), we obtain

(-l)k 11k-l k-2 (-l)j+l
Dk(O) = (, )' t Dl(t)dt + z= (' 1)' Dk-j(O).1. 0 . J+.

J=1

Using (1.13), we derive

(-l)k k-2 (-1)i
Dk(O) = ~Rn[Pk] + z= -.!-Dk-j(O)

j=1 J

where Pk(X) = xk .

In the case k = 2, we note that from aremark in [5]' p. 487, Rn[P2] = -2p(l)(Rn) , so an
application of (1.8) completes the proof in this case.

For k 2: 3 , we can see that, by construction,

n lI/In
Rn[Pk] = z= cq-l [tk - nl-k(vk - (v - l)k)t - n-k(vk_ vk+l + v(v - l)k)] dt.

1/=1 (l/-l)ln

A simple explicit calculation yields that this can be rearranged to

1 nq-k nq-k
Rn[Pk] = -- - --51 + --52

k-q 1-q q
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n

51 = I)vk - (v - Il)(v1-q - (v - l)l-q)
11=1

n

52 = 2)vk - vk+1 + v(v - l)k)(v-q - (v - 1)-q).
11=2

10

:l

We notice that we can reorganize 51 in a form that admits an application of classical extrap-
olation methods [21]. A rat her long but straightforward calculation then yields

nq-k5 - k(1 - q) + rI. nq-k + ,"",01, n-2J-L
1 -, 'f/k ~ 'f/J-L,k .

J-L=1

where 1/JJ-L,k are certain coefficients that can be determined explicitly and

k-2 (k)
cPk = -2 L . ((q - j - 1)

j=O J
j - k odd

is a nonzero constant.

In a similar fashion, we can see that

q-k5 _ (k - l)q _ rI. q-k + ,"",0/'* -2J-L
n 2 - k 'f/kn ~ 'f/J-L,kn

- q J-L=1

where again the coefficients 'I/J:,k can be determined explicitly and cPk is as in the previous
expression. Adding up these partial results, the lemma folIows. 0

We remark that, by using methods similar to that in the proof of Lemma 1.6, one can also
prove the existence of an asymptotic expansion for the term

11

Dk(x)g(k)(x)dx,

and so, by me ans of Lemma 1.5, give a new proof of Theorem 1.3.

2. Asymptotic Expansions for the Numerical Solution
of Fractional Order Differential Equations

The method described by (0.3) is obtained by replacing the finite-part integral in the Volterra
interpretation of (0.1) by a product trapezoidal quadrature formula, see [6] for the details. Thus,
if we look at (0.1) as a hypersingular Volterra equation, the method should be called a product
trapezoidal method. On the other hand, if we prefer the differential equation interpretation of
(0.1), the method corresponds to the two-point backward differentiation formula, cf. [15].

We shall now derive an asymptotic expansion of the error of this method. Based on this
expansion, we shall give an extrapolation method in Section 3.
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Theorem 2.1: Let, for nEIN, Xn denote the final result of the process (0.3), and suppose
that the function f (and therefore x) is sufficiently smooth.

Then there exist coefficients cJ1.= cJ1.(q) and c: = c: (q) such that the sequence {xn}
possesses an asymptotic expansion of the form

xn
Mi M2

X(tn) + L cJ1.nq-J1.+ L c~n-2J1. + o(n-M3) for n ---+ 00

J1.=2 J1.=1
(2.1)

where MI and lvh depend on the smoothness of x (resp. f ), and

M3 =min{q - MI, 2M2} •

Proof. In order to prove Theorem 2.1, we have to eonsider the asymptotie behaviour of
x( tj) - x j , j = 1, ... , n , for j ---+ 00. Clearly, this only makes sense if the Ioeation of the point
tj remains fixed, i.e., we investigate the differenees

Ej := x(tj) - Xj for j ---+ 00, with jh is eonstant, (2.2)

where h is the stepsize. In other words, there is a eonstant c, independent of n, sueh that

J = c. n, (2.3)

and eonsequently, we see that if one of the sequenees under eonsideration possesses an asymp-
totic expansion w.r.t. j , it possesses at the same time one W.r.t. n, and vice versa. Taking this
into account, we now claim that, for each fixed j , the difference Ej possesses an asymptotic
expansion of the type given in (2.1), i.e.,

E.
)

Ni N2

L cJ1.nq-J1.+ L c~n-2J1. + o(n-N3)
J1.=2 J1.=1

for j ---+ 00 . (2.4)

This can be seen as follows: Introducing, as in [6]' the auxiliary function \Irj(t) := x(tj -
tjt) - x(O), it can be shown in a straightforward manner (ef. [6]) that

t~q (j )
f(tj) + ßx(tj) = r(~q) ~ D:kj(X(tj-k) - x(O)) + Rj[\Irj]

Using the fact that

(2.5)

j

LD:kj =
k=O

-1
q

(2.6)
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it follows from (2.5) in combination with (0.3) and (2.3) that

Ej = _ fc t_\n T"'f _\ D (- t akj(x(tj_k) - Xj-k) - Rj['1'jJ)
k=1

1 ( j
cqn-q) ß - aOj L akjEj-k + Rj['1'jJ) .

k=1

12

(2.7)

Since the function x was assumed to be smooth enough, the derivatives of the function '1'j
exist and thus we find that, for 1/ 2: 1 and all t E [0,1] ,

'1';v1(t) = (-tj)"" x(v1(tj - tjt) ,

and so, with (2.3),

'1';10'1(0) = (-c)"'. x(v1(e) and '1';10'\1) = (-c)"'. x(v1(0) . (2.8)

Therefore, we obtain from (1.12) that the remainder terms Rj['1'jJ possess expansions of the
form

!VII !VI2
Rj['1'jJ = L d"jq-J.L +L d:j-2J.L + O(j-!VII-l+q) for j -> 00

J.L=2 J.L=1
(2.9)

with coefficients depending on x, but neither on j nor on n, and MI and lvh depending on
the smoothness of x (resp. f).

We now use (2.7) in order to complete the proof of (2.4). Since EO = 0, the assertion
for j = 1 follows directly from (2.9). Now let j 2: 2, and ass urne that (2.4) holds true for
El, ... ,Ej-l'

Starting from (2.7), and using relations (2.4), (2.6) and (2.9), we obtain successively

EJ
1 ( j

cq f( -q) ß - ao L akjEj-k + Rj[WjJ)
J k=1

and so

1
cq f( -q) ß - aOj ( (NI N2

) ( j ) )~ cJ.Lnq-J.L+ ~ c:n-2J.L + o(n-N3) ~ akj - aOj + Rj['1'jJ

(aOj - cq f( -q) ß) . Ej 1 (NI N2 )-. L cJ.Lnq-J.L+L c:n-2J.L + o(n-N3) +
q J.L=2 J.L=1

!VII !VI2
+ L dJ.Lnq-J.L+L d:n-2J.L + O(n-!VII-l+q) +

J.L=2 J.L=1(~ ~ )+ aOj' ~ cJ.Lnq-J.L+ ~ c:n-2J.L + o(n-N3) .

(2.10)
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Rearranging this aeeording to powers of n and remembering that aOj = -q(l - q)jq = q(q -
1)(nc)q, we see that (2.10) is of the form

(
n q + f (- q) ß) . E .

q(1-q) ]

NI N 2L ep.nq-p. +L e:n-2p. + o(n-N3) +
p.=2 p.=1(~ ~ )+ nq. ~ cp.nq-p. +~ c:n-2p. + o(n-N3)

(2.11)

This already shows that the sequenee {Ej} possesses an asymptotic expansion W.r. t. powers of.
n, say

M

Ej = L 'Yp. . n-P'" + o(n-PM) .
p.=1

with

o < PI < P2 < ... .

Thus we obtain the relation

(
M )f( -q) ß

(n
q + 1 _ ). L 'Yp. . n-P'" + o(n-PM)

q( q) J.L=1

(2.12)

NI N2
( NI N2 )L ep.nq-p. +L e:n-2p. + o(n-N3) + nq. L cp.nq-J.L +L c:n-2p. + o(n-N3) ,

p.=2 p.=1 p.=2 p.=1

(2.13)
and we have to eompare the exponents of n in (2.13). Sinee the largest ones on both sides
must be identieal, we get at onee 2q - 2 = q - PI , henee

PI = 2 - q.

(This means that the sequenee {Ej} converges like nq-2 and is inasmueh a result already
known from [6]).

vVe now claim that

q - P2 = -PI'

Assurne to the contrary that q - P2 > -Pl(= q - 2). Sinee -2< q - 2, and because q - P2 is
equal to one of the exponents on the right hand side of (2.13), it follows that q - P2 = 2q - 3 .
Hence P2 = 3 - q , which is a eontradiction to the fact that 3 - q > 2 .

Now assurne that q - P2 < -PI' Under this assumption it is clear that q - P2 eannot be
equal to q-2. So it follows that q-P2 = -2, henee P2 = 2+q. But then, as above, 2+q must
appear as an exponent on the right hand side of (2.13), and this implies that 2 + q = 3 - 2q ,
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which is impossible, except for the case q = 1/3. Excluding this for the moment, we have
shown that q - P2 = -PI = q - 2, hence

P2 = 2.

If q = 1/3, then either q - P3 = q - 3 or q - P3 = 2q - 3. In the first case it follows that

2
-P3 = -3 = 2q - 4 = 3" - 4,

which is wrong. In the second case, we get that P3 = 3 - q , which in turn implies that P2 = 2.

In any case we have shown that (at least) the first two exponents in the asymptotic expansion
in (2.4) are correct. Now we proceed by comparing the next pairs of exponents and obtain,
after some laborious but straightforward case distinctions the desired equalities of exponents.
It follows that Cj is of the form claimed in (2.4), and, after setting j = n anel some obvious
re-labeling, the proof of Theorem 2.1 is complete. 0

3. The Extrapolation Algorithm and Numerical Examples

Having proved the existence of the asymptotic expansion (2.1) (resp. (1.12) ), we are now
able to state an extrapolation algorithm for the numerical solution of the initial value problem
(0.1), (0.2), since it is just a special case of the general so-called logarithmic extrapolation
process (or repeated Richardson extrapolation ), as described for example in [21].

We recall from (2.1) that the approximations Xn possess an asymptotic expansion, which
we now write for convenience in the form

M

Xn = x(tn) + L 'Yj1.n-Aj1. + o(n-AM) for n -7 00

1'=1

where, for j = 1,2, ... ,

'\3j = 2j + 1- q , '\3j-l = 2j , and '\3j-2 = 2j - q . (3.1 )

Now, choose natural numbers no, b (usually, b = 2), and K with K :S lvI, anel compute
by the method (0.3) the sequence of numerical solutions

(0) '= xn. ,Yi' , i = 0,1,2 ... , (3.2)

where ni := no . bi for all i.

The algorithm is now to apply linear extrapolation, i.e., to compute the sequences of im-
proved numerical solutions

(k-l) (k-l)
(k)._ (k-l) + Yi+l - Yi

Yi .- Yi+l bAk - 1 {
~~ 1,2, ,K,
z - 0,1, ,

(3.3)
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with the Ak'S defined in (3.1).

Then each of the sequences {y~k)hEBV possesses an asymptotic expansion of the form

M

y?) = x(tn) + L 'Y~k). n-;A" + o(niAM) for ni ---+ CX)

J.L=k+l

and thus faster to then~Ak+l
t

with coefficients 'Y~k) , which are independent of ni.

In particular, each of the sequences {y~k)} converges like
limit x( tn) than its predecessor.

For the application of the method, it is of course important to investigate the stability of
the method. In this context, we have the following positive result.

Theorem 3.1: For arbitrary K, the method given by (3.2), (3.3) for the approximate calcu-
lation of x(l) is stable.

Proof. For K = 0 , i.e. the basic algorithm without extrapolation, this result is due to Lubich
[15]. For K > 0 , we can see that the final result is obtained by a finite linear combination of
non-extrapolated values. Since the latter have already been shown to be the result of a stable
process, the overall extrapolation process is also stable. 0

The argumentation used in the proof of Theorem 3.1 is essentially identical to the one used
in the classical case of differential equations of integer order, see, e.g., [13]' section 5.3, or [21].

Note that the computational costs of the process (3.3) is very, very low, compared to the that
of the algorithm (0.3) itself (since (3.3) is a completely linear process), but that the improvement
of the accuracy is significant, as we will show now by some numerical examples. The results
(and similary the errors) of the extrapolation process (3.3) are usually displayed in a triangular
array of the following form, called Romberg tableau.

Table 1. A Romberg Tableau
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We conclude our paper by giving the results of some numerical tests. In all cases we have
chosen b = 2 and no = 10, i.e., our sequence ni is given by

ni = 10. 2i , i = 0,1,2 ...

Our first example is an illustration of Theorem 1.3. We consider the case g(x) = exp(l - x) .
An explicit calculation yields Jo1x-q-1g(x)dx = -IFl(l; 1 - q; l)/q. We calculated some ap-
proximations for this integral using our quadrature formula for various values of n, and then
established the corresponding Romberg tableau for the quadrature errors Rni [g] . For the sake
of brevity, we only state the tableau for q = 1/2 here explicitly; for all other choices of q, we
obtained analoguous results.

-6.22( -2)
-1.57( -3)

-2.30( -2) 1.97(-5)
-3. 79( -4) 3.82(-7)

-8.38( -3) 3.80( -6) 1.44( -9)
-9.18( -5) 3.51(-8) -8.67(-12)

-3.02( -3) 7.01(-7) 8.17(-11) -1.80(-14)
-2.24( -5) 3.18(-9) -4.00(-13) -.5.20( -17)

-1.08(-3) 1.27(-7) 4.73(-12) -4.49( -16) 1.15( -20)
-5.51(-6) 2.85( -10) -1.81(-14) -8.01(-19)

-3.86(-4) 2.26( -8) 2.79(-13) -1.07(-17)
-1.36( -6) 2.55(-11) -8.11(-16)

-1.38( -4) 4.02( -9) 1.67(-14)
-3.37(-7) 2.27( -12)

-4.88( -5) 7.12(-10)
-8.37( -8)

-1.73(-5)

Table 2. Quadrature Errürs für g(x) = exp(l - x) .

Note that we have adopted the notation -6.22(-2) to stand for -6.22,10-2 , etc. The power
of the extrapolation method is clearly exhibited: For example, using only one extrapolation step
based on formulas with 81 and 161 nodes, the results are better than those obtained without
extrapolation with 1281 nodes. The use of more extrapolation steps gives even better results.
Furthermore, the asymptotic expansion of Theorem 1.3 is nicely recovered in this table. It
is seen that the values in the columns converge to zero with the convergence order described
by Theorem 1.3: The first column converges as nq-2, the second as n-2, and the following
columns as nq-3, nq-4, n-4, nq-5, nq-6, and n-6, respectively.

We now come to exampIes illustrating the algorithm for the numerical solution of the dif-
ferential equation itself. We tested the algorithm using various differential equations. All tests
were performed with five different values for q, namely q = 1/10, q = 1/4, q = 1/2, q = 3/4,
and q = 9/10. In the following we show a representative selection of our results.
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Example 1: As a first example, we looked at the differential equation

2
(Dqx)(t) + x(t) = t2 + f(3 _ q) t2-q, x(O) = 0,

whose exact solution is given by
x(t)=t2•

17

This problem has already been considered in [6]. We displayed the errors of the basic algorithm
and of the first two extrapolation steps in the Romberg tableau. In all cases of q under
consideration, we can observe that the first column (the errors of the basic algorithm without
extrapolation) converges as nq-2• The second column (errors using one extrapolation step)
converges as n-2, and the last column (two extrapolation steps) converges as nq-3. As an
example, we show in Table 3 the results for q = 1/10 and q = 1/2.

-5.53( -4)

-1.63(-4)
-1.99(-5)

-4. 73(-5)
-4.97(-6)

1.l8( -8)

-1.36(-5)
-1.24(-6)

1.47(-9)

-3.86( -6)
-3.10( -7)

1.87(-10)

-1.09( -6)
-7.75(-8)

2.43(-11)

-3.07(-7)
-1.94(-8)

3.19(-12)

-8.57( -8)
-4.84(-9)

4.22( -13)

-2.39( -8)
-1.21( -9)

5.60(-14)

Table 3a . Example 1 , q = 1/10.

-7.72(-3)
-1.30( -4)

1.91( -6)-2.82( -3)
-3.11(-5)

2.95( -7)-1.02( -3)
-7.56( -6)

4.68( -8)-3.64( -4)
-1.86( -6)

7.63( -9)-1.30(-4)
-4.58( -7)

1.27( -9)-4.62(-5)
-1.l4( -7)

2.14(-10)-1.64(-5)
-2.82( -8)

3.67(-11)-5.82(-6)
-7.03( -9)

-2.06(-6) _ 1/2.
Example 1, q-Table 3b.
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Example 2: The second example is the differential equation

1 3 24(Dqx)(t) + x(t) = t4 - _t3 - t3-q + t4-q, x(O) = 0,
2 f(4-q) f(5-q)

whose exact solution is given by

18

4 1 3x(t) = t - 2t .

In aH cases of q under consideration, we can observe that the first column (the errors of the
basic algorithm without extrapolation) converges exactly as nq-2, and the second column
(errors using one extrapolation step) as n-2. This is weH in line with the results of Section
2. For the third column (two extrapolation steps), we have the effect that for q ::; 1/2, we
have a convergence rate of exactly nq-3 (cf. Table 4a), while for example for q = 9/10, the
convergence seems to be even a bit faster.

-5.64( -3)
-3.17(-4)

-1.90(-3) 3.30(-6)
-7.67(-5)

-6.18(-4) 6.03( -7)
-1.87(-5)

-1.97( -4) 1.00(-7)
-4.60(-6)

-6.18(-5) 1.59(-8)
-1.14( -6)

-1.92(-5) 2.46( -9)
-2.83(-7)

-5.90( -6) 3.74(-10)
-7.05(-8)

-1.80( -6) 5.64(-11)
-1.76(-8)

-5.48( -7)

Table 4a. Example 2, q = 1/4.

-7.70(-2)
-1.00( -3)

-7.07( -5)-3.65( -2)
-3.03(-4)

-1.76(-5)-1.72( -2)
-8.90(-5)

-4.03( -6)-8.06(-3)
-2.53(-5)

-8.85( -7)-3.77(-3)
-6.98(-6)

-1.89( -7)-1.76(-3)
-1.89(-6)

-3.99( -8)-8.24(-4)
-5.02(-7)

-8.31(-9)-3.85(-4)
-1.32(-7)

-1.80(-4) ? q = 9/10 .
b Example_,Table 4 .



..

Fractional Order Differential Equations

Example 3: The third example, the differential equation

cq
(Dq(x - l))(t) + 2x(t) = 2 cos nt + 2r(1 _ q) (lF1 (1; 1 - q; int) + 1F1 (1; 1 - q; -int) - 2) ,

x(O) = 1,

with exact solution
x(t) = cos nt,

19

is also taken from [6]. Once more, in all cases of q under consideration, we find convergence
as nq-2 in the first and n -2 in the second column. The figures in the last column give, at
least for q :S 1/2, a hint towards a convergence rate of nq-3 . For larger values of q, however,
it seems that one must go much furt her along the sequence before the asymptotic behaviour
really sets in.

-4.48(-3)

-1.50(-3)
-2.34( -4)

-4.84( -4)
-5.61(-5)

3.12(-6)

..
-1.54(-4)

-1.38( -5)
3.42(-7)

-4.81(-5)
-3.41( -6)

3.81(-8)

-1.49( -5)
-8.50(-7)

4.41( -9)

-4.57(-6)
-2.12( -7)

5.36(-10)

-1.40(-6)
-5.30(-8)

6.87(-11)

-4.25( -7)
-1.32(-8)

9.20( -12)

Table 5a E. xample 3 , q = 1/4.

-1.57(-2)
-7.47(-4)

1.77(-5)-6.04(-3)
-1. 73( -4)

2.93(-6)-2.25(-3)
-4.12(-5)

4.56( -7)-8.21( -4)
-9.95(-6)

6.99( -8)-2.97(-4)
-2.43( -6)

1.08( -8)-1.07(-4)
-6.01(-7)

1.71(-9)-3.80( -5)
-1.49( -7)

2.74(-10)-1.35( -5)
-3.70(-8)

-4.81(-6) _ 1/2.
b Example 3, q-Table 5 .

•
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..
-3.90(-2)

-1.75(-2)
-1.85(-3)

-7.61( -3)
-4.56(-4)

8.05(-6)

-3.26(-3)
-1.10(-4)

5.63( -6)

-1.39(-3)
-2.63( -5)

1.55( -6)

-5.87(-4)
-6.31(-6)

3.50( -7)

-2.48( -4)
-1.52(-6)

7.35(-8)

-1.04(-4)
-3.69(-7)

1.50(-8)

-4.39(-5)
-9.01( -8)

3.04(-9)

Table Sc E. xample 3 , q = 3/4.

Example 4: The final example is

20

,
cq

(Dq(x - l))(t) + 4x(t) = 4et + n/, \ (lF1(1; 1 - q; t) - 4), x(O) = 1,

with exact solution

x(t)=et.

In this example, we again observed convergence orders of nq-2 is the first, n-2 in the second,
and nq-3 in the third column.

-9.13(-4)
-3.36( -5)

2.47(-7)-2.95(-4)
-8.22( -6)

4.02( -8)-9.35( -5)
-2.02( -6)

6.27( -9)-2.92( -5)
-5.01( -7)

9.58(-10)-9.04( -6)
-1.25( -7)

1.45(-10)-2.78(-6)
-3.10( -8)

2.17(-11)-8.4 7( -7)
-7.75(-9)

3.24( -12)-2.57( -7)
-1.93( -9)

-7.78(-8)

- 1/4.Example 4, q-Table 6a.



Fractional Order Differential Equations

'.
-1.80(-2)

-8.56( -3)
-2.90( -4)

-4.03( -3)
-7.15(-5)

1.51(-6)

-1.89(-3)
-1.76(-5)

3.52( -7)

-8.84(-4)
-4.34(-6)

8.32(-8)

-4.13(-4)
-1.07(-6)

2.02(-8)

-1.92(-4)
-2.64( -7)

4.96(-9)

-9.00( -5)
-6.50(-8)

1.22(-9)

-4.20(-5)
-1.60( -8)

2.99(-10)

Table 6b E. xample 4 , q = 9/10.
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