
.-
REIHE INFORMATIK

07/97
A Categorical View of Action Refinement

in Models of Concurrency
Friederike Benjes and Mila Majster-Cederbaum

Universität Mannheim
Seminargebäude A5
D-68131 Mannheim

A Categorical View of Action Refinement In Models of
Concurrency

Friederike Benjes, Mila Majster-Cederbaum

November 20, 1997

Abstract

\Ve define a categorical charaeterization of refinement and show that refinement
definitions for various models of concurrency can be captured be our view.

1 Introduction

Various efforts have been made in the past years to investigate suitable not ions of refine-
ment for the stepwise development of process systems (see for example [Ba81]' [dBV92],
[DGR92], [CGG91], [DD93]' [DG91], [DG95], [GG89], [Re95], [V093]). Particular attention
was given to action refinement, also called vertical refinement, where an abstract action is
substituted by some more complex construct. Action refinement can be considered as a
syntactic operator ([AH93], [NEL89]) as well as a semantic operator in a specific semantic
model, see [GG90aJ,[DD93J,[DGR93] für event structures, [BDE93J,[V089J,[JM92] for petri-
nets, [DG95] for causal trees, and [DD91] for synchronization trees. In [GGR94], [Be96]
the connection between syntactic and semantic refinement for flow event structures is stud-
ied. For practical considerations more liberal not ions of refinement have been investigated
recenctly ([Hu96], [We93]' [CR92]).

We are here interested in an abstract view of action refinement, i.e. we wish to state
properties that are common to the various refinement operators. For this we follow the
approach of [JNW94], [WN95]who defined categories für various semantic domains and gave
an abstract characterization of bisimulation and some standard operations, like relabelling,
restriction, parallel operator and sumo

A categorical characterization of an operation can be viewed as a unification of the
various approaches and identifies those features that are essential for this operation. It
may serve as a point of reference für defining such an operation in further models.

The paper is organized as follows:
In section 2 we present our categorical definition of refinement. In section 3 we show that
the classical definitions of refinement on prime event structures and flow event structures
fit into our framework. In section 4 we deal with action refinement in two interleaving
models, i.e. synchronization trees and languages and show that the refinement operators in
these models also satisfy our categorical characterization.

1

2 A Categorical Characterization of Refinement

We fo11owhere an approach of [WN95] where categories are defined for various models of
concurrency as e.g. event structures, petrinets and synchronization trees. Operations on
these models originating from process languages are interpreted in terms of category the-
oretical concepts. E.g. it is shown in [WN95] that non deterministic choice corresponds to
the coproduct in a fiber and that restrietion can be viewed as cartesian lifting. In addition
the relation between models is expressed by (co)reflections between the corresponding cat-
egories. In [JNW94] a categorical treatment of bisimulation is proposed where bisimulation
in some model is viewed as a certain object in the corresponding category.

Along these lines we propose a categorical characterization of action refinement. We
show that for selected examples of models that the corresponding refinement operators
satisfy our definition.

If object A is a refinement of object B then there should be an epimorphism h from A
to B, expressing the fact that A is more detailed. The "structure" of A should moreover
be similar to that of B. We capture this by demanding that the set r(h) of sections of h
"covers" A, where reh) consists of a11morphisms h' : B -7 A with ho h' = idB. For the
notions of category theory we refer to [ML71] and [BW90].

Definition 2.1 Let C be a category, A, B be ob,jects in C and w E Horn c(A, B). Defi:ne
r(w), the set ofsections ofw by
r(w) := {w' E HomC(B, A) Iw 0 w' = idB}.

Definition 2.2 Let C be a category, A, B be objects in C and w E Horn C (A, B). (A, B, w)
is called a categorical refinement iff the set of sections r(w) covers A, i.e. r(w) f 0 and
for all ob.jects X in C: \:111,1 f 11,2 E Horn c(A, X)3w' E r(w) : Ul 0 w' f V'2 0 w'.

Remark 2.3 1f (A, B, w) is a categorical refinement then w is epimorphic.

The fo11owinglemmata are used to transfer categorical refinements from one category
to another:

Lemma 2.4 Let D and C be categories and F : D -7 C a fnll and faithful functor. Let
A,B be objects ofD andw E Hornn(A,B). Then
a,) r(Fw) = {Fg I gE r(w)}
b) If (FA, F B, Fw) is a categorical refinement in C then (A, B, w) is a categorica.l refine-
ment in D.

Proof:

a) Let h E r(Fw), i.e. Fw 0 h = idFB. Since F is fu11there exists 9 E Hornn(B,A) :
Fg = h. Thus Fw 0 Fg = F(w 0 g) = idpB = F(idB). Since F is faithful it fo11ows
that wog = idB and therefore 9 E r(w).
Let now 9 E r(w), i.e. wog = idB. Then F(w 0 g) = FidB and therefore Fw 0 Fg =
idFB. Thus Fg E r(Fw).

b) Let now X be an object of D and ul, 11,2 E Horn n(A, X) such that Ul f U2. Since F is
faithful then FUl f FU2. Thus there exists h E r(Fw) such that FUl 0 hf FU2 0 h.

2

Let 9 E r(w) such that Fg = h. Then FUl 0 Fg = F(UI 0 g) =1= FU2 0 Fg = F(U2 0 g)
and therefore Ul 0 9 =1= U2 0 g. 0

Lemma 2.5 Let C be a category and (A, B, w) a categorica.l refinement in C. Let h E
Horn c(A', A) an ismorphism. Then (A', B, VJ 0 h) also is a categorical refinement.

3 Categorical Refinement on Event Structures

Prime event structures ([Wi87]) and flow event structures ([Bo90]) were introduced as true
concurrency and branching time models of parallel processes. In contrast to [Bo90] we admit
flow event structures where not all events are labelIed, becallse otherwise the categorical
characterization of refinement would not hold if we admit event structllres containing self-
conflicting events.

Remark 3.1 Let Set* be the category that has as objects all sets that do not contain *
and as morphisms all (total) fv:nctions h : AU { *} -t B U { *} wdh h(*) = *.
Each partialfunction h from a set A to a set B with * tf. AUB can be seen as an element in
Horn Set. (A, B). We then write h : A -t* B. For a set X ~ A we put h(X) = {h(x) I :r E
X & h(x) =1= *}.

Definition 3.2 E = (E, -<, #, l) is a partially-Iabelled flow event structure if

• E is a set of events

• -< ~ E X E is irrefiexive (flow relation)

• # ~ E X E syrnmetric (confiict relation)

• l : E -t * L labelling fnnction

A flow event structure is called prime event structure if l is total, # is irreflexive and -< is
an irreflexi ve partial order such that the princi pIe of finite causes (Ve E E : {e' E Eie' :::;e}
is finite) and the principle of conflict heredity (Ve,e', e" E E : e#e' ::; e" =} e#e") are
satisfied.

A subset X ~ E is called configuration of E iff

(i) X conflict-free, i. e. Vd, e EX: -,(d#e)

(ii) ::;x:= (-< n(X X X))* (the reflexive and transitive closure of -< in X) is a partial
order, i.e. -< is cycle-free on X.

(iii) Ve E X: {e' E X I e' ::;x e} is finite (principle of finite causes)

(iv) Ve E X Ve' E E \ X : e' -< e =} 3e" EX: e'#e" -< e (left-closed up to conflicts)

Conf(E) is the set of all configurations of E (the finite ones and the infinite ones).
R(E) := UxEConf(E) X is the set of reachable events of E.
A configuration X is called complete iff Ve E E \ X : 3e' EX: e'#e.

3

We write Confj'(£) for the set of all finite configurations of £ and MConfj'(£) for the set
of all maximal (w.r.t. ~) and finite configurations of £.
For X E Conf(£) and e E X write -l-x(e) := {e' E X I e' ::::;xe}.
For a prime event structure £ = (E,::::;,#,1) a subset X ~ E is a configuration of

£ iff X is left-closed, i.e. Ve E X :-l- e := {e' E E I c' ::::;e} ~ X and confiict-free,
i.e. Ve, eil EX: -,(e#e').
Note that for prime event structures each maximal configllration is also complete,

whereas for fiow event structures there may exist maximal configurations that are not
complete - such configurations can be seen as deadlock.
We call fiow event structures that do not contain maximal and incomplete configurations

dead1oek-free.
A fiow event structure £ is called empty iff n(£) = 0. Note that in contrast to prime

event strllctures there exist empty fiow event structures containing events (for example an
event that is self-confiicting).
A fiow event structure is called well-labelled iff exactly the reachable events are labelled,

i.e. l(e) = * <=? e g n(£).
Each partially-labelled fiow event structure £ = (E, -<, #,z : E ~* L) in which all

reachable events are labelled can easily be transformed into a well-labelled event structure

W(£) := (E, -<. #.1' : E ~* L) with l'(c) := {l(e) if heE ~(£), , * ot erWlse
Note that all prime event structures are well-labelled fiow event structures because in

prime event struetures all events are reaehable.

Definition 3.3 Let £1 = (EI, -<1, #1, 1JJ, £2 = (E2, -<2, #2,12) be .flow event struetures. £J
a:nd £2 are event-strueture-isomorphie (£1 ~e £2) iff LI = L2 and there exists a bi.jeet'ion
f : EI ~ E2 sv,eh that for all e, e' E EI :
e -<1 e' <=? f(e) -<2 f(e'), e#]e' <=? f(e)#2f(e'), and l](e) = 12(f(e)).
£1 and £2 are domain isomorphie (£1 ~d £2) iff L] = L2 and there exists a bijeetion
f : Conf(£t} ~ Conf(£2) sueh that for all X, X' E Conf(EtJ :
X ~ X' <=? f(X) ~ f(X') and l](X) = 12(f(X)).
(eompare (GGR94J and (Bo90J).

[Bo90] showed that for each fiow event structure E there exists a domain isomorphie
prime event structure P(£) := (E', <', #', 1') with
E' := Hx(e) leE X EConttE)}, -l-x(e) <'-l-y(f) iff -l-x(e) c-l-y(f),
-l-x(e)#' -l-y(f) iff -l-x(e)U -l-y(f) gConf(E) and l'(-l-x(e)) := l(e).
This definition ean directly be transferred to partially-labelled fiow event strlletllres.
Note that ~d and ~e eoineide on prime event strllctures. ThllS for all prime event

structures E holds: P(E) ~e E.
Adapting the definition of [GGR94] we define action refinement for well-labelled fiow

event strllctures:

Definition 3.4 Let E[and E2 be well-1abelled .flow event strv,etv,res with E2 being non-
empty. Define EI [0. 'Vt £2]F := W(E, -<, #, 1: E ~* L) with
E = {(el,e2) E EI x (E2 U {*}) I C2 = * <=? h(etJ # a},
(eI, (2) -< (eI' e2) <=? el -<1 e'l V (eI = e1 & e2 -<2 e2)'

4

Remark 3.5 If £ a:nd:F are well-labelled .flow event structures so is £[0, """ :FJF'

If a prime event structures is refined in the same way as a fiow event structure with an
event structure eontaining eonfiicts the result may be no longer a prime event strueture.
Henee we define

for prime event structures £1 and £2 with £2 being non-empty.
This definition builds the fiow event structure refinement of two prime event structures

and then transforms the result into a prime event structure. It yields isomorphie results to
the one in [DGR93J (see [Be96]) and if no eonfiicting event structures are inserted also to
the one in [GG90bJ.

(GG90a) and [Co95J gave a simple eharaeteristie of refined event structures that we
transferred to well-labelled fiow event structures. This lemma will be used for the proof
that refinement on fiow event structures yields a eategorical refinement.

Lemma 3.6 Let £1, £2 be well-labelled .flow event structures such that £2 is non-empty,
£' = (E', -<', #', l') = £da """£2JF and X ~ E'.
Then X E Conf(£I(a """ £2JF) if and only if

• 7rl (X) E Conf(£I) (with 7rl being the prajection fram EI X (E2 U {*}) to EI'

• Vel E 7rl (X) \ Max(7rl (X)) : X (eJJ is a complete and ,finite configuration of £2 (with
MaX(7rl(X)) denoting the set of maximal (w.r.t. :S"J(X)) elements in 7rl(X)).

Remark 3.7 If XE Conf(£I[a """ £2JF) is complete so is 7rl(X).

We now define a category for fiow event structures and then show that refining a fiow
event structure yields a categorical refinement.

Definition 3.8 The category F of .flo'W event structnres:

Objects: well-labelled .flow event structnres

Morphisms: (g, A) E HomF(£I, £2) {:}

a) g : EI -+* E2, A : LI -+* L2 with el rt.R(£d =} g(el) = *
b) VX E Conf(£JJ Ve, e' E X holds: g(e) -<2 g(e') =} e -<1 e'

c) VX E Conf(£JJ3Y E Conf(£2) : g(X) ~ Y, and
Ve, e' EX: g(e) <y g(e') =} e <x e', and
if X is complete so is Y.

d) l2 0 g = A 0 h.

5

Note that c) implies g(e1) i- * ::::}9(CI) E R(E2). (One thus also could define 9 :
R(E1) ---+* R(E2) because all other values are necessarily *). The use of well-labelled
instead of totally labelled flow event structure thus leads to a simple morphism definition
only depending on the reachable events. The identity morphism of an event structure
E = (E, -<, #, l : E ---+* L) will be denoted by (,[,idL) with "/[: E ---+* E,

{
e if e E R(E)

"/[: e H * otherwise .

It coincides with (idE, idL) if this is amorphism, which is not necessarily the case.
Note that ~c implies ~F (the categorical isomorphism on F - but not vice versa. But

if labelling is not considered ~F is stronger than domain isomorphism.

Theorem 1 For i = 1,2 let Ei = (Ei, -<i, #i, li : Ei ---+* Li) be well-labelled .flow evcnt
structures and E2 .finite, non-empty and deadlock-free, l2(R(E2)) = Lz, 0. E ll(R(E1)) and
LI n Lz = 0. Let E = (E, -<, #, l : E ---+* L) = EI [0. "" EZ]F' Let 9 : E ---+ EI, A : L ---+ LI be
given by:
.() {eI if(e1,ez)ER(EI[a""Ez]F) \'b {a ifbELzg. e1, ez H h' , A. H b h .* ot .erwzse ot ,erwzse
Then (EI [0. "" EZ]F, EI, (g, A)) is a categorical refinement in F.

Proof: (using lemma 3.6)
Obviously (g,A) E HomF(E',E) because '1X E Conf(E') holds g(X) = 1f1(X) E Conf(E)
(see lemma 3.6) and completeness of X implies completeness of g(X).
We have to show that for an arbitrary E' and '1(gl, AI), (gZ, AZ)E Hom F(E, E'):
(gI, AI) i- (gZ, A2) ::::}:3(g', A') E r(g, A) : (gI, AI) 0 (g', A') i- (gZ, AZ) 0 (g', A').
For each event f E R(Ez) define (9f, Af) E r(g, A):

{
(CI'.f) ~fII (eI) = a {lzU) if b = a

gf:e1H (el,*) Ifh(e1)i-a& e1ER(E1) .Af:bH b h'. . ' ot erWlse* otherwlse
Cgf, Af) E Hom F (EI, E) because for each configuration Xl of EI there exists a configu-

ration X of E with 1f1 (X) = Xl and if Xl is complete X also can be chosen complete (this
is due to the fact that Ez is finite and deadlock-free). Obviously (g, A) 0 (9f, Af) = id[l and
therefore (gj,Aj) E r(g,A).

If Al i- A2 then there exists bE L[: Al (b) i- Az(b).
If b E Lz then there exists (e1,.f) E R(E) with lzU) = band then A1(Aj(a)) = Al (b) i-
A2(b) = A2(Aj(a)). If b f/. Lz then bELl. Choose an arbitrary f E R(Ez), then Al (AI(b)) =
Al (b) i- Az(b) = AZ(Aj(b)). Thus in both situations (gI, AI) 0 (gI, Al) i- (gZ, AZ) 0 (gI, AI)

If Al = A2 then gl i- gz. Then there exists e E R(E) with gl(e) i- g2(e).
If exists CI E R(Ed : c = (Cl, *) then for an arbitrary f E R(Ez) holds gl(gj(eI)) =
gl(e1, *) i- gz(e1, *) = gZCgf(e1))' If exists Cl E R(EI), fE R(Ez) such that c = (CI,.f) then
gl(gl(eI)) = gl(C1,.f) i- gZ(C1,.f) = gZ(gf(C1))' Thus in both situations (gI, Al) 0 (gj, Af) i-
(gZ, AZ) 0 (gI, Af). D

If we used morphisms also depending on unreachable events this result only would hold
for a small subclass of flow event structures, because then also the unreachable events of
the refined event structure must be in the range of one of the sections.

6

For the category of prime event structures we have to relax the conditions for mor-
phisms: Consider for example £1 and £2 in Figure 1. If morphisms have to satisfy the
condition l2 009 = A 0 l] the event -!-X(C2,h) with X = {(co, fo), (Cl, *), (C2, h)} cannot be
reached by a morphism in r(09, A) with (09,A) chosen appropriately because A(a) must be x
and A(a) must be y.

Ca. •
-0

f;c ••••••••• fY
. 0 . 1

..y .y.......! \....'.
x~ •••••••• ~ :1~bt:><T• ••••••••

x y

Figure 1: The refinement of an event strllcture - Co denotes the event Co labelled with a
while b denotes the label b - note that not all confiict-relations are drawn

To solve this problem in the category E also morphisms not respecting labelling are
allowed:

Definition 3.9 The cateo9ory E of prime event structures:

Objects: prime event structures

a) 09: EI -+* E2 and A : LI -+* L2

b) Vel,e; E EI: o9(el) <2 o9(cl) =? el <1 Cl Vel#lel'
c) VX E Conf(£I)3Y E Conf(£2) : g(X) ~ Y

d) Vc E EI : o9(e) = * {::}A(l](C)) = *

Condition b) enSllres that concurrent events cannot be mapped to causally depending
events.

Theorem 2 For i = 1,2 let £i = (Ei, <i, #i, li : Ei -+ Li) be prime event structures and
£2 .finite and non-empty, l2(E2) = L2, a E l] (EI) and LI n L2 = 0. Let £ = (E, <,#, l :
E -+ L) = £da'"'-'t £2]E. Let g : E -+ EI, A : L -+ LI be o9iven by:

() \ b {a ifb E L2
09 :-!-x el, C2 H Cl, /\: H b th .o. ,erW2se

Then (£da'"'-'t £2]E, £1, (g, A)) is a categorical re.finement in E,

Proof:
Obviously (o9,A) E HOillE(£I[a '"'-'t£2],£1)' We have to show that for an arbitrary prime

7

event structure E' and for all morphisms (gI, AJJ, (92,A2) E Hom E(E, E'):
(gl,AJJ =1= (92,A2) * 3(g',A') E r(g,A): (.9l,AI) 0 (g',A') =1= (g2,A2) 0 (g',A').
For a complete configuration Y E Conf(E2) and f E Y define gYf : EI -+ E with

. { +xy(e, f) if ll(e) = a
gYf . e r-+ I () h . and
. +Xy e, * ot erwise

d \ h \ b {l2(f) if b = aan AYf: LI -+ L wit AYf:. r-+ b if b =1= a

with Xy := {(e', f') E Eie' ~1 e & .f' = * V .f' E Y}.
Then (gYf'Ayf) E HomE(E1,Eda"'"'-+ E2]F) and since (g,A) 0 (gYf'Ayf) = id[1
then (gy!, Ayf) E r(g, A).

If Al =1= A2 then there exists bEL: A1(b) =1= A2(b).
If b E L2 then there exists a maximal configuration Y E Conf(E2) and f E Y such that
l2(f) = band +xy(e,f) E E and then A1(Ayf(a)) = A1(b) =1= A2(b) = A2(Ayf(a)). If
bELl then choose an arbitrary f E E2, Y E Conf(E2) with Y complete and f E Y and
then A1(Ayf(b)) = A1(b) =1= A2(b) = A2(Ayf(b)). Thus in both cases (91,Ad 0 (gyf, Ayf) =1=

(g2, A2) 0 (gyf, Ayf).
If Al = A2 then gl =1= g2 and then there exists +X(Cl, e2) E E with

gl(+x(e1,e2)) =1= g2(+x(e1,e2)) Let X' E Conf(E') such that X' is complete and X ~ X'.
Let f be an arbitrary event of E2. Let Y be a complete configuration of E2 with f E Y.

{

+xt(e1,e2) if e~ = e1
" , +xt(e~,e2) if e~ =1= Cl & e~ E 1q(X') for an

Denne 9 : EI -+ E, e1 r-+ arbitrary e2 E E2 U {*} with (e~, e2) EX' and
+Z,I (e~, f) if e~ It 1l"1 (X')

"I

A' : b r-+ { b ~fb =1= 0, with Ze~ := {(e~, e~) E X' I e~ ~ eDl2(f) If b = 0,

U {(e~, e~) E E I e~ ~ e~ & e~ It 1r1(X') & e~ E Y}. Then (09',A') E Hom E(E1, E) and
(g', A') E r(g, A). Furthermore gl(g'(ed) = 091(+Xt(e1, e2)) = gl (+x(e1, e2))
=1= g2(+x(e1, e2)) = 092(+xl(e] ,e2)) = g2(g'(eI)). Thus (gI, AI) 0 (09',A') =1= (g2, A2) 0 (09',A'). 0

4 Categorical Refinement on Interleaving Models

We adopt a refinement operator on synchronization trees from [DD91] and define a suit-
able refinement operator on languages. Both constructions are shown to be categorical
refinements.

4.1 Synchronization Trees

Synchronization trees were introduced by [Mi80] (see also [Mi89]).

Definition 4.1 T = (5, i, L, Tran) is a simple transition system if 5 is a set of states, L
set of labels, Tran ~ 5 x L x 5 is a cycle-free transition relation such that
Vs, s' E 5 : (s, 0" s') E Tran *l-Jb =1= a : (s, b, 8') E Tran,
i E 5 initial state with no predeces80r.

8

A simple transition system T = (8, i, L, Tran) is 0, synchronization tree iff the graph of
Tran is 0, d'lrected tree with root i.

We write s -+(1s' for (s, 0" s') E Tran and s -+ s' if:Ja E L : s -+(1s'.
We write s -+* s' iffexist 8], ... Sn. E 5: s = S] -+ ... -+ Sn = s' and s -++ s' iff
s -+* s' & s # s'. A transition system is called empty if 8 = {i} and Tran = 0. It is called
finite if 8 is finite.
VT:= {s E 8 I f-3s' E 8,a E 5 : (s,a,s') E Tran}. For a synchronization tree define

l . 8 * L 'th l () '= {a if :Js' E 8 : s' -+(1 s,s. -+ Wl, ,s S . 'f'* 1 S=7,

Definition 4.2 The category S of synchronization trees:

Objects: synchronization trees

a) <J : 81 -+* 82, >- : LI -+* L2 such that O"(iI) = i2
b) VSl,S~ E 8]; O"(sI) -++ O"(sl) =} s; ft+ SI
c) VSl, s~ E 8] : (SI -++ S; & <J(sI) # * & O"(sl) # *) =} O"(S]) -+* O"(s1)

d) VS] E 8] \ {iJ} : (O"(sI) = * {:} >-(ls] (sI)) = *).

Simple transition systems can be unfolded to a synchronization trees; For a sim-
ple transition system T = (5, i, L, Tran) define the synchronization tree Unfold(T) :=
(5], i], L, Tran I) with 8] = {(SI, ... , sn) li = S] -+ S2,.. -+ S'n}, i] = (i) and
Tran]:= {((S], ... ,Sn),b,(S], ... ,sn+d) E 51 X L x 8] I Sn -+1) sn+J}.

Lemma 4.3 ForS = (5,i,L, Tran) let se(S):= (E,<,#,l) with E:= 8\ {i}, e < e' {:}
e -++ e', c#e' {:} .(e -+* e') & .(e' -+* e) and l ; E -+ L with l(e) := ls(e). For
(0", >-) E Horn S(SI, S2) let se(O",>-) ;= (ga, >-) with
ga(c) ;= {O"(e) if >-(ls] (c)) # *

* othenmse
Then se : S --+ E is 0, full and faithf11,l functor.

Note that this lemma does not follow from [WN95] where difFerent categories have been
used.

For each prime event structure £ = (E,:S;, #, l : E -+ L) define a synchronization
tree es(E):= Unfold(Confj"(£),0,L,Tran) with (X,a,Y) E Tran {:} :Je E R(£): Y =
X ltJ {e} & l(c) = a.

es does not extend to a fllnctor. Consider for example the event structures £] and £2 in
Figure 2 and the morphism (g, >-) E HOillE(£], £2) with >-(c) = c. Then eS(£2) contains two
maximal states (0, {co}, {co, cI}, {eo, c], e2}) and (0, {cI}, {eo, CI}, {eo, e], e2}) to which the
state (0, {co}) of es(£I) should be mapped.

Lemma 4.4 For all synchronization trees S holds es(se(S)) ~S S.

9

EI

c.~,
eo • .e~

es(Ed

es(g)? •~!c
e f b ! !0,
.~.~

Figure 2: es does not extend to a functor

Definition 4.5 Let SI = (SI,iI,LI, Tran 1), S2 = (S2,i2,L2, Tran 2) be two synchroniza-
tion trees, such that S2 is non-empty.
Define SIlo, "'"" S2]S := Unfold(S,[o, "'"" S2Js) with SI[o, "'"" S2]S := (S,i,L,Tran) with
S := {(8I, *) Il(8I) =1= o,} U {(8I, 82) E SI X S2 Il(8I) = 0, & 82 =1= i2},
i = (iI,*), L:= (LI \ {a}) UL2, and
(81,82) -tb (81,82) {:} (81 -t~ 81 & (82 = * V 82 E JsJ & 82 = *)

V (81 -tl' SI & (82 = * V 82 E JS2) & i2 -t~ 82)
V (81 = SI & 82 -t~ 82)

One ean easily verify that this definition eoineides with the one in [DD91] apart from
the fact that OUf definition also works for infinitely branehing trees.

For an example eonsider Figure 3.

SI[o,,,,",,S2]S
•

SI S2
~

• • • •
tb ~ ~ ~
• • • • •
to, ~ ~ ~ ~
• • •

Figure 3: Refinement in Synehronization Trees

4.2 Languages

Languages are left-closed sets of traees ([H081]) over an alphabet L (eompare with the
eorresponding eategory in [WN95]).

Definition 4.6
I:- = (T, L) is ealled a language if T i8 a non-empty left-closed subset of L * .

10

A language L = (T, L) is called empty iff T = {f}. The langllage corresponding to the
term 0, 11 b for example is ({f, 0" ab}, {a, b}) and the one corresponding to a.(b + c) lS
({ f, 0" ab, ac}, {a, b, c}).

* {a if 3t' E L * : t = t'.aFor a trace tEL define the last labellast(t) := h'* ot erWlse
For traces t, t' E L* define t ~ t' if t is aprefix of t', t< t' if t ~ t' & t f:. t'.

Definition 4.7 The ca,tegory L of langv,ages:

Objects: languages

Morphisms: (a,>-) E HomdLl,L2) iff

a) a : Tl ~* T2, >- : LI ~* L2 such that a(f) = f

b) Vtl, t1 E Tl : a(tl) < a(tl) =? t1 1. tl
c) Vtl, t; E TI : (tl< t; & a(tl) f:. * & a(tl) f:. *) =? a(tl) ~ a(tl)

d) Vtl E Tl \ {f} : a(i]) = * {:} >-(1ast(tr)) ='*.

Lemma 4.8 For L = (T,L) let Is(L) := (S,i,L, Tran) with S := T, i:= fand Tran :=
{(t,a,t') E T x L x TI t' = t.a}. For (a,>-) E HomdLl,L2) let Is(a,>-):= (a,>-). Then
Is : L ~ S is a full and faithfv.l functor.

For each synchronization tree S = (S,i,L, Tran) define a language sl(S):= (T,L) with
T = Traces(S), i.e. T = {(al ...an) E L* I 3i = SO ~al SI'" ~an Sn ES}. sI does not
extend to a functor because different states of a synchronization tree may correspond to
one trace. But if they are mapped to different states this morphism cannot be transfered
to a morphism in L.

Lemma 4.9 For allianguages L holds sl(1s(L)) = L.

Definition 4.10 For t E Li and T2 ~ L'2 define t[a "'--'T2lt inductively: f[a"'--' T2lt := {f},

(b)['Tl]._ { {t'.b I t' E Max(tl[a "'--'T2ltn if b f:. 0,
tl' 0, "'--' .L 2 t .- , , .{t .t2 I t E Max(tda",--, T2Jt) & t2 E T2} otherwzse
(with Max(X) denoting the set of maximal elements of X)

For la:nguages LI = (Tl, LI) and L2 = (T2, L2) with L2 being non-empty let
Lda"'--' L2lL := (T, L) with L := (LI \ {a}) U L2 and T :=Ufl ET, tda"'--' T2lt-

One easily verifies that refining a language by a langllage again yields a langllage.
Consider for example the languages LI = (Tl, LI) corresponding to the term ab.(c + d)

andL2 = (T2,L2) correspondingtox.(y+z). ThenTI = {f,a,ab,abc,abd}, LI = {a,b,c,d}
and L2 = (T2,L2) with T2 = {f,X,XY,xz}, L2 = {x,y,z}. Then a[a "'--' T2lt = T2,
ab[a",--, T2lt = {xyb,xzb}, abc[a "'--'T2lt = {xybc,xzbc} and abd[a "'--'T2lt = {xybd,xzbd}.
Thlls Ldb "'--'L2lL = (T,L) with T = {f,a, aX,a:J;y,axz,axyc,axzc,axyd, axzd} and L =
{c,d,x,y,z}.

11

4.3 Categorical Refinement on the Interleaving Models

First we show that the refinement definitions for synehronization trees and languages are
eompatible with the one for prime event structures in the following sense: Refining in object
in an abstract eategory and then embedding the result in the more eoncrete one yields an
isomorphie result to first embedding an object and then refining it.

Lemma 4.11

a) For alt synchronization trees SI = (SI,iI,LI, Tranl),S2 = (S2,i2,L2, Tran 2) with S2
being non-empty, a E LI a:nd LI n L2 = 0 ho1ds:
se(SI[a""-+ S2]S) ~e se(SI)[a ""-+ se(S2)]E'

b) For alt 1a:nguages £1 = (Tl, Ld, £2 = (T2, L2) with £2 be'ing non-empty, a E LI and
LI n L2 = 0 ho1ds: 1s(£da""-+ £2]d ~s 1s(£d[o, ""-+ 1S(£2)]S'

Proof:

a) Let T = (S, i, L, Tran) = SI [a ""-+ S2]8.
Then se(SI[a ""-+ S2]S) = se(Unfo1d(T)) = (E, <, #, 1: E -t L) with
E {(1 71.) I 1 & 1 (') & \-11 < ' j j+I}= 8, ... , 8 n> 8 = '/,1, * v _ J < n :8 -t 8 .

Let £' = (E', <', #', l' : E' -t L') = se(SI)[a ""-+ se(S2)]F'
Then L' = (LI \ {o,}) UL2 = Land E' = S \ {(il, *)}. Obviously X ~ E' is a config-
uration of £' iff it is sequentially ordered. We thus define (11" Ir,) E HomE(£, P(£'))
with 11,(81, ... , sn.) =.!-x(8n) with X = {sI, ... , sn}. One can easily verify that (11,,1£) is
an isomorphism.

b) Let £ = (T,L) := £do, ""-+ £2lL and 18(£) = S = (S,i,L, Tran). Then S = T. Let
1s(£j)= (Sj,ij,Lj, Tranj) (i.e. SI = Tl and S2 = T2) and S' = (S',i',L, Tran') =
1s(£I)[o,,,,,-+ 1S(£2)]S'

Define h : S -t S' inductively: h(E) = ((E, *)). If h(t) = ((ti, t~), ... , (tl' t~m let

{

h(t).(tl'.b, *) if t'l.b E Tl & (t'2 = * V tz E Max(T2))
h(t.b) := h(t).(t'l', t'2.b) if 1ast(tl) = 0, & tz.b E T2

h(t).(tj'.a, b) if tr{o, E Tl & (t'2'= * V t'2 E Max(T2)) & bE T2

Obviously h is well-defined and total. By induction on trace length one can verify
that 11, is injective. For 8' E S' define h'(s') E T inductively:
11,'(()) - l'((ti tI) (t'lI. tn) (tn+I t'n.+I)) - h'((tl tI) (tn tn)) b• E,* - E,), '1"2 , ... , '1,'2 , 'I , '2 - '1,'2 , ... , '1"2 .

{
1 t(tn+I) 'f t'l'l,+1 -I- tn & 1 t(tn+I)-I-. h b .- as, 1 1 'I r 'I as, 'I ra

wlt .- 1" (71.+1) 'f 1 " (71.+1)a,~t t2 1 ast tl = 0,

Then h 0 11,' = id8, and therefore h is surjective. One can easily verify that Tran' =
{(h(8),b,h(8')) I (8,b,s') E Tran} and thus S ~s S'. D

~:)
Theorem 3 Let S2 = (S2, i2, L2, Tran 2) be a finite and non-empty synchronizo,tion tree
with 12(S2) = L2. Let SI = (SI, iI, LI, Tran d be 0, synchronization tree such that 0, E 11(Sd
and LI n L2 = 0, Let (0', A) E Homs(Sdo, ""-+ S2]S, S2) with 0' : ((s}, 8~), ... (8j', 8'2)) H 8j",
A I {o, if bE L2
:)H b ~therwise
Then (SI[o,,,,,-+ S2]S, SI, (O',A)) is a categorica1 refinement in S.

12

Proof:
With lemma 2 we know that (se(SJJ[a 'V7 se(S2)JE, se(SI), (09, ,X)) with
09 :+X(.~l, S2) H SI and ,X like above is a categorical refinement in E.

With lemma 4.11 we know that se(Sda 'V7 S2JS) ~E se(SI)[0, 'V7 se(S2)JE.
Let (17"h) E HomE(se(Sl[a 'V7 S2]S), se(Sl)[0, 'V7 se(S2)JE) with
17, : (sI, ... , sn) H+X(Sn) with X = {sI, ... , S"''} (compare the proof of lemma 4.11). Then
(17,,1£) is an isomorphism.

Since se(O",'x) = (g,'x) 0 (17"idrJ we conclude that (SI [0, 'V7 S2]S, SI, (0", ,X)) is a categori-
cal refinement in S. 0

Theorem 4 Let £2 = (T2, L2) be a finite non-empty language satisfying
L2 = {b I :3t2 E T2 : t2.b E T2}' Let £1 = (Tl, LI) be an arbitra.ry language such that
:3tJ E Tl : tl.a E Tl and LI n L2 = 0.

Let (O",'x) E Homd£l[a 'V7 £2lL, £1) with'x : b H {ab' ifhb E ~2 and with 0": O"(E)= E,ot ,erwzse

{

O"(t).b if bELl
O"(t.b) = O"(t) if bE L2 & :3tl, t2, t2 f: E : t = tl.t2 & t2.b E T2 .

O"(t).a otherwise
Then (£1[0, 'V7 £2lL, £1, (0", ,X)) form a categorical refinement in L.

Proof: With lemma 3 we know that (ls(£I) [0, 'V7 1S(£2)]S, 1S(£1), (0"/, ,X)) with
0"/ : ((si, s~), ... (s'j", s~m H s']" and ,X like above form a categorical refinement in S.
follows analogously to the proof of 3.

5 Concluding Remark

The rest
o

We introduced a categorical definition of refinement and showed that refinement on event
structures, synchronisation trees and languages can be viewed as categorical refinement. For
this we adapted categories introduced by [WN95] for our purposes. The the characterization
of operations like relabelling, restrietion, product and sum that was given in (WN95] - under
some restrictions - carries over to our models (see (Be97]).

It should be noted that our notion of categorical refinement allows for constructions that
would not be considered as refinement in the various models. Let us consider e.g. flow event
structures. One can define an operation satisfying the conditions of categorical refinement
that transforms a flow event structure in such a way that two events with the same label
are substituted by different event structures. In our setting it is also possible to refine
a synchronizing action for each partner in a different way. This kind of refinement was
suggested by (Hu96]. But there causality and conflict are not necessarily inherited while in
for categorical refinement this inheritance is demanded.

There exists yet another approach to characterize refinement by categorical means:
[DGR92] propose to view each event structure as a category and model refinement as a
functor between such categories.

Work is in progress that considers refinement in various other models of concurrency.

13

References

[AH93]

[Ba81]

[Be96]

[Be97]

[BDE93]

[Bo90]

[dBV92]

[BW90]

[Co95]

[CGG91]

[CR92]

[DD91]

[DG95]

[DGR92]

[DGR93]

L. Aceto, M. Hennessy, "Towards action-refinement in process algebras",
Information and Computation, vol. 103, pp. 204 -269, 1993.

R.J.R. Back, "On Correct Refinement of Programs" , Journal of Computer
And System Sciences 23, 1981.

F. Benjes, "Some Properties of Refinement", TR 14/96, Fakultaet fuer
Mathematik und Informatik, Universitaet Mannheim, 1996.

F. Benjes "Verfeinerung in verschiedenen Modellen fuer Paralleles Rech-
nen", Dissertation, Universitaet Mannheim, 1997.

E. Best, R. Devillers, J. Esparza, "General Refinement and Recursion Oper-
ators for the Petri Box Calculus" in P. Enjalbert, A. Finkel, K. W. Wagner
(eds.), STACS 93, LNCS 665, pp. 130-140, Springer-Verlag, 1993.

G. Boudol, "Flow Event Structures and Flow Nets", in 1. Guessarian
(ed.): Semantics of Systems of Concurrent Processes, LNCS 469, pp. 62-95,
Springer- Verlag, 1990.

J.W. de Bakker, E.P. de Vink, "Bisimulation Semantics for Concurrency
with Atomicity and Action Refinement", CWI technical report, 1992.

M. Barr, C. Wells, "Category Theory for Computing Science", Prentice
Hall, 1990.

R. Costantini, "Abstraktion in ereignisbasierten Modellen verteilter Sys-
terne", Ph.D Thesis, University of Hildesheim, 1995.

1. Czaja, R. J. van Glabbeek, U. Goltz, "Interleaving Semantics and Action
Refinement with Atomic Choice", Arbeitspapiere der GMD 594, 1991.

R. Costantini, A. Rensink, "Abstraction and Refinement in Configuration
Structures", Hildesheimer Informatik-Berichte 18/92, 1992.

P. Darondeau, P. Degano, "About Semantic Action Refinement", Funda-
menta Informaticae XIV, pp. 221-234, 1991.

P. Degano, R. Gorrieri, "A Causal Operational Semantics of Refinement" ,
Information and Computation, vol. 122, pp. 97-119, 1995.

P. Degano, R. Gorrieri, G. Rosolini, "A Categorical View of Process Re-
finement", in J. de Bakker, G. Rozenberg, J. Rutten (eds.): Proc. REX
Workshop on Semantics: Theory and Applications, LNCS 666, pp. 138-
153, Springer-Verlag, 1992.

P. Degano, R. Gorrieri, G. Rosolini, "Graphs and Event Refinement", Proc.
Workshop on Semantics: Theory and Applications, 1993

14

[GG89]

[GG90a]

[GG90b]

[GGR94]

[Ha81]

[Hu96]

[JM92]

[JNW94]

[Mi80]

[Mi89]

[ML71]

[NEL89]

[NSW94]

[Re95]

R. J. van Glabbeek, U. Goltz: "Partial Order Semantics for Refinement
of Actions - neither necessary nor always sufficient but appropriate when
used with care -", in BEATCS: Bulletin of the European Association for
Theoretical Computer Science, vol. 38, 1989.

R. J. van Glabbeek, U. Goltz, "Refinement of Actions in Causality Based
Models", in J.W. de Bakker, W.-P. de Roever & G. Rozenberg (eds.): Step-
wise Refinement of Distributed Systems: Models, Formalism, Correctness,
LNCS 430, pp. 267-300, Springer-Verlag, 1990.

R. J. van Glabbeek, U. Goltz: "Equivalences and Refinement", in 1. Gues-
sarian (ed.): Semantics of Systems of Concurrent Processes, LNCS 469, pp.
309-333, Springer-Verlag, 1990.

U. Goltz, R. Gorrieri, A. Rensink, "On Syntactic and Semantic Action
Refinement", in: M. Hagiya, J.C. Mitchell (eds.): Theoretical Aspects of
Computer Software, LNCS 789, pp. 385-404, Springer-Verlag, 1994.

C.A.R. Hoare, "A Model for Communicating Sequential Processes" , Tech-
nical Report PRG-22, Programming Research Group, Oxford University
Computing Laboratory, 1981.

M. Huhn, "Action Refinement and Property Inheritance in Systems of Se-
quential Agents", CONCUR '96, LNCS 1119, Springer-Verlag, 1996.

L. Jategaonkar, A. Meyer, "Testing Equivalence for Petri Nets with Action
Refinement", in W.R. Cleaveland (ed.): Proc. CONCUR '92, LNCS 630,
pp. 17-31, Springer-Verlag, 1992.

A. Joyal, M. Nielsen, G. Winskel, "Bisimulation from open maps", BRICS
Report RS-94-7, Aarhus University, 1994.

R. Milner, "Calculus of communicating systems", LNCS 92, Springer-
Verlag, 1980.

R. Milner, "Communication and concurrency", Prentice Hall, 1989.

S. Mac Lane, "Categories for the Working Mathematician", Graduate Texts
in Mathematics, Springer-Verlag, 1971.

M. Nielsen, U. Engberg, K. S. Larsen, "Fully Abstract Models for a Process
Language with Refinement", in J. W. de Bakker, W. P. de Roever, G.
Rozenberg (eds.): Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, LNCS 354, pp. 523-548, Springer-Verlag, 1989.

M. Nielsen, V. Sassone, G. Winskel, "Relationships Between Models of Con-
currency", LNCS 803, pp. 425-476, Springer-Verlag, 1994.

A. Rensink, "An Event-Based SOS for a Language with Refinement", pre-
sented at STRICT (Structures In Concurrency Theory), 1995.

15

[Vo89]

[Vo93]

[We93]

[Wi87]

[WN95]

W. Vogler, "Failures Semantics Based on Interval Semiwords is a Congrll-
ence for Refinement", 1989.

W. Vogler, "Bisimlllation and Action Refinement", Theoretical Computer
Science, vol. 114, pp. 173-200, 1993.

H. Wehrheim, "Parametric Action Refinement", Hildesheimer Informatik-
Berichte, 1993.

G. Winskel, "Event Structures", in Brauer, Reissig, Rozenberg (eds.): Pe tri
Nets: Applications and relationships to the models of concurrency, LNCS
255, pp. 325-392, Springer-Verlag, 1987.

G. Winskel, M. Nielsen "Models for Concurrency", vol. 4 of the Handbook
of Logic in Computer Science, Oxford University Press, 1995.

16

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017

