REIHE INFORMATIK
07/97
A Categorical View of Action Refinement
in Models of Concurrency
Friederike Benjes and Mila Majster-Cederbaum
Universitat Mannheim
Seminargebaude A5
D-68131 Mannheim

A Categorical View of Action Refinement in Models of
Concurrency

Friederike Benjes, Mila Majster-Cederbaum

November 20, 1997

Abstract

We define a categorical characterization of refinement and show that refinement
definitions for various models of concurrency can be captured be our view.

1 Introduction

Various efforts have been made in the past years to investigate suitable notions of refine-
ment for the stepwise development of process systems (see for example [Ba81], [dBV92],
[DGR92], [CGGI1], [DDY3], [DGI1], [DGI5], [GG8I], [Re95], [Vo93]). Particular attention
was given to action refinement, also called vertical refinement, where an abstract action is
substituted by some more complex construct. Action refinement can be considered as a
syntactic operator ([AH93], [NEL89]) as well as a semantic operator in a specific semantic
model, see [GG90a],[DDI3],[DGRI3] for event structures, [BDE93],[Vo89],[IM92] for petri-
nets, [DG95] for causal trees, and [DD91] for synchronization trees. In [GGR94], [Be96]
the connection between syntactic and semantic refinement for flow event structures is stud-
ied. For practical considerations more liberal notions of refinement have been investigated
recenctly ([Hu96], [We93], [CR92)).

We are here interested in an abstract view of action refinement, i.e. we wish to state
properties that are common to the various refinement operators. For this we follow the
approach of [JNW94], [WN95] who defined categories for various semantic domains and gave
an abstract characterization of bisimulation and some standard operations, like relabelling,
restriction, parallel operator and sum.

A categorical characterization of an operation can be viewed as a unification of the
various approaches and identifies those features that are essential for this operation. It
may serve as a point of reference for defining such an operation in further models.

The paper is organized as follows:

In section 2 we present our categorical definition of refinement. In section 3 we show that
the classical definitions of refinement on prime event structures and flow event structures
fit into our framework. In section 4 we deal with action refinement in two interleaving
models, i.e. synchronization trees and languages and show that the refinement operators in
these models also satisfy our categorical characterization.

2 A Categorical Characterization of Refinement

We follow here an approach of [WN95] where categories are defined for various models of
concurrency as e.g. event structures, petrinets and synchronization trees. Operations on
these models originating from process languages are interpreted in terms of category the-
oretical concepts. E.g. it is shown in [WN95] that non deterministic choice corresponds to
the coproduct in a fiber and that restriction can be viewed as cartesian lifting. In addition
the relation between models is expressed by (co)reflections between the corresponding cat-
egories. In [JNW94] a categorical treatment of bisimulation is proposed where bisimulation
in some model is viewed as a certain object in the corresponding category.

Along these lines we propose a categorical characterization of action refinement. We
show that for selected examples of models that the corresponding refinement operators
satisfy our definition.

If object A is a refinement of object B then there should be an epimorphism h from A
to B, expressing the fact that A is more detailed. The “structure” of A should moreover
be similar to that of B. We capture this by demanding that the set I'(h) of sections of h
“covers” A, where I'(h) consists of all morphisms ' : B — A with h o ' = idg. For the
notions of category theory we refer to [ML71] and [BW90].

Definition 2.1 Let C be a category, A, B be objects in C and w € Hom (A, B). Define
I'(w), the set of sections of w by
I'(w) :={w' € Homc(B,A) | wow' =idp}.

Definition 2.2 Let C be a category, A, B be objects in C and w € Hom (4, B). (A, B,w)
is called a categorical refinement uff the set of sections I'(w) covers A, 1.e. T(w) # 0 and
for all objects X in C: Yu; # ug € Hom (4, X)3w' € T(w) : uyow' #ugow'.

Remark 2.3 If (A, B,w) is a categorical refinement then w is epimorphic.

The following lemmata are used to transfer categorical refinements from one category
to another:

Lemma 2.4 Let D and C be categories and F : D — C a full and faithful functor. Let
A, B be objects of D and w € Homp(A, B). Then '

o) D(Fw) = {Fg | g € T(w))

b) If (FA, FB, Fw) is a categorical refinement in C then (A, B,w) is a categorical refine-
ment in D.

Proof:

a) Let h € T'(Fw), i.e. Fwoh = idpg. Since F is full there exists g € Homp(B, A) :
Fg=h. Thus Fwo Fg = F(wo g) = idpg = F(idg). Since F is faithful it follows
that w o g = 2dpg and therefore g € I'(w).

Let now g € I'(w), i.e. wo g = idg. Then F(w o g) = Fidg and therefore Fw o Fg =
idpp. Thus Fg € I'(Fw).

b) Let now X be an object of D and uj,us € Homp(A, X) such that u; # us. Since F is
faithful then F'u; # Fus. Thus there exists h € I'(Fw) such that Fuy o h # Fugo h.

2

Let g € I'(w) such that Fig = h. Then Fuj o Fg = F(uj og) # Fugso Fg = F(ugog)
and therefore u; o g #Fus 0 g. d

Lemma 2.5 Let C be a category and (A, B,w) a categorical refinement in C. Let h €
Hom (4, A) an ismorphism. Then (A, B,w o h) also is a categorical refinement.

3 Categorical Refinement on Event Structures

Prime event structures ([Wi87]) and flow event structures ([Bo90]) were introduced as true
concurrency and branching time models of parallel processes. In contrast to [Bo90] we admit
flow event structures where not all events are labelled, because otherwise the categorical
characterization of refinement would not hold if we admit event structures containing self-
conflicting events.

Remark 3.1 Let Set, be the category that has as objects all sets that do not contain x
and as morphisms all (total) functions h: AU {x} — B U {x} with h(x) = *.

Each partial function h from a set A to a set B with x € AUB can be seen as an element in
Homget, (A, B). We then write h: A —* B. For a set X C A we put h(X) ={h(z) | z €
X & h(z) # *}.

Definition 3.2 £ = (E, <, #,!) is a partially-labelled flow event structure if
e F is a set of events

o < C E X E isirreflexive (flow relation)

C E x E symmetric (conflict relation)

o [: E —* L labelling function

A flow event structure is called prime event structureif l is total, # is irreflexive and < is
an irreflexive partial order such that the principle of finite causes (Ve € E: {e' € E | ¢ < e}
is finite) and the principle of conflict heredity (Ve,e’,e” € E : efte’ < &’ = efte”) are
satisfied.

A subset X C F is called configuration of £ iff

(ii) <x:= (X N(X x X))* (the reflexive and transitive closure of < in X) is a partial

(i) X conflict-free, i. e. Vd,e € X : =(d#te) |
order, i.e. < is cycle-free on X.
|

(i) Ve € X: {¢’ € X | ¢’ <x e} is finite (principle of finite causes)

(ivyVee X Ve e E\ X :¢' <e=3e" € X: e'#e” < e (left-closed up to conflicts)

Conf(€) is the set of all configurations of £ (the finite ones and the infinite ones).
R(E) := UXeConf(S) X is the set of reachable events of £.

\
|
A configuration X is called complete iff Ve € E\ X : 3’ € X : ¢'#e.

We write Conf (&) for the set of all finite configurations of £ and MConfy(&) for the set
of all maximal (w.r.t. C) and finite configurations of £.
For X € Conf(€) and e € X write | x(e) :={c' € X | ¢’ <x e}.

For a prime event structure £ = (E,<,#,!) a subset X C F is a configuration of
E iff X is left-closed, ie. Ve € X e = {c € F | < e} C
Le. Ve,e” € X : =(e#e).

Note that for prime event structures each maximal configuration is also complete,
whereas for flow event structures there may exist maximal configurations that are not
complete — such configurations can be seen as deadlock.

We call flow event structures that do not contain maximal and incomplete configurations
deadlock-free.

A flow event structure £ is called empty iff R(£) = @. Note that in contrast to prime
event structures there exist empty flow event structures containing events (for example an
event that is self-conflicting).

A flow event structure is called well-labelled iff exactly the reachable events are labelled,
Le. l(e) =% e g R(E).

Each partially-labelled flow event structure £ = (E,<,#,l : E —* L) in which all
reachable events are labelled can easily be transformed into a well-labelled event structure
WI(E) := (B, <, 4,1 : E —* L) with I'(c) := i(e) ftfljvziif)

Note that all prime event structures are well-labelled flow event structures because in
prime event structures all events are reachable.

X and conflict-free,

Definition 3.3 Let & = (E1, <1, #1,11),E = (B2, <o, #2,12) be flow event structures. £
and & are event-structure-isomorphic (€ &, &) iff L1 = Lo and there exists a bijection
f: Ey = E5 such that for alle.e’' € Eq :

e <1 e & fle) <a f(e), e#1e & f(e)#af(e), and I1(e) = la(f(e)).

&1 and & are domain isomorphic (&1 £y &) iff Ly = Lo and there exists a bijection
f : Conf (&) — Conf (&) such that for all X, X' € Conf(&) :

X X' f(X)Cf(X) and i(X) = Io(f(X)).

(compare [GGRY4] and [Bo90]).

[Bo90] showed that for each flow event structure £ there exists a domain isomorphic
prime event structure P(€) := (E', <',#/,1') with
E':={x(e) | ¢ € X €Confl€)}, Lx(e) <'Wn(f) iff Lx(e) Chr(f),
Lx(@)# IAf) iff Lx(e)U I(f) €Conf(E) and I'(x{e)) = I(e).
This definition can directly be transferred to partially-labelled flow event structures.

Note that =, and =, coincide on prime event structures. Thus for all prime event
structures £ holds: P(£) =, £.

Adapting the definition of [GGR94] we define action refinement for well-labelled flow
event structures:

Definition 3.4 Let & and & be well-labelled flow event structures with £ being non-
empty. Define &1[a ~ &g := W(E, <, #,1: E —* L) with

E = {(e1,e2) € B1 x (B2 U {x}) | ec2 = & I1(e1) # a},

(61,62) < (6,1,6’2) < e1 <1 6/1 \% (e]_ = e’l & e9 <9 6'2),

(e1,e2)F(€], eh) & er#i1e] Ve =€) & eaftach,

li(e if e = *
L:=(Li1\{a}) ULy and I(e1, e2) :Z{ ,;EPS o];thwise

(€ = (B, =i, #i 1 - By =™ Ly)).
Remark 3.5 If £ and F are well-labelled flow cvent structures so is E[a ~ Flp.

If a prime event structures is refined in the same way as a flow event structure with an
event structure containing conflicts the result may be no longer a prime event structure.
Hence we define

&ila~ &g = P(&ila~ &)

for prime event structures £ and & with & being non-empty.

This definition builds the flow event structure refinement of two prime event structures
and then transforms the result into a prime event structure. It yields isomorphic results to
the one in [DGR93] (see [Be96]) and if no conflicting event structures are inserted also to
the one in [GG90b].

[GG90a} and [Co95] gave a simple characteristic of refined event structures that we
transferred to well-labelled flow event structures. This lemma will be used for the proof
that refinement on flow event structures yields a categorical refinement.

Lemma 3.6 Let &£1,& be well-labelled flow event structures such that Es is non-empty,
E=F < ,#1I)=Ela~ Ep and X CFE'.
Then X € Conf(&Ei[a ~ &E)r) if and only if

o 7(X) € Conf(&) (with 1 being the projection from By x (EqU {x}) to E.
o Vey € By : X(e1) :={e2 € B2 | (e1,e2) € X} € Conf(&s)

o Ver € m(X) \ Max(m1(X)) : X(e1) is a complete and finite configuration of Eo (with
Max(m1(X)) denoting the set of mazimal (w.r.t. < (x)) elements in 7, (X)).

Remark 3.7 If X € Conf(&1[a ~ &) is complete so is m((X).

We now define a category for flow event structures and then show that refining a flow
event structure yields a categorical refinement.

Definition 3.8 The category F of flow event structures:
Objects: well-labelled flow event structures
Morphisms: (g,\) € Homp(&1,&2) &

a)g: Ey =% Eo, A: Ly = Lo with ey € R(E1) = gley) = *
b) VX € Conf(&;) Ve, e’ € X holds: g(e) <2 g(e') = e <1 ¢

¢) VX € Conf(£)3Y € Conf(&) : g(X) CY, and
Ve, € X 1 gle) <y g(') = e<x €, and
if X is complete so 1s Y.

d)lsog=2Aolj.

(24

Note that c) implies g(e1) # * = g(e1) € R(&). (One thus also could define ¢ :
R(&E1) —* R(E2) because all other values are necessarily *). The use of well-labelled
instead of totally labelled flow event structure thus leads to a simple morphism definition
only depending on the reachable events. The identity morphism of an event structure
E=(E,<,#,l: E —* L) will be denoted by (¢, idr) with y¢ : E =* E,

) e ife e R(E)

TEICTN & otherwise
It coincides with (idg, idy) if this is a morphism, which is not necessarily the case.

Note that =, implies =g (the categorical isomorphism on F — but not vice versa. But

if labelling is not considered =g is stronger than domain isomorphism.

Theorem 1 For i = 1,2 let & = (E;, <i,#i,li + E; = L;) be well-labelled flow event
structures and & finite, non-empty and deadlock-free, lo(R(E2)) = Lo, a € 11(R(&1)) and
LinLy=0¢. Let E =(E,<,#,1: E—=*L)=¢&la~ &E]p. Letg: E— Ey, \: L — L be
given. by:

. er if (e1,e2) € R(&[a~ &Jp) | | a ifb€ Ly
g:(en,e2) x otherunse s Aibe b otherwise

Then (E1]a ~ &g, &1, (g, A)) is a categorical refinement in F.

Proof: (using lemma 3.6)
Obviously (g,A) € Homp(€',€) because VX € Conf(£') holds g(X) = m1(X) € Conf(£)
(see lemma 3.6) and completeness of X implies completeness of g(X).
We have to show that for an arbitrary & and V(g1, A1), (g2, A2) € Homg(€,&'):
(gla Al) # (92> /\2) = El(gla /\,) € F(97 /\) : (gla >‘1) © (g,> >‘,) # (92; AQ) © (g,:)‘,)
For each event f € R(&2) define (g, Ay) € T'(g, A):
(e1,f) ifli(er)=a .
grer ¢ (er,%) ifl](el? Fa& e €ER(E) ,Af b { éQ(f) ftﬁe;wzse
* otherwise

(97, A5) € Homp (&, E) because for each configuration X; of &£ there exists a configu-
ration X of £ with 71 (X) = X and if X is complete X also can be chosen complete (this
is due to the fact that & is finite and deadlock-free). Obviously (g, A) o (g5, Af) = idg, and
therefore (g7, Ar) € T'(g, A).

If A1 # Ao then there exists b € Lg : A1(b) # Aa(b).
If b € Lo then there exists (e1, f) € R(E) with la(f) = b and then A\ (Af(a)) = A(b) #
A2(b) = Xo(Af(a)). If b & Lo then b € Ly. Choose an arbitrary f € R(&2), then A (As(h)) =
A1(b) # Aa(b) = Aa(Af(b)). Thus in both situations (g1, A1) o (g5, Af) # (g2, A2) o (g7, Af).

If Ay = A2 then g1 # g2. Then there exists ¢ € R(E) with g1 (e) # ga2(e).
If exists e; € R(E1) : € = (e1,*) then for an arbitrary f € R(&2) holds g1(gs(er)) =
gi(e1, %) # go(e1,*) = ga(gs(er)). If exists e1 € R(E1), f € R(&E2) such that e = (e, f) then
1(o7(e0) = 91(61,) # 02(e1,1) = gloyes). Thus im bt siwations (91,0) oy,) #
(g2, A2) © (gy, Af).

If we used morphisms also depending on unreachable events this result only would hold
for a small subclass of flow event structures, because then also the unreachable events of
the refined event structure must be in the range of one of the sections.

For the category of prime event structures we have to relax the conditions for mor-
phisms: Consider for example £ and & in Figure 1. If morphisms have to satisfy the
condition I3 o g = A oy the event | x(es, fi) with X = {(eq, fo), (e1, %), (e2, f1)} cannot be
reached by a morphism in I'(g, A) with (g, A) chosen appropriately because A(a) must be z
and A(a) must be y.

& Eila~ &g

a @

PQT & ./ \.

e(i. T‘\b.' ‘.b/' a
I ,fél;.........'f{/ T -....'. T

a @ @ sececan ..

K x Yy

Figure 1: The refinement of an event structure — eff denotes the event ep labelled with a
while b denotes the label b — note that not all conflict-relations are drawn

To solve this problem in the category E also morphisms not respecting labelling are
allowed:

Definition 3.9 The category E of prime event structures:
Objects: prime event structures
Morphisms: (g,A) € Homg(&, &) &

a)g:Ey =" Fs and A: Ly —=* Lo

b) Ver, e} € By : gler) <g gle]) = e1 <1 €] Ver#iel.
¢) VX € Conf(£)3Y € Conf(&) : g(X)CY

d)Ve € By : gle) =x < Ali(e)) = %

Condition b) ensures that concurrent events cannot be mapped to causally depending
events.

Theorem 2 Fori = 1,2 let & = (E;, <i, #i,l: : E; — L;) be prime event structures and
Es finite and non-empty, lo(E2) = Lo, a € [1(Ey) and Ly N Le = 0. Let &€ = (E, <, #,1 :
E—L)y=&[a~ &]g. Let g: E — Ey, A: L — L) be given by:

a ifb € Lo

gdxler,ea) e, Arby b otherwise

Then (E1]a ~ &g, &1, (g,) is a categorical refinement in E.

Proof:
Obviously (g,A) € Homg(&i[a ~ &],&1). We have to show that for an arbitrary prime

event structure £ and for all morphisms (g1, 1), (92, A\2) € Hom (&, £'):
(gh)‘1) # (QQa)‘2) = 3(9,7)‘I) € F(q)‘) (gla ’\l) o (,(],; A,) 7 (927)‘2) o (g,a >‘,)
For a complete configuration ¥ € Conf(&;) and f € Y define gy, : By — E with
- e,f) ifli(e)=a
gy e { iﬁ:ge, I)) othle(rv)vise and
h(f) ifb=a
b ifb#a
with Xy :={(¢/,f)eE | <1e& f'=xVfeY}]
Then (gy;, Ay,) € Homg(€1, &1]a ~ Ep) and since (g, A) o (gv;, Ay;) = idg,
then (gy;, Ay;) € (g, A).
If A\; # A2 then there exists b € L : A (b) # A2(b).
If b € Lo then there exists a maximal configuration Y € Conf(&) and f € Y such that
lg(f) = b and J/Xy (C,f) € E and then)\1(/\yf(a,)) =)\l(b) 75)\Q(b) = /\Q(Ayf(a)). If
b € Ly then choose an arbitrary f € Eo, Y € Conf(&;) with Y complete and f € Y and
then A;(Ay,(0)) = A1(b) # A2(b) = A2(Ay;(b)). Thus in both cases (g1, A1) o (gy;, Ay,) #
(92: >‘2) ° (nga >‘Yf)
If Ay = Ao then g1 # g2 and then there exists | x(e1, e2) € E with
g1(dx(e1,e2)) # go(Ix(e1,e2)) Let X' € Conf(E’) such that X' is complete and X C X'.
Let f be an arbitrary event of €. Let Y be a complete configuration of £ with f € Y.
Ixder,er) ife] =e;
(e}, es) ifel #e & €] € m(X') for an
Define ¢' : By — E, ¢ = bk,) arbitr#ar; eh €1E€2 ul{(*})With (e}, ey) € x' and
12,064,) it ef g m (X))

with Zy; = {(e],e5) € X' | €] <€}

and)\yf : L1 — L with)\yf b

b ifba
Io(f) ifb=a
U{(e,ep) e E|ef <€) & e ¢ m(X') & €4 € Y}. Then (¢',N) € Homg(&,E) and
(9, X') € (g, A). Furthermore g1(¢'(e1)) = g1(Ix/e1, €2)) = g1(Ix(e1, e2))

g2(lx(e1, e2)) = g2(x(er, €2)) = ga(g'(e1)). Thus (g1, A1) o (9, X') # (g2, A2) o (¢, X'). O

N:b—

4 Categorical Refinement on Interleaving Models

We adopt a refinement operator on synchronization trees from [DD91] and define a suit-
able refinement operator on languages. Both constructions are shown to be categorical
refinements.

4.1 Synchronization Trees

Synchronization trees were introduced by [Mi80] (see also [Mi89)]).

Definition 4.1 7 = (S,4, L, Tran) is a simple transition system if S is a set of states, L
set of labels, Tran C S x L x S is a cycle-free transition relation such that

Vs, s’ € S:(s,a,s') € Tran = Ab# a: (s,b,s') € Tran,

1 € S imitial state with no predecessor.

A simple transition system T = (5,4, L, Tran) 1s a synchronization tree iff the graph of
Tran s a directed tree with root i.

We write s = s’ for (s,a,s’) € Tran and s - s’ if Ja € L : s =% §.
We write s —* s iff exist s;,...5, € S : s =85 = ... > s, = § and s =T § iff
s =*s & s# 5. A transition system is called emptyif S = {i} and Tran = . It is called
finite if S is finite.
Vyi={s€S| As €8Sa€S:(sa,s) € Tran}. For a synchronization tree define
a if3deS:s s
* if s =1

ls 1 S =™ L with I5(s) := {

Definition 4.2 The category S of synchronization trees:
Objects: synchronization trees
Morphisms: (o,) € Hom (81, 82) iff

a) oSy =" Sy, A Ly =" Ly such that o(i1) = 19

b) Vs1,81 € S1:0(s1) =T o(s)) = 51 AT 51

c)Vs1,s) € S1:(s1 =T 8] & a(s1) #x & o(s}) # %) = o(s1) 2% a(s))
d)Vsy € S\ {11} : (0(s51) = x & A(ls, (51)) = *).

Simple transition systems can be unfolded to a synchronization trees: For a sim-
ple transition system 7 = (S,¢,L, Tran) define the synchronization tree Unfold(T) :=
(51,11, L, Tran 1) with S1 = {(s1,....5n) | 1 = $1 = s2... = s, }, 91 = (1) and
Trany := {((Sﬁl.a ey ‘S'I‘L): b', (‘9]:) 51L+].)) €51 x L x S]. | Sn, ")b s'n,—l—l}-

Lemma 4.3 For § = (5,1, L, Tran) let se(S) := (E,<,#,l) with E :== S\ {i}, e < e &
e 2T e, e#e & —(e =" &) & (¢ =" e) andl : E — L with l(e) = Ig(e). For
(o,\) € Hom g(S1,82) let se(o, A) := (go, A) with

—) ole) if Als (e)) # =

go(c) = * otherwise

Then se: S — E is a full and faithful functor.

Note that this lemma does not follow from [WN95] where different categories have been
used.

For each prime event structure £ = (E,<,#,l : E — L) define a synchronization
tree es(€) := Unfold(Conf;(£),0, L, Tran) with (X,a,Y) € Tran & Je € R(E) : Y =
Xw{e} & l{e) =a.

es does not extend to a functor. Consider for example the event structures £ and &5 in
Figure 2 and the morphism (g, A) € Hom g (&1, &) with A(c) = ¢. Then es(&2) contains two
maximal states (0, {eg},{eo,e1}, {eo, e1,e2}) and (B, {e1},{eo,e1}, {eo,e1,e2}) to which the
state (0,{eop}) of es(€1) should be mapped.

Lemma 4.4 For all synchronization trees S holds es(se(S)) Zg S.

51 82 es(é'l) 65(52)

: e
co{ﬂ/"%.eb Ci bI In

Figure 2: es does not extend to a functor

Definition 4.5 Let & = (S1,41, L1, Trany), Sz = (Sa, 19, Lo, Trans) be two synchroniza-
tion trees, such that S is non-empty.
Define Si[a ~ Solg = Unfold(S1[a ~ Sa)g) with Sila ~ Sa2)s := (S,4, L, Tran). with
Si={(s1,%) | I(s1) #a}U{(s1,52) € S1 x S2 | I(s1) =a & s2 # 12},
i=(i1,%), L:= (L1 \ {a}) U Lo, and
(s1,82) =" (s],5h) & (s1 2% s & (s2=%Vsa€/g) & sh=+%)
V(512181 & (s2=%Vs2€+/g,) & iz -8 sh)
Vo (s1=5) & s o8 sh)

One can easily verify that this definition coincides with the one in [DD91] apart from
the fact that our definition also works for infinitely branching trees.
For an example consider Figure 3.

S] [a ~r SQ]S

S Sy /z :

7y

N
e

oA NP4

Figure 3: Refinement in Synchronization Trees

4.2 Languages

Languages are left-closed sets of traces ([Ho81]) over an alphabet L (compare with the
corresponding category in [WN95]).

Definition 4.6
L = (T, L) is called alanguage of T is a non-empty left-closed subset of L*.

10

A language £ = (T, L) is called empty iff T = {e}. The language corresponding to the
term a || b for example is ({€,a,ab},{a,b}) and the one corresponding to a.(b + c) is

({€,a,ab,ac},{a,b,c}).
. / X .4 g
For a trace t € L* define the last label last(t) := a if 3¢ E_L t=ta
* otherwise

For traces t,#' € L* define t <t if tisa prefixof ¢/, t <t if t <t & t # 1.

Definition 4.7 The category L of languages:
Objects: languages
Morphisms: (o, A) € Homt,(£L1, L2) iff

a)o: Ty =" To,A: Ly —* Ly such that o(e) = ¢

)Vt Lty €T o) <o(t) =ty £

)Vt €T (B <t & o(tr) #* & o(t)) #*) = o(t1) < a(t))
d)Vt1 € Ty \ {e} : o(t1) = x & A(last(t)) ='*.

Lemma 4.8 For £ = (T, L) let Is(L) := (S,4,L, Tran) with S := T, 1 := € and Tran :=
{(t,a,') e T x L xT | ¢ = t.a}. For (0,)A) € Homry, (L1, L2) let Is(o, A) := (o,)A). Then
Is: L = S s a full and faithful functor.

For each synchronization tree & = (5,14, L, Tran) define a language sl(S) := (T, L) with
T = Traces(S), i.e. T = {(ay...an) € L* | 3 = 59 =™ s51... =% s, € S§}. sl does not
extend to a functor because different states of a synchronization tree may correspond to
one trace. But if they are mapped to different states this morphism cannot be transfered
to a morphism in L.

Lemma 4.9 For all languages £ holds sl(Is(L)) = L.

Definition 4.10 Fort € L} and Ty C L3 define ta ~ Ta) inductively: e[a ~ Taly = {€},
{t'.b | ¥ € Max(ti[a~ Tal¢)} ifb#a

{t' .t | ¥ € Max(ti[a ~ To)t) & to € To} otherwise

(with Max(X) denoting the set of mazimal elements of X))

For languages L1 = (T1, L) and Lo = (T, L) with L9 being non-empty let
Lila ~ La]g, := (T, L) with L := (L1 \ {a}) U Ly and T := U, 7, t1][a ~ To]s.

(tl.b)[a ~> TQ]t = {

One easily verifies that refining a language by a language again yields a language.

Consider for example the languages £1 = (T, L) corresponding to the term ab.(c + d)
and L9 = (T3, L) corresponding to z.(y+2). Then T} = {¢, a,ab,abc,abd}, Ly = {a,b,c,d}
and Lo = (T, Lo) with T = {e,z,zy,z2}, Lo = {z,y,z}. Then ala ~ Tply = Tb,
abla ~ Toly = {zyb, zzb}, abcla ~ Ta]y = {zybc, x2bc} and abd[a ~ Thly = {zybd, xzbd}.
Thus L£1[b ~ Lo], = (T, L) with T = {e,a,az, ary,azz, aryc, azzc,aryd,axzd} and L =
{C7 da T,Y, Z}.

4.3 Categorical Refinement on the Interleaving Models

First we show that the refinement definitions for synchronization trees and languages are
compatible with the one for prime event structures in the following sense: Refining in object
in an abstract category and then embedding the result in the more concrete one yields an
isomorphic result to first embedding an object and then refining it.

Lemma 4.11

a) For all synchronization trees S| = (Si,41, L1, Tran1), So = (Sa, 42, Lo, Trans) with Ss
being non-empty, a € L1 and Ly N\ Ly =) holds:
se(Sila ~ Sa]g) Ze se(S1)a ~ se(S2)]E-

bh) For all languages L1 = (Ty,Ly), Lo = (T, La) with Lo being non-empty, a € Ly and
L1 N LQ = (lj holds: IS(,C'[[(J, ~* £2]L) gs IS(,C])[(Z A Is(ﬁg)]s.

Proof:

a) Let T = (S,4,L, Tran) = S1[a ~ Sa]s.
Then se(Si[a ~ Sa)g) = se(Unfold(T)) = (E, <,#,l: E — L) with
E={(s',...s") | n>1& s' =(41,%) & VI <j<n:s — st}
Let & = (B, <',#,I' : E' - L) = se(S1)[a ~ se(S2)]p-
Then L' = (L1 \{a}) ULy = L and E' = S\ {(i1,%)}. Obviously X C E’' is a config-
uration of & iff it is sequentially ordered. We thus define (h,1;) € Homg(€,P(E))
with h(s?,...,s") = x(s") with X = {s', ..., s”}. One can casily verify that (h,1z) is
an isomorphism.

b) Let £ = (T,L) := Li[a ~ Lo]y, and Is(L) = S = (S,4,L, Tran). Then S = T. Let
Is(L;) = (Sj,44, Lj, Tran ;) (i.e. S = T1 and Sy = Tp) and &' = (9,7, L, Tran') =
Is(L1)[a ~ Is(L2)]s-

Define h : S — S inductively: h(e) = ((e,%)). If h(z) = ((81,4),..., (7, 13)) let
h(t).(t7.b,%) ifttbe Ty & (15 =V ith € Max(Ts))
h(t.b) ;=< h().(t7,t5.0) if last(t}) = a & t5.b €T,
h(t).(t7.a,b) iftlt.a € T&(th =%V iy € Max(Ty)) & be Ty
Obviously h is well-defined and total. By induction on trace length one can verify
that h is injective. For s’ € S’ define h'(s") € T inductively: '
R((e,%) = & W ((t],13), ..., (11, 15), (17, 857)) = B/ ((#],43), ..., (47, 15)) b

last(t7TY) if 7T £ 47 & last(iPT) # @

last(tg 1) if last(t7T)) = a

Then h o b’ = ids and therefore h is surjective. One can easily verify that Tran’ =

{(h(s),b,h(s")) | (s,b,s") € Tran} and thus S =g &' 0

with b :=

Theorem 3 Let SQ = (S9,149, La, Trans) be a finite and non-empty synchronization tree
with 12(S2) = L. Let 81 = (S1,11, L1, Trany) be a synchronization tree such that a € 11(S1)
and L1 N Ly = 0. Let (0,)) € Homg(Si[a ~ Salg, S2) with o : ((si,83),...(s7, s3)) = s7,
) a ifb€ Lo

Aibe b otherwise

Then (S1]la ~ Salg, S1, (0, X)) is a categorical refinement in S.

12

Proof:
With lemma 2 we know that (se(S;)[a ~ se(S2)]g, se(S1), (g, A)) with
g :1x(s1, s2) > 51 and X like above is a categorical refinement in E.
With lemma 4.11 we know that se(Si[a ~ Solg) =g se(Si)[a ~ se(S2)]g.
Let (h,11) € Homg(se(Si[a ~ Sa]g), se(S1)[a ~ se(S2)]g) with
bt (st ..., s") —lx(s") with X = {s!,...,s"} (compare the proof of lemma 4.11). Then
(h,11) is an isomorphism.
Since se(o, A) = (g, A) o (h, idr,) we conclude that (Si{a ~ S3]s, S1, (0,))) is a categori-
cal refinement in S. a

Theorem 4 Let Lo = (T, Ls) be a finite non-empty language satisfying

Ly = {b | 3ty € Th : th.b € Tb}. Let L1 = (T1,L1) be an arbitrary language such that
e :t1a €Ty and Ly N Ly = 0.

Let (0,)\) € Homy,(Lifa ~ Lolp,, £1) with At b s { a ifbe L

b otherwise 0 WHRO o(e) = e,

o(t).b ifbe Ly
o(th) =4 o(t) ifb€ Lo & Ity ta,toFec:t=1t.to& to.beTH .
o(t).a otherwise
Then (Li[a ~ L2y, L1, (0, A)) form a categorical refinement in L.

Proof: With lemma 3 we know that (Is(L1)[a ~ Is(£2)]s, Is(L1), (¢/, A)) with
o’ ((s1,83),...(s7, %)) = sT and) like above form a categorical refinement in S. The rest
follows analogously to the proof of 3. 0O

5 Concluding Remark

We introduced a categorical definition of refinement and showed that refinement on event
structures, synchronisation trees and languages can be viewed as categorical refinement. For
this we adapted categories introduced by [WN95] for our purposes. The the characterization
of operations like relabelling, restriction, product and sum that was given in [WN95] — under
some restrictions — carries over to our models (see [Be97]).

It should be noted that our notion of categorical refinement allows for constructions that
would not be considered as refinement in the various models. Let us consider e.g. flow event,
structures. One can define an operation satisfying the conditions of categorical refinement
that transforms a flow event structure in such a way that two events with the same label
are substituted by different event structures. In our setting it is also possible to refine
a synchronizing action for each partner in a different way. This kind of refinement was
suggested by [Hu96]. But there causality and conflict are not necessarily inherited while in
for categorical refinement this inheritance is demanded.

There exists yet another approach to characterize refinement by categorical means:
[DGR92] propose to view each event structure as a category and model refinement as a

functor between such categories.
Work is in progress that considers refinement in various other models of concurrency.

References

[AH93]

[Ba81]

[Be96]

[Be97]

[BDE93]

[Bo90]

[dBV92]

[BW90]

[Co95]

[CGG91]

[CR92]

[DD91]

[DG95]

[DGR92]

[DGR93]

L. Aceto, M. Hennessy, “Towards action-refinement in process algebras”,
Information and Computation, vol. 103, pp. 204 -269, 1993.

R.J.R. Back, “On Correct Refinement of Programs”, Journal of Computer
And System Sciences 23, 1981.

F. Benjes, “Some Properties of Refinement”, TR 14/96, Fakultaet fuer
Mathematik und Informatik, Universitaet Mannheim, 1996.

F. Benjes “Verfeinerung in verschiedenen Modellen fuer Paralleles Rech-
nen”, Dissertation, Universitaet Mannheim, 1997.

E. Best, R. Devillers, J. Esparza, “General Refinement and Recursion Oper-
ators for the Petri Box Calculus” in P. Enjalbert, A. Finkel, K. W. Wagner
(eds.), STACS 93, LNCS 665, pp. 130-140, Springer-Verlag, 1993.

G. Boudol, “Flow Event Structures and Flow Nets”, in I. Guessarian
(ed.): Semantics of Systems of Concurrent Processes, LNCS 469, pp. 62-95,
Springer-Verlag, 1990.

J.W. de Bakker, E.P. de Vink, “Bisimulation Semantics for Concurrency
with Atomicity and Action Refinement”, CWI technical report, 1992.

M. Barr, C. Wells, “Category Theory for Computing Science”, Prentice
Hall, 1990.

R. Costantini, “Abstraktion in ereignisbasierten Modellen verteilter Sys-
teme”, Ph.D Thesis, University of Hildesheim, 1995.

I. Czaja, R. J. van Glabbeek, U. Goltz, “Interleaving Semantics and Action
Refinement with Atomic Choice”, Arbeitspapiere der GMD 594, 1991.

R. Costantini, A. Rensink, “Abstraction and Refinement in Configuration
Structures”, Hildesheimer Informatik-Berichte 18/92, 1992.

P. Darondeau, P. Degano, “About Semantic Action Refinement”, Funda-
menta Informaticae XIV, pp. 221-234, 1991.

P. Degano, R. Gorrieri, “A Causal Operational Semantics of Refinement”,
Information and Computation, vol. 122, pp. 97-119, 1995.

P. Degano, R. Gorrieri, G. Rosolini, “A Categorical View of Process Re-
finement”, in J. de Bakker, G. Rozenberg, J. Rutten (eds.): Proc. REX
Workshop on Semantics: Theory and Applications, LNCS 666, pp. 138-
153, Springer-Verlag, 1992.

P. Degano, R. Gorrieri, G. Rosolini, “Graphs and Event Refinement”, Proc.
Workshop on Semantics: Theory and Applications, 1993

14

[GG8Y]

[GG90a]

[GG90b]

[GGR94]

[Ho81]

[Hu96]

[TM92]

[INWo4]

[Mi80]

[Mi89]
ML71]

[NEL89]

[NSW94]

[Re95]

R. J. van Glabbeek, U. Goltz: “Partial Order Semantics for Refinement
of Actions — neither necessary nor always sufficient but appropriate when
used with care -7, in BEATCS: Bulletin of the European Association for
Theoretical Computer Science, vol. 38, 1989.

R. J. van Glabbeek, U. Goltz, “Refinement of Actions in Causality Based
Models”, in J.W. de Bakker, W.-P. de Roever & G. Rozenberg (eds.): Step-
wise Refinement of Distributed Systems: Models, Formalism, Correctness,
LNCS 430, pp. 267-300, Springer-Verlag, 1990.

R. J. van Glabbeek, U. Goltz: “Equivalences and Refinement”, in I. Gues-
sarian (ed.): Semantics of Systems of Concurrent Processes, LNCS 469, pp.
309-333, Springer-Verlag, 1990.

U. Goltz, R. Gorrieri, A. Rensink, “On Syntactic and Semantic Action

‘Refinement”, in: M. Hagiya, J.C. Mitchell (eds.): Theoretical Aspects of

Computer Software, LNCS 789, pp. 385-404, Springer-Verlag, 1994.

C.A.R. Hoare, “A Model for Communicating Sequential Processes”, Tech-
nical Report PRG-22; Programming Research Group, Oxford University
Computing Laboratory, 1981.

M. Huhn, “Action Refinement and Property Inheritance in Systems of Se-
quential Agents”, CONCUR 96, LNCS 1119, Springer-Verlag, 1996.

L. Jategaonkar, A. Meyer, “Testing Equivalence for Petri Nets with Action
Refinement”, in W.R. Cleaveland (ed.): Proc. CONCUR ’92, LNCS 630,
pp- 17-31, Springer-Verlag, 1992.

A. Joyal, M. Nielsen, G. Winskel, “Bisimulation from open maps”, BRICS
Report RS-94-7, Aarhus University, 1994.

R. Milner, “Calculus of communicating systems”, LNCS 92, Springer-
Verlag, 1980.

R. Milner, “Communication and concurrency”, Prentice Hall, 1989.

S. Mac Lane, “Categories for the Working Mathematician”, Graduate Texts
in Mathematics, Springer-Verlag, 1971.

M. Nielsen, U. Engberg, K. S. Larsen, “Fully Abstract Models for a Process
Language with Refinement”, in J. W. de Bakker, W. P. de Roever, G.
Rozenberg (eds.): Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, LNCS 354, pp. 523-548, Springer-Verlag, 1989.

M. Nielsen, V. Sassone, G. Winskel, “Relationships Between Models of Con-
currency”, LNCS 803, pp. 425-476, Springer-Verlag, 1994.

A. Rensink, “An Event-Based SOS for a Language with Refinement”, pre-
sented at STRICT (Structures In Concurrency Theory), 1995.

[Vo89]

[Vo93]

[We93]

[Wis7]

[WN95]

W. Vogler, “Failures Semantics Based on Interval Semiwords is a Congru-
ence for Refinement”, 1989.

W. Vogler, “Bisimulation and Action Refinement”, Theoretical Computer
Science, vol. 114, pp. 173-200, 1993.

H. Wehrheim, “Parametric Action Refinement”, Hildesheimer Informatik-

Berichte, 1993.

G. Winskel, “Event Structures”, in Brauer, Reissig, Rozenberg (eds.): Petri
Nets: Applications and relationships to the models of concurrency, LNCS
255, pp. 325-392, Springer-Verlag, 1987.

G. Winskel, M. Nielsen “Models for Concurrency”, vol. 4 of the Handbook
of Logic in Computer Science, Oxford University Press, 1995.

16

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017

